
r-,oo
Iio

CO
I

.....J
<!a:

Science and Engineering Research Council

Rutherford Appleton Laboratory
CHILTON, DIDCOT, OXON, OX11 OOX

RAL-85-007

Sixth Annual Lecture
of the C&CD of lEE
'Software Engineering'

R W Witty

December 1984

--
RAL 85 007

SIXTH ANNUAL LECTURE OF THE C&CD OF lEE

·SOFTWARE ENGINEERING·

11th December 1984

by

Dr R W Witty

ABSTRACT •

This report is a written version of the Sixth Annual Lecture of the
Computing & Control Division.

Future IT products can be expected to be more complex than those of
today and thus to place greater demands upon the software in them and
the people building them. The IT industry must meet this challenge
even though there is a growing recognition that system development
techniques are inadequate for the systems of today, let alone those of
tomorrow.

It is accepted today that the development of a substantial new
software system carries a number of significant risks and it is by no
means uncommon for such systems to be delivered late, over-budget and
incapable of meeting the complete requirements of the purchaser. Some
systems, after considerable expenditure of human effort and money,
fail to materialise at all.

Software engineering may be considered as having two major goals for

the future:

improved quality ie satisfying criteria such as pertormance,
reliability, security, on-schedule delivery and meeting the needs
of the user;

improved productivity reducing cost, not just of the development
but of the life-cycle as a whole, including maintenance and future
evolution.

The industrialised nations are all currently increasing the scale of
their research and development programmes in the search for improved
software engineering methods, skills and tools. A major UK initiative
is being led by the Alvey Directorate. This report gives a summary of
the Alvey Strategy.

The main objective of the report is to try to impart a practical feel
for what software engineering methods and tools might be in common
industrial use 5 years from now. The actual lecture contained both
live and recorded demonstrations of current research prototypes.

SIXTH ANNUAL LECTURE OF THE C&CD OF lEE

·SOFTWARE ENGINEERING·

by

Dr R W Witty

CON TEN T S

A. INTRODUCTION

1. Software Engineering: Definition
2. Software Trends: COST
3. Software Trends: SOCIAL IMPACT
4. The Problems of Software Production

B. ALVEY SOFTWARE ENGINEERING PROGRAMME

1. Goals & Objectives
2. The Changing Nature of System Development
3. Strategy

C. FORMAL METHODS

1. Introduction
2. A Simple Example
3. A Second Example
4. Discussion
5. Quality Certification

-

Continued ••••

-
Continuationof CONTENTS.

D. INFORMAL METHODS

1. Introduction
2. Components & Packages
3. Smalltalk

E. NEW SOFTWARE TOOLS •

1. TraditionalTools
2. New Tools
3. Tool Demonstrations
4. Host-TargetWorking

F. CONCLUSION

1. Methods, Skills, Tools.

A P PEN D ICE S

A. HUMOROUS (?)

1. Laws of Project Management
2. IBM's New Operating System
3. Real Programmers Don't Use PASCAL

B. SERIOUS

1. SIGGRAPH Video Review
2. Mechanical Theorem Proving
3. Expansion of Alvey SE Strategy

-

A. INTRODUCTION

1. SOFTWARE ENGINEERING: A DEFINITION

Software Engineering was first recognised as a distinct subject at the
1968 NATO Conference [8).

The following introduction to Software Engineering is taken from Boehm
[1) •

"Our definition of software engineering is based on the definitions of
software and engineering given in the current edition of Webster's New
Intercollegiate Dictionary [Webster, 1979):

•
Software is the entire set of programs, procedures, and related
documentation associated with a system and especially a computer
system.

Engineering is the application of science and mathematics by which
the properties of matter and the sources of energy in nature are
made useful to man in structures, machines, products, systems, and
processes.

Since the properties of matter and sources of energy over which
software has control are embodied in the capabilities of computer
equipment, we can combine the two definitions above as follows:

""""
Software engineering is the application of science and mathe...at.Lcs
by which the capabilities of computer equipment are made useful to
man via computer programs, procedures, and associated
documentation.

1.1 Discussion

This definition of software engineering contains two key points which
deserve further discussion. First, our definition of software
includes a good deal more than just computer programs. Thus, learning
to be a good software engineer means a good deal more than learning
how to generate computer programs. It also involves learning the
skills required to produce good documentation, data bases, and
operational procedures for computer systems.

The second key point is the phrase "useful to man". From the
standpoint of practice, this phrase places a responsibility upon us as
software engineers to make sure that our software products are indeed
useful to people. If we accept an arbitrary set of specifications and
turn them into a correct computer program satisfying the
specifications, we are not discharging our full responsibility as
software engineers. We must also apply our skills and judgment to the
job of developing an appropriate set of specifications, and to the job
of ensuring that the resulting software does indeed make the computer
equipment perform functions that are useful to society. Thus,
concerns for the social implications of computer systems are part of
the software engineer's job, and techniques for dealing with these
concerns must be built into the software engineer's practical
methodology, rather than being treated as a separate topic isolated
from day-to-day practice.

•
- 1 -

-
From the standpoint of learning, the phrase "useful to man" implies
that the science and mathematics involved in software engineering
covers a good deal more than basic computer science. For something to
be useful to people, it must satisfy a human need at a cost that
society can afford. The science and mathematics of human economics
presented in this book provides an opportunity to learn some ways to
handle the cost and human-needs aspects of a software engineering
problem, and to integrate them with the computer science aspects.

2. SOFTWARETRENDS: COST

The way we perform software engineering determines the cost and the
quality of the software produced. This makes software engineering
important because of the following two trends:

1. Software is a large and increasingly costly item.
2. Software makes a large and increasing impact on human welfare.

•

These trends are covered in the next two sections.

The annual cost of software in the US in 1980 was ~_proximately 40
billion dollars, or about 2% of the Gross National P~ ~uct. Its rate
of growth is considerably greater than that of the economy in general.
Compared to the cost of computer hardware, the cost of software is
continuing to escalate along the lines predicted in Fig. 3-2 [Boehm,
1976].

By now, the trend in Fig. 3-2 has become so pronounced that we can
often consider the hardware as a kind of packaging for the software,
which is the portion of the computer system which largely determines
its value. Thus, today, the computer system that we buy as "hardware"
has generally cost the vendor about three times as much for the
software as it has for the hardware. Most thorough "hardware"
procurements are primarily software purchases, as the buying
evaluations place more weight on the software aspects than on the
hardware aspects. (For an example, see Chapter 15.) A number of new
computer systems (for example, Amdahl, Magnuson, Cambridge, and
National Semiconductor) offer a product that is largely IBM software
repackaged for a different mainframe. And the IBM software rental for
a basic IBM 4331 system can be greater than the rental cost for the
hardware [Lundell, 1979].

With respect to the overall computer and information processing
industry of the future, computer software will be the dominant portion
of an industry expected to grow to 8.5% of the Gross National Product
by 1985 [Dolotta and others, 1976] and to 13% of the GNP by 1990
[Steel, 1977].

This growth in demand for software creates a tremendous challenge for
the software engineering profession. The challenge is twofold: first,
to significantly increase software development productivity 7 and
second, to increase the efficiency of software maintenance. As shown
in Fig. 3-2, the portion of efforts spent on software maintenance is
greater than that spent on software development. The data point for
1978 comes from a recent survey of 487 data processing installations,
in which the mean percentages of effort were 43.3% for development,
48.8% for maintenance, and 7.9% for other miscellaneous activities
[Lientz-Swanson, 1978].

- 2 -

-
3. SOFTWARE TRENDS: SOCIAL IMPACT

The growth in the demand for software results largely from the fact
that as computer hardware becomes increasingly inexpensive, reliable,
and plentiful, we find it more and more advantageous to automate the
machine-like portions of human jobs.

Figure 3-3 illustrates this trend. It summarizes the results of three
studies «(AFIPS-Time, 1971; Boehm, 1973; Dolotta and others, 1976]) on
the growth of computer usage and its human impact. The most striking
implication of the studies is that, by 1985, roughly 40% of the
American labor force will be relying on computers and software to do
their daily work, without being required to have some knowledge of how
computers and software work. Thus, this 40% of the labor force will
be trusting implicitly in the results produced by computer software.

computers and software are making an even deeper impact on our
personal lives. With every passing day, more and more of our personal
records, bank accounts, community services, traffic control, air
travel, medical services, and national security are being entrusted to
the hopefully reliable and humane functioning of computers and
software. And the potential threats to our personal welfare via
computer crime [Parker, 1976], massive data banks [Westin-Baker, 1972;
Ware and others, 1974], or computer systems that make people think and
act like computers [Weizenbaum, 1976; Docherty 1977], become more and
more difficult to contain.

•

This increasing impact on human welfare presents several tremendous
challenges for the software engineering profession. They are to
develop and maintain software which ensures that computer systems are:

Extremely reliable
Humane
Easy to use
Hard to misuse
Auditable

and that keep people, rather than computers, in the driver's seat.

These challenges, plus the economic productivity and maintainability
challenges identified in the previous section, provide the main

motivation for the goals of software engineering discussed in the next

section "(1].

4. THE PROBLEMS OF SOFTWARE PRODUCTION

t. The simple life cycle of any man-made article, not just software, is:

1. Identify Requirement for product

2. Design the product

3. Manufacture the product

4. Maintain the product

5. Scrap the product.

- 3 -

-

•

..
] 60
"~
c

1985

FIGURE 3-2 HarOwareI softwar e cost trends

•

'OOr-------------------------------~

,,/
,,/

Working with compute,/, /

/
/
/

..~
.E
R:!
C 50
~..c
'"~.,
e,

-----ReQuired to have some
knowleCQE 01 how
com~"te, works

Year

FIGURE 3-3 GrOYithof reliance on computers and software

-
In Software Engineering the manufacturing process is not a problem if
manufacturing means replication of an item. Copying a magnetic tape
or disk can be done quickly, easily and reliably; this contrasts
markedly with say motor car production or VLSI chip production.

