

RAL 85 007
SIXTH ANNUAL LECTURE OF THE C&CD OF IEE
"SOFTWARE ENGINEERING"
11th December 1984
by

Dr R W Witty

ABSTRACT

This report is a written version of the Sixth Annual Lecture of the
Computing & Control Division.

Future IT products can be expected to be more complex than those of
today and thus to place greater demands upon the software in them and
the people building them. The IT industry must meet this challenge
even though there is a growing recognition that system development
techniques are inadequate for the systems of today, let alone those of
tomorrow.

It is accepted today that the development of a substantial new
software system carries a number of significant risks and it is by no
means uncommon for such systems to be delivered late, over-budget and
incapable of meeting the complete requirements of the purchaser. Some
systems, after considerable expenditure of human effort and money,
fail to materialise at all.

Software engineering may be considered as having two major goals for
the future:

- improved gquality ie satisfying criteria such as performancey
reliability, security, on=-schedule delivery and meeting the needs
of the user;

- improved productivity reducing cost, not just of the development
but of the life-cycle as a whole, including maintenance and future
evolution.

The industrialised nations are all currently increasing the scale of
their research and development programmes in the search for improved
software engineering methods, skills and tools. A major UK initiative
is being led by the Alvey Directorate. This report gives a summary of
the Alvey Strategy.

The main objective of the report is to try to impart a practical feel
for what software engineering methods and tools might be in common
industrial use 5 years from now. The actual lecture contained both
live and recorded demonstrations of current research prototypes.

C.

SIXTH ANNUAL LECTURE OF THE C&CD OF IEE

“SOFTWARE ENGINEERING"

by

Dr R W Witty

CONTENTS

INTRODUCTION

1.
2.
3.
4.

Software Engineering: Definition
Software Trends: COST

Software Trends: SOCIAL IMPACT

The Problems of Software Production

ALVEY SOFTWARE ENGINEERING PROGRAMME

1.
2.
3.

Goals & Objectives
The Changing Nature of System Development
Strategy

FORMAL METHODS

1.
2.
3.
4.
S.

Introduction

A Simple Example

A Second Example
Discussion

Quality Certification

Continued eese

Continuation of CONTENTS.

D.

Fe.

INFORMAL METHODS
ts Introduction

2. Components & Packages
3. Smalltalk

NEW SOFTWARE TOOLS
e Traditional Tools
2. New Tools

3. Tool Demonstrations
4. Host-Target Working

CONCLUSION

1. Methods, Skills, Tools.

APPENDICES

HUMOROUS (?)

1. Laws of Project Management
2, IBM's New Operating System
3. Real Programmers Don't Use PASCAL

SERIOUS

1. SIGGRAPH Video Review
2. Mechanical Theorem Proving
3. Expansion of Alvey SE Strategy

A. INTRODUCTION

1. SOFTWARE ENGINEERING: A DEFINITION

Software Engineering was first recognised as a distinct subject at the
1968 NATO Conference [8].

The following introduction to Software Engineering is taken from Boehm

(1.

"Our definition of software engineering is based on the definitions of
software and engineering given in the current edition of Webster's New
Intercollegiate Dictionary [Webster, 1979]:

. Software is the entire set of programs, procedures, and related
documentation associated with a system and especially a computer
system,

« Engineering is the application of science and mathematics by which
the properties of matter and the sources of energy in nature are
made useful to man in structures, machines, products, systems, and
processes.

Since the properties of matter and sources of energy over which
software has control are embodied in the capabilities of computer
equipment, we can combine the two definitions above as follows:

. Software engineering is the application of science and mathe.atics
by which the capabilities of computer equipment are made useful to
man via computer programs, procedures, and associated
documentation.

1.1 Discussion

This definition of software engineering contains two key points which
deserve further discussion. First, our definition of software
includes a good deal more than just computer programs. Thus, learning
to be a good software engineer means a good deal more than learning
how to generate computer programs. It also involves learning the
skills required to produce good documentation, data bases, and
operational procedures for computer systems.

The second key point is the phrase "useful to man". From the
standpoint of practice, this phrase places a responsibility upon us as
software engineers to make sure that our software products are indeed
useful to people. If we accept an arbitrary set of specifications and
turn them into a correct computer program satisfying the
specifications, we are not discharging our full responsibility as
software engineers. We must also apply our skills and judgment to the
job of developing an appropriate set of specifications, and to the job
of ensuring that the resulting software does indeed make the computer
equipment perform functions that are useful to society. Thus,
concerns for the social implications of computer systems are part of
the software engineer's job, and techniques for dealing with these
concerns must be built into the software engineer's practical
methodology, rather than being treated as a separate topic isolated
from day-~to-day practice.

From the standpoint of learning, the phrase "useful to man" implies
that the science and mathematics involved in software engineering
covers a good deal more than basic computer science. For something to
be useful to people, it must satisfy a human need at a cost that
society can afford. The science and mathematics of human economics
presented in this book provides an opportunity to learn some ways to
handle the cost and human-needs aspects of a software engineering
problem, and to integrate them with the computer science aspects.

2. SOFTWARE TRENDS: COST

The way we perform software engineering determines the cost and the
quality of the software produced. This makes software engineering
important because of the following two trends:

1. Software is a large and increasingly costly item.
2. Software makes a large and increasing impact on human welfare.

These trends are covered in the next two sections.

The annual cost of software in the US in 1980 was approximately 40
billion dollars, or about 2% of the Gross National Pr .uct. 1Its rate
of growth is considerably greater than that of the economy in general.
Compared to the cost of computer hardware, the cost of software is
continuing to escalate along the lines predicted in Fig. 3-2 [Boehm,
1976].

By now, the trend in Fig. 3-2 has become so pronounced that we can
often consider the hardware as a kind of packaging for the software,
which is the portion of the computer system which largely determines
its value. Thus, today, the computer system that we buy as "hardware”
has generally cost the vendor about three times as much for the
software as it has for the hardware. Most thorough “hardware"
procurements are primarily software purchases, as the Dbuying
evaluations place more weight on the software aspects than on the
hardware aspects. (For an example, see Chapter 15.) A number of new
computer systems (for example, Amdahl, Magnuson, Cambridge, and
National Semiconductor) offer a product that is largely IBM software
repackaged for a different mainframe. And the IBM software rental for
a basic IBM 4331 system can be greater than the rental cost for the
hardware [Lundell, 1979].

With respect to the overall computer and information processing
industry of the future, computer software will be the dominant portion
of an industry expected to grow to 8.5% of the Gross National Product
by 1985 [Dolotta and others, 1976] and to 13% of the GNP by 1990
[Steel, 1977].

This growth in demand for software creates a tremendous challenge for
the software engineering profession. The challenge is twofold: first,
to significantly increase software development productivity; and
second, to increase the efficiency of software maintenance. As shown
in Fig. 3=2, the portion of efforts spent on software maintenance is
greater than that spent on software development. The data point for
1978 comes from a recent survey of 487 data processing installations,
in which the mean percentages of effort were 43.3% for development,
48.8% for maintenance, and 7.9% for other miscellaneous activities
[Lientz=-Swanson, 1978].

3. SOFTWARE TRENDS: SOCIAL IMPACT

The growth in the demand for software results largely from the fact
that as computer hardware becomes increasingly inexpensive, reliable,
and plentiful, we find it more and more advantageous to automate the
machine~like portions of human jobs.

Figure 3-3 illustrates this trend. It summarizes the results of three
studies ([AFIPS=Time, 1971; Boehm, 1973; Dolotta and others, 1976]) on
the growth of computer usage and its human impact. The most striking
implication of the studies is that, by 1985, roughly 40% of the
American labor force will be relying on computers and software to do
their daily work, without being required to have some knowledge of how
computers and software work. Thus, this 40% of the labor force will
be trusting implicitly in the results produced by computer software.

Computers and software are making an even deeper impact on our
personal lives. With every passing day, more and more of our personal
records, bank accounts, community services, traffic control, air
travel, medical services, and national security are being entrusted to
the hopefully reliable and humane functioning of computers and
software. And the potential threats to our personal welfare via
computer crime [Parker, 1976), massive data banks [Westin-Baker, 1972;
Ware and others, 1974], or computer systems that make people think and
act like computers [Weizenbaum, 1976; Docherty 1977], become more and
more difficult to contain.

This increasing impact on human welfare presents several tremendous
challenges for the software engineering profession. They are to
develop and maintain software which ensures that computer systems are:
. Extremely reliable

« Humane

. Easy to use

. Hard to misuse

. Auditable

and that keep people, rather than computers, in the driver's seat.
These challenges, plus the economic productivity and maintainability

challenges identified in the previous section, provide the main
motivation for the goals of software engineering discussed in the next

section "[1].

4. THE PROBLEMS OF SOFTWARE PRODUCTION

The simple life cycle of any man~made article, not just software, is:
1. Identify Requirement for product

2. Design the product

3. Manufacture the product

4, Maintain the product

5. Scrap the product.

Percent of tolal nosts

no

80

60

20

Hardware

<
070 6% %0 % %% e
Qo.:‘g‘d‘:‘, 6%

FIGURE 3-2 Haroware/software cost trends

0% % .‘::‘ o::: < , X o
x:‘.»:“}}‘yﬁ{a.
%% >

R e S
N
e
e

100

Percentage of fabor force
n
=]
T

~
7 <
Working with computers
7
7/

/7

-
—
//
-

Required to have some
knowledge of how
" computer works

1855

FIGURE 3-3

1870 1935
Year

Growth of reliance on computers and software

In Software Engineering the manufacturing process is not a problem if
manufacturing means replication of an item. Copying a magnetic tape
or disk can be done quickly, easily and reliably; this contrasts
markedly with say motor car production or VLSI chip production.

For a software product the greatest proportion of life cycle cost is
assocliated with the maintenance phase. In the worlds of motor cars
and computer hardware ‘'maintenance' means 'restoration to original
condition', faults being mainly due to physical wear and tear on
components.

Software, by its very nature, cannot wear out. To first order, the
only type of fault which can occur in a software product is a design
fault. Thus correct software maintenance does the exact opposite of
‘restoration to original condition', if the fault is cured, because a
new version of the product has to be built. ‘'Software maintenance' is
a euphemism for ‘'rectification of design faults'.

Software faults can be trivial at the lexical level whilst having
disasterous consequences. A very famous example is that of a missing
comma which caused the loss of a deep space exploration probe. The
offending error was of the following nature

DO 99 I = 1,10 which is a FORTRAN repetition statement was
mistyped as

DO 99 I = 1 10 which, by chance, became the valid assignment
statement

DO99I = 110

A software error delayed the first launch of the Space Shuttle, a very
public mistake; software errors in the USA's World Wide Command and
Control System have had significant publicity when incoming missile
attacks have been falsely detected.

Maintenance is also usually taken to include development work in which
a correctly operating product is changed to reflect some new customer

requirement.

Rectification and development often take up 50% of the total 1life
cycle cost of a software product.

This figure is so high because today's software is error prone, fails
to meet its requirements specifications and is difficult to
change/develop. All of these problems are design problems.

B. ALVEY SOFTWARE ENGIREERING PROGRAMME

1. GOALS AND OBJECTIVES

1.1 The Central Goals

Future IT products can be expected to be more complex than those of
today and thus to place greater demands upon the people building them.
The IT industry must meet this challenge, even though there is a
growing recognition that system development techniques are inadequate
for the large systems of today, let alone those of tomorrow.

It is accepted today that the development of a substantial new
computer system carries a number of significant risks and it is by no
means uncommon for such systems to be delivered late, over-budget and
incapable of meeting the complete requirements of the purchaser. Some
systems, after considerable expenditure of human effort and money,
fail to materialise at all.

Skilled programmers are a scarce resource which is not being used
efficiently. The industry is fragmented by organisation, by language
and by target computer., One result of the consequent 1lack of
commonality of environment or concentration of resources is that many
programmers are not provided with even the simplest programming aids,
let alone sophisticated ones. The economies of scale necessary to
justify their introduction have not been perceived to exist.

Despite these problems, the UK does not lag behind other countries in
software engineering, except perhaps the USA. The UK is certainly
regarded as the leader in Europe in this field. Efforts to improve
software engineering practice are crucial if important developments in
technology are not to be wasted or cast into disrepute through poor
production methods. The UK must not allow other countries to
overtake it, for if it does, UK research work will be exploited by
other countries to the detriment of our industry.

Software engineering may be considered as having two major goals for
the future:

- improved gquality ie satisfying criteria such as performance,
reliability, security, on-schedule delivery and meeting the needs of
the user;

- improved productivity ie reducing cost, not just of the development
but of the life-cycle as a whole, including maintenance and future
evolution.

Current software practice is centred on the programming process, and
depends strongly on the skills, experience and resources of individual

workers. Significant problems frequently result from inadequate
effort being devoted to the front end of a development, notably
concept formation, requirements definition, and design. Although

there have been some efforts to study these problems, as well as
interesting advances in both design verification and code
verification, relatively little work has been devoted to integrating
all of the stages into a common framework useful in production
environments. Significant improvements in software productivity will
be achieved when the current practice of repreated ‘reinvention of the

wheel' is replaced by the widespread re-use of prefabricated
components. In the future then, software practice will tend to focus
more on methodology, design, and component reuse and 1less on
individual programming skills.

System design must include not just software design, but also hardware
considerations. A narrow view of software engineering as just a
collection of techniques to produce efficient software is not
adequate. Software engineering should be aimed at the development of
high quality systems, ie reliable, secure, efficient and easy to use,
in a way that integrates hardware and software-based design criteria.
In the future it must become information system engineering, not just
software engineering.

1.2 Major Objective

To help achieve the general goals of improved Quality and Productivity
the Software Engineering component of the Alvey Programme is focussed
towards a strategic goal - that in 1989 the UK should be a world
leader. in Information System Factories (ISF). This goal is highly
ambitious and competitive, as are the goals of the Japanese 5th
Generation Project. The ISF objective implies a series of sub goals
both in technology and timescale. The Alvey Software Engineering
component will be judged on its ability to show that UK industry has
increased both its software development productivity and software
product quality as a result of striving to achieve the ISF,. The
strategy given in this document outlines the route towards the 1ISF
with planned interim spin-offs so that productivity and quality gains
may be achieved prior to the emergence of the ISF.

What is meant by an Information System Factory? Today, the production
of most application-specific hardware/software systems = such as a
banking network, a corporate management information system or
production control system ~ does not in general make great use of
development tools. In that sense it is not capital intensive. The
application=specific part of the Information Technology industry is
characterised as a cottage industry. It is predicted that it will not
remain so for long, indeed the Japanese are already building 'software
factories'. To stay competitive in producing large, reliable,
application-specific systems, IT companies will have to make a large
investment in some kind of production facility. Exactly the same
criteria will apply ¢to manufacturing software products. This
expensive facility - part hardware, part software, part stored
knowledge -~ is an Information System Factory.

1.3 What Will Happen in Any Case

The Alvey SE strategy is based on the prediction that the production
of application-specific information systems will cease to be a cottage
industry and become a capital-intensive industry.

The main reason has to do with software quality, in the widest sense
of the word. Expectations of software quality, both within the
industry and without, are very low. Today, programmers expect to have
lots of bugs in their code, and the public expect computers to send
them stupid invoices. This situation is not confined to the UK; it is
worldwide. British standards of software quality are relatively high,
while 1low in an absolute sense. This situation cannot 1last
indefinitely. In the hardware field, one manufacturer (Tandem) has

grown spectacularly by offering high reliability at a premium. This
has been done against a background of hardware from IBM and others
which is already highly reliable. The incentives to do the same in
software, and the potential payoffs, must be much higher given the
current poor quality of software. It seems highly likely that someone
soon will "do a Tandem"™ in software, and either keep the method to
himself or sell it very expensively. The Japanese are certainly
trying, as are the BAmericans and the French. Without concerted
action, the UK is bound to become an importer of this technology. If
the UK is prevented from importing such technology then the industrial
consequences could be very serious.

A number of other current trends are 1leading towards the
'capitalisation' of the software industry - the growing complexity of
software systems, which demands new techniques and computer assistance
to manage it, the dawning awareness of the importance of project and
programming support environments, and the emergence of software
packages which demand new skills to integrate them in particular
applications. Finally, there is the emergence of non-Von Neumann
architectures and VLSI, which are inevitably mixing the software and
hardware design problems, making both more complex. All these are
creating larger and more complex problems, which cannot be solved
without a radically new level of automation and mechanical assistance.

2. THE CHANGING NATURE OF SYSTEM DEVELOPMENT

2.1 Su-nagx

The expected changes that will result in the most significant
increases in cost-effectiveness of software development over the next
ten years are the following, listed in approximate order of expected
impact.

In the short term

1. incremental changes in programmer productivity through the more
widespread use of design methodologies and tools

2. the coming together of me“*hodologies and tools for the entire
development life-cycle within integrated project support
environments (IPSEs)

3. growing standardisation of development methodologies as a
consequence of 2.