For a software product the greatest proportion of life cycle cost is
associated with the maintenance phase. In the worlds of motor cars
and computer hardware 'maintenance' means 'restoration to original
condition', faults being mainly due to physical wear and tear on
components.

Software, by its very nature, cannot wear out. To first order, the
only type of fault which can occur in a software product is a design
fault. Thus correct software maintenance does the exact opposite of
'restoration to original condition', if the fault is cured, because a
new version of the product has to be built. 'Software maintenance' is
a euphemism for 'rectification of design faults'. •

Software faults can be trivial at the lexical level whilst having
disasterous consequences. A very famous example is that of a missing
comma which caused the loss of a deep space exploration probe. The
offending error was of the following nature

DO 99 I = 1,10 which is a FORTRAN repetition statement was
mistyped as

DO 99 I = 1 10 which, by chance, became the valid assignment
statement

oo99I = 110

A software error delayed the first launch of the Space Shuttle, a very
public mistake; software errors in the USA's World Wide Command and
Control System have had significant publicity when incoming missile
attacks have been falsely detected.

Maintenance is also usually taken to include development work in which
a correctly operating product is changed to reflect some new customer
requirement.

Rectification and development often take up 50% of the total life
cycle cost of a software product.

This figure is so high because today's software is error prone, fails
to meet its requirements specifications and is difficult to
change/develop. All of these problems are design problems.

- 4 -

-
B. ALVEY SOFTWARE ENGINEERING PROGRAMME

1. GOALS AND OBJECTIVES

1.1 The Central Goals

Future IT products can be expected to be more complex than those of
today and thus to place greater demands upon the people buildin9 them.
The IT industry must meet this challenge, even though there is a
growing recognition that system development techniques are inadequate
for the large systems of today, let alone those of tomorrow.

It is accepted today that the development of a substantial new
computer system carries a number of significant risks and it is by no
means uncommon for such systems to be delivered late, over-budget and
incapable of meeting the complete requirements of the purchaser. Some
systems, after considerable expenditure of human effort and money,
fail to materialise at all.

•

Skilled programmers are a scarce resource which is not being used
efficiently. The industry is fragmented by organisation, by language
and by target computer. One result of the consequent lack of
commonality of environment or concentration of resources is that many
programmers are not provided with even the simplest programming aids,
let alone sophisticated ones. The economies of scale necessary to
justify their introduction have not been perceived to exist.

Despite these problems, the UK does not lag behind other countries in
software engineering, except perhaps the USA. The UK is certainly
regarded as the leader in Europe in this field. Efforts to improve
software engineering practice are crucial if important developments in
technology are not to be wasted or cast into disrepute through poor
production methods. The UK must not allow other countries to
overtake it, for if it does, UK research work will be exploited by
other countries to the detriment of our industry.

Software engineering may be considered as having two major goals for

the future:

_ improved quality ie satisfying criteria such as performance,
reliability, security, on-schedule delivery and meeting the needs of
the user;

- improved productivity ie reducing cost, not just of the development
but of the life-cycle as a whole, including maintenance and future
evolution.

CUrrent software practice is centred on the programming process, and
depends strongly on the skills, experience and resources of individual
workers. Significant problems frequently result from inadequate
effort being devoted to the front end of a development, notably
concept formation, requirements definition, and design. Although
there have been some efforts to study these problems, as well as
interesting advances in both design verification and code
verification, relatively little work has been devoted to integrating
all of the stages into a cornmon framework useful in production
environments. Significant improvements in software productivity will
be achieved when the current practice of repreated 'reinvention of the

- 5 -

-
wheel' is replaced by the widespread re-use of prefabricated
components. In the future then, software practice will tend to focus
more on methodology, design, and component reuse and less on
individual programming skills.

System design must include not just software design, but also hardware
considerations. A narrow view of software engineering as just a
collection of techniques to produce efficient software is not
adequate. Software engineering should be aimed at the development of
high quality systems, ie reliable, secure, efficient and easy to use,
in a way that integrates hardware and software-based design criteria.
In the future it must become information system engineering, not just
software engineering.

1.2 Major Objective

To help achieve the general goals of improved Quality and Productivity
the Software Engineering component of the Alvey Programme is focussed
towards a strategic goal - that in 1989 the UK should be a world
leader, in Information System Factories (ISF). This goal is highly
ambitious .and competitive, as are the goals of the Japanese 5th
Generation Project. The ISF objective implies a series of sub goals
both in technology and timescale. The Alvey Software Engineering
component will be judged on its ability to show that UK industry has
increased both its software development productivity and software
product quality as a result of striving to achieve the ISF. The
strategy given in this document outlines the route towards the ISF
with planned interim spin-offs so that productivity and quality gains
may be achieved prior to the emergence of the ISF.

•

What is meant by an Information System Factory? Today, the production
of most application-specific hardware/software systems - such as a
banking network, a corporate management information system or
production control system - does not in general make great use of
development tools. In that sense it is not capital intensive. The
application-specific part of the Information Technology industry is
characterised as a cottage industry. It is predicted that it will not
remain so for long, indeed the Japanese are already building 'software
factories'. To stay competitive in producing large, reliable,
application-specific systems, IT companies will have to make a large
investment in some kind of production facility. Exactly the same
criteria will apply to manufacturing software products. This
expensive facility part hardware, part software, part stored
knowledge - is an Information System Factory.

1.3 What Will Happen in Any Case

The Alvey SE strategy is based on the prediction that the production
of application-specific information systems will cease to be a cottage
industry and become a capital-intensive industry.

The main reason has to do with software quality, in the widest sense
of the word. Expectations of software quality, both within the
industry and without, are very low. Today, programmers expect to have
lots of bugs in their code, and the public expect computers to send
them stupid invoices. This situation is not confined to the UK1 it is
worldwide. British standards of software quality are relatively high,
while low in an absolute sense. This situation cannot last
indefinitely. In the hardware field, one manufacturer (Tandem) has

- 6 -

-
grown spectacularly by offel'ing high reliability at a premium. This
has been done against a background of hardware from IBM and others
which is already highly reliable. The incentives to do the same in
software, and the potential payoffs, must be much higher given the
current poor quality of software. It seems highly likely that someone
soon will "do a Tandem" in software, and either keep the method to
himself or sell it very expensively. The Japanese are certainly
trying, as are the Americans and the French. Without concerted
action, the UK is bound to become an importer of this technology. If
the UK is prevented from importing such technology then the industrial
consequences could be very serious.

A number of other current trends are leading towards the
'capitalisation' of the software industry - the growing complexity of
software systems, which demands new techniques and computer assistance
to manage it, the dawning awareness of the importance of project and
programming support environments, and the emergence of software
packages which demand new skills to integrate them in particular
applications. Finally, there is the emergence of non--Von Neumann
architectures and VLSI, which are inevitably mixing the software and
hardware design problems, making both more complex. All these are
creating larger and more complex problems, which cannot be solved
without a radically new level of automation and mechanical assistance.

•

- 7 -

-
2. '!'HE CHANGINGNATURE OF SYSTEMDEVELOPMENT

2.1 Su..ary

The expected changes that will result in the most significant
increases in cost-effectiveness of software development over the next
ten years are the following, listed in approximate order of expected
impact.

In the short term

1. incremental changes in programmer productivity through the more
widespread use of design methodologies and tools

2. the coming together of me."\hodologiesand tools for the entire
development life-cycle within integrated project support
environments (IPSEs) •

3. growing standardisation of development methodologies as a
consequence of 2.

4. further refinement of suitable high-level programming languages
appropriate to the integrated development methodologies

5. growing interest in, and use of, formal specification methods and
extension to animation

6. automatic software generation techniques in limited form, probably
first in the area of commercial systems built around Data
Dictionaries.

In the medium term

7. spread of powerful networked, personal workstations

8. consolidation of the use of formal specification methods coupled
with verification and growth in use of (semi-) automatic software

generation

9. development of reusable software and hardware modules, rigorously
tested and formally documented

10. second generation IPSEs adapted to support activities Band 9
above, coupled with greater use of higher-level languages.

And in the longer term:

11. the consolidation of the developments above into Information
System Factories, coupled with the use of Intelligent Knowledge
Based Systems, to provide 'automatic' assisted system development
from user requirements expressed in high-level terms appropriate
to the application rather than the implementation.

- B -

••••

The crucial, and inter-related, technical developments underlying
those changes will be:

1. integrated system (software and hardware) development
methodologies supported by programming tools, administrative
procedures and management information in an integrated environment

2. formal specification, leading to 'animation' and verification

3. reusable software and hardware components

4. automatic software generation

5. measurement and quality assurance and certification

•

- 9 -

-
3. STRATEGY

3.1 SWDlAry

The Alvey SE Programme has as its long term objective the creation of
the Information Systems Factory. This is predicated on technical
progress in the two crucial areas of:

1. QUALITY
2. PRODUCTIVITY

To ensure continuous benefit during the period preceeding the
achievement of the ISF the SE Programme proposes a strategy which
encourages intermediate levels of technology transfer by encouraging
not just research but:

•
i. Exploitation: efforts to ensure that existing methods are

effectively used and their benefits gained by industry as a
whole, and continuing efforts to bring the fruits of research out
into industrial use, with the associated investment and training.

ii. Integration: development of integrated methodologies and sets of
tools for hardware and software development covering all phases
of the system life-cycle.

iii. Innovation: research and development to extend the methodologies
and techniques of software engineering.

To give a feel for the activities which will be covered by innovation,
integration and exploitation figure 1 shows the system development
life cycle subdivided into

1. Methods and processes - how things are developed.

2. Management - monitoring and control of methods and processes.

3. Environment - the workplace, tools and equipment with indications
of where in the classification various key elements of the
strategy occur.

- 10 -.