4. further refinement of suitable high-level programming languages
appropriate to the integrated development methodologies

5. growing interest in, and use of, formal specification methods and
extension to animation

6. automatic software generation techniques in limited form, probably
first in the area of commercial systems built around Data
Dictionaries.

In the medium term
7. spread of powerful networked, personal workstations

8. consolidation of the use of formal specification methods coupled
with verification and growth in use of (semi-) automatic software

generation

9. development of reusable software and hardware modules, rigorously
tested and formally documented

10. second generation IPSEs adapted to support activities 8 and 9
above, coupled with greater use of higher=level languages.

And in the longer term:

11. the consolidation of the developments above into Information
System Factories, coupled with the use of Intelligent Knowledge
Based Systems, to provide ‘'automatic' assisted system development
from user requirements expressed in high-level terms appropriate
to the application rather than the implementation.

The crucial, and inter-related, technical developments underlying
those changes will be:

1. integrated system (software and hardware) development
methodologies supported by programming tools, administrative
procedures and management information in an integrated environment

2. formal specification, leading to 'animation' and verification

3. reusable software and hardware components

4, automatic software generation

5. measurement and quality assurance and certification

3. STRATEGY

3.1 Summary

The Alvey SE Programme has as its long term objective the creation of
the Information Systems Factory. This is predicated on technical
progress in the two crucial areas of:

1. QUALITY
2. PRODUCTIVITY

To ensure continuous benefit during the period preceeding the
achievement of the ISF the SE Programme proposes a strategy which
encourages intermediate levels of technology transfer by encouraging
not just research but:

i. Exploitation: efforts to ensure that existing methods are
effectively used and their benefits gained by industry as a
whole, and continuing efforts to bring the fruits of research out
into industrial use, with the associated investment and training.

ii. 1Integration: development of integrated methodologies and sets of
tools for hardware and software development covering all phases
of the system life-cycle.

iii. Innovation: research and development to extend the methodologies
and techniques of software engineering.

To give a feel for the activities which will be covered by innovation,
integration and exploitation figure 1 shows the system development
life cycle subdivided into

1. Methods and processes - how things are developed.

2. Management - monitoring and control of methods and processes.

3. Environment - the workplace, tools and egquipment with indications
of where in the classification various key elements of the
strategy occure.

Innovation Integration Exploitation
STRATEGY and and and

Understanding Implementation Evaluation
Methods épecification Blend techniques Measure use
and vV &V into life cycle of IPSE
Processes Reliability method for both

Quality hardware and

Metrics software

Reusability
Management |[Models of Integrate Evaluate use

development development methods| of IPSE

and mainte- with management

nance processes techniques

and methods
Environment jInfluence on Build IPSEs Make IPSE

Productivity
and Quality
MMI,

IKBS, DCS

available via

Centres

Figure 1

3.2 Integration

The second major need identified is for Integrated Project Support
Environments (IPSE). The common understanding of an IPSE is that it
should contain a compatible set of specification, design, programming,
building and testing tools, supporting a development methodology that
covers the entire life-cycle, together with management control tools
and procedures, all using a central project database. That is already
a very demanding requirment, ex‘-eeding that of the Ada APSE, but even
then it does not go far enough. It does not cover multiple-language
development; it does not <cover mixed hardware and software
development; it does not cover reusable components.

3.2.1 The 2nd Generation IPSE

The second generation IPSE contains two major components not found in
the 1st generation IPSE:

(1) Database-based tool set (rather than file-based) eg CADES.

(2) Support for geographically distributed project teams e.g.
Newcastle Connection.

The 2nd generation IPSE software will run on new hardware;
developments in cheaper CPU power, cheaper, high resolution colour
graphics, and non keyboard input=-output devices, for instance, will
facilitate productivity gains due to improved man-machine interaction.
The 2nd (& 3rd) generation IPSE will require new hardware based
components such as:

1. Single user workstation costing £5K with A3 black and white
2K x 2K pixel graphics.

2, Colour single user workstation costing £10-20K with
= 2K x 2K pixel A3 screen
- 10 MIPS power CPU
- 32K microcode store
- 10 Mbytes physical memory
= 32 bit arithmetic and data paths
- 32 bit virtual address space per process
- hardware cache, paging, floating point
- hardware graphics support
~ sophisticated i/o devices.

3. 100 Mbits/sec local area network.

4. Gateway to high speed (greater than 1 Mbit/sec) wide area
communications.

5. LAN servers for files and databases.

6. High quality, cheap print server eg. laser printer.

7 Full-generality distributed operating system.

8. Sophisticated man-machine interface.

9. Integrated with Office Automation and Corporate Applications

Systems.

- 12 =

3¢2.2 The 3rd Generation IPSE

The 3rd generation IPSE (or 1ISF), containing knowledge bases and
'intelligent' tools, requires significant research which must begin
now if the 1989 target date for the Information System Factory is to
be met.

An Information System Factory will probably consist of six main
subsystems:

1. specification and prototyping facilities
2. a Software Development Environment
3. a facility for CAD of VLSI and hardware development

4. a database or knowledge base of available software and hardware
components

5. the communication systems, both local and wide area, to facilitate
co-operative development

6. project management aids.
3.3 Innovation
The current list of research priorities includes:
i. Software Development Methods
- Formal Specification
- Verification and Validation
- Reusable Components
- Metrics
- Quality Assurance and Certification
ii. Project Management
- planning and estimating
- progress and productivity measurement
= budgeting
- standards control
iii. IPSE
- items already indicated above are relevant

- evaluation experiments to test changes in productivity and
quality due to use of IPSE in the industrial context

- MMI, VLSI/CAD etc from other Alvey areas but relating to IPSE
construction

= 13

3.4 National Quality Certification Centre

The primary medium term payback activity is seen as the creation of a
National Quality Certification Centre (NQCC) for software products and
components. The NQCC must build up an international reputation. This
will involve the adoption of state of the art techniques on a
continuous basis. The commercial benefit of NQCC approved software
products in an international market is potentially extremely valuable.
As the mass market for softwar¢ products develops consumers will buy
NQCC approved products rather than unapproved products. The rapid
establishment of such a national capability could give the UK a
significant commercial advantage.

- 14 -

C. FORMAL METHODS
1. INTRODUCTION

Software systems, even small ones, cannot be completely tested. This
is due to a variety of reasons including

1. the extremely large number of independent internal states
2. the extremely large number of different possible inputs
3. the inability to generate valid tests.

An example of 2) is that, at present hardware speeds, it takes a time
period greater than the predicted life time of planet earth to check
that an arithmetic unit correctly adds together all possible pairs of
numbers from its finite input set.

Examples of 3) include the inability to test realistically that part
of the software which handles nuclear power station crises or
navigates cruise missiles over enemy territory. The 'computer
overload' problem which beset Neil Armstrong as he attempted the first
lunar landing fell into this category.

Testing is necessary and useful but will always suffer from the
problem of lack of completeness which is enshrined in the famous
remark "program testing can be used to show the presence of bugs, but
never to show their absence!" [11]. Thus modern software engineering
is trying to improve Quality by theoretical methods (formal methods)
which attempt to prove (in the strict mathematical sense) properties
of programs and systems.

A mathematically based proof that a well specified property of a
program holds for all inputs is more valuable than an assumption that
the property is true for all inputs, given that testing shows it to
hold for a small subset of the input domain. In the finite and
discrete world of software, extrapolation is not always a sound

technique!

2. A SIMPLE EXAMPLE

The following fragment of code appears to be simple enough in outline
(3 simple assignments executed in sequence).

A:=A+B;
B:=A-B;
A:=A-B;

Without a higher level specification it is not immediately obvious
what this code fragment achieves and therefore there is no way of
knowing if it is correct, for correctness in software means proving
that a program implements the required specification.

1f the code fragment is analysed formally by assuming the final values
of the wvariables 'A,B' are 'x,y' then the code fragment can be
'symbolically executed' backwards to derive the initial wvalues of
'A'B'O

- 15 =

{éi=x'} PRE CONDITION AN\

{%.tBi—Ai°Bi+Bi=x

(B;+B;)=((A;+B;)=B;))=x
(Ai+Bi)-Bi—y

(1) At:=Ai+Bi;
At-(At-Bi)—x
At-Bi=y *B' changed so substitute LHS;
(2) Bf:=At-Bi;
At-Bf=x 'A' changed so substitute LHS;
Bg= 'B' unchanged
Af=x POST
Bf=y CONDITION
Therefore Ag = Bi where 'i' is the initial value,
Bf = Ai 'f' is the final value.

Therefore Code fragment swops values between A,B.

Specification: Swop the values held in A,B
S.t. A, = Bi and By = Ay
without use of temporary storage

Implementation: A := A+B
B := A-B
A := A=B

(Contrast the equivalent function using a temporary storage variable

w > =

)e

Note that the predicates which describe the initial and final states
of the computation (ie the values of the variables in the above
example) are collectively called the pre and post conditions. A
program ‘'P' can be thought of as a process which causes a state, with
precondition 'I', to be changed into a state, with postcondition 'F’'.
This is often written

(I11P[F]

= 16 =

3. A SECOND EXAMPLE

Here is a second, more complex example involving iteration to perform
integer division by the process of repeated subtraction.

Specification: Given X>=0 and Y>0, find a program P to compute Q and R
such that X=Q*Y+R and O=<R<Y.

this can be re-expressed as a requirement to prove that P satisfies
the following pre and post conditions

[0=<X,0<Y]P [X=Q*Y+R,0=<R<Y]

where P is

while R>=Y do

e (e e ‘ot it s, et Y g

= 47 =

X=Q *Y+R;, O0=CReCY

P o=<X, oY
| |
| begin X=X, 0=<X, o<y |
| I
| X=0*Y+X, 0=<X, o<y |
I Qi:=0; I
| X=0Q, *Y+X, 0=<X, o<y |
l X=Q*Y+R, , 0=<R;, o<y |
l) ;
| while Ry>=Y do |
: X=Q *Y+R;, O=<R;, O<Y ‘
I | |
: : begin X=Q,*Y+R; [loop invariant] | |

| |
| I X=Q, *Y+Y+R, =Y | If OKY and O=<R and Y |
| | | constant then 'R:=R-Y'|
X=(Q.,+1)*Y+(R,-Y 2
| | (Qg+1) [y =20 | must always decrease R|
| | Rg:=Ry=Y; | so that eventually R |
| | X=(Q +1)*Y+R, | will become smaller
| | | than Y and the loop
| | Qe:=Q,+1;] will terminate.
| | |
| I |
= *

I | end X=Q *Y+R, |
| I |
|
|
|
|
|

end X=Qf*Y+R, 0=<Rf<Y
X=Q*Y+R, O=<Rg<Y
Note: see appendix B.2 for proof by mechanical theorem prover.

- 18 -

4.

DISCUSSION

The above two very simple examples illustrate several points about
formal methods.

1.

3.

S.

Proving consistency between a program and its specification
requires both program and specification to be expressed in a
mathematically tractable notation if the formal rules of
mathematics and logic are to be securely employed. Hence the
Alvey SE ©Programme's emphasis on improving specification
techniques.

One man's specification is another man's program ie a hierarchy
of specifications and proofs can be constructed.

Proof need not only tackle functional correctness. Termination,
security, safety, performance etc may also be specified and
formally manipulated.

Proofs need to be built on reusable theories. 1All good proofs
use shortcuts called theorems. The first example assumed much of
the theory of arithmetic., It assumed that there were no bounds
on the values of the variables; however computers are finite
machines so that it is invalid to assume, for instance, that
'A:=A+B;' can be executed for any values of A,B. If A,B are both
of the same order as the largest number which the machine can
represent then their summation cannot be represented and the
program will malfunction. This type of error is quite common in
practice. The need to make explicit such restrictions and reason
about them is one way in which formal methods improve the quality
of software by error prevention at the design stage.

Even simple proofs (and manipulations) are tedious, lengthy and
tricky and hence themselves often contain errors. However
because of their formal basis such manipulations can today be
checked for accuracy by computer based software tools called
'proof checkers'. The proof of ‘A Second Example' is complex
although the program P is fairly small. Appendix B.2 contains a
mechanically generated proof of the key elements of the ‘'second
example' program. Current research is striving to £ind cost
effective ways to increasingly automate the creation and
construction of proofs themselves to speed up the process even
more. For instance in the ML/LCF system[9] the human prover
expresses not the detail of the proof but only the 'MetaLevel'
tactics to guide the computerised prover. ML/LCF also allows the
construction and reuse of theorems to speed up the mechanical
proof process. (See overleaf.) The IOTA system is one of the
world's most advanced mechanical verification systems. It
exhibits a significant degree of tool integration, being built on
a data base foundation [12] (see overleaf).

- 19 =

5. QUALITY CERTIFICATION

Quality is the major goal for the Alvey SE Programme. It is of vital
commercial importance. Customers will tend to buy software which is
'high quality'. It is a challenge to the SE profession to be able to
demonstrate and measure the quality of its products. This is
currently beyond the state of the art.

Current quality techniques are based on testing eg the current
certification of Ada compilers. Testing is inadequate for the reasons
discussed earlier in section C.1. The drive towards quality
certification is being led more by customers than suppliers.

Both customers and suppliers see proof-based formal methods as the

most satisfactory route to certification which gives an additional
boost to work in this area.

- 20 -

THE LCF SYSTEM

Mota Language / 4 Object Languago
(ML) (oL)
D
‘ \Y4
e =Ny e e Y el s 78 Bt e vy A S
Mela Langunges LCF =ML | OL Objoct Langunges
o Edinburgh ML o Soowlty: No falso thoorums thanks 1o ML's typo dinciptine o Cdiuburgh PPLAMIDA

* Fully higher-order luncllonal progranwiing
longuoye

* Eoger evaluation (.e. non inzy)

¢ Polymorphic lype discipiine

* Raising and handiing of exceptions

‘e Standard ML

* A standard for futire ML knplementations

¢ Combines Cardelli's ML with Bursiall’s Hope

* Very careful design by Miliner and colleaguas

* Hope-like dala-siructiwes snd patiern malching
* Value passing with exceplions (lallwes)

o Unix ML

* Enhanced standard ML implemented under
Berkeloy Unix
* inpul-oulput and separate compliation (in:odules)
* Good performance (comparable 1o Pascal)
* hinplementation almost complole
(by Cardetli of Bell L aboratorios)

e Automation: Both dala-dkected (forward) and goal-dkectod (back-

ward) straloglos

o Genorality: PPLAMBODA good for inductive reasoning st:ouj rocursive

delinilons
o llistory

* 1969: Scoll lays loundatlon for PPILAMBDA
* 197 t: Stanford LCF

* 1973-: Edinburgh LCF

* 198 §—: Cantxidge LCF

o Case studies of proof

* Simple compiling algoilluns (Colw)
.* FPsystems ,Leszczylowskl

* Bolanced lrees

* Parsing algorithms (Milner, Cohin)

* Substitution and unilication (Paulson)

* Sel-theury (Schmidt)

* 1 bar@-logic (Sokotowski)

* Vimdware correciness (Moxon, Gurdon)

* Polymorphic Prodicato LAMBDA-calculus
* Torms: Polymophic typud A-culculus
* Formuluo: Nucliictod prodicate calculus

o Cambridge PPLAMBDA

* Evhancement of Edinhurgh PPLAMBDA

* Full forowla shiuchsee ol pradicnle calculus
(negation, exislential quantilication, disjunclion
elc)

* More genoral Induction rule

o Other Logics

* LSM (L ogic: of Sequential Machinas): Extension ol
PPLAMUBDA with larms fiom CCS

* Construclive type theor y (Gothenburg)

* Classical higher-order logic

* Classical set-heory

FORMAL PROOF IR LCF

University of Cambridge

Representing a logic in ML

@ Theorems are an abstract lypo thm
o Axlomns are predelinod valuos of type thn
o lnlerence rules are ML functions
which relurn theorems
o Example: The Inference rule

+-AN—-B

+ANB

is represented by the ML Function

CONJ: thm X thae — thm
e
ML Name ML Type

o Derived rules can be programmed in ML
o Example: The derived rule:

FA,.... FA, .