Innovation

and

Integration

and

I.plementation

Exp1oitation

and

Evaluation

,
Methods Specification Blend techniques

and V & V into life cycle

Processes Reliability method for both

Quality hardware and

Metrics software

Reusability

STRATEGY

Understanding

Measure use

of IPSE •

Management Models of

development

and mainte-

nance processes

and methods

Integrate Evaluate use

development methods of IPSE

with management

techniques

Environment Influence on

Productivity

and Quality

MMI, IKBS, DeS

Build IPSEs Make IPSE

available via

Centres

I
I

L

Figure 1

- 11 -

-
3.2 Integration

The second major need identified is for Integrated Project Support
Environments (IPSE). The common understanding of an IPSE is that it
should contain a compatible set of specification, design, programming,
building and testing tools, supporting a development methodology that
covers the entire life-cycle, together with management control tools
and procedures, all using a central project database. That is already
a very demanding requirment, ex~eeding that of the Ada APSE, but even
then it does not go far enough. It does not cover multiple-language
development 1 it does not cover mixed hardware and software
development 1 it does not cover reusable components.

3.2.1 The 2nd Generation IPSE

The second generation IPSE contains two major components not found in
the 1st generation IPSE: •

(1) Database-based tool set (rather than file-based) eg CADES.

(2) Support for geographically distributed project teams e.g.
Newcastle Connection.

The 2nd generation IPSE software will run on new hardware 1

developments in cheaper CPU power, cheaper, high resolution colour
graphics, and non keyboard input-output devices, for instance, will
facilitate productivity gains due to improved man-machine interaction.
The 2nd (& 3rd) generation IPSE will require new hardware based
components such as:

1. Single user workstation costing £5K with A3 black and white
2K x 2K pixel graphics.

2. Colour single user workstation costing £10-20K with

2K x 2K pixel A3 screen
10 MIPS power CPU
32K microcode store
10 Mbytes physical memory
32 bit arithmetic and data paths
32 bit virtual address space per process
hardware cache, paging, floating point
hardware graphics support
sophisticated i/o devices.

3. 100 Mbits/sec local area network.

4. Gateway to high speed (greater than 1 Mbit/sec) wide area
communications.

5. LAN servers for files and databases.

6. High quality, cheap print server ego laser printer.

7. Full-generality distributed operating system.

8. Sophisticated man-machine interface.

9. Integrated with Office Automation and Corporate Applications
Systems.

- 12 -

-
3.2.2 The 3rd Generation IPSE

The 3rd generation IPSE (or ISF), containing knowledge bases and
•intelligent' tools, requires significant research which must begin
now if the 1989 target date for the Information System Factory is to
be met.

An Information System Factory will probably consist of six main
subsystems:

1. specification and prototyping facilities

2. a Software Development Environment

3. a facility for CAD of VLSI and hardware development

4. a database or knowledge base of available software and hardware
components •

5. the communication systems, both local and wide area, to facilitate
co-operative development

6. project management aids.

3.3 Innovation

The current list of research priorities includes:

i. Software Development Methods

Formal Specification

Verification and Validation

Reusable Components

Metrics

Quality Assurance and Certification

ii. Project Management

planning and estimating

progress and productivity measurement

budgeting

standards control

iii. IPSE

items already indicated above are relevant

evaluation experiments to test changes in productivity and
quality due to use of IPSE in the industrial context

MMI, VLSI/CAD etc from other Alvey areas but relating to IPSE
construction

- 13 -

-
3.4 National Quality Certification Centre

The primary medium term payback activity is seen as the creation of a
National Quality Certification Centre (NQCC) for software products and
components. The NQCC must build up an international reputation. This
will involve the adoption of state of the art techniques on a
continuous basis. The commercial benefit of NQCC approved software
products in an international market is potentially extremely valuable.
As the mass market for softwart products develops consumers will buy
NQCC approved products rather than unapproved products. The rapid
establishment of such a national capability could give the UK a
significant commercial advantage.

•

- 14 -

-
C. FORMAL METHODS

1. :INTRODUCTION

Software systems, even small ones, cannot be completely tested. This
is due to a variety of reasons including

1. the extremely large number of independent internal states

2. the extremely large number of different possible inputs

3. the inability to generate valid tests.

An example of 2) is that, at present hardware speeds, it takes a time
period greater than the predicted life time of planet earth to check
that an arithmetic unit correctly adds together all possible pairs of
numbers from its finite input set.

•
Examples of 3) include the inability to test realistically that part
of the software which handles nuclear power station crises or
navigates cruise missiles over enemy territory. The 'computer
overload' problem which beset Neil Armstrong as he attempted the first
lunar landing fell into this category.

Testing is necessary and useful but will always suffer from the
problem of lack of completeness which is enshrined in the famous
remark "program testing can be used to show the presence of bugs, but
never to show their absence!" [11]. Thus modern software engineering
is trying to improve Quality by theoretical methods (formal methods)
which attempt to prove (in the strict mathematical sense) properties
of programs and systems.

A mathematically based proof that a well specified property of a
program holds for all inputs is more valuable than an assumption that
the property is true for all inputs, given that testing shows it to
hold for a small subset of the input domain. In the finite and
discrete world of software, extrapolation is not always a sound
technique!

2. A SIMPLE EXAMPLE

The following fragment of code appears to be simple enough in outline
(3 simple assignments executed in sequence).

A:=A+B;
B:=A-B;
A:=A-B;

Without a higher level specification it is not immediately obvious
what this code fragment achieves and therefore there is no way of
knowing if it is correct, for correctness in software means proving
that a program implements the required specification.

If the code fragment is analysed formally by assuming the final values
of the variables 'A,B' are 'x,y' then the code fragment can be
'symbolically executed' backwards to derive the initial values of
'A, B' •

- 15 -

(1)

(2)

(3)

Therefore Af = Bi
Bf = Ai

'A' changed so substitute LHS;
'B' unchanged

POST
CONDITION

where 'i' is the initial value,
'f' is the final value.

Therefore Code fragment swops values between A,B.

Specification:

Implementation:

Swop the values held in A,B
s.t. Af ~ Bi and Bf = Ai
without use of temporary storage

A
B
A

:= A+B
:= A-B
:= A-B

(Contrast the equivalent function using a temporary storage variable

T:=Ai
A:=Bi
B:=Ti).

Note that the predicates which describe the initial and final states
of the computation (ie the values of the variables in the above
example) are collectively called the pre and post conditions. A
program 'Pi can be thought of as a process which causes a state, with
precondition 'I', to be changed into a state, with postcondition 'F'.
This is often written

[I)P[F)

- 16 -

-

•

3. A SECOND EXAMPLE

Here is a second, more complex example involving iteration to perform
integer division by the process of repeated subtraction.

Specification: Given X)=O and Y>O, find a program p to compute Q and R
such that X=Q*Y+R and O=<R<Y.

this can be re-expressed as a requirement to prove that P satisfies
the following pre and post conditions

[O=<X,O<Y]P[X=Q*Y+R,O=<R<Y]

where P is

begin

Q:=O;
R:=X;

while R)=Y do

begin

R:=R-Y;
Q: =Q+1;

end

end

!

I
i,
L

- 17 -

I
I
I
I
1
1
1
1
1
'1

O<Y 1
.I •

1
I
1

If O<Y and O=<R and Y 1
constant then 'R:=R-Y'I
must always decrease R
so that eventually R
will become smaller
than Y and the loop
will terminate.

p O=<X, O<Y

begin X=X, O=<X, O<Y

X=O*Y+X, O=<X, O<Y
Qi:=O;

X=Qi*Y+X, O=<X, O<Y
Ri:=X;

X=Q*Y+Ri, O=<Ri, O<Y

while Ri>=Y do
X=Qi*Y+Ri, O=<Ri,

begin X=Qi*Y+Ri [loop invariant]

X=Qi*Y+Y+Ri-Y

X=(Qi+1)*Y+(Ri-Y)

end

end

Note: see appendix B.2 for proof by mechanical theorem prover.

- 18 -

-

4. DISCUSSION

The above two very simple examples illustrate several points about
formal methods.

1. Proving consistency between a program and its specification
requires both program and specification to be expressed in a
mathematically tractable notation if the formal rules of
mathematics and logic are to be securely employed. Hence the
Alvey SE Programme's emphasis on improving specification
techniques.

2. One man's specification is another man's program ie a hierarchy
of specifications and proofs can be constructed.

3. Proof need not only tackle functional correctness.
security, safety, performance etc may also be
formally manipulated.

Termination,
specified and

•
4. Proofs need to be built on reusable theories. All good proofs

use shortcuts called theorems. The first example assumed much of
the theory of arithmetic. It assumed that there were no bounds
on the values of the variables; however computers are finite
machines so that it is invalid to assume, for instance, that
'A:=A+B;' can be executed for any values of A,B. If A,B are both
of the same order as the largest number which the machine can
represent then their summation cannot be represented and the
program will malfunction. This type of error is quite common in
practice. The need to make explicit such restrictions and reason
about them is one way in which formal methods improve the quality
of software by error prevention at the design stage.

5. Even simple proofs (and manipulations) are tedious, lengthy and
tricky and hence themselves often contain errors. However
because of their formal basis such manipulations can today be
checked for accuracy by computer based software tools called
'proof checkers'. The proof of 'A Second Example' is complex
although the program P is fairly small. Appendix B.2 contains a
mechanically generated proof of the key elements of the 'second
example' program. Current research is striving to find cost
effective ways to increasingly automate the creation and
construction of proofs themselves to speed up the process even
more. For instance in the ML/LCF system[9] the human prover
expresses not the detail of the proof but only the 'MetaLevel'
tactics to guide the computerised prover. ML/LCF also allows the
construction and reuse of theorems to speed up the mechanical
proof process. (See overleaf.) The IOTA system is one of the
world's most advanced mechanical verification systems. It
exhibits a significant degree of tool integration, being built on
a data base foundation [12] (see overleaf).

- 19 -

-
5. QUALITY CERTIFICATION

Quality is the major goal for the Alvey SE Programme. It is of vital
commercial importance. Customers will tend to buy software which is
'high quality'. It is a challenge to the SE profession to be able to
demonstrate and measure the quality of its products. This is
currently beyond the state of the art.

Current quality techniques are based on testing eg the
certification of Ada compilers. Testing is inadequate for the
discussed earlier in section C.1. The drive towards
certification is being led more by customers than suppliers.

current
reasons
quality

Both customers and suppliers see proof-based formal methods as the
most satisfactory route to certification which gives an additional
boost to work in this area.

•

- 20 -

Mola Language
(ML)

TilE LCF SYSTEM

,--------_ .._--- -.....

M.I. L•••uuRg ••

• EcJhlburllhML

• F"-y hlgher-order luncllollul p'ourollllllinu
IollIlUOU.

• Eoger .volunllon (I,•. non mlY'
• Polymotplllc Iype dlsciplln.
• Aalsktg and handling 01excepllonl

,• Sianderd Ml.

• A sllll1dard lor luillr. Mlh"fl'''ftlOf'lloliot.s
• Combll1e, Cardell's Ml wllh Burslal', 1·lope
• Very carelul design by MilnerRndColloOUIIOS
• .-tope·like dala·,'ruelures and pallern molchlng
• Value passing wllh ellcepllons (lallures)

.UnlxMl

• Enhanced 5landa.d MLIlllplolllenled under
Berkeley Unix

• htpUl-oulplil and seperale COl'IIJ1lulion(II:OOule5)
• Good pertoflllonce (compornLlu 10Pascal)
• Implemunlnlion 0101091complolo
(byCordelli 01Boilluoorelorios'

--_._----

LCF=ML+OL

• Sueurlly: No lollJOIllOOfUllllIIhllllkll10 ML'IIIYI'O tJhlcl,l!klU

• Aulol1lollon: 80lh dala·dhcled ('ofward) and goal·dkec'od (back
ward) IIlralovloa

• Gellerolly: PPlAMDDA good lor Induelive reasoning obuJ recuralve
delinlllons -.

.'1I91ary

• 1969: Scollloys 1000tdalloo'or PPLAMBOA
• 1911: Slnnlord LCF
• 1973-: EdinoorghLCF
• 198 1-: Cambridge l CF

• Casa sludles 01proor

• Silllple complNngRlgorilhlllS(Cohll)
.' FP·syslollls JLeSlclYIoWSkl
• BolancP1 Irees .
• Par9iflg algorllhms (Milner, Cohll)
• Subslilulloll8nd uni'icelion (Poulson)
• SeHheury (Schmid')
• Ilonre·logic(Sokolowskl)
• Ilordw8I6 corroclnoss (Moxon, Gordon)

Object Lsnguago
(OL)

v
ObJec. Lo,.u,,"U ••

• EdlllhlllUh PI'I.I\MIlIM

• PoIynlOlI'hlc P",dlcnlo LAMODA-cnlclllu9
• lor III': PolYlllOll,hlcIYJ",d "·cllfc"lus
• Forlllulno: noo" Ich,d pr odlcnlll Clileulull

• Cambridge PPLAMOOA

• Enhancomont o' Edillbtllgh PrLAMOOA
• Full lorlllllio 9huCl"'8 0' prodicnlo colculu,
(llcQalion, ex'slollliul qUllnlificolion. c.IisjUlIclioo
elc.)

• Moro gOllorullnduclion I"le

• Ofher logics

• l.SM (toqir: 01SequellUfll Machilles): Exlenslou of
rPLAMllLJJ\ wilh lnnns horn CCS

• Construclive Iyl'o theo. y (Golhcnburg)
• Clnsslcal higher·ordor logic
• Classical set-lheory

• I

FunMAL rnOOF Ir~LCF
University of Cambridge

Goal-directed ProofForward ProofRepresenting a logic in ML
.,'ow IIwOIks• Move forward from axioms via Inlu,alice fules

• EXDmpl.:.llteorems ar. an abs'fBei Iypo IIVT1
• AllloInl are pUldel~'od valvo. 01 type II•••
• IlIlerene. fule. ara Ml func'lon.
which ralIKn theorema

a Ella"'ple: The Infer.nc. rule
: ~~:'~~'~~I~>g~nIS
• Prove subuonls
• 'Jonca plOVtl \IOal

a Ella"'I"e:How ilia oanarated In LCF•...AI\t-B Formal Proof

let Ihl - All' ;;
lei 1112= AIC2;;
let 1113- nI (Ih 1.1112);;

lei 1M - R2 (1.113.Ih3) ;;

. 'h' by AIC1
.112by AIC2
.h3 by rule R 1.

I"'.lh2
.114by fule nz,

AK3.lh3

•..."1\8

Is r.presenled by lhe Ml. Funclion

COUJ

CONJ: IIVTIX Ihm _ 1IVT1
L..-y--I

~

.-....-
tibooal:
rove: Vn.Q(n)

• Disadvanlages ollorward proof.
Ml Type Subuo •• :

Prove: Vn.Pln)-MlNaul8 -
l...... .• •__ ~

• Tedious and low Iovtll
• User IIIUS'eKplicilly
generale evory slop

• Machine Inleracllons do IIU'
fallee' nalwol
prooHinding acllvily

a Derived rules can be progra, ••••ed InMl

a EII.mpIe: 1he derived rule: • Proof slrologios con bo f1rog'O""IKKtinMl

• Exoml"o:

•...",.....•...'"
napre.entatlon'n ML'n'orn,.I.tratoor

le1 S =
S 10I1ELSES2
lIIENS3
lllENS4
1liEN REPEAl S5 .:

SG;;

To prove (lool G Iry
shnlogy S I. illhis
doesn't wo,k II)' S2.
Ineilher case Ihen
Iry S3 'ollowed by
54 'ollow(l(' hy
55 repoalodly

Is progrolllmed 08:

letree CONJU5T II~=
I. noDIhi then la~
Ifnull(1IIhI)then htJ Ihl

.1 •• CONJ (lid II•• CONJUST (11,"1)

• I

Lecture Notes in
Computer Science
Ediled by G. Goos and J. Harlmanis

160

The IOTA Programming Systerr
A Modular Programmino Environmenl

Edited by R. Nakajima and T.Vilas"

.,~,..--~----..
[~Qf; t.h:,•.

--- +----~-.-----

Introduotlon

'I'hl•• onograph deeorlboll the vork ot the project of IOU'vhlch besan

In 1916 aridVallco.plated In 190,. The Initial lIotivaUon ot Lho vork
der lYect tro. an aUe.pt. to lor.al he t.heoonoepl.u 01 abet.ruoUolI and

to develop a .eohanlloble verltlocitlon uthod tor progrollllln8vi t.h
.odule.. 'I'h"oooPe ot t.lieproJeot later exLended to IlioludClt.h,.

deolgn at a ~rosra•• Jn8 and orecilication lansuag~ JOTA tor .odular
pr08ro •• lng. and thon to davolop a total prograllllln8018tO••

'I'holanguag. 10'l'A8upporto .octular progra•• lns vJth abatraotlon
an4 ~ara.eterl&atlon .eohonla.lI. an4 .odu1e IIpeolfloGtlo~ In a'
.8n7-lIort.4 flrllt or4.r 10alo. An Intor.al Introduotlon to tho
18nauaa. IIIalv.n In Chaptur " tos.thor vlth a tor••l view ot the
pr08ra. dovelop ••nt vi th tho languose. A tor.al dellnl tlon ot the
languas. 10 preoonte4 In App.ndlcull.

•
the IOTA 810h. 111a lIodular progra",.ln, .1I.h", whloh 10 Intended

to provide un In'.8r.,.4 .nvlron ••nt Lo .nhono. tho aoal ot .odu18r
pr08ra •• lns. Qne ot Ita .oot I.portant 400lsn obJeqtlvoo 10 to enable
tho pr08ra•• or to ooncentrat. on a alng1e .odu1e at a tl.o. Although
the Interlao.e b.tveen .~4ulea .re auppo~ed to b. kept .lnl •••1 not to
Inor••oe the oo.pl ••lt, of the probl •• , obJeot. b.lona1na t~ dltt.ront
.odulea are ~el.tftd vith on. another. Experlena •• ~Ith ao••
Int.eraotlYe LI8P .,.te•• 8u8geato \hat a .04ul. ehou14 b. kbl. to
prooeeaed. 4ebulIIJed.nd/or verltled, Incl.penclanU". "lthou\ wdUIla
lor co.plotlon of other .odulea I••edlatel, att.er Ite oreatlon. DI
ruttlnll toge~her thue Gonetruoted relleble .oduloe. a reliable
eoftware can be ettlolenLll and r.aturall, generated.

The IOTA alBte. Ie coneLILuLed at tlve .aJor eubayeLeaol
Dovelopor, Debugger. Varlfler, Prover, and E)(ecutor. TheDe eubelstelllo
are hlghll Integrated Into an InLoracLlvo Dlatum over ~ datub88. ot
modules (modul.ba••) which aalnlnlna all Information noceoonry tor
each HubuYUt.8111.The or8an1r:allon of the lIodultlbaoefo aivtlllIn
Chupler 6.