FA,.... VA,

is programmed as:

fetrec CONJLIST b=
nullth then lail
1 null (11 thY) then hd 1
else CONJ (W thi, CONJLIST (ll thi))

Forward Proof

o Mova torward fromn axloms via lnlerence rules
o Exomple:

Formal Proof How ills generated In LCF

thiby Axt letlhi = Ax 1 ;;
th2 by Ax2 let th2 = Ax2;;
M3 by nie R, fot ih3d = N1 (Ih1, h2) ;;
thi, th2
th4 by rule R2, let th4 = R2 (Ax3, th3) :;
Ax3, thd

o Disadvantages of lorward prool

* Tedious and low lovel

* User must explicilly
generale every slep

* Machine interactions do not
1elloct natural
ptool-finding activity

Goal-directed Proof

o tiow It works

* Sotupagont |

* Gonorate subgoals
* Prove subgonls

* }tance prove goal

o Exampla:
Goal:
Prove V a. P(n) AQ(n)
Subgoal: Subgoal:
Piove: Va.Pln) Prove: vin.Q(n)

o Proot strategivs con be proge amenod in ML

o Example:

informal stratogy Represoentation In ML
To prove goal G try letS =

stralogy S, il this S 1 ONELSE S2

doosn't work lry S2. THENS3

In either case then THEN S4

try S3 lolluwed by THEN REPEAT S5 ;;

S4 tollowed by

S5 repoatedly SG;;

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

160

The IOTA Programming SySterr

A Modular Programming Environment

Ediled by R. Nakajima and T. Yuasa

Introduction

Thia monograph desoribes the work of the project of IOTA which began
in 1976 arid was comploted in 1983. The Inltial motlvatlon of Lhe work
derived from an attempt to formaliee the conocepts of abstruotlon and
to dovelop a wechanizable verifioation method for programming with
modulea. The scope of the projeot later extonded to include the
deslign of a programming and speciflication language 10TA for modular
progromming, and then to develop a total programming syetem.

The language IOTA eupports wodular prograsming with abstraotion
‘nd parameterization meohuntsms, and module mpecification in a’
--ny;nortod firat order logio. An informal lntroduotlon.to the
language i1n given in Chapter 1, together with a formal view of the
program development with the langunge. A formal definition of the
language ta presented in Appendices.

The 10TA oystem 1o a modular programming eyetem whioch fa intended
to provide un integrated environment Lo enhance the goal of modular

progranming. One of its most laportant dosign objeqtiveo is to enable
the programmer to concentrate on a single module at a time. Although
the Interfacee between mcdules are suppoved to be kopt minimul not to
inoronae the ocomplexity of the problea, objects belonging to differont
wodules are -elatnd with one anothor. Exporienceas vith some
interaotive LIBP systoms suggests that a module should be mble to
proceseed, debugged and/or verified, independently, Uithout vaiting
for completion of othor modules immediately after its oreation. By
putting toge.her thuas aonstructed relisble modules, a rellable
softwvare can be efficliently and naturally generated. .

The JOTA system is constituted of five major subsyetems:
Developer, Debugger, Verifier, Frover, and Executor. Thene subsystems
are highly fntegrated into an Inteructive eystem over a datubaese of
wodules (modulebass) which maintnine all Informattion néceuunry for
each subsystem. The orgenization of the modulebase 1o glvoen In

Chupter 6.

VYerifier Executor

Modulebnse

Developer Debugger

;ob Manager

other modulebases

&——— t data flow

the main interface botween the user and the systea.
¥hen Input, the

The Doveloper 18
Modules are input and modifled with the Developer.
nource toxt of s module lo annlyzed both syntaotioally and
psemnntically, tranolated into an inner representation, and stored into
tho modulobnoo. Modiffontlons on moduloo aro procoocded direotly on
the innar reprosontantion through the poveloper. In addition, the
boveloper providen the progrummor with varlous information necessary
The devign prinoiples and the oyastem desoription

nted 1n Chapters 2 and 4, respescotively. The

to develop modulen.
of the Developer are prece
Debugger ie an sbstraction-orjented dynemic debugging aide.

The Verifier is an intereotive verifloation system mpeoially

designed for modular program development. It aleo manages inforsation

concerning ongoing verifiocation and, vith help of the Prover, veriffes

thnt the progrom reallization of each module meots ite specification.

Chapter | introduces a formnlization of abatraction concepts as a
beels for module verificaution, and preeonts the veriffication method
vhich ie implemented by the Yerifler. Chapter 2 includes discussion
he verification and specification embedded in the

The detniled behavior of the Verifler

on the role of t
vhole progremming environment.
is prcoonted'ln Chapter 6.

The Prover 1s an ‘nteractive proof eystem for a. many-~sorted
first-orcer logic. Chapter 3 discusses the major dif ficulties vith

machine proofe for realiatic module verification and euggests &

golution which fe adopted in the Prover ad {1te proof etrrtegles. The

foaturoa of the Prover are gliven in Chapter 7.

The Executor generates executable codes from the inner
representation of each module, Joads them, and executes them. The
saln Jeplementation issye with thie subsystem 18 separate prooceseing
of modules, especially of those which are typo-parameterized. The
solutiorn in IOTA ia discuseed in Chapter 5.

¥hile theme subsystems vork on a alngle modulebase, there is an
inter-modulebane utility eystem called the Job Manager, wvhich supports
cooperation of more than a single programmere by -anég!ng data
tranemission between multiple modulebases. The details of its
functions are presented in Chapter 8.

In Chapter 9, ve shov how ve solve a probles in the language 10TA
and how the I0TA eystem supports development, verification, and

exeoutiun of modules.

The 10TA eystem ourrently rune on DECSystem 20 and M-series

(1BM-compatible machines by Fujiteu and llitachi). Transplantations to
YAX-11 and Eolipse-MY are planned. Further information is available

from the editore.

Aoknowledgemont

The editors thank Tatsuyuki Axiyama, Makoto Hurata, layeao
Makshara and Takashi Bakuragawa for their contribution to the

project.

D, INFORMAL METHODS
1 INTRODUCTION

The world currently seems to have an insatiable demand for software.
Even if the number of software engineers increases dramatically, along
with productivity and quality it will still not fulfill the demand.

As the world in general becomes more familiar with Information
Technology the sophistication and ability of end users will increase.
With better packages and tools much of today's programming will be
'off loaded' to end users. This trend is well set now with the advent
of Visicalc type products, report generators, word processors, office
automation, IKBS expert systems and 'fourth generation' languages and
applications generators.

Not all software products will need to be of the highest quality.
Thus in parallel to the highly professional, 'precision engineering®
approach, typified by the formal methods based techniques, there are
emerging ‘informal' tools and methods which allow a highly
experimental, exploratory style of development.

One could argue that this ad-hoc approach is the traditional one; the
difference 1is the degree of computer based tool support currently
being developed which makes this approach somewhat more cost-
effective. The different approaches are not competitors; f£flight
critical control software is unlikely to get CAR certification if it
has been developed by a 'suck it and see' approach; no manager is
likely to submit his Visicalc spreadsheets for BSI Quality
Certification. The tools themselves and their associated methods, are
increasingly likely to be of high quality and based on sound theory.

2. COMPONENTS AND PACKAGES
The informal approach involving end users will significantly stimulate
both the package market (as Visicalc and its successors have

demonstrated) but also the new Component market which has yet to
emerge in large scale terms.

= Dt =

3. SMALLTALK

An example of the computer based, informal approach to software
construction is the Smalltalk system [10], a famous piece of research
work done at Xerox's Palo Alto Research Centre (PARC).

Smalltalk uses the object-oriented approach. Objects can be thought
of as small autonomous programs which communicate between one another
by sending messages (data). Communicating networks of objects can be
constructed to form applications programs. Efficient software
production is achieved by the ability to quickly and easily replicate
objects. An object is not described explicitly but a more general
description defines a class of objects. An individual object is thus
built as an instance of a class.

Class descriptions can be easily modified and reused to speed
experimentation. This approach is only made feasible by the recent
development of high powered, sophisticated single user computers with
high resolution displays and good man-machine interfaces.

Because of this high degree of computer based support by closely

integrated sets of software tools, the Smalltalk system exhibits many
of the properties of the envisaged IPSE developments.

= 2D

E. NEW SOFTWARE TOOLS
1 TRADITIONAL TOOLS

The traditional software tools used to construct a program are

1. Free form TEXT EDITOR to input and edit source code
2, A BATCH MODE COMPILER to produce relocatable modules

3. A LINK EDITOR to combine relocatable modules into an executable
binary program.

Most editors have no knowledge of the meaning of the data on which
they operate ie they operate on a string of meaningless, independent
characters. This enables one editor to be used to input and
manipulate arbitrary files but also this freedom enables the user to
input bad data such as source code containing syntax errors.

Most compilation systems are not designed for interactive working.
Even if the only change to a program is that °'A+B' becomes 'A-B' then
one or more modules must be recompiled and the entire program
relinked. This is expensive in programmer time and machine resources
causing wasteful recompilation of unaltered source code.

It is very unusual for a compiler to accept input expressed in more
than one programming language, yet the world's software is written in
several major languages and hundreds of minor ones. This lack of
ability to mix languages results in poor reuse of existing code and
encourages wheel reinvention. Although compilers for each language

exist they cannot be made to work together; their actions are
independent, not integrated.

2, NKEW TOOLS

Modern software tools are beginning to exhibit the following
characteristics.

1. Designed for interactive use

2. Knowledge of language syntax

3. Knowledge of language semantics

4. Designed for integrated working as member of toolset.

2,1 Syntactic Tools

A ‘'syntax knowledgeable' editor is a synthesis of editor, compiler
front end and text formatter which

(a) ensures syntactic correctness

- 23 =

(b) offers templates to speed typing and assist the programmer. Such
an editor contains within it details of the syntax of the
relevant programming language which the programmer is currently
usinge. These details, toegether with interaction with the
programmer, ensure that the only text the programmer inputs
conforms to the syntactic rules of the language. This speeds
production because the subsequent compilation will never fail due
to syntax errorse.

(c) automatically formats the program text according to predefined
layout rules of indentation, fonts etc (pretty printing).

The sophistication of interaction with the programmer is usually
increased with such editors by generating templates. Once the editor
has recognised the overall syntactic form which the programmer wishes
to input a skeleton of the complete form is immediately generated,
saving much typing. Usually the template will contain place holders
which the programmer then fills in to complete the structure. It
works like this., The programmer wishes to input a completely new
procedure or subroutine, He types ‘'proc' by which time the syntax
analyser can predict the programmer's intention and, unprompted,
generates the following text

procedure <NAME> <ARGS>;
var <VARIABLE NAMES>;
const <CONSTANTS>;

begin
<STATEMENTS >
end [<NAME>];

in which the lower case letters are items in the language which become
part of the program (and save the programmer having to type them) and
the upper case letters in angled brackets are place holders showing
the names and positions of language elements which the programmer must
further define. These tools greatly increase productivity and reduce
compilation costs.

2.2 Semantic Tools

More sophisticated tools are being built based on a closer integration
of the editor/compiler/proof checker technologies. These are called
'semantic' tools because the checks and aids they provide require a
deeper analysis of the program under construction than simple
syntactic correctness.

Integration of the editor/compiler functions enables immediate
detection of the use of undeclared variables and guidance on the
likely causes and remedies for such errors.

Integration of the editor/compiler/proof checker technologies allows
partial or symbolic execution to take place during construction. This
prevents the programmer making such errors as mistyping 'A' for 'B' in

C:=A=A; (sebe C:=B=p)

E:=D/C; (division by zero error detected)
(by substituting E:=D/ (AR=A=0))

- 24 -

2.3 Databases

As tools begin to operate on databases rather than files it will
become increasingly possible to track, trap and prevent errors of more
global significance which arise out of module interface
inconsistencies, wrong versions of modules being used as well as
automating the configuration, construction and change management of
large complex systems which are too big ever to recompile completely.

3. TOOL DEMONSTRATIONS

The 'Blit' and 'Smalltalk’ video demonstrations, backed up by the live
demonstrations will show in practice much of the philosophy outlined
in this paper.

In particular the demonstrations will show

1. increased productivity by allowing multiple activity threads for
one individual wvia multiple virtual terminals (windows) to a
multi programming operating system dedicated to a single, real
user.

This uses
a. powerful single user system workstation
b. bit mapped, high resolution, raster graphics
Ce mouse
d. windows.,

2. improved productivity via highly interactive, highly integrated
toolsets with individual tools having significant 'knowledge' of
syntax and semantics.

This uses
ae. mouse driven editors operating uniformly across all tools
b. syntax knowledgeable editing
Ce place holders, templates, power typing

de. reusable, tailorable code (Smalltalk classes)

e. recursively activatable browsers integrated closely with
other tools.

3. informal development methods allowing reusability, incremental
developnments, rapid prototyping, animation and object orientated
programming

4. local area networks to create physically distributed but
logically integrated computing systems

a. Newcastle Connection
b. Servers.

- 25 (=

Tools under current development but not demonstrated include
Te spelling checkers for documentation as well as code
2. grammar checkers for documentation as well as code
3. style analysers for documentation as well as code
4. quality metrics for documentation as well as code
S, proof generators
6. proof checkers
7. version control
8. configuration management
9. project cost measurement
10. project progress measurement
11. project management aids
12. integration of software design with hardware design

13. integration of software and hardware design with office
automation and other corporate applications of information
technology.

4, HOST~TARGET WORKING

These new tools are more expensive to produce and operate making this
new style of production more capital intensive. However the gquality
and productivity gains they will permit will mean that those producers
failing to make the necessary investment will suffer declining

competitive ability.

To maximise the use of capital investment in new software production
facilities and in staff training, it is increasingly clear that a
single design and production system, called the Integrated Project
Support Environment, will come to be used in any given area of
activity. This is called the host because it will have to generate
binary programs which execute on a wide range of ‘'applications'
processors, the targets.

Microprocessors are cheap but have limited capability. It is not
economic to develop software on the same microprocessor system as will
be used in the eventual application. One is hardly likely to be able
to develop high quality, proven and safety certified software to
control the brakes of motor cars on the same configuration as will be
installed in the actual cars. Large, powerful computers will be
needed to run sophisticated software design aids whilst small, cheap
microprocessors will be installed in the cars. Hence host-target
working will become the norm in future for anyone who wishes to reuse
software and software tools.

F. CONCLUSION
1. METHODS, SKILLS, TOOLS

Software design and development requires a harmonious blend of
effective methods, good tools, and people skilled and trained to use
them.

This paper began with the definition that "software engineering is the
application of science and mathematics by which the capabilities of
computer equipment are made useful to man via computer programs,
procedures and associated documentation®™ [1].

The Alvey Directorate is helping to stimulate the development, in the
UK, of new methods and tools for software development, but no
government sponsored research programme can equip engineers with the
skills to use the new tools and methods. Nor can a government
research programme instill into engineers, especially in such a new
discipline as software engineering, the traditions of professional
conduct and standards, of social responsibility and commercial
propriety.

With the ever widening role of software in social and industrial life,
with the increasing integration of ‘hardware', ‘'software' and
‘systems' design, development and construction techniques, perhaps the
time has come to prepare a path to lead the youthful programming
enthusiast through education and training towards the skill levels
which the UK needs to badly today and beyond this, wvia continuous,
life time retraining to the highest standards of skill and conduct
befitting the title of ‘engineer’'.

= 97 =

3.

4.

6.

7

9.

10.

11.

12,

REFERENCES

BOEHM, B W
Software Engineering Economics
Prentice Hall

WITTY, R W

The Software Technology Initiative
Final Report 1981-1984

SERC, Oct 84

TALBOT, D E
Alvey Software Engineering =~ a strategy overview
ALVEY DIRECTORATE, Nov 83

TALBOT, D E & WITTY, R W
Software Engineering Strategy
ALVEY DIRECTORATE, Nov 83

RELIABILITY & METRICS ADVISORY PANEL
Software Engineering: Software Reliability & Metrics Programme
ALVEY DIRECTORATE, July 84

FORMAL METHODS ADVISORY PANEL
Software Engineering: Programme for Formal Methods in Systems

Development
ALVEY DIRECTORATE, April 84

DIGNAN, A

Software Engineering/IKBS: Strategy for Knowledge Based IPSE
Development

ALVEY DIRECTORATE, August 84

NAUR, P & RANDELL B (Eds)
Software Engineering: Report on a Conference Sponsored by the
NATO Science Committee, Garmisch, Germany, 7-11 Oct 1968.

Scientific Affairs Division, NATO, Brussels, Jan 69.

GORDON, M, MILNER, R & WADSWORTH, C
Edinburgh ICF

Lecture Notes in Computer Science Vol 78
Springer-Verlag, 1979

GOLDBERG, A & ROBSON, D
Smalltalk=80 : The Language and its Implementation
Adison-Wesley, 1983

DAHL, O J, DIJKSTRA, E W & HOARE, C A R
Structured Programming
Academic Press, London 1972

NAKAJIMA, R & YUASA, T

The I0OTA Programming System

Lecture Notes in Computer Science Vol 160.
Springer=Verlag, 1983

APPENDIZX

HUMOROUS (?)

1. Laws of Project Management

2. 1IBM's New Operating System

3. Real Programmers Don't Use PASCAL

LAWS OF PROJECT MANAGEMENT

No major project is ever installed on time, within budgets, with

the same staff that started it. Yours will not be the first.