..

tI.e 1I0"elo.,er18 the .Rln Interfaoe botveen the U8er and the 81ete••
Modulee are Input and 80dlfled vlth the Developer. Vhen Inrut, the
nouroe to.t of a 80dule 10 Bnnt7Eed both a7ntRotloRlly and
08.nnllonll" tranolated Into on Inner rerreaentatlon, B~d atored Into
tho _odulobnoo. ModlfloAtlon" on Moduloo Bro prooooded dlr.otl, on
thll Inn"r r4!l'tooontlltlonthrollsh tho Povel0l'0r. IIIacldltion, the
Dovelorer provldeu the rroSrhMMor vl\h vhrloUB tnror•• tlon n.o.aear,

to dovelop .oduleo. The deelsn prlnolrlen and the al.t •• aeeorlptlon
of the De"eloper are preoented In Chartera 2 and 4, r.epeot!v.l,. 'h.
DeblleSer la'an .batraoUon-orlented d7no_lo debuSslnll aide. th•• clUon th.nk ,.tllulukl Akl'•••• Makoto "Grat., ".,.0

'h. '.rltlar la an lnteraotlve "erlfloatlon a,.t•• ~p.olall1 'akahar. and 'ak.ahl 8akurallav• tor th.lr oontrlbutlon to the

.odulabooellll

4---- I d.ta flov

deelsned tor .odular proSra. devalo~ent. It al80 .anBse. Infor•• tlon
concernlns on801ns Yerltlontlon and, vlth holp of the Pro"er, ".rlfl••
thnt the prosra. reollEatlon of each Module .eot. It. opeolfloatlon.
Chapter I Introduceo a tor.nllEation of Ahotroc\lon concept. 811 Il
baelo for .odule verltlcutlon, and preoonts the .8rlfloa'lon ••thod
vhlch litl.ph.""l:ed bJ the 'erUler. ChRpter 2 Includes dl80us810n
on the ro1. of thlt".rllication Ilndnpoclflcatlon e.bedded In th.

vhol. progre •• lns enylron ••nt. The dotRllsd behaYlor o.t tli."rUI.r

IIIpreoented 'In Chapt.r 6.
The Prover litIln fnterRctl"e proof 010te. for a.• eny-eorted

llret-or.:er loglo. Chapter' cHncuBnen tho IIOJOI' dltJ'lcultle. vUh
."chlne proofo for rea1l0tlo .odule verlflcntlon IIncieugceet• a
solution "hlch In adopted In t.heProvetr,AO I tu proof etr,..ta8Iell•fhe

toatures of the Prover are slvlln In Chaptllr 1.
Thll Baeoutor sene rates .xeoutllbl. coden lro. thu Inner

repr.8.~t.tlon 01 e.oh .odul., loads th•• , and .x.out•• the.. The
8aln .I.ple.entlltlon leu•••e vi th thle BubaIlth. Ie eerar.te prooeellln~

of .odul •• , 8l1p_olall1 of thollevhloh are t,pe-.,aro••t.rl.8d. fhe

.01utlo~ In IOTA Is dllluunu.d In Chapt.r ,.
Vhil. thaa_ aubolete.u vork on •• lnsle Bodul.baoe, thare la an

Inter-.oduleblllleutility IIIIlote.called the Job Manager, vhlch support"
cooperlltlon of .or. thlln• single prosr•••• rllllby .an~8Ins dllt.
trllno.lsltlonbetv ••n .ultlpl •• odulebaoe.. !h. d.tal1s ot Its

funotlonllllare pre.ented In Chapter 8.
In Cha.,tar 9, v•• hov how v. 801". a probl •• In the lanSuase IOTA

and hov the IOTA .,8te. 8upporta de".lo.,.ent, ".rltlclltlon, and

8.eoutl~n 01 .oduleo.I 'he IOTA 81ate. ourr_ntly runo on IIBC97at•• 20 and "-e8rl ••
(IBM-aoap.tlble .aohlnea b, Fujlt.u and IIltaohl). ,ranllllplant.tlonllllto
'AI-II and Eollpee-M' ara planned. Further Infor•• tlon I. avall.bIe

proJ.ot.

•

-
D. INFORMAL METHODS

1. INTRODUCTION

The world currently seems to have an insatiable demand for software.
Even if the number of software engineers increases dramatically, along
with productivity and quality it will still not fulfill the demand.

As the world in general becomes more familiar with Information
Technology the sophistication and ability of end users will increase.
With better packages and tools much of today's programming will be
'off loaded' to end users. This trend is well set now with the advent
of Visicalc type products, report generators, word processors, office
automation, IKBS expert systems and 'fourth generation' languages and
applications generators.

Not all software products will need to be of the highest quality.
Thus in parallel to the highly professional, 'precision engineering'
approach, typified by the formal methods based techniques, there are
emerging 'informal' tools and methods which allow a highly
experimental, exploratory style of development.

•

One could argue that this ad-hoc approach is the traditional one; the
difference is the degree of computer based tool support currently
being developed which makes this approach somewhat more cost
effective. The different approaches are not competitors; flight
critical control software is unlikely to get CAA certification if it
has been developed by a 'suck it and see' approach; no manager is
likely to submit his Visicalc spreadsheets for BSI Quality
Certification. The tools themselves and their associated methods, are
increasingly likely to be of high quality and based on sound theory.

2. COMPONENTS AND PACUGES

The informal approach involving end users will significantly stimulate
both the package market (as Visicalc and its successors have
demonstrated) but also the new Component market which has yet to
emerge in large scale terms.

I

- 21 -

3. SMALLTALlt

An example of the computer based, informal approach to software
construction is the Smalltalk system [10], a famous piece of research
work done at Xerox's Palo Alto Research Centre (PARC).

Smalltalk uses the object-oriented approach. Objects can be thought
of as small autonomous programs which communicate between one another
by sending messages (data). Communicating networks of objects can be
constructed to form applications programs. Efficient software
production is achieved by the ability to quickly and easily replicate
objects. An object is not described explicitly but a more general
description defines a class of objects. An individual object is thus
built as an instance of a class.

Class descrip~ions can be easily modified and reused to speed
experimentation. This approach is only made feasible by the recent
development of high powered, sophisticated single user computers with
high resolution displays and good man-machine interfaces.

•

Because of this high degree of computer based support by closely
integrated sets of software tools, the Smalltalk system exhibits many
of the properties of the envisaged IPSE developments.

- 22 -

-_
E. NEW SOFTWARE TOOLS

1. TRADITIONAL TOOLS

The traditional software tools used to construct a program are

1. Free form TEXT EDITOR to input and edit source code

2. A BATCH MODE COMPILER to produce relocatable modules

3. A LINK EDITOR to combine relocatable modules into an executable
binary program.

Most editors have no knowledge of the meaning of the data on which
they operate ie they operate on a string of meaningless, independent
characters. This enables one editor to be used to input and
manipulate arbitrary files but also this freedom enables the user to
input bad data such as source code containing syntax errors. •

Most compilation systems are not designed for interactive working.
Even if the only change to a program is that 'A+B' becomes 'A-B' then
one or more modules must be recompiled and the entire program
relinked. This is expensive in programmer time and machine resources
causing wasteful recompilation of unaltered source code.

It is very unusual for a compiler to accept input expressed in more
than one programming language, yet the world's software is written in
several major languages and hundreds of minor ones. This lack of
ability to mix languages results in poor reuse of existing code and
encourages wheel reinvention. Although compilers for each language
exist they cannot be made to work together; their actions are
independent, not integrated.

2. HEW TOOLS

Modern software tools are beginning to exhibit the following
characteristics.

1. Designed for interactive use

2. Knowledge of language syntax

3. Knowledge of language semantics

4. Designed for integrated working as member of toolset.

2.1 Syntactic Tools

A 'syntax knowledgeable' editor is a synthesis of editor, compiler
front end and text formatter which

(a) ensures syntactic correctness

- 23 -

-
(b) offers templates to speed typing and assist the programmer. Such

an editor contains within it details of the syntax of the
relevant programming language which the programmer is currently
using. These details, toegether with interaction with the
programmer, ensure that the only text the programmer inputs
conforms to the syntactic rules of the language. This speeds
production because the subsequent compilation will never fail due
to syntax errors.

(c) automatically formats the program text according to predefined
layout rules of indentation, fonts etc (pretty printing).

The sophistication of interaction with the programmer is usually
increased with such editors by generating templates. Once the editor
has recognised the overall syntactic form which the programmer wishes
to input a skeleton of the complete form is immediately generated,
saving much typing. Usually the template will contain place holders
which the programmer then fills in to complete the structure. It
works like this. The programmer wishes to input a completely new
procedure or subroutine. He types 'proc' by which time the syntax
analyser can predict the programmer's intention and, unprompted,
generates the following text

•

procedure (NAME> (ARGS>1
var (VARIABLE NAMES>1
const (CONSTANTS>;

begin
(STATEMENTS>

end [(NAME>];

in which the lower case letters are items in the language which become
part of the program (and save the programmer having to type them) and
the upper case letters in angled brackets are place holders showing
the names and positions of language elements which the programmer must
further define. These tools greatly increase productivity and reduce
compilation costs.

2.2 Seaantic Tools

More sophisticated tools are being built based on a closer integration
of the editor/compiler/proof checker technoloc::Jies.These are ca11ed
'semantic' tools because the checks and aids they provide require a
deeper analysis of the program under construction than simple
syntactic correctness.

Integration of the editor/compiler functions enables immediate
detection of the use of undeclared variables and guidance on the
likely causes and remedies for such errors.

Integration of the editor/compiler/proof checker technologies allows
partial or symbolic execution to take place during construction. This
prevents the programmer making such errors as mistyping 'A' for 'B' in

C:=A-A1
E:=D/C1

(s.b. C:=B-A)
(division by zero error detected)
(by substituting E:=D/ (A-A=O)

- 24 -

-
2.3 Databases

As tools begin to operate on databases rather than files it will
become increasingly possible to track, trap and prevent errors of more
global significance which arise out of module interface
inconsistencies, wrong versions of modules being used as well as
automating the configuration, construction and change management of
large complex systems which are too big ever to recompile completely.

3. ~L DEMONSTRATIONS

The 'Blit' and 'Smalltalk' video demonstrations, backed up by the live
demonstrations will show in practice much of the philosophy outlined
in this paper.

In particular the demonstrations will show

c
1. increased productivity by allowing multiple activity threads for

one individual via multiple virtual terminals (windows) to a
multi programming operating system dedicated to a single, real
user.

•

This uses

a. powerful single user system workstation

b. bit mapped, high resolution, raster graphics

c. mouse

d. windows.

2. improved productivity via highly interactive, highly integrated
toolsets with individual tools having significant 'knowledge' of
syntax and semantics.

This uses

a. mouse driven editors operating uniformly across all tools

b. syntax knowledgeable editing

c. place holders, templates, power typing

d• reusable, tailorable code (Smalltalk classes)

.• e. recursively activatable browsers integrated closely with
other tools.

3. informal development methods allowing reusability, incremental
developments, rapid prototyping, animation and object orientated
programming

4. local area networks to create physically distributed but
logically integrated computing systems

a. Newcastle Connection

b. Servers.

- 25 -

-
Tools under current development but not demonstrated include

1. spelling checkers for documentation as well as code

2. grammar checkers for documentation as well as code

3. style analysers for documentation as well as code

4. quality Metrics for documentation as well as code

5. proof generators

6. proof checkers

7. version control

8. configuration management
•..

9. project cost measurement

10. project progress measurement

11. project management aids

12. integration of software design with hardware design

13. integration of software and hardware design with office
automation and other corporate applications of information
technology.

4. BOST-TARGETWORlCING

These new tools are more expensive to produce and operate making this
new style of production more capital intensive. However the quality
and productivity gains they will permit will mean that those producers
failing to make the necessary investment will suffer declining
competitive ability.

To maximise the use of capital investment in new software production
facilities and in staff training, it is increasingly clear that a
single design and production system, called the :Integrated Project
Support Environment, will come to be used in any given area of
activity. This is called the host because it will have to generate
binary programs which execute on a wide range of 'applications'
processors, the targets.

Microprocessors are cheap but have limited capability. It is not
economic to develop software on the same microprocessor system as will
be used in the eventual application. One is hardly likely to be able
to develop high quality, proven and safety certified software to
control the brakes of motor cars on the same configuration as will be
installed in the actual cars. Large, powerful computers will be
needed to run sophisticated software design aids whilst small, cheap
microprocessors will be installed in the cars. Hence host-target
working will become the norm in future for anyone who wishes to reuse
software and software tools.

- 26 -

-
F. CONCLUSION

1. METHODS, SKILLS, TOOLS

Software design and development requires a harmonious blend of
effective methods, good tools, and people skilled and trained to use
them.

This paper began with the definition that "software engineering 1s the
application of science and mathematics by which the capabilities of
computer equipment are made useful to man via computer programs,
procedures and associated documentation" [1].

o

The Alvey Directorate is helping to stimulate the development, in the
UK, of new methods and tools for software development, but no
government sponsored research programme can equip engineers with the
skills to use the new tools and methods. Nor can a government
research programme instill into engineers, especially in such a new
discipline as software engineering, the traditions of professional
conduct and standards, of social responsibility and commercial
propriety.

•

With the ever widening role of software in social and industrial life,
with the increasing integration of 'hardware', 'software' and
'systems' design, development and construction techniques, perhaps the
time has come to prepare a path to lead the youthful programming
enthusiast through education and training towards the skill levels
which the UK needs to badly today and beyond this, via continuous,
life time retraining to the highest standards of skill and conduct
befitting the title of 'engineer'.

- 27 -

-
REPERENCES

1. BOEHM, B W
Software Engineering Economics
Prentice Hall

2. WITTY, R W
The Software Technology Initiative
Final Report 1981-1984
SERC, Oct 84

3. TALBOT, D E
Alvey Software Engineering - a strategy overview
ALVEY DIRECTORATE, Nov 83

4. TALBOT, DEli WI'l'TY,R W
Software Engineering Strategy
ALVEY DIRECTORATE, Nov 83

•

s. RELIABILITY (I METRICS ADVISORY PANEL
Software Engineering: Software Reliability & Metrics Programme
ALVEY DIRECTORATE, July 84

6. PORMAL METHODS ADVISORY PANEL
Software Engineering: Programme for Formal Methods in Systems

Development
ALVEY DIRECTORATE, April 84

7. DIGNAN, A
Software Engineering/IKBS: Strategy for Knowledge Based IPSE

Development
ALVEY DIRECTORATE, August 84

8. NAUR, P II RANDELL B (Eds)
Software Engineering: Report on a Conference Sponsored by the
NATO Science Committee, Garmisch, Germany, 7-11 Oct 1968.
Scientific Affairs Division, NATO, Brussels, Jan 69.

9. GORDON, M, MILNER, R , WADSWORTH, C
Edinburgh LCF
Lecture Notes in Computer Science Vol 78
Springer-Verlag, 1979

10. GOLDBERG, A II ROBSON, D
Smalltalk-80 : The Language and its Implementation
Adison-Wesley, 1983

11. DAHL, 0 J, DIJUTRA, E W II ROARE, CAR
Structured Programming
Academic Press, London 1972

12. NAnJIMA, R II YUASA, T
The IOTA Programming System
Lecture Notes in Computer Science Vol 160.
Springer-Verlag, 1983

-

APPENDIX

A. HUMOROUS (1)

1. Laws of Project Management

•

2. IBM's New Operating System

3. Real Programmers Don't Use PASCAL

LAWS OF PROJECT MANAGEMENT

1. No major project is ever installed on time, within budgets, with

the same staff that started it. Yours will not be the first.

2 Projects progress quickly until they become 90 per cent complete,

then they remain at 90 per cent complete forever.

3. One advantage of fuzzy project objectives is that they let you

avoid the embarrassment of estimating the corresponding costs.
•

4. When things are going well, something will go wrong.

- When things just cannot get any worse, they will.

- When things appear to be going better you have overlooked

something.

5. If project content is allowed to change freely, the rate of

change will exceed the rate of progress.

6. No system is ever completely debugged: Attempts to debug a

system inevitably introduce new bugs that are even harder to

find.

7. A carelessly planned project will take three times longer to

complete than expected; a carefully planned project will take

only twice as long.

8. Project teams detest progress reporting because it vividly

manifests their lack of progress.

- A.I -

-
_.- - -- - - - -.. - - -. - --: ~ =-==- ::::.-=. =
Data PIoce~sl~lg
DIVIsIon

Programming Announcement
NE\~O?ERATING SYSTEM

Because so many users have asked for an operating ~yst~~ of even
greater capability than V!1, IBH announces the Virtual Universe
Operating Sy~tem - OS/VU~

Running under OS/VU, the individual user appears to have not
merely a machine of his own, but an entire univ~rse 6f·his own,
in which he can set up and take down his own programs, data sets,
systems networks, personnel, and planetary systems. He need only
sp~cify the univeLse he desires, and the OS/VU system ger.eration
program (IEHGOD) does the rest. This program will reside in
SYSl.GODLIB. The minimum time for this funciton is 6 cays of
activity and 1 day of revdev, In conjunction with OS!VU, all
system utilities have been replaced by one program (IEHPROP~ET)
~hich will reside in SYS1.~~SSI~~. This program has no parrr.sor
control ~ards as it knows what you want to do when i~ is -executed.

•

Naturally, the us~r must have attained a certain degree of
sophistication in the data.processing field if an efficient
utilization of OS/VU is to be achieved. 'Frequent c~lls to non
resident galaxies, for instance, ~an.lead to unexpected delays in
the exe.cutionof a job. Although 13:1,throcgh its \~holly-o\.•.ned
subsidiary, The United' States, is working on a program to ~?grad7
the speed.of light· and thus reduce the overhead of extraterrestrlal
and metadimensional paging, us.ersmust be careful for the present
to sta~ within the laws of physics. IBM must charge ~n ~~~itional
fee for violations.

OS/VU will run on any IBH xnxx equipped wi t~ ~xtenced \·jJ\,RP
Feature. Rental is twenty million dollars per cpu/nanosecond.

Users ~hould.be a~are that I~H pla~s ~o ~i~r~~e all ~xisting
systems and hardware to OS/VU as soon as our engineers effect one
output that is (conceptually) error-free. This will give us a
base to develop an even more powerful o?~rating system, target
dat~ 2001, designated ~Virtual Reality". OS/VR is pl~nned to
enable the user to migrate to totally unreal universes. To aid
the user in identifying the difference bctwee~ "Virtual Reality"
and "Real Reality", a file containing a linear arrar.ge~ent of
multisensory total records of successive ~o~~nts of now will.be
established. It's 'name will be SYS1.est.

For mOl. ;flf~'mal,~n. tenIa,' you, 15M~.:a Ploc(:~sjn; 'c;:jfCSC~:3"VC.

l•••••.••A'tC.II.;)t D,~nt':.s.t.~;)r.h••r~
(.n"oC"I.'l,ono,

, ':S' ~"c."':.'''!~'~'',"v"nurWh.,,·r•.,.•,~1.,,_Tc"" 10'-0'
- A.2 -

-

"Real ?rog~a:oe~s Don'~ Use ?ASCAL"

Back in the good ole cays -- ~~e "Golde~ Era" of computers, it
was easy to separate the men fro: ~~e ~oys (so=eti~es called "Real Men"
and ~Quiche Eaters" in the l~~e~a~~~e). Du~ing this pe~iod, the Real
Men were the ones that u~derstooC co=~~te; prog,am=ing, and the Qui~he
Eaters were the ones that c~c='t. A real com?uter programmer said
things like "DO 10 1:1,ion and n.:.:E::~'D\"! (they actually talked in capital
letters, you understand), ane t~e res~ of ~he _or1d sa~c things like
"computers are too complicated for ~e~ and ": can't relate to computers
-- they're so imperso~aln. (1 prev~ous work t1J points out that Real
Men don't "relate" to anything, ace aren't afraid cf being impersonal.)

•

But, as usual, times change. "e are faced today ~th a world
in which little·old lacies can ge~ co::putersin their microwave ovens,
'2-year-o~d kids can b10...•Rea: ~= eu; CoIft!le_iter playing As'tel·oitis
and Pac-Man, and anyone can :)'1.••1' anc even u:1de·rstandtheir very own
Personal Computer. !he Real ?rcgra~er is in danger of becoming
extinct, of being replaced by high-sc~oo: s~ude~ts with TR1SH-80's.

There is a clear need -:'0 ~:.'::~ out the differences between the
typical high-school jun:or Pac-~c~ ~layer aDO c·Real Programmer. If
this diffe~ence is ~ade :lec" :~ ...•i:: givE t~ese kios so::eth:ng to
aspire to -- a role model, a rathe, Figure. :t ~ll also help explain
to the employers of Real Progra~e,s "~: i~ would be a mistake to
replace the Real Programmers o~ ~he~, staff .~th 12-year-old Pac-Man
players (at a cODsideiable salary sav:ngs).