Projects progress quickly until they become 90 per cent complete,

then they remain at 90 per cent complete forever.

One advantage of fuzzy project objectives is that they let you

avoid the embarrassment of estimating the corresponding costs.

When things are going well, something will go wrong.

- When things just cannot get any worse, they will.

- When things appear to be going better you have overlooked
something.

I1f project content is allowed to change freely, the rate of

change will exceed the rate of progress.

No system is ever completely debugged: Attempts to debug a

system inevitably introduce new bugs that are even harder to

find.
A carelessly planned project will take three times longer to
complete than expected; a carefully planned project will take

only twice as long.

Project teams detest progress reporting because it vividly

manifests their lack of progress.

- Al -

Dale Piocessing = ' Dale: January 30,1579
Division

Programnming Announcement

NEW OPERATING SYSTEM

Because so many users have asked for an operating system of even

greater capability than VM, I3M announces the Virtual Universe
Operating System - 0OS/VU.

Running under 0S/VU, the individual user appears to have not
merely a machine of his own, but an entire universe of -his own,
in which he can set up and take cdown his own programs, data sets,
systems networks, personnel, and planetary systems. He need only
specify the universe he desires, and the 0S5/VU system gerneration
program (IEHGOD) does the rest. This procram will reside in
SYS1.GODLIB. The minimum time for this funciton is 6 days of
activity and 1 day of review. In conjunction with 0OS/VU, all
system utilities have been replaced by one program (IEZEEPROPZEET)
which will reside in SYS1.MZSSIAH. This program has no parms Or
control cards as it knows what you want to do when it is -executed.

Naturally, the user must have attained a certain degree of
sophistication in the data processing field if an efficient
vtilization of OS/VU is to be achieved. Freguent calls to non-
resident galaxies, for instance, can lead to unexpected delays in
the execution of a job. Although I84, throuvgh its wholly-owned_
subsidiary, The United States, is working on a program to upgrace
the speed of light-and thus reduce the overhead of extraterrestrial
and metadimensional paging, users must be careful for the present
to stay within the laws of physics. 1IBi4 must charge an acditional
fee for violations.

0S/VU will run on any IBM x0xx ecuipped with Extended WARP
Feature. Rental is twenty million dollars per cpu/nanosecond.

Users should, be aware that IBM plans to micrate all existing
systems and hardware to 0S/VU as soon a2s our engineers effect one
output that &s (conceptually) error-free. This will give us a
base to develop an even more powerful operating system, tarcet
date 2001, designated "Virtuval Reality". OS/VR is planned to
enable the user to migrate to totally unrcal universes. To aiad
the user in identifying the difference between "Virtual Reality"
and "Real Reality", a file containing a linear arrangement of
multisensory total records of successive moments of now will be
established. It's name will be SYSl.est.

For more iniormation, ccnlact your ISM Cata processing reprosenianive.

Lot nsanue.al Biraness Lo tuees
C.ongetmdieems

113X Westobhwsin Avenye
Vo Pusnny Ilvew Yorb 10004

= A2 =

"Real Progra=mers Don's Use FPASCAL®

Back in the good o0ld czys — the "Golden Era" of computers, it
was easy to separate the men froz the toys (socetirces called "Real Men"
and "Quiche Eaters™ in the literzture). ring this period, the Real
Men were the ones that understooc ¢ ter programzing, anc the Quicghe
Eaters were the ones ¢that <diéa! & rezl computer programmer said
things like "DO 10 I=1,170" and "ASIND® (they actually talked in capital
letters, you understand), and the rest of the world said things 1like
"computers are too complicatec for =e®T and "I czn't relate to computers
— they're so impersozzl". (& zrevious work [1] poimts out that Real
Men don't "relate™ to anything, anc aren't afraid cf being impersonzl.)

But, as usuagl, times chznze. we are fzzed todzy with e world
in which 1little old ladies cazn ge: cczputers in their microwave ovens,
12-year—-o0id kids can blow Real Mez ou: of the wazter playing Asteroids
and Pac-Man, and anyone cazm DbDuryY =zanc even understand their very own
Personzl Computer. 7The Reel ?Pr gm—er is in danger of becoming

rog
extinct, of being replaced by high-scnhool students witn TRASHE-80's.

There is a clezr need +

¢ point out the differences between the
typical high-school jumior Pac-Mzr gpizver and z Real Programmer. If
this difference is made clezr, It will give <ihese Kkids something ¢to
aspire to — 2 role model, @ ratkher Tigure. It will also help explain
to the employers of Real Progracsers way It would be a mistake to
replace the Real Programmers on their staff with 12-year-old Pac-Man
players (at a considerable szlary saviIsgs).

.

=1 ASL] =

LANGUAGES

The easiest way to tell a2 Real Programmer from the crowd is by
the programming language he (or she) uses. Real Prograzsers use
FORTRAN. Quiche Eaters use PASCAL. Nicklaus Wirth, the designer of
PASCAL, gave a talk once at which he was asked "How do you pronounce
your name?". He replied, "You c¢an either call me by name, prcoouncing
it 'Veert', or c¢zll me by value, 'Worth'."™ One can tell immediztely
from this comment that Nicklaus Wirth is a Quiche Eater. Tne only
parameter passing mechanism endorsed by Real Programmers is
call-by-value-return, as implemented in the IBM\370 TFrORTRAN-C anc¢ "H
compilers. Real programmers don't need all these abstract concepts ¢o

get their jobs done - they are perfectly happy with a keypuneh,
FORTRAN IV compiler, and a beer.

H
*# Real Programmers do List Processing in FORTRAN.

% Rezl Programmers do String Manipulation in FORTRAN.

* Real Prrogrammers do Accounting (if they do it at all) in FORTRAN.

* Real Programmers do Artificizl Intelligence péograns in FORTRAN.

If you ecan't do it din FORTRAN, do it in assemdly language. If you
can't do it in assembly language, it isn't worth doing.

=AGSL 20 =

STRUCTURED PROGRAMMING

The academics in computer science have gotten into the
"structured programming"™ rut over the past several years. They claim
that programs are more easily uncderstood if the programmer - uses some
special language constructs and tecnniques. They don't all agree on
exactly which constructs, of course, and the examples they use to show
their particular point of view invariatly fit on a single page of some
obscure journal or another — clearly not enough of an example to
convince anyone. When I got out of scheol, I thought I was the best
programmer in the world. I could write anunbeatable tic-tac-toe
program, use five different computer languages, and create 1000-line
programs that WORKED. (Really!) Then I gct out into the HReal Worlc.
My first task in <the Rezl Wworld wezs ¢to read and understand =z
200,000-1ine FORTRAN prograc, then speed it up by a2 factor of ¢two. Any
Real Programmer will tell you tnat z2ll the Structured Coding in the
world won't help you solve =z probiem 1like that — it takes actuzl
talent. Some quick observaticns on HRezl Programmers and tructured
Programming:

% Real Programmers aren'it zfrzid to use GOTO's.

% Real Programmers can write {ive-pzze-iong DO loops without
getting confused.

Rezl .Programmers like Arithmetic IF stztements — they make the
code more interesting.

Real Programmers write self-mocifying code, especizlly if they
can save 20 nanoseconds iIn the middle of z tight loop.

* Rezl Programmers don't need comments — the code is obvious.

Since FORTRAN doesn't have a2 structured IF, REPEAT ... UNTIL, or
CASE statement, Real Programmers cdon't have to worry about not

using them. Besides, they can be simuiated when necessary ueing
assigned GOTO's.

Data Structures have =zlso getten & 1lot of press lately.
Abstract Data Types, Structures, Pointers, Lists, and Strings have
become popular in certain circles. Wirth (the above-mentioned Quiche
Eater) actually wrote an entire bock [2] contending that you could
write s program bzsed on datz structures, instead of the other way
around. As all Rezl Progra—mers know, the only useful data structure
is the Array. Strings, 1lists, structures, sets -- these are Al
special cases of arrays and can be trezted that way just as ezsily
without messing up your prograzing language with all sorts c¢f
complications. The worst thing zbout fancy datz types is that you have
to declare them, and Real Program=ing languages, as we a2ll know, have
implicit typing based on the first letter of the (six character)
varizable name.

=vALB 8 =

OPERATING SYSTEMS

What kind .of operating system is used by 2 Real Programmer?
CP/M? God forbid -- CP/M, after 2ll, is basically a toy operating

system. Even 1little old ladies and grade school students can
understand and use CP/M.

Unix is a lot more complicated of course =~ the +typical Unix
hacker never can remember what the PRINT command is called this week —
but when it gets right down to i¢, Unix is a glorified video game.
People don't do Serious wWork on Unix systems: they send jokes around
the world on UUCP-net and write adventure games and research papers.

No, your Rezl Programmer uses OS\370. A good programmer czn
find and understand the description of the IJK305I error he just got in
his JCL manual.A great programmer can write JCL without referring to
the manual at all. A truly outstanding programmer can find bugs buried
in a 6 megabyte core dump without using 2 hex ecalculator. (I have
actually seen this done.)

0S is a truly remarkable operating system. It's possible %o
destroy days of work with a single misplaced space, so zlertness in the
programming staff is encouraged. The best way to approach the system
is through a keypunch. Some people <clzim there is a Time Sharing

system that runs on OS\370, but after careful study I have come to the
conclusion that they were mistaken.

- A.3.4 -

PROGRAMMING TOOLS

What kind of tools does z Rez. Progrzmmer use? In theory, a
Real Programmer could run his pregrams by keying themr into the front
panel of the computer. Back in <¢he dzys when computers had front
panels, this was actuzlly dcne occasionally. Your typical

Reel
Programmer knew the entire boctstrz:c loader by

! memory in hex, and
toggled it in whenever it gct destroved by his program. (Bzck then,
memory was memory -— it didn't vy when the power went off. Today,
memory either forgets things Wi cu den't want it to, or remermbers
things long after they're forgotien.) Legend has it that
Seymore Cray, inventor of the C I supercomputer and most of Control
Data's computers, actuzlly ¢ :ed the first operating syster for the
CDC7600 in on the front panel reoory when it was first powered on.
Seymore, needless to say, is & Programmer.

vivew

-
-
v oo
nce

)
m m «

59 Q
‘td W

o
(1)

M I IR

m

'y O
om M o
[

-

o
(14

One of my favorite fezl Programmers was & systems programmer
for Texas Instruments. One dzy he zot z long distance czll from a2 user
whose system had crashed in the micdle of saving some important work.
Jim was able to repair the camzze over the phone, getting the user to
toggle in disk I/0 instructicas zt the front panel, repziring systenm
tables in hex, reacding register ccntents back over the phone. The
moral of this story: wnile z Rez Programmer usuzlly includes sz
keypunch and lineprinter in his toclkii, he can get along with just o
front panel and a telephone in emergencies. '

in some companies, text editing nc longer cconsists of ‘ten
engineers standing in 1line tc use an 029 Keypunch. In fact, the
building I work in doesn't ccatzin & single Keypunch.” The Rezl
Programmer in this situation has tc do his work with a "text editor”
program. Most systems supply several text editors to select from, and
the Real Programmer must be czareful <to pick one that refle?ts his
personal style. Many pzople be-Zeve ~h2t the best test 2ditors in the
world were written at Xerox Paio Aito Research Center for use on their
Ato and Dorado computers [31. Unfortunztely, no Rezl Programmer would
ever use a computer whose operzting system 1is czlled Smz2llTelk, and
would certainly not talk to the cozputer with 2 mouse.

Some of the concepts in these Xerox editors have been
incorporated intc editors runzin or pore reasonably named operating
systems -~ EMACS and VI being {wo. The precblem with these editors is
that Real Programmers consicder "whei you see is what you get" to be
just as bad a concept in Text Editors a2s it is in women. No the Real
Programmer wants a "you esked for It, you got ii" text editor -
complicated, cryptic, powerful, urnlorgiving, dangerous. TECC, to be
precise.

It has been observed ithet & TZICC ccomand sequence more closely
resembles transmission 1line ncise thzn reazdzble text [4]. COme of the
more entertaining games to pizy with TICO is to type your name in as =&
command line and try to guess whet it does. Just about any possible
typing error while talking with TICO0 will oprobably destroy your
program, or even worse -—— Intirccuce subtle and mysterious bugs in &

once working subroutine.

For this reason, Rezl Programmers are reluctant to actually
edit a program that is close to working. They find it much easier to
just patch the binary object code directly, using a wonderful program
called SUPERZAP (or its equivalent on non-IBM machines). This works so
well that many working programs on IBM systems bear no relation to the
original FORTRAN code. In many cases, the original source code is no
longer available. Wnen it comes time ¢to fix a program like this,
nomanager would even think of sending anything 1less ¢than a Real

Programmer to do the job — no Quiche Eating structured programmer
would even know where to start. This is called “job security".

Some programming tools NOT used by Real Programmers:
FORTRAN preprocessors like MORTRAN and RATFOR. The Cuisinarts of

programming — grezt for making Quiche. See comments above on
structured programming.

Source language debuggers. Real Programmers can read core dumps.

Compilers with array bounds checking. They stifle creativity,
destroy most of the interesting uses for EQUIVALENCE, and make it
impeossible to modify the operating system code with negative
subscripts. Worst of 211, bouncs checking is inefficient.

Source code maintenance systems. A Real Programmer keeps his code
locked up in a card file, because it implies thet its owmer
cannot leave his irmporiant preogracms unguarded [Z].

= Ai356 =

THE REAL PROGRAMMER AT WORK

Where does the typiczl Rezl Prograamer work? Wnat kind of
programs are worthy of the efforts cf so talented an individual? You
can be sure that no Rezl Programmer would be caught dead writing
accounts-receivable programs in COBCL, or sorting mziling lists for
People magazine. A Real Programmer wanis <tasks of earth-shaking
importance (literzlly!).

* Real Programmers work for Los Alamos Nztiomzl Laboratory, writing
atomic bomb simulations to run on Crzy I supercomputers.

% Rezl Programmers work for the Naztionzl Security Agency, decoding
Russian transmissions.

¥ It was largely cdue to the efforts of thousznds of Rezl
Programmers working for NASA thzt our bovs got to the moon and
back before the Russkies.

* Real Programmers are at werk for Boeinz designing the operating
systems for cruise missiles.

Some of the most awesome Rezl Programmers of all work &t <he
Jet Propulsion Laboratory in Czliforniz. Many of them know the eniire
operating system of the Pioneer and Vovager spacecrzft by hezrt. With
2 coztination of large grouncd-basel TFIRTRAN programs and smais
spacecraft-based assembly language programs, they are able tc do
incredible feats of navigztion and izprovisation -— hitting
ten-kilometer wide windows =2t Sszturn after six years 1in space,
repairing or bypassing camaged sensor platforms, radios, and batteries.
bllegedly, one Real Programmer mpanaged *to tuck @ pattern-matching
nrogram irto a few hundrec btytes of vnused memory in a Voyager
spacecraft that searched for, located, and photographed a new moon of

Jupiter.

The current plan for the Gazlileo spacecraft¢ is to use 2 gravity
assist trajectory past Mars on the wzy to Jupiter. This trajectory
passes within 80 +/-3 kilometers of the surface of Mars. Nobody is

going to trust a PASCAL program (or z PASCAL programmer) for navigation
to these tolerances.

As you can tell, many of the world's Rezl Programmers work for
" the U.S. Government — meinly the Defense Department. Tnis is as it
should be. Recently, however, a black cioud hes formed on the Rezl
Programmer horizon. It seems that some highly plzced Quiche Eaters at
the Defense Department decided that =&ll Defense programs should be
written in some grand unified languzze callec "ADA"™ ((C), DoD). For a2
while, it seemed that ADA was destined to become a language +that went
against all the precepts of Real ?Programming - & language with
structure, a language withdata types, strong typing, and semicolons.
In short, a language designed to cripple the creativity of the typical
Real Programmer. Fortunately, the language adopted by DoD has enough
interesting features to make it approachable — it's incredidly

=1 ABS7 =

complex, includes methods for messing with the operating system and
rearranging memory, and Edsgar Dijkstira doesn't 1like it [6].
(Dijkstra, as I'm sure you know, was the author of "GoTos Censicerec
Harmful®™ — a 1landmark work in programming methodology, applauded by
PASCAL programmers and Quiche Eztiers alike.) Besides, the deterzined
Real Programmer can write FORTRAN progrzms in any language.

The Real Programmer might cozpromise his principles anc work on
something slightly more trivial than the destruction of life as we xnow
t, providing there's enough money in it. There are several Reazl
Programmers building video games at Ateri, for example. (But not
playing them — a Real Programmer knows how to beat the machine every
time: no challenge in that.) Zveryone working at lLucasFilm is & Hezal
Programmer. (It would be crazy to turn down the money of fifty million
tar Trek fans.) The proportion of Rezl Programmers 3in Computer
Grapnics is somewhat 1lower than the ncrm, mostly because nobody hkas
found a use for computer graphics yet. On the other hand, zll computer
.graphics is done in FORTRAN, so there are & feir number of people coing
graphics in order to avoid having to write COBOL programs.