- A.3.1 -

-

LANGUAGES

The easiest way to tell a Real Programmer from the c~owd is by
the programming language he (or she) uses. Real ?rog;a~ers use
FORTRAN. Quiche Eaters use PASCAL. Nicklaus Wirth, the designer of
PASCAL, gave a talk once at which he was asked "How do you ~;onounce
your name?". He replied, "You can either call me by name, prqnouncing
it 'Veert', or call me by value, 'Worth'." One can tell im=ediately
from this comment that Nicklaus Wirth is a ~~iche Eater. !be only
parameter passing mechanism endorsed by Real Programmers is
call-by-value-return, as implemented in the IBM\370 FORTRAN-G ane' H
compilers. Real programmers don't need all these abstract concepts to
get ~heir jobs done -- they are perfectly happy with a keypunch, a
FORTRAN IV compiler, and a beer. •

• Real Programmers do List Processing in FORTRAN.

• Real Programmers do String Manipulation in FORTRAN.

• Real Pi'(')grammer~ do Accounting (if the)'do it at al:) in FORTRAK.

• Real Programmers do Artificial Intelligence progra!:lsin FO?TRAN.

If you can't do it in FORTRAN, do it in assembly language. If you
can't do it in assembly language, it isn't worth d~ing.

- A.3.2 -

STRUCTURED PROGRAMMING

The academics in co~puter science have gotten into the
"structured programming" rut ever the past s.everalyears. They claim
that programs are more easily u~cerstood if the programmer uses some
special language constructs and tecr.'!1iques.They don't all agree on
exactly which constructs, of course, and the examples they use to sho~
their particular point of vie~ inva,ia~ly ~i~ on a single page of some
obscure journal or another -- c~early not enough of an example to
convlnce anyone. When I got ou~ of school, ! thought I was the best
programmer in the world. _ could N~ite anunbeatable tic-tac-toe
program, use five different computer languages, and create 1000-line
programs that WORKED. (Really!) Tnen: get out into the Real World.
My first task in the Real wor1e was ~o read and understand a
200,OOO-line FORTRAN progr~, then s?ee: it up by a factor of two. Any
Real Programmer will tell you tnat all the Structured Coding in the
world won't help you solve a proble~ like that -- it takes actual
talent. Some quick observations on Real ?rogrammers and Structurec
Programming:

•

f Real Programmers aren't afraid to use GOTO's.

f Real Programmers can write f:ve-page-long DO loops without
getting confused •.

f Real.Programmers like Ar:'tr-..!lletic.• statement·'S-- they make the
code more interesting.

f Real Programmers write se:~-cocify:ng code, especially if they
can save 20 nanoseconds in the eieele of a tight loop .

• Real Programmers don't nee: co~ents -- the code is obvious.

f Since FORTRAN doesn't have a structured IF, REPEAT ••• UNTIL, or
CASE statement, Real Program=ers don't have to worry about not
using them. Besides, they can be simulated when ne~essaryusin~
assigned GOTO's.

Data Structures have also gotten a lot of press lately.
Abstract Data Types, Structures. Pointers, Lists, and Strings have
become popular in certain circles. Wi,th (the above-mentioned Quiche
Eater) actually wrote an entire book [2J contending that you could
write a program based on data structures, instead of the other way
around. As all Real Progra~ers kno-, t~e only useful data structure
is the Array. Strings, lists, struc~ures, sets these are a"
special cases of arrays and can be treated that way just as easily
without messing up your progra=ing :ang~age with all sorts of
complications. The worst thi:-:gabout ~ancy data types is that·you have
to declare them, and Real ?rog,a==ing La~;uages, as we all know, have
implicit typing based on the first letter of the (six character)
variable name.

- A.3.3. -

•••••

OPERATING SYSTEMS

What kind ,of operating system is used by a Real Programmer?
CP/M? God forbid CP/M. after all. is basically a toy operating
system. Even little old ladies and grade school students can
understand and use CP/M.

Unix
hacker never
but when it
People don't
the world on

is a lot more complicated of course -- the typical Unix
can remember what the PRINT command is called this week -
gets right down to it, Unix is a glorified video game.

do Serious Work on Unix systems: they send jokes around
UUCP-net and write adventure games and research papers.

•
No, your Real PrograQmer uses 05\370. A good programmer can

find and understand the description of the IJK305I error he just got in
his JCL manual.A great programmer can write JCL without referring to
the manual at all. A truly outstanding programmer can find bugs buried
in a 6 megabyte core dum~ Without using a hex calculator. (! have
actually seen this done.)

OS is a truly re~arkable operating system. It's possible to
destroy days of work With a single misplaced space, so alertness in the
programming staff is encouraged. Tne best way to approach the system
is through a keypunch. Some people claim there is a Time Sharing
system that runs on 05\370. but after careful study I have come to the
conclusion that they were mistaken.

- A.3.4 -

-

PROGRAMMING TOOLS

What kind of tools does i Rea: PTog~iomer use? In theory, a
Real Programmer could run his ;>rcg~amsby keying them into the front
panel of the computer. Back in the days when computers had front
panels, this was actually dene occasionally. Your typical Real
Programmer knew the entire ~oots~~a; loade:- by memory in hex, and
toggled it in whenever i~ go: des::-cyedby his program. (Back then,
memo~y was memory -- it didn'~ go a~ay when the power went off. Today.
memory either forgets things whe~ yc~ den't want it to, or remecbe~s
things long after they 1 re be::.e:-fo:-,go:ten.) Legend has it that

.Seymore Cray, inventor of the C~ay I supercomputer and most of Control
Data's computers, actually teggle~ the first operating syste: fo~ the
CDC7600 in on the front panel f;o~ ~eoory when it was first powered on.
Seymore, needless to say. is a Real ?rogra~er.

•

One of my favorite Rea: ?rog;a~ers _cs a systems programmer
for Texas Instruments. One day he go'ta long dist.ancecall from a use:
whose system hac crashed in tbe :iccle of saving some important work.
Jim was able to l'ep.3irthe caI:;.ageover the phone, ge.ttingthe user to
toggle in disk 1/0 instructic~s at the front panel, repairing system
tables in hex, reading register cO:-::'e!':tsbaci< over the phone. T."'le
moral of this story: while a Real ?rogra~er usually includes a
keypunch and lineprinter in his :.oc:kit,he can get along with just a
front panel and a telephone in eoergencies.

In some companies. text eci'ti~i r.~ .or.ger consists of ~er.
engineers standing in line tc ~se an 029 key?unch. In fact. the
building I work in doesn'~ CC:lta:'::a Single keypunch.' The Real
Programmer in this situation has ~o do his work with a "text editor"
program. Most systems supp~y several text editors to select from, and
the Real Programmer must oe careful to pick one that re~leets his
~r~~nal style. ~anr p!ople oe:ieve ~hJt ~he b~st t£~t ~ditoT'sin t~e
world were Wl"1ttenat Xerox Palo h:to Research Center for use on the~r
Alto and Dorado compute:-s[33. Unfortunately. no Real Progra~er ~oulo
ever use a computer whose opera'tingsystem is called Small!alk. and
would certainly not talk to the co:;>uterwith a mouse.

Some of the concepts in these Xerox editors have been
incorporated into editors run~ing or.core reasonably named ope~ating
systems -- EMACS and VI being t"o. Tne pro~lem with these editors is
that Real Programmers cons~ce~ "~hat you see is what you get" to be
just as bad a concept in Text Ec~tors as it is in women. No the Real
Programmer wants a "you as~e: :cr it, you got i~" text editor
complicated, c!"yptic,powerful, :.::::o:-;:.••ing. dangerous. !ECC, to be
precise.

It has been observe: tta~ a :~CO co==a~d sequence more closely
resembles transmission line noise 'thanreadable text [4J. One of the
more entertaining games to play wi~h :~CO is to type your name in as a
command line and try to guess wha'tit does. J~st about any possible
typing error while talking _~~h :~CO ~ill probably destroy your
program, or even worse in~roc~ce s~btle and mysterious bugs in 2

once working subroutine.

- A.3.5 -

-

For this reason, Real Programmers are reluctant to actually
edit a program ~hat is close to working. They find it much easier to
just patch the binary object code directly, using a wonderful program
called SUPERZAP (or its equivalent on non-IBM machines). Tnis works so
well that many working programs on IBM systems bear no relation to the
original FORTRAN code. In many cases, the original source code is no
ionger available. When it comes time to fix a program like this,
nomanager would even think of sending anything less than a Real
Programmer to do the job no Quiche Eating structured programmer
would even know where to start. This is called njob security".

Some programming tools NOT used by Real Programmers:
•

* FORTRAN preprocessors like MORTRAN and RATFOR. Toe Cuisinarts of
programming -- great for making Quiche. See comments above on
structured programming.

• Source language debuggers. Real Programmers can read core dumps.

* Compilers With al-raybounds checking. They stifle creativity,
destroy most of the interesting uses for EQUIVALENCE, and make it
impossible to modify the operating system code w~th negative
subscripts. Worst of all, bouncs checking is inefficient.

• Source code maintenance systems. A Real Programwer keeps his code
locked up in a card file, because it implies that its owner
cannot leave his i~port2r.t prog~a=s unguarded [:J.

- A.3.6 -

-

THE REAL PROGR~~ER AT WORK

Where does the typical Real ?rogrammer work? Wnat kind of
programs are worthy of the efforts cf so ~alented an individual? You
can be sure that no Real Progra~er ~ould be caught dead writing
accounts-receivable programs in COBOL, or sorting mai~ing lists for
People magazine. A Real Programme; ;.;antstasks of e2rth-shak:'~g
importance (literally!).

• Real Progracmers work for Los Ala~os National Laboratory, writing
atomic bomb simulations to run on Cray I supercomputers.

• Real Programmers work for the Na~ional Securi~y Agency, decoding
Russian transmissions.

•

* It was largely due to the efforts of thousands of Real
Programmers working for NASA tha~ our boys got to the moon and
back before the Russkies.

* Real Prolrammers are at '.;ory.for Eoein~ d~signing t~'leoperat::'ng
systems for cruise cissiles.