= Ry Sl —

THE REAL PROGRAMMER AT PLAY

Generally, the Rezl Progracmer plays the same way he works —-
with computers. Be is constantly azzzed that his employer actually
pays him to do what he would be doing for fun anyway (although he is
careful not %o express this coinien out leud). Occasionzlly, the Real
Programmer does step out cf L{he offize for z breath of fresh 2ir and =&
beer or two. Some tips on reccgrnizing Rezl Programmers away from the
comppter room:

)

the ones in the corner

* At 2 party, the Res L
g ty and how to get around it.

talking about oper

¥ At & football game, the Xezl Progrzmmer is the one comparing the
plays against his sinmulezticns printed on 11 by 14 fanfold paper.

®* At the beach, the Real Prograc—er Is the one drawing flowcharts
in the sand.

*# At a fureral, the PReal Program—er is the une saying "Poor Ceorge.
And he z2lmost had the sort routine working before the coronary."

ezl Progrzmmer is the one who insists on
-

saser checkcut scanner himself, because
uneh cperztors to getit right the first

In 2 grocery store, the
running the cans past ¢
he never could trust ke
time.

3
| 1}

-

.
{

A

- AL3L9 =

THE REAL PROGRAMMER'S NATURAL HABITAT

What sort of environment does the Real Programmer function best
in? This is an ipportant question for the managers of Rezl
Programmers. Considering the amount of money it costs to keep one on

the staff, it's best to put him {or her) in an environment where he can
get his work done.

The typical Real Programmer lives in front of a computer
terminal. Surrounding this terminal are: ‘

% listings of all programs the Rezl Programmer has ever worked on,

piled in roughly chroncleogical order on every flat surface in the
office.

Some half-dozen or so partly filled cups of cold coffee.
Occasionally, there will be cigarette butts flozting in the -

coffee. In some cases, the cups will contain Orange Crush.

Jnless he is very good, the-e will be copizs of the 0S JCL manuzl
and the Principles of Operztion open to some particularly
interesting pages.

Taped to the wall is a line-printer Snoopy calendar for the year
1969.

Strewn about the floor are severzl wrappers for peanut butier
filled cheese bars —— tne type that are made pre-stale at the

bakery so they can't get any worse while waiting in the vending
machine. .

% Hiding in the top left-hand drawer of the desk is a stash of
deuble-stuff Oreos for speciel cccasions.

Underneath the Oreos is a flowcharting template, left there by
the previous occupant of the office. (Real Programmers write
programs, not documentation. Leave that to the maintenance
people.)

The Rezal Programmer is capable of working 30, 40, even 50 hours
at a stretch, under intense pressure. In fact, he prefers it that way.
Bad response time doesn't bother the Real Programmer — it gives hiz a
chance to catch a 1little sleep between compiles. If there is not
enough schedule pressure on the Real Programmer, he tends to mzke
things more challenging by working on some small but interesting part
of the problem for the first nine weeks, then finishing the rest in the
last week, in two or three 50-hour marzthons. This not only impresses
the hell out of his manager, who was despairing of ever getting the
project done on time, but creates a convenient excuse for not doing the
documentation. In general:

No Real Programmer works 9 to 5 (unless it's the ones zt night).

= Ay 31107

* Real Programmers don't wear neckties.
¥ Real Programmers don't wear high-heelec snoes.
* Rezl Programmers arrive at work in <ime for lunch [9].

% A Real Programmer might or zmight nct know his wife's name. He
does, however, know the entire ~ASCII (or Z3CDIC) code table.

% Real Programmers don't know how =S¢ coox. Grocery stores zren't .

open at three in the morning. =Xezl rFrogrammers survive on

Twinkies and coffee.

~ A:3:11 -

THEE FUTURE

What of the future? It is a matter of some concern to Rezl
Programmers that the latest generation of computer programmers are not
being brought up with .the same outlook on life &s their elders. Many
of them have never Seen a computer with a front panel. Hardly anyone
graduating from school these days c¢an do hex arithmetic without =&
calculator. College graduates these days are soft — protected from
the rezlities of programming by source level debuggers, text editfors
that count parentheses, and "user friendly" operating systems. Worst
of all, some of these alleged ™"cormputer scientists"™ manage to get
degrees without ever 1learning FORTRAN! Are we destined to become an
industry of Unix hackers and PASCAL programmers?

From my experience, I can only report that the future is bright
for Rezl Programmers everywhere. Neither OS\370 nor FORTRAN show anv
signs of dying out, despite all the efforts of PASCAL programmers the
world over. Even more subtle tricks, 1like adding structured coding
constructs to FORTRAN have failed. Oh sure, some computer vendors have
come out with FORTRAN 77 compilers, LL:Y every one of them has a way of
converting itself back into a FORTRAN 66 compiler at the drop of an
option card - to compile DO loops like God meant them to be.

Even Unix might not be as bad on Rezl Programmers as it once
was. The 1latest release of Unix hzs the potentizl of an operating
syster worthy of any Real Programcer — &twc cdifferent ancd subtly
incompatible user interfaces, an arcane and complicated teletype
driver, virtual memory. If you ignore the fact that it's "structured©,
even 'C' programming can be apprecieted by the Real Programmer: after
2ll, there's no type checking, variable names are seven (ten? eight?)
characters long, and the added bonus of the Pointer data type is thrown
in — like having the best parts of FORTRAN and assembly language in
one placn. INot. to mention some cf the mcre creztive uses for
#define.)

No, the future isn't all thest bad. Why, in the past few years,
the popular press has even commented on the bright new crop of computer
nerds and hackers ([7) and [8]) leaving places like Stanford and M.I.T.
for the Real World. From all evidence, the spirit of Real Programming
lives on in these young men and women. As long as there are
ill-defined goals, bizarre bugs, and unrealistic schedules, there will

be Real Programmers willing to jump in and Solve The Problem, saving
the documentation for later. Long live FORTRAN!

- A.3.12 - IR

* Real Programmers don't wear neckties.
Real Programmers don't wear high-heelecd snoes.

* Real Programmers arrive at work in time for lunch [91].
* L Real Programmer might or zign:t nct Xnow his wife's name. He
does, however, know the entire &SCII (or Z3CDIC) code table.

% Real Programmers don't know how ¢
open at three in the morning. =eszl
Twinkies and coffee.

cook. Grocery stores zren't .
rrogrammers survive on

= A3l =

REFERENCES

(1

{23

33

(4]

(53

[63

BT

Feirstein, B., "Real Men don't Eat Quiche", New
York, Pocket Books, 1982.

Wirth, N., "Algorithms + Data Structures =
Programs", Prentice Hall, 1976.

Ilson, R., "Recent Research in Text Processing",

JEEE Trans. Prof. Commun., Vol. PC=23, No. 4,
Dec. 4, 1980.

Finseth, C., "Theory and Practice of Text Editors
— or — & Cookbook for arn EMACS", B.S. Thesis,
MIT/LCS/TM=-165, Massachusetis Institute of
Technology, May 1980.

Weinberg, G "The Psychology of Computer
Programming"”, New York, Van Nostrand Reinhold,

171, p. 110.

Dijkstra, E., "On the GREEN language submitted to
the DoD", Sigplan notices, Vol. 3 No. 10, Oct
1978.

Rose, Frank, "Joy of Hacking", Science 82, Vol. 3
NO. 9‘ NOV 82' ppc 58-66.

"The Hacker Pzpers", Psychclogy Today, August 1980.

sdearl!ilin, "Rezl Programmers", UUCP-net, Thu Oct
21 16:55:16 1982

- A.3.14 -

B.

APPENDIX

SERIOUS

1. SIGGRAPH Video Review

2. Mechanical Theorem Proving

3. Expansion of Alvey SE Strategy

166KaPH VI pED KEWEM“

Human-Computer Interaction: the Focus of Two New Issues

Two new issues (12 & 13) of the SIGGRAPH video review
(SVR) have recently been completed. What is unique is that
they are organized around a single theme: human-computer in-
teraction. The tapes are an edited compilation of the video ses-
sions at CHI ‘83, the 1983 Conference on Human Factors in
Computing Systems. Each tape is one hour long, and contains
a number of titles which illustrate important aspects of interac-
tion and input. Techniques, user interface management tools,
technologies and sample applications are examples of topics
covered. The examples are short, and were chosen to give as
good an overview as possible as to the current state-of-the-art

in interaction. The collection should be of interest to systems -

designers, researchers, students and managers.

The appearance of these tapes as part of the SVR is in keep-
ing with the charter of SIGGRAPH, and the recommendations
of the SIGGRAPH-sponsored 1982 Workshop on Graphical
Input and Interaction Techniques. The CHI ‘83 video sessions,
organized by Sara Bly, Michael Harris and Donald Patterson
collected, for the first time, a wide assortment of high-quality
tapes on the subject. The conference was sponsored by
SIGCHI and the Human Factors Society. But since it was held
in cooperation with (among others) SIGGRAPH, and since
SIGGRAPH had in place a mechanism for tape editing and
distribution, it was natural that an edited version of the session
should be distributed by SVR. The tapes have been edited for
SVR by Bill Buxton, Copper Giloth and Raul Zaritsky with the
cooperation of Tom DeFanti.

0
.

¥ Contents of Issue 13:

Edited 3/10/84
1. Blit (Bell Labs)

2. The Movie Manual Project (MIT)
. The Office of the Professional (Imperial College)
. Put That There (MIT)
. Program Visualization (CCA)
. Magnetic Fusion Experiment Control Center (Lawrence

Livermore Labs)
7. Sketchpad (MIT) (not shown at CHI ‘83)

3\,

[« WV I V]

% Conrents of Issue 12:

Edited 3/10/84

. Rapid Prototyping Using Flair (TRW)

. Towards A Comprehensive UIMS (U of T)
. Cousin Interface System (CMU)

. Tiger System Demonstration (Boeing)

. Video Games by Example (Atari)

. Mockingbird (XEROX)

. SSSP Demo (U of T)

. Selection-Positioning Task Study (U of T)

00 ~J O\ & W N

Contents of Issue 1:
Edited 5/15/80
. TOPES—Bell Laboratories
. Newswhole—University of Toronto
. VideoCel—Computer Creations, Inc.
. Sunstone—Ed Emschwiller
. Voyager 2—J. Blinn et. al. |
. Information International Inc. Demo Reel
. DNA with Ethidium—N. Max et. al.

lO\M&WN"‘

Contents of Issue 2:
Edited 8/30/81
1. The Compleat Angler—T. Whitted
2. Vol Libre—L. Carpenter
. JPL/Saturn—J. Blinn et. al
. Peak—N. Snitly
Doxorubicin/DNA—N. Max et. al
Digital Effects Demo Reel
. MAGI/Synthavision Demo Reel
. Spatial Data Mgt. System—C. Herot et. al.
. Pantomation—T. DeWitt et. al.
10. Anifacts—The Vasulkas

Contents of Issue 3:
Edited 8/30/81
. CTS Flight Simulator—Evans and Sutherland
. Time Rider—JVC
. Imagination—Acme Cartoon Company, Inc.
. Dubner Demo Tape
. Vidsizer—Dan Franzblau
. Zgrass Paint Demo—Giloth et. al.

N BN -

Contents of Issue 4:

Edited 8/30/81
1. Abel Demo Reel—W., Kovacs et. al.
2. Image West Demo Reel
3. Ohio State Computer Graphics Research Group Terrain
Model—C. Csuri et. al.

. Computer-Assisted Dance Notation—T. Calvert et. al.

. The GRIP—75 Man-machine Interface—University of
North Carolina Computer Science Department

. Graphics Interactions at NRC—M. Wein et. al. National
Film Board of Canada

o

(=2

Contents of Issue 5:

Edited 10/22/82

. Evans & Sutherland Demo ‘82

. The Tactical Edge—Evans & Sutherland
. Carla’s Island—Nelson Max, LLL

. Aurora Demo

. Digital Effects Sampler ‘82

. Real Time Design, Inc. Zgrass Demo

. Marks & Marks Demo

WA WN

-. Contents of Issue 6.

Edited 10/22/82

Abel ‘82 Demo Reel

. Galileo—Jim Blinn, et. al., JPL
Mimas/Voyager 1I—Jim Blinn, et. al., JPL

. Non-Edge Computer Image Gen.—Grumman
. Disspla Animation—ISSCO

. Tomato Bushy Stunt Virus—Arthur Olson

. Interactive Raster Graphics Sampler—UNC

. Ron Hays Music-Image Sampler

Ry Y N N

Contents of Issue 7:

Edited 11/7/82

Triple-1 Digital Scene Simulation Reel
TRON reference—Disney

. MAGI/Synthavision ‘82 Demo

. Videocel ‘82—Computer Creations

. Cranston-Csuri Demo Reel

. Four Seasons of Japan/Expo ‘85—NHK
. Acme Cartoon Company Samples ‘82

. ADAM—Arthur Olson and T. J. O’Donnell
. 1982 Experimental Works—Texnai C.G.L.
10. Sorting Out Sorting Excerpt—U. Toronto

Contents of Issue 8:

Edited 10/27/83

. Smalltalk—Xerox Corp.

. Lisa—Apple Corp.

. Warpitout—Veeder

Soma—Gillerman

Act III—Winkler & Sanborn

Laser Show at SIGGRAPH ‘83—Heminover & Rollefstad

QsllbWN—'

Contents of Issue 9:

Edited 10/27/83

. Economars Earth Tours—Upson

. Toyo Links Demo

. Antics—Abe

. Japan Computer Graphics Lab, Inc.
. Bo Gehring Demo

. Omnibus Video, Inc.

. Translation Part 3—Moran

Julia 1 Excerpts—Peitgen & Saupe
. Space Simulator-—Galicki

Marks & Marks/Novocon

Solid Modeling—Zaritsky & Herr

— OV INMAWN=

—

Contents of Issue 10:
Edited 10/27/83

. When Mandrills Ruled.
. Cranston-Csuri 4
Ohio State University—Zeltzer & Van Baerle

. Pan Optica Preview ‘83—Gordon

. Ray Tracing—Barr & Lorig

. Pacific Data-Images

. NHK Special Programs Division

. Humanon—Franceis

. Light & Shadow—Nakamae

10. University of North Carolina Sampler

11. Benesh Notauon—Smgh

12. Blooming Stars Excerpt—Genda

. .-Watterberg

DO ~IAWVEHEWN~

Contents of Issue 11:
Edited 10/27/83
1. Star Trek II Genesis—Paramount/Lucasfilm
2. Non-Edge CIG—~Grumman
3. Digital Effects Demo
4. The Cube CUBE—Gerhard
5. SPN—SEIBU Productions Network
6. Symmetry Test 11A—Newell
7. Composite News—Burson
8. A/V Tour at SIGGRAPH ‘83—Veeder & Morton
9. Shirogumi Sampler
10. Movie Maker—IPS, Inc.
11. Pixel Play—Nakajima
12. Growth/Mysterious Galaxy—Kawaguchi
13. Digital Harmony—Whitney Sr. et. al.

Two new hours of videotape from SIGCHI ‘83 have been
edited and duplicated to form issues 12 and 13 of the
SIGGRAPH Video Review. Each issue is on vxdeotape and is
one-hour long. The material in the tapes is in full color and
represents advanced applications of computer graphics
technology, both hardware and software.

Both % " U-matic and VHS formats are available. We do
not make Beta or % " reel-to-reel tapes. PAL and SECAM
tapes also are not available.

The % " tapes are one-hour long. One issue fits on one tape.
Thus, the two new issues occupy two tapes. At the ACM SIG-
GRAPH member price of $50/tape, both issues come to $100.
The non-member prices is $60/tape, so both are $120. Educa-
tional institutions may use the member price. For overseas air-
mail, please include an extra $10/tape, or $20 for the set.
Similarly, all 13 issues come to $650 for members, $780 for
non-members, plus $130 in additional postage for overseas air-
mail if necessary.

The VHS videotapes are two hours long. Two issues are on
each tape, except for issue 7. Issues 1 & 2,3 &4,5&6,8&9,
10 & 11 and 12 & 13 are each $50 for members, and $60 for
non-members. Issue #7 is $40 for members, and $50 for non-
members.

The same surcharge of $10/tape applies for overseas
postage. Thus the new issues, 12 and 13 are $50 for members
and $60 for non-members. All 13 issues are $340 for mcmbers,
$410 for non-members, wnh an additional $60 for overseas air-
mail.

Ordering information:

1. You MUST send a check payable in U.S. funds drawn on a
U.S. bank. I will return purchase orders unfilled. Return air-
mail postage is included in the price for North American
orders. If you are in an extreme rush include your Federal
Express number.

2. Make the check payable to SIGGRAPH.

3. Send check and order to: SIGGRAPH c/o Tom DeFanti,
UIC/ EECS, Box 4348, Chicago, lllinois 60680.

4. Write or call for clarifications. My phone number is (312)
996-5485. 1 do not loan copies or provide press copies.

S. For best results, include a statement specifying which tapes
you want and in which format. Or, include this form and circle
the appropriate items below:

Tape format: % " or VHS
Issues wanted: 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13

Name and address of person to receive tapes:

=Bl a2 =

B.2 Mechanical Theorem Proving

The following is the output from
using a mechanical theorem prover
to tackle the Second Example on

Section C.3 (page 17).

ERIL version R1.0 Rutherford Appleton Laboratory - Informatics Division

Simple verification example

Welcome To

EEE.BE E RR RR R I LL
EE RR RR II LL
EE RR RR IT, LL
EECRIE B RRRRR Il LL
EE RR RR IT LL
EE RR RR 1 LL
EEEEEE RR RR Ir LLLELLL

fﬁhational Reasoning: an Interactive Laboratory

Pre-relezse version - All rights reserved - Jeremy Dick -~ Nov 1984
ERIL version R1.0 Rutherford Appleton Laboratory - Informatics Division
Simple verification example :
COMMANDS:: h Help (menu display)
3 Finish session
a Apply equalities n anNotate console log
b Build system ° re0rder equalities
c Copy equalities Q Quit¢ to PROLOG
d Display ‘ 5 Remove equalities
e Escape to new shell s Superpose egqualities
1 Load algebra/equalities W Write equalities to file
m Move equalities X

eXecute a command file

ENTER command:
b

(h for Help)

ERIL s = cowputev PrOgrRA Sor

‘r-a-a_sov\\;zs about aq/wc:‘.-;ows. We ulte

o \\exe 1o pvove +eo e%-u-!.-‘\ovxs:-
O.q/ + 2. = ==

and (C{/‘H)x . (‘T'-_EC—_> = g <+
Te Go ‘(J\’\‘G) wWEe use we,\\- khoww
laws o5 atdifion =wnd w\u\lc-x'P\ft.a'L:ch.

- R 2 1 -

ERIL version R1.0

Rutherford Appleton Laboratory - Informatics Division

Simple verification example

SYSTEM CONFIGURATION: Console }og : on/OFF
EQUALITY SETS Display Sort Order Equality count
Label..Name€..veeerooeanans Y PE ate) viisl el 2] @ Trace....File..... File..... Total..Current
R Rules =D On %] bylhs kbord 0 0

C Confluent Set => On On bylhs 0 (o]

H To be proved =?= On On 0 0
CONFIGURATION OPTIONS: Label change equality set defaults

create New equality set,
Reset configuration

set screen Title
Console log on/off

Help

Firish configurations

[< 2 o I o e I

ENTER option:
>f

—T.L\L'S \:\50"‘\-'\"&'!(‘.\09\ .s\\ows ‘Hs-ad" ERIL hms
L>2£i“\ CJP\AEEA:BQgV-Eﬂi “+© f>¢t7<:£LSS. *4Nfil€_ SGAT
% e:'wul‘-;ov\s Ju
R the set OS' vules P\rov'la'ea %O“
d.e,SCv“\bw\ +ke_ PV'?PQ:JJF\Q.S o&
additianTand wulhiplication

C a2 'O.C‘)A‘l“T'-\Dha) SeAL. OS v-u.\.aﬁ ‘\7: 'a:\A

I“. £re :Sequr1r¥1cr~ ok new —ule
Srom Fne S‘NEV\ onel

H e sex O{S L\CSPO-H'\Q.S& 1o be
proved.

The wules tn B o=d & sl be
cownstaintis v\oel;eﬂ o te "\‘SPOHQ_S\\&S
uv\l.-‘\\ e,:o{»-a‘\ m\e_s have bee~

3?}«6\(&"-&'&‘) {'0 PmVL ‘H\e)r\

=xB32. 2 =

ERIL version R1.0 Rutherford Appleton Laboratory - Informatics Division
Simple verification example —_

R Rules 0

c Confluent Set 0

H To be proved 0

ENTER command: (h for Help)

>1 H console

ENTER To be proved : (f to finish)

R

>0%q + x = x. e e
_____ exprtype consulted 1816 bytes 1 sec. FJQM%L ‘f> 44\
----- renamed consulted 1388 bytes 0.783337 sec. 423F>e.‘\v\ Thé
----- reduced consulted 4304 bytes 2.21657 sec. S e

Hi: O%q+x =7= X twoo egpurmnont

HZ: / ue' w'\s\\ t;
> + ¥ + (r = x) = ag%x + r.

H2: (qe1)¥x+(r-x) =7z Q¥x+r vae
H3:
>f.
ERIL version R1.0 Rutherford Appleton Laboratory - Informatics Division
Simple verification exaaple
LOAD OPTIONS: Label 1load equality set
& load Algebra
h Belp
f Finish load option
ENTER option:
>R verax g
ENTER label cf set to receive new equalities: (f to Finish)
>R
----- mztched consulted 1100 bytes 0.716677 sec.
----- replaced consulted 668 bytes 0.700003 sec. PJQ*fL we e
REDUCING H1: D+x =72 X .
REDUCING H1: X =7= x ‘ loadiwa vules
PROVED H1i: X =22 X c j .
CHOOSE function precedence: JYON D 5-\[&
a - <+ gives min(X)+¥%1 => X1-X \
b + € - gives X-X1 => min(X1)+X s
r Reject SOMQ. % nese

>b B-F?b Yo +the
REDUCING H2: (q+1)¥x+{ain(x)+r) =%= Q¥*x+r PR,
H2: (qe1)¥x+ (min(x)+r) =7= q¥x+r ‘“&PO'H\QS‘Q‘S>

= 1Bjs 125 3=

ERIL version R1.0 Rutherford Appleton Laboratory - Informazties Division
-~Simple verification example

R Rules 7 '

13 X => X +¥ ¢
22: ?:x => X These wre Lo e
R3: O*X => 0 rules destw Sac
R4: X=X1 => min(X1)+X .
RS: min(X)+X => 0 ?‘,"?ﬁ.\“ : ‘QS\S’S HEREN)
R6: X+X14X2 => X+(X14X2) zodiTon Bl malTplicalc
R7: XEX14+X2%X1 => (X+X2)%¥¥1
C Confluent Set 0
H To be proved 2 $
H1: 0%Qex §?= X These wre +*Ni

{ PROVED) motases. r V’\
RH2: {(Q+1) *x+(r-x) =7z q¥xer \ v
{ (g+V)®Ex+(min(x)+r) =7= cg¥x+r) (Oh&. a‘l QEUJ t o/

ENTER command: (b for Help)
om
ENTER label of equality to move: (f to Finish, b for Help)
>R all .
MOVING Rall:
ENTER label of destination se:: (f to Finish)
>C

ENTER label of set to receive new eguzlities: (f to Firish)
>R

'T#\GEQE. c:c7vwwwﬂl'453 SJ‘D«'*"+L%L

:36)\ex’=u¥;c>n~ aé} e\~ VWAXQA -4Ln:+

are conseqpences =5 The
3\\:@\ ownes.

ERIL version R1.0 Rutherford Appleton Lzboratory - Infermatics Division.
- ---Simple verificeticn exanple
H To be proved 2 . .
H1: O%g+x =7= X "ﬂ\é, pProoy o V\v"—\c.e,ﬁ
= . -’ -
Jiude L. sheaighd ™ mwmy Hhat
H2: (g+1)¥x+(r-x) =7= q¥x+r ») . .
{ (@+1)*x+(min(x)+r) =7z g¥x=r) the St Wypothoss
PROVED H1: x =7z x ~ has been eroved
PAUSE:
ENTER Continue or Halt (c/h)

>c

=B 2ad =

MOVING R1: 0+X =>X TO0C
Gtk 0+X => X

----- superpos consulted 6260 bytes 3.06669 sec.

MOVING R2: 1*X => X T0 C

c2: 1% => X

MOVING R3: 0*X => 0 T0 €

C3: 0%¥X => 0

MOVING RY: X=-X1 => min(X1)+X TOC
Cus X=X1 2> min(X1)+X

MOVING RS: min(X)+X => 0 T0 1€

Ccs: min(X)+X => 0

MOVING R6: X+X14X2 => X+(X1+X2) T0 C
C6: X+X14X2 =D X+(X1+X2)

MOVING R9: min(X)+(X+X1) => X1 TO C
Ce min(X)+(X+X1) => X1

MOVING R14: X+0 => X TOL €

C8: X+0 => X

MOVING R21: min(0) => 0O TO C

Co: min(0) => 0

MOVING R20: min(min(X))+X1 => X+¥1 TO C
C10: min(min(X))+X1 => X+X1

REDUCING C10: X+X1 => X+X1

MOVING R29: min(min(X)) => X TOC
C11: pin(min(X)) => X

MOVING R32: X+min(X) => 0 TO C

Ci2: X+min(X) => 0

MOVING R35: X+(min(X)+X1) => X1 JOILC
C13: X+(min(X)+X1) => X1

MOVING R7: XEX14X2%X1 => (X+X2)#X1 01 C
Cld: X*¥X1+X2%X1 => (X+X2)#X1

CHOOSE function precedence:

a + < % gives (1+X)%X1 => Y1+X¥X1

b ¥ < 4+ gives X+X1%X => (1+X1)#X

r Reject

va

REDUCING H2: q*x+x«+(min(x)+r) =7= q¥x+r
REDUCING H2: q¥x+r =7z q¥x+r

PROVED H2: q¥x+r =7z q¥xer

- B.2.5 -

.......

ERIL version R1.0 Rutherford Appleton Laboratory - Informatics Divisio

-—- Simple verification example
H To be proved 2
Hi: O%*q+x =2z X BN rnow pwveﬂ .
{ PROVED }
H2: (q+1)®x+(r-x) =?= Q¥x+r
{ PROVED 1}

PROVED H2: Q¥*x+r =%z Q¥x+r

PAUSE:)

ENTER Continue or Hzl: (c/h)
>h

MOVE FINISHED

ERIL version R1.0 Rutherford Appleton Laboratory - Informatics Division
Simple verification example

R Rules i

R5G: (1+X)¥X1 => X1+¥¥*¥X1

R6D: (X+1)¥X1 => X*¥X1+X1

R43: X+ (X1+min(X+X1)) => 0

R65: X#*¥X14+(X2*¥X1+X3) => (X+X2)®X1+33
R17: min(X+X1)+(X+(X1+X2)) => X2
R54: X+ (X1+(min(X+X1)+X2)) => X2
R67: min(X*¥X1)+(X+X2)%¥X1 => X2%Xs

¢ Confluent Set 13] - 3
C9: min(0) => 0 . Eb *NNL' c;%
B 0+X => X -
C2: 1% => X = e(.,k"
C3: 0% => 0 e
Ch: X-X1 => min(X1)+X %* ‘g
C8: X+0 => X ; ?so‘
C11: min{min{X)) => X >
T5: win(X)+X => 0
C12: X+min(X) => 0
CH: X+X1+X2 = Xﬁ(X1+X2)
{6 min(X)+{X+X1) => X3
€13: X+(min(X)+X1) => X1
Cili: X®EX1+X2%X1 => (X+X2)*X1
H To be proved 2
Hil: O¥q+x =7z X _///
. { PROVED)}
R2: (q+1)¥x+(r-x) =7= g¥x+r
{ PROVED }
ENTER commanc: {n for Help)
22 '
CONFIRM exit from ERIL (¥/n):
>

= B, 21,6/ =

B.3 Expansion of Alvey SE Strategy

ALVEY SOFTWARE ENGINEERING PROGRAMME

1. GOALS AND OBJECTIVES

1.1 The Central Goals

Future IT products can be expected to be more complex than those of
today and thus to place greater demands upon the people building them.
The IT industry must meet this challenge, even though there is a
growing recognition that system development technigues are inadequate
for the large systems of today, let alone those of tomorrow.

It is accepted today that the development of a substantial new
computer system carries a number of significant risks and it is by no
means uncommon for such systems to be delivered late, over-budget and
incapable of meeting the complete requirements of the purchaser. Some
systems, after considerable expenditure of human effort and money,
fail to materialise at all.

Skilled programmers are a scarce resource which is not being used
efficiently. The industry is fragmented by organisation, by language
and by target computer., One result of the consequent 1lack of
commonality of environment or concentration of resources is that many
programmers are not provided with even the simplest programming aids,
let alone sophisticated ones. The economies of scale necessary to
justify their introduction have not been perceived to exist.

Despite these problems, the UK does not lag behind other countries in
software engineering, except perhaps the USA. The UK is certainly
regarded as the leader in Europe in this field. Efforts to improve
software engineering practice are crucial if important developments in
technology are not to be wasted or cast into disrepute through poor
production methods. The UK must not allow other countries ¢to
overtake it, for if it does, UK research work will be exploited by
other countries to the detriment of our industry.

Software engineering may be considered as having two major goals for
the future:

- improved quality ie satisfying criteria such as performance,
reliability, security, on=-schedule delivery and meeting the needs of
the user;

- improved productivity ie reducing cost, not just of the development
but of the life~-cycle as a whole, including maintenance and future
evolution.

Current software practice is centred on the programming process, and
depends strongly on the skills, experience and resources of individual
workers. Significant problems frequently result from inadequate
effort being devoted to the front end of a development, notably
concept formation, requirements definition, and design. Although
there have been some efforts to study these problems, as well as
interesting advances in both design verification and code
verification, relatively little work has been devoted to integrating
all of the stages into a common framework useful in production
environments. Significant improvements in software productivity will
be achieved when the current practice of repreated 'reinvention of the

- Bo3o1 -

wheel' 1is 1replaced by the widespread re-use of prefabricated
components. In the future then, software practice will tend to focus
more on methodology, design, and component reuse and less on
individual programming skills.

System design must include not just software design, but also hardware
considerations. A narrow view of software engineering as just a
collection of techniques to produce efficient software is not
adequate. Software engineering should be aimed at the development of
high quality systems, ie reliable, secure, efficient and easy to use,
in a way that integrates hardware and software-based design criteria.
In the future it must become information system engineering, not just
software engineering.

In the short term, ¢the UK cannot afford grossly inefficient
utilisation of its scarce skilled programming resource. Introduction
of simple tools on a wide scale is an essential first step in
increasing programmer productivity, and also in the educational
process needed to prepare for the later exploitation of more
sophisticated methodologies and tools.

1.2 Major Objective

To help achieve the general goals of improved Quality and Productivity
the Software Engineering component of the Alvey Programme is focussed
towards a strategic goal - that in 1989 the UK should be a world
leader in Information System Factories (ISF). This goal is highly
ambitious and competitive, as are the goals of the Japanegse 5th
Generation Project. The ISF objective implies a series of sub goals
both in technology and timescale. The Alvey Software Engineering
component will be judged on its ability to show that UK industry has
increased both its software development productivity and software
product quality as a result of striving to achieve the 1ISF. The
strategy given in this document outlines the route towards the ISF
with planned interim spin-offs so that productivity and quality gains
may be achieved prior to the emergence of the ISF.

What is meant by an Information System Factory? Today, the production
of most application-specific hardware/software systems = such as a
banking network, a corporate management information system or
production control system - does not in general make great use of
development tools. In that sense it is not capital intensive. The
application-gspecific part of the Information Technology industry is
characterised as a cottage industry. It is predicted that it will not
remain so for long, indeed the Japanese are already building ‘'software
factories'. To stay competitive 1in producing 1large, reliable,
application-gpecific systems, IT companies will have to make a large
investment in some kind of production facility. Exactly the same
criteria will apply to manufacturing software products. This
expensive facility - part hardware, part software, part stored
knowledge - is an Information System Factory.

1.3 Subgoals and Directions o

Defining a concrete and ambitious strategic objective crystallises a
number of more general but worthwhile aims as subgoals along the route
to the main goals. Many questions about the balance and direction of
the whole programme can be judged by their contribution to the main
goals.

- B.3.2 -

1«31 Use

An equally important part of the programme is to create a climate in
which advanced software engineering methods are in demand. This has
started with a programme of investment in and use of today's
technology, with associated training, measurement and evaluation.
This needs to be supported by education in 'formal methods' to prepare
for the widespread introduction of specification and verification.

1.3.2 Measurement

The ISF will only succeed if it can bring radical improvements in
software quality and productivity. These two concepts are notoriously
difficult to pin down, and certainly it is not currently known how to
measure them. The programme is facing up to the difficult task of
developing metrics for quality and productivity. Subgoals must be set
for achievement, Performance must be reported against these goals.
Finally it must be possible to measure the impact of an Information
System Factory. (See Reliability & Metrics Strategy [ref 3].)