Some of the cost awesome Rea: ?rogrammers of all work at the
Jet Propulsion Laboratory in California. ~2ny of them know the entire
operating system of ·thePioneer and Voyager spacecraft by heart. with
a co:::inatio_~of la:-ge g:",ou!"lc-':ase:!:-::::;:,lJ; ~l"'ogra.:l.sand slta~:
spacecraft-based assembly language progra:s, they are able to do
incredible feats of navigation and i~proYisation hitting
ten-kilometer wide Windows at Saturn after six years in space,
repairing or bypassing'camaged sensor platforcs, radios, and oatteri:s.
Allegedly, one Real Progra~er ~anaged to tuck a pattern-match~ng
nrogram irto a few hun1red byte~ of \'nul!'edmemory j n a Voyagal'"
~pacecraft that searched for, located, and photographed a new moon of

Jupiter.

The current plan for the Galileo spacecraft is to use a gravity
assist 'trajectorypast Mars on the way to Jupiter. This trajectory
passes within 80 +1-3 kilometers of the surface of Mars. Nobody is
going to trust a PASCAL program (or a ?~SCAL programmer) for navigation
to these tolerances.

As you can tell, many of the ~orld's Real Programmers work for
the U.S. Government -- mai~ly the De:ense De~art~ent. Tnis is as it
should be. Recently, however, a black cloud has formed on the Real
Programme~ horizon. It seems that so~e hig~ly placed Ouiche Eaters at
the Defense Department decided that 2:1 ~fense programs should be
written in some grand unified langua;e cal:ed "ADA" «C), DoD). For a
while, it seemed that ADA was destined to beco~e a language that went
against all the precepts of Real ?rogracming a language ;.;ith
structure, a language ;.;ithdatatypes, strong typing, and semicolons.
In short, a language designed to cri~ple the creativity of the typical
Real Programmer. Fortunately, the language adopted by DoD has enough
interesting features to make it approachable it's incredibly

- A.3.7 -

-

complex, includes methods for messing with the operating system and
rearranging memory, and Edsgar Dijk~ra doesn't like it [6J.
(Dijkstra, as I'm'sure you know, was the author of "Goros Consicerec
Harmful" - a landmark work in prograrcing methodology. app:::'audecby
PASCAL programmers and Quiche Eaters alike.) Besides, the dete~inec
Real Programmer can write FOR!RA1.prcgraas in any language.

The Real Programmer might c~promise his principles anc work on
something slightly more trivial than the destruction of life as we know
it, providing there's enough money in it. There are several Real
Programmers building video games at Atari, for example. (But n'ot
playing them - a Real Programme:- k."'lOWS how to beat the machine every
time: no challenge in that.)· ::veryoneworking at Luc2sFilm is a Real
Programmer. (It would be crazy to turn down the money of fifty million
Star Trek fans.) The proportion of Real Programmers in Comy~ter
Graphics is somewhat lower than the norm, mostly because no~oQY has
found a use for computer graphics yet. On the other hand, all comp~ter

.graphics is done in FORTP~N, so there are i fair nuober of peo;le doing
graphics in order to avoid having to w;ite COBOL programs.

•

- A.3.8 -

-

THE REAL PROGRAMMER AT PLAY

Generally, the Real ~ogra~er ?lays the same way he works
with computers. He is co~s~a~~ly a:azed that his employer actually
pays him to do what he would be doi~g :or fun anyway (although he is
careful not to express tr.:sc;in:c~ out loud). Occasionally, the Real
Programmer does step out c: :~e of::~e for a breath of fresh air and a
beer or two. Some tips or.,eccg;.:zi~gReal Programmers away from the
computer rcoe :

* At a party, the Real ?;og,a~e,s a,e t~e ones in the corner
talking about operating syste~ sec~jit: and how to get around it.

•* At a football game, the Real P;ogramme, is the one oomparing the
plays against his sicu~a~:cns prin~ed on 1i by ,~ fanfold paper.

* At the beach, the Real ~ogja~er :s the one drawing flowcharts
in the sand.

* At a fur.eral,tr.e ?ea~ P;::l;ra::=er:'5 the or.e saying "Peer George.
And he almost had the sor~ rou~ine working before the ooronary.n

* In a grocery store, the ?eal ?;ogrammer is the one who insists on
running the cans pas~ the laser cbecko~~ scanner himself, because
he never could trust keyy~nc!':.operators to getit right.the first
time. .

- A.3.9 -

-

THE REAL PROGRAMHER'S NATURAL HABITAT

What sort,of environment does the Real Programmer function best
in? This ·is an important question for the managers of Real
Programmers. Considering the amount of money it costs to keep one on
the staff, it's best to put him (or he~) in an environment whe~e he can
get his work done.

The typical Real Prog~2mmer lives in front of a computer
terminal. Surrounding this terminal are:

t Listings of all progra~s the Real Programmer has ever worked on,
piled in roughly chronological order on every flat surface in the
office.

•

t Some half-dozen or so partly filled cups of cold coffee.
Occasionally, there will be cigarette butts floating in the
coffee. In some cases, the cups M~ll contain Orange Crush.

• 'Jnless hp.is ve~J good, the:-eh"il~ b~ copi~.3of the OS Jet ttanual
and the Principles of Ope~ation open to some particularly
interesting pages.

t Taped to the wall is a line-printer Snoopy calendar for the year
, 969.

• Strewn about the floor are several MTappers for peanut butter
filled cheese bars - t.he.type 'tha'tare made pre-st.ale a'tt.he
bakery so they can't get any worse while ~aiting in the vending
machine.

t Hiding in the top left-hand drawer of the desk is a stash of
deu'!,)le-stl:ffOreo~ fO-r:"sp~ciel cccasions .

• Underneath the Creos is a flowcharting template, left there by
the previous occupant of the·office. (Real Programmers write
programs, not documentation. Leave that to the maintenance
people.)

The Real ProgramQer is capable of working 30, ~O, even 50 hours
at a stretch, under intense pressure. In fact, he prefers it that ~ay.
Bad response time doesn't bother the Real Programmer -- it gives him a
chance to catch a little sleep between compiles. If there is not
enough schedule pressure on the Real Programmer. he tends to make
things more challenging by working on some small but interesting part
of the problem for the first nine weeks. then finishing the rest in the
last week. in two or three 50-hour marathons. This 'not only iI::!presses
the hell out of his manager, who ~as despairing of ever getting the
project done on time, but creates a convenient excuse for not doing the
documentation. In general:

• No Real Programmer works 9 to 5 (unless it's the ones at night).

A.3.IO -

-

I Real Programmers don't wear neckties.

f Real Programmers don't wear high-heeled shoes.

• Real Programmers arrive at work :'n time for lunch· [9J.

• A Real Programcer might or :igr.: net kncv his .••.ife's narne. He
does, ho.••.ever, know the ent::""e;.S::: (or EBCDIC) code table.

• Real Programmers don't know no" ~o cook. Grocery stores 2:""en't
open at three in the morn:ng. ?ea: ?iog:""a~ers survive on
T.••.inkies and coffee.

•

- A.3.11 -

-

THE FUTURE

What of the future? It is a matter of some concern to Real
Programmers that the latest generation of compute~ progra~ers are not
being brought up with·the same outlook on life es their elders. Many
of them have never seen a computer with a front panel. Hard~y ar.yone
graduating from school these days can do hex arithmetic ~ithout c
calculator. College graduates these days are soft -- protected fro~
the realities of programming by source level debuggers, text editors
that count parentheses, and "user friendly" operating systems. Worst
of all, some of these alleged "co~puter scientists" manage to get
degrees without ever learning FORTRAN! Are we destined to becooe an
industry of Unix hackers and PASCAL programmers?

•
From my experience, I can only report that the future is bright

for Real Programmers everywhere. Neither 05\370 nor FORTRAN show any
signs of dying out, despite all the efforts of PASCAL programmers the
world over. Even more subtle tricks, like adding structured coding
constructs to FORTRAN have failed. Oh sure, some co~puter vendors have
come out with FORTRAN 77 co~pllers, ~~~ everyone of t~e~ has a ~ay uf
converting itself back into a FORTR1.N 66 compiler at the drop of an
option card -- to compile DO loops like God meant them to be.

Even Unix might not be as bad on Real Progra~ers as it once
was. The latest release of Unix has the potential of an operating
system worthy of any Real Programcer twc different and subtly
incompatible user interfaces, an arcane anc cOt::plicatedteletype
driver, virtual memory. If you ignore the fact that it's "structured".
even 'C' programming can be appreciated by the Real ?;ogrammer: afte~
all, there's no type checking, variable n~es are seven (ten? eight?)
characters long, and the added bonus of the Pointer data type is thrown
in -- like having the best parts of FOR7RAN and assembly language in
one p~."c~. ~No+. to m!nt:.on somE of the mere crec.th-e US£;3 fl.)r

#define.)

No. the future isn't all that bad. Why. in the past few years,
the popular press has even commented on the bright new crop of computer
nerds and hackers ([7J and (8)) leaving places like Stanford and M.I.T.
for the Real World. From all evidence, the spirit of Real Programming
lives on in these young ·men and women. As long as there are
1l1-defined goals, bizarre bugs, and unrealistic schedules, there will
be Real Programmers willing to jump in and Solve Tne Proble~, saving
the documentation for later. Long live FORTRAN!

- A.3.12 -

-

• Real Programmers don't wear neckties.

f Real Programmers don't wear high-hee2ed shoes .

• Real Programmers arrive at work :!l time for lunch· [9J.

* A Real Progra~er might or =igt: net kno~ his wife's na~e. He
does, however, know the ent:re ~S::: (or EBCDIC) code table.

* Real Programmers don't know ho~ ~o cook. Grocery stores aren't
open at three in the morn:ng. ~e2: ?rogra~ers survive on
Twinkies and coffee.

•

- A.3.11 -

-

REFERENCES

['] Feirstein, B., "Real Men don It Eat Quiche", New
York, Pocket Books, 1982.

(2) Wirth, N., "Algorithms + Data Structures =
Programs", Prentice Hall, 1976.

(33 Ilson, R., "Recent Research in Text Processing",
IEEE Trans. Prof. Commun., Vol. PC-23, No. ~,
Dec. 4, 1980.

(4] Finseth, C., "Theory and Practice of Text