1.3.3 Distributed Working

Immediate use must be made of Wide and Local Area Networks to link co-
operating designers and programmers tackling common development and
production tasks. This requires investment in the use of current
network technology. Measurements must be made of the improved
performance flowing from these investments.

1.3.4 Research

Substantial research tasks must be undertaken with the goal of
incorporating successful outcomes into products from 1985 onwards.
This requires co-operation between industry and universities. The
correct balance must be struck between basic research, development,
practical experimentation and importing other people's ideas. The
goal of having a commercially viable Information System Factory by
1989 will provide a focus for research. It tips the balance towards
practical experiments, development, and a readiness to exploit other
people's ideas, rather than concentrating solely on basic research for
"scheduled breakthroughs”.

1.3.5 Short term exg}gitation _

A number of subgoals must be established and met along the way to the
selling and exporting of tools over the coming years. The
establishment of strong sales organizations in the key markets is
vital. Some companies have started already in software products.
Many more must make this investment. The programme can make an
extremely valuable contribution through support and direction of this
investment. This 1is being achieved through close c¢ooperation with
other Government schemes which are more specifically aimed at product
development and marketing, thereby constructing a smooth 'pipeline’
from Alvey R & D through to product sales.

e 303'3 e

1.3.6 Standards

The programme must support the development of standards. These will
vary from major international activities eg. ISO language standards,
through to informal, Alvey specific, tools interfaces. Close
cooperation must be established with other Government and Industry
standards initiatives. It is anticipated that the increasing use of
formal methods will improve the foundation and creation of standards.

1.4 What Will Happen in Any Case

The Alvey SE strategyvis based on the prediction that the production
of application-specific information systems will cease to be a cottage
industry and become a capital~intensive industry.

The main reason has to do with software quality, in the widest sense
of the word. Expectations of software quality, both within the
industry and without, are very low. Today, programmers expect to have
lots of bugs in their code, and the public expect computers to send
them stupid invoices. This situation is not confined to the UK; it is
worldwide. British standards of software quality are relatively high,
while 1low in an absolute sense. This situation cannot 1last
indefinitely. In the hardware field, one manufacturer (Tandem) has
grown spectacularly by offering high reliability at a premium. This
has been done against a background of hardware from IBM and others
which is already highly reliable. The incentives to do the same in
software, and the potential payoffs, must be much higher given the
current poor quality of software. It seems highly likely that someone
soon will "do a Tandem" in software, and either keep the method to
himself or sell it very expensively. The Japanese are certainly
trying, as are the Americans and the French. Without concerted
action, the UK is bound to become an importer of this technology. If
the UK is prevented from importing such technology then the industrial
consequences could be very serious.

A number of other current trends are leading towards the
‘capitalisation' of the software industry = the growing complexity of
software systems, which demands new techniques and computer assistance
to manage it, the dawning awareness of the importance of project and
programming support environments, and the emergence of software
packages which demand new skills to integrate them in particular
applications. Finally, there is the emergence of non-Von Neumann
architectures and VLSI, which are inevitably mixing the software and
hardware design problems, making both more complex. All these are
creating larger and more complex problems, which cannot be solved
without a radically new level of automation and mechanical assistance.

= Be3.4 ~

2, THE CHANGING NATURE OF SYSTEM DEVELOPMENT

2.1 Summary

The expected changes that will result in the most significant
increases in cost-effectiveness of software development over the next

ten years are the following, listed in approximate order of expected
impact.

In the short term

1. dincremental changes in programmer productivity through the more
widespread use of design methodologies and tools

2, the coming together of methodologies and tools for the entire
development life=-cycle within integrated project support
environments (IPSEs)

3. growing standardisation of development methodologies as a
consequence of 2.

4. further refinement of suitable high-level programming languages
appropriate to the integrated development methodologies

5. growing interest in, and use of, formal specification methods and
extension to animation

6. automatic software generation techniques in limited form, probably
first in the area of commercial systems built around Data
Dictionaries.

In the medium term
7. spread of powerful networked, personal workstations

8. consolidation of the use of formal specification methods coupled
with verification and growth in use of (semi-) automatic software
generation

9. development of reusable software and hardware modules, rigorously
tested and formally documented

10. second generation IPSEs adapted to support activities 8 and 9
above, coupled with greater use of higher-level languages.

And in the longer term:

11. the consolidation of the developments above into Information
System Factories, coupled with the use of Intelligent Knowledge
Based Systems, to provide 'automatic' assisted system development
from user requirements expressed in high-level terms appropriate
to the application rather than the implementation.

— 80305 -

The crucial, and inter-related, technical developments underlying
those changes will be:

1. integrated system (software and hardware) development
methodologies supported by programming tools, administrative
procedures and management information in an integrated environment

2. formal specification, leading to ‘animation' and verification

3 reusable software and hardware components

4 automatic software generation

5 measurement and quality assurance and certification

These are discussed more fully below.

2.2 Integrated System Development Process

One view of the system development life-cycle is the following:

REQUIREMENT SPECIFICATION

OVERALL DESIGN typically costs
DETAILED DESIGN 20=50%
CONSTRUCTION total development
TESTING budget

OPERATION - not usually quoted

RECTIFICATION euphemistically

& called typically costs
EVOLUTIONARY maintenance 50-80%
DEVELOPMENT

Many design methodologies and software tools exist and are in sporadic
use today, but the state of the art leaves much to be desired. For
however good some of the tools may be, there are two serious problems.

First, they do not support a development methodology or capture any
data relevant to the management of the development process. Second,
most tools support coding activities but fail to support the life-
cycle in its entirety, or even fail to be compatible with other
relevant tools. There is a need for more tools to assist with
software specification, design, testing, rectification and
development, as well as with management of software projects; and
there 1s a need to integrate them into a coherent life-cycle support
environment built on a database.

Recently there has been widespread recognition of these problems, with
a resulting effort to develop better tools; a prime example is the
growing work on the Ada Programming Support Environment (APSE), which
should lead to a qualitative and quantitative improvement over today's
state of the art. Viewed in the wider context of software engineering
advances generally, two important short term benefits from such work
should be increased programmer productivity in the technical tasks of
project development and increased management awareness and control,
leading to better decision making and costing. Moreover, the growth
in use of integrated project support environments (IPSE) should

= B.3.6 =

provide the framework within which subsequent advances, such as
improved specification and verification methods, can take place. This
last point argues for a need for flexibility in IPSEs. They must not
be closed systems incapable of accommodating improved techniques as
these are developed elsewhere.

Whilst there are a number of issues still under debate, there does
seem to be fairly widespread agreement on certain key characteristics
that these environments will display.)

First, and of crucial importance, there will be far less emphasis on
the actual source text of the program than there is at present.
Typical current practice focuses far too much attention on the source
code representation of a program and far too 1little on other
representations - expressions of requirements and various levels of
specification. The tools which are most commonly employed are those
concerned with manipulating and testing the source code
representation. Yet most software projects that are 'unsuccessful' by
some measure have already gone irretrievably wrong by the time that
the first line of source code has been written. If there is to be
real progress on the issues of effectiveness and cost then attention
must be shifted from the code to requirements and design, and projects
must be far more concerned with the ‘higher level' representations.
(Note that such a shift of attention is entirely compatible with an
aproach which emphasises re-use of existing components rather than
always developing everything from scratch.)

Second, the environments will support a high degree of project
visibility and traceability. At any stage of a project all relevant
information will be readily available and there will be a proper basis
for measurement of progress and detection of problems. For any
identifiable activity there will be a record, not only of the end
product of that activity, but also of the decisions (both positive and
negative) which were taken during that activity.

Third, the environment will support various kinds of control.
Management control, access control and configuration control all play
an important part in addressing software effectiveness and software

costs.

Reviewing the three issues above = emphasis on *higher level'
representations, visibility and control - leads to an inevitable
conclusion: any given project employing such an environment must
follow a defined methodology. This is not to say that the environment
offers only a single methodology, but it is necessary for any given
project to employ some defined methodology, and it is necessary for
the supporting environment to ‘recognise' this methodology (or at
least certain aspects of it). Really, it is the methodology which
addresses the issues of software quality and cost. The degree to
which these issues are addressed depends upon the quality of the
methodology and how well it is supported.

2.3 Formal Specification

The first qualitative change that will occur in system development
will be the use of formal specification techniques. It is a large
leap from today's practice to automatic program generation on a large
scale, to proving theoretically that systems meet their requirments,
to easy re-use of system components; but in each case the first step
is formal specification.

- 50307 -

Today's functional specifications are written in English, often with a
liberal sprinkling of design detail in the difficult parts.

Specifications written in natural language have the major defects
that:

a. they are imprecise, ie are subject to conflicting interpretations
b. they may be logically inconsistent without the fact being apparent
c. they are apt to be incomplete

d. they cannot be used for (mechanically assisted) formal reasoning.

Use of natural language does not force the specifier to be precise at
all times. 1In some cases he may be unaware of imprecision, which thus
slips through; in other, he may decide to gain precision and by
default the method chosen will probably be to take some design
decisions and specify the requirement in terms of an implementation.
Neither result is satisfactory.

The development of formal specification techniques should ultimately
overcome these difficulties and lead to complete, precise
specifications which do not contain any unnecessary design detail.
Experience has already shown that efforts to translate natural
langauge specifications into a logical form show up inconsistencies,
ambiguities and omissions.

During the development of the complete specification, particular
specifications can be ‘'animated' in the sense that their 1logical
consequences can be explored. Questions such as What will happen
if..? can be answered precisely, and the specification improved or
modified as appropriate. In this way, purchaser and supplier can gain
the clearest understanding of the system requirements. Another use
would be simulation of critical aspects of the system, for example the
user interface of a Command and Control System, so as to give the
customer an early understanding of them.

Ultimately, formal methods can provide a very clear contractual basis
for the statement of requirements and thus help to avold disputes
about whether the system meets the requirements or not.

Numbers are hard to come by, but it is probably fair to say that most
computer systems have to change after only a 1limited period of
operation because the true operational requirements are, with the
benefit of hindsight, perceived to be different from those originally
requested. It has been argued that that is not so much a problem as an
inherent characteristic of the real world which must be catered for in
the development process. Systems must be designed to be capable of
evolution. A rigorous path from specification through to
implementation, with all the steps recorded, is essential if newly
understood requirements can be fed in again at the beginning of the
process without requiring a complete rewrite of the system.

- B.3.8 =

2.4 Re~usable System Components

Today, hardware 1is thought of in terms of components whose behaviour
is well understood and which can be put together in a number of ways
to build a system. In the future, software will more and more come in
packages until it too can be regarded as providing a set of component
parts out of which software or mixed hardware/software systems can be
constructed.

A number of trends will work together to bring this about. First,
packaged software will account for a higher proportion of software
sales to meet the enormous need for inexpensive software for personal,
home or other small computer systems. Tailor-made software will be
too expensive for this market and suppliers competing to reduce
production costs will find it necessary to use mass production
techniques, eg standardised design techniques, specialised tools,
integrated project development environments.

Second, skilled programmers are a scarce resource and will continue to
be so. Development technigues which provide a path away from today's
labour-intensive methods will permit levels of production control and
documentation adequate to the development of truly re-usable software.

Third, design by components appears to offer the only solution to the
problem already encountered today that some systems are so large and
complex that their operation is hard to comprehend, their performance
impossible to predict and their design impossible to optimise. Design
in terms of components may permit only theoretical sub-optimisation
but in practice this may be vastly superior to what could be obtained
otherwise; and the ability to predict performance and cost, in advance
of implementation, will be a major benefit.

2.5 Automatic Software Generation

Automatic software generation is in use now in a limited way, and is a
very powerful technique for producing commercial software of the type
that consists of simple, repetitive processing applied to a complex
database. The development of data dictionaries in the commercial
sphere, the trend to put the structure of applications into the
database rather than into the programs, will encourage automatic
software generation so that it can be expected to be a common
technique in transaction processing within five years.

The experience thus gained, coupled with advances in specification
techniques and the availability of a wide variety of software
components, will subsequently enable automatic software generation to
be applied to increasingly more complex processing tasks. It is here
that Intelligent Knowledge Based Systems can be expected to make their
greatest contribution to Software Engineering, in particular in
determining and enforcing consistency of specifications and of the
transitions from requirements specification to design and from design
to implementation.

2,6 Measurement and Quality Assurance & Certification

Today it is difficult to predict the costs and timescale of a software
development project, to measure the progress and productivity of the
project team and to measure the quality of the finished product.

- 3-309 el

The widespread adoption of integrated project support environments
built on database technology will facilitate new research on the
quantitative aspects of software development, A significant
improvement in management effectiveness, productivity and product
quality will occur when respectable metrication is introduced into the
software development process.

Quantitative assessment of the benefits of new tools and techniques
will provide a major stimulus to the introduction of further new
techniques and further research, as hard-headed senior managers will
be more easily persuaded to make the necessary investment funds
available when presented with reputable, quantitatively argued cases
with measurable pay offs.

Metrics and formal methods are the keys to effective quality
assurance, The developers of good quality assurance techniques will
enjoy a significant commercial advantage. The current shaky
reputation of software will mean that the ever broadening range of
customers will gravitate towards products bearing something akin to
the BSI kite mark for simple products and components. Customers
wanting more sophisticated products will favour suppliers who can
offer independent, top class quality assurance and certification as
part of the legal contract.

L Bo3.10 -

3. STRATEGY

3.1 Summary

Consultation has shown that there is very strong agreement in
industry, Government and the academic community on the technical
directions that the software engineering programme should take.

The Alvey SE Programme has as its long term objective the creation of
the Information Systems Factory. This is predicated on technical
progress in the two crucial areas of:

1. PRODUCTIVITY
2. QUALITY

To ensure continuous benefit during the period preceeding the
achievement of the ISF the SE Programme proposes a strategy which
encourages intermediate levels of technology transfer by encouraging
not just research but:

i. Exploitation: efforts to ensure that existing methods are
effectively used and their benefits gained by industry as a
whole, and continuing efforts to bring the fruits of
research out into industrial use, with the associated
investment and training.

ii. Integration: development of integrated methodologies and
sets of tools for hardware and software development covering
all phases of the system life-cycle.

iii. Innovation: research and development to extend the
methodologies and techniques of software engineering.

To give a feel for the activities which will be covered by innovation,

integration and exploitation figure 1 shows the system development

life cycle subdivided into

1. Methods and processes = how things are developed.

2. Management - monitoring and control of methods and processes.

3. Environment -~ the workplace, tools and equipment with indications
of where in the classification various key elements of the

strategy occur. Figure 1 is a summary which is expanded in the
following sections.

- B.3.11 =

Innovation Integration Exploitation
STRATEGY and and and

Understanding Implementation Evaluation
Methods Specification Blend techniques Measure use
and vV &V into life cycle of IPSE
Processes Reliability method for both

Quality hardware and

Metrics software

Reusability
Management {Models of Integrate Evaluate use

development development methods| of IPSE

and mainte- with management

nance processes techniques

and methods
Environment [Influence on Build IPSEs Make IPSE

Productivity

and Quality

IMMI, IKBS, DCS

available via

Centres

Figgre 1

3.2 Ezgloitation

Today, most small to medium projects in the UK (and elsewhere) confine
their use of tools to simple text editors, compilers or assemblers,
linkers and simple debugging aids. Occasionally, a design technique
such as Jackson Structured Programming or MASCOT will be used.

In the rare cases that a more systematic approach is felt to be
necessary, and additional tools to support the approach are required,
they are commonly developed ad hoc, on a project specific basis, and
thrown away when the project is complete. The high cost of this
approach both in terms of tool development and in re=-training staff to
use new tools and technigues for each project, has militated against
the systematic use of tools throughout the UK software industry.

There 1is therefore great scope for improvements in software quality
and productivity, in the short term, by encouraging the widespread
acceptance and use of even simple tools, of the kinds currently in use
in more restricted environments. Three things are needed to bring
these improvements about:

i. provision of a set of tools in a standard, compatible form

ii. measurement of the effect (positive or negative) on quality
and productivity due to the new methods, tools and training.

iii, education of both management and software staff; management
must be shown that investment in tools does pay off, and
software staff must be educated in the systematic
development and production methods that enable the tools to
be used cost-effectively.

A short term attack on these three factors will be crucial not only in
bringing about the much-needed improvements in quality and
productivity, but also in providing wide appreciation of the nature
and benefits of software engineering and the demand for more advanced

techniques.

In the longer term, continued efforts will be needed to ensure that
the results of research are developed and exploited. The ‘development
gap' between research and production has been a problem in Britain for
many years, and the software engineering programme will tackle it
directly by commissioning innovative research and development projects
rather than just funding research. Moreover, the main objective of
the proposed ‘'Software Production Centre' (see section 3.6) is to make
advanced tools directly available to British industry for experimental
evaluation and genuine production work.

= Be3.13 =

3.3 Integration

The second major need identified is for Integrated Project Support
Environments (IPSE). The common understanding of an IPSE is that it
should contain a compatible set of specification, design, programming,
building and testing tools, supporting a development methodology that
covers the entire life-cycle, together with management control tools
and procedures, all using a central project database. That is already
a very demanding requirment, exceeding that of the Ada APSE, but even
then it does not go far enough. It does not cover multiple-language
development; it does not cover mixed hardware and software
development; it does not cover reusable components.

There 1is certainly no agreement that one particular programming
language meets all foreseeable needs, though there are individual
proponents of this view for different languages. There is also
considerable investment in software in the languages of the 60s and
70s, which will tend to prolong their 1life for reasons of
compatibility, cost of re=~training and so on. This multiplicity of
languages, coupled with a recognition of the need to move towards re-
usable software, argues for multi-language IPSEs where systems can be
built out of components in a variety of languages.

Similar considerations apply to mixed hardware and software systems.
It is clear that there are enough similarities between the hardware
and software design processes, and the administrative and management
procedures appropriate to them, for there to be benefit in using one
IPSE for hardware and software development. Furthermore, it is
important that the requirements analysis, functional specification and
much of the design work can be done independently of decisions whether
particular modules should be implemented in hardware or software. For
such modules, their function must be defined, their place in the
overall design established and their performance requirements known;
economic, timescale and other criteria may then be used to determine
how they should be implemented.

A fully integrated IPSE as just described is exactly the Information
System Factory that is the major objective of the programme. It is a
long term objective, but it is important to be clear about what t?e
objectives are in order to see how to move towards them, and in
particular to determine the role of UNIX and Ada APSE developments in
this process.

One conclusion that emerges strongly is that there is still a great
deal of research and development to be done before such an integrated
PSE can be built. Two important areas needing R & D are:

i. formal, rigorous methods of specification of requirements,
and techniques to express designs and determine how far they
meet their specifications for performance, reliability,
correctness etc;

= Bo3c14 =

ii. methods of structuring software or hardware system components
for wide re-use; the nature of their interfaces to each
other, the appropriate types of global design to incorporate
them; how to document them; how to search for and 1locate
them.

The Alvey programme will include one or more evolving IPSEs, which not
only bring together existing tools and procedures to improve
development cost=effectiveness in the shorter term but are also

capable of incorporating new techniques that emerge from relevant
R & D projects.

3.3.1 ISF and the Three IPSE Generations

The Integrated Project Support Environment (IPSE) is a major product
objective of the programme and a crucial mechanism for blending
together the results of individual research projects. The blending
process is itself a research topic. The blending might well prove to
be more important that any of its constituents when judged in terms of
commercial success. The programme will proceed as follows.

(1) Commission development and creation of three generations of

IPSE:

ist)) file

2nd) generation IPSE) database

3rd)) knowledge base

(2) Versions of each generation of IPSE to be sited in SPC (section
3.5) and NQCC (section 3.,6) and selected organisations where
IPSE impact on quality and productivity can be monitored and
reported.

(3) Cooperate with and incorporate aspects of other Alvey areas
towards ISF eg CAD for VLSI, high resolution displays, expert
systems for programmers.

3.3.2 The 1st Generation IPSE

UNIX will be used as the basis for:
(1 The 'Exploitation' Tools Propagation exercises.
(2) The 1st generation (file based) IPSE.

UNIX is rapidly becoming a de facto standard over a very wide range of
systems and organisations and therefore offers the prospect that:

= There will be many developments for UNIX which can be taken
advantage of by the Alvey programme.

- The market for UNIX=based development environments and tools is
large and growing.

These factors should minimise the amount of tool integration and
development needed to improve today's UNIX environment into a genuine
ist generation IPSE.

L Bo3015 o

This is not to say that the Alvey programme is endorsing UNIX as a
standard; UNIX will be used as a starting place. Nonetheless, it
is envisaged that an active UNIX community will come into being in the
early years of the programme, supported by communications network
facilities.

3.3.3 The 2nd Generation IPSE

The second generation IPSE contains two major components not found in
the 1st generation IPSE:

(1) Database-based tool set (rather than file~based) eg CADES.

(2) Support for geographically distributed project teams e.g.
Newcastle Connection.

As (1) and (2) above are somewhat orthogonal it is expected that
several approaches will be attempted, including the evolutionary
development of the 1st generation, UNIX-based IPSE as well as the
‘clean sheet', non UNIX attack, possibly via intermediate steps which
will contain one, but not both, of the distribution and database
components.

The 2nd generation IPSE software will run on new hardware;
developments in cheaper CPU power, cheaper, high resolution colour
graphics, and non keyboard input=output devices, for instance, will
facilitate productivity gains due to improved man-machine interaction.
The 2nd (& 3rd) generation IPSE will require new hardware based
components such as:

1. Single user workstation costing £5K with A3 black and
white 2K x 2K pixel graphics.

2. Colour single user workstation costing £10-20K with

-« 2K x 2K pixel A3 screen

- 10 MIPS power CPU

- 32K microcode store

= 10 Mbytes physical memory

- 32 bit arithmetic and data paths

- 32 bit virtual address space per process
- hardware cache, paging, floating point
=« hardware graphics support

- sophisticated i/o devices.

3. 100 Mbits/sec local area network.

4. Gateway to high speed (greater than 1 Mbit/sec) wide area
communications.

5. LAN servers for files and databases.
6. High quality, cheap print server eg. laser printer.
7. Fulle=generality distributed operating system.

8. Sophisticated man-machine interface.

= 303016 -

The Programme will stimulate the UK production of hardware suitable
for the 2nd Generation IPSE as described above. It is important to
effect this development in a short enough timescale to prevent UK
manufacturers being eclipsed by the USA and Japanese industries in
this large market. Such machines will be available in 1984/5 for
about £5-10K.

3.3.4 The 3rd Generation IPSE

The 3rd generation IPSE (or 1ISF), containing knowledge bases and
'intelligent' tools, requires significant research which must begin
now if the 1989 target date for the Information System Factory is to
be met.

It is envisaged that the ISF will be defined as much by market and
economic realities as by any technical goals; it will (almost by
definition) embody the most cost-effective ways of producing
application-specific IT systems available at the time.

An Information System Factory will probably consist of six main
subsystems:

1. specification and prototyping facilities
2. a Software Development Environment
3. a facility for CAD of VLSI and hardware development

4. a database or knowledge base of available software and hardware
components

5. the communication systems, both local and wide area, to facilitate
co-operative development

6. project management aids.

How far advanced these six subsystems are by 1989, and how closely
integrated together, depends on technical advances which are hard to
predict. Markets will exist for the separate components as well as
the unified ISF. The following sketches are probably optimistic in
their assumed rate of technical progress, but help to define the aims.

1. Specification and Prototyping Facilities

Specifications of the system under development will be held internally
in a formal, machine-~manipulable form (which is central to the
integration of the whole ISF =« since it 1is used by all its
subsystems) . There will be extensive facilities to convey these
specifications to people such as system designers and the eventual
users of the application system - by animating the specifications,
producing small prototype systems, question-answering and so on.
Completeness and consistency of the specifications will be checked
automatically.

- Be3.17 =

2. Software Development Environment

This will go beyond present—-day environments in supporting all phases
of the software lifecycle and in relating them back to the formal
specifications. It will be tailored to support one of several
different development methodologies - depending on the application
area - and will support a defined style of project management.

3. Facility for CAD of VLSI and Hardware Development

With the emergence of special=purpose hardware architectures
implemented in VLSI, the need arises for functions to migrate between
software and hardware during the lifetime of an application system.
So CAD of VLSI cannot be considered as a separate problem. A VLSI-
implemented system must meet the same formal specifications as a
software system, and pass the same tests, and vice versa. Therefore
the software development and the VLSI CAD facility need to be centred
around the same specification method and must communicate with one
another.

4. Database of Available Components

To compete effectively in making IT application systems, it will be
increasingly necessary to re-use existing software and hardware
components. These components will be very diverse = a component could
be a software product, an integrated circuit, a sub-routine or
fragment of code, an algorithm, a man-machine interface device or one
of a set of formal theories about data structures. A database of such
components will hold some information common to all of them, to answer
questions such as: What does it do? (i.e. its formal specification)
What environment does it require? (language, storage space, power
requirements, inter-connections etc) and Can it be adapted to perform
a slightly different function? Some components will be general
purpose and some will be application specific. 1Initially such
information will be held in a database and searched in various ways:;
but in the longer term there is a need for automatic reasoning based
on the data; this broadens the reguirement to an intelligent knowledge
based system (IKBS).

5. Communications Systems

A key feature of the ISF is the facility to allow groups of designers
and programmers to work co-operatively, even when geographically
distributed. This will mean a requirement for high bandwidth
communication between co-operating processes, both within site, and
between sites. It must be possible to implement the ISF in a
distributed manner. It is expected that whilst the Dbasic
communications technologies of local and wide area networks will exist
to allow this to occur, nevertheless considerable developments will be
required to meet the special needs of the ISF, expecially in handling
interactive high resolution colour graphics.

= 303'18 L

6. Project Management Aids

Project planning, management and control methods will be developed.
When supported by a comprehensive collection of tools, these
management techniques will provide both professional managers and
technical staff with the ability to effectively plan and control all
aspects of the software development process throughout the life cycle.
These management tools must be intimately integrated into the
development process to ensure that all the appropriate parameters can
be realistically measured.

Thus an ISF, with all six subsystems implemented to a greater or
lesser extent, will be an essential prerequisite to compete in
producing medium to large scale information systems in the late
nineteen eighties. It will represent a major capital investment for
anyone intending to compete in the field.

The discussion so far has concentrated on the development of large,
complex application systems; however, similar remarks apply equally to .
the small systems market, To remain competitive in producing IT
products, companies will have to use advanced specification and
prototyping tools, application development aids and 1libraries of
components to produce better systems faster. So analogous small-scale
Information System Factories may well dominate the small systems
field, although market forces will drive them more to a low cost, high
volume régime, The greater dynamism and adaptabiliy of this sector
means that new approaches are always rapidly emerging and can be
rapidly tested in that market. Therefore the Alvey programme will by
no means ignore the small systems market; producing and supporting
small scale Information System Factories will be an important activity
in its own right, as well as a testbed for ideas to be used in the
large~scale systems market.

3.3.5 Concluding Remarks on Integration

Thus the strategy for producing the three generations of IPSE requires
a controlled set of concurrent and overlapping research and
development activities. It 4is important that the 1st and 2nd
generation IPSEs are produced, not just the 3rd generation 1ISF,
because major gains are expected in software productivity and quality
from their UK installation and exploitation as well as export sales.

3.4 Innovation

The Director (SE) will initiate a programme of research to ensure that
the scenario in section 2 (The Changing Nature of Software
Development) is realised in the UK. This will require a balanced
programme of directed contract work and responsive funding. The
universities will play a significant part in this work and the SE
programme expects to work closely with other funding bodies and
initiatives. The Director (SE) will sometimes let competition develop
between research teams as well as organising collaborative projects,
some between companies and some including universities as well.

The SE research programme will overlap significantly with other areas
(this is a good thing) and the Alvey Directorate will ensure intra
programme coordination.

\ -5.3019 L2

The three key points to be made about innovation are that
i whilst the general directions in which innovation is needed are
known it would be premature now to try to pick winners and

ignore rival approaches;

ii research projects are often on too small a scale to provide an
adequate testing ground for a new technique;

iii the scale of UK research must be increased to compete with our
international rivals.,

Thus the programme will back a number of promising approaches to (for
example) specification, and test them out on life~size projects rather
than attempt to evaluate them in terms of their apparent success in
small-scale use. This approach not only offers a better chance of
selecting useful techniques, it also starts to bridge the 'development
gap' by bringing research results out into a development environment.
The current list of research priorities includes:
s BF Software Development Methods

- Formal Specification

= Verification and Validation

- Reusable Components

= Metrics

= Quality Assurance and Certification
ii. Project Management

- planning and estimating

- progress and productivity measurement

- budgeting

- gtandards control
iii. IPSE

- items already indicated above are relevant

- evaluation experiments to test changes in productivity and
quality due to use of IPSE in the industrial context

- MMI, VLSI/CAD etc from other Alvey areas but relating to IPSE
construction

= Be3.20 =

The list of research priorities will be regularly reviewed and, if
necessary, modified. 1In addition to the above list which sketches out
some of the work required to achieve the programme's major goals and
objectives it will also fund a small amount of longer term and/or more
fundamental research to maintain a balance between targetted
development and pure research. The theoretical underpinnings of
software engineering are considered to be of wvital importance - a
thorough ‘'understanding' must precede the expensive construction of
the sophisticated ISF~type environments.

3.5 National Quality Certification Centre

The primary medium term payback activity is seen as the creation of a
National Quality Certification Centre (NQCC) for software products and
components. The NQCC must build up an international reputation. This
will involve the adoption of state of the art techniques on a
continuous basis. The commercial benefit of NQCC approved software
products in an international market is potentially extremely valuable.
As the mass market for software products develops consumers will buy
NOCC approved products rather than unapproved products. The rapid
establishment of such a national capability could give the UK a
significant commercial advantage.

The concepts behind the NQCC are currently in their infancy with only
communications protocols and programming 1language compilers being
‘certified', The NAG library quality control reputation shows the
potential benefit of extending this concept.

The NQCC should provide a realistic focus for much speculative
research and development worke.

The NQCC cannot spring into existence overnight. It is envisaged that
early in the programme one or more R & D centres will be established
to develop quality assurance and certification techniques. At least
one centre's medium term aim will be to transform itself into the
Alvey Quality Certification Centre. If the AQCC can establish a
national reputation then the move to genuine ‘'national institution'
status, possibly as an independent, revenue earning body, should
rapidly follow.

3.6 Software Production Centre

The SE programme will establish a Software Production Centre. This
will not be a research project but a working factory funded to exploit
and incorporate the latest technology. The facilities of the centre
will be made available to software producers for genuine production
work.

This will enable large organisations to try out ‘'real' new techniques
before making the necessary in-house investment. It will also enable
small companies to experience the benefits of new technology which
they could otherwise never afford.

The SPC will be aimed at producing software which will pass the tests
laid down by the National Quality Certification Centre.

Technically, the SPC is to be a multi-lingual, database foundation,
integrated project support environment. It will act as the focus for
the practical embodiment of much research and development worke.

o 303.21 -

It will support not only the development of new software but the
maintenance and evolutionary development of existing products. To
this end, it will be ‘'multi-lingual', 4ie it will be capable of
developing systems in, say, Cobol, Fortran and Coral as well as
eventually, say, Ada and Prolog. It will also be ‘multi-lingual’ in
the sense that any one of its software products can be constructed
from components coded in several different languages. Such a
requirement will stimulate the development of re-usable software
components and maximise the return on investment in existing software.

The technology contained within the Software Production Centre could
be exported into the sites of the participating organisations by:

a. replication of hardware and software components on the site
b. network access from the site to the Centre
c. a combination of a and b.

The running of both the NQCC and the SPC will be contracted out to
industry.

3.7 Development Programme

The NQCC and Software Production Centre require a research and
development programme to feed them with new technology. The Director
(SE) will initiate a medium term R & D programme to ensure that the
goals given in section 1 are realised throughout the UK. This will
require a balanced programme of directed contract work and responsive
funding.

3.8 Software Components Brokeragg

The Director (SE) will examine the desirability and feasibility of a
centre for software components and products. It will operate by
holding specifications, code etc in a database accessible only via the
Alvey network. Dissemination of components will be only by FTP (file
transfer). Participants will lodge their components and products in
the database with distribution at a charge. This scheme should
encourage collaboration, technology transfer and the creation of
reusable software components and products, the idea being that it will
be quicker and cheaper to get a subroutine from the brokerage than to
reinvent it.

Two types of software products are envisaged as being handled by the
Brokerage:

a. Packages for sale to the public. These should ideally have been
approved by the NQCC.

- B-3.22 -

b. Reusable software components. These too should ideally have NQCC
approval but will not be on sale generally. They will be available
to the 'trade', ie to those software developers who will attain
increased productivity by using existing components rather than
developing their own and who will contribute components of their
own manufacture. The Software Production Centre should be a major
source of, and customer for, these components.

With seed money from the Alvey programme to assist its launch this
should become a commercially viable operation.

3.9 Product Stimulus

Industry must produce products. The sales of such products are one
important evaluation criterion for the Alvey Programme, other
government initiatives and the health of the industry. However, short
term sales figures will not be the dominant factor for Alvey Programme
assessment.

The programme will work collaboratively with other industry and
Government initiatives, such as the Software Products Scheme, to
ensure a smooth transition from Alvey-supported research into more
market orientated activities. This will help to avoid the creation of
an Alvey development gap. Conversely, the programme will welcome
input from such initiatives which perceive market pressures having
implications for the programme's strategy and priorities.

- Be3.23 =-

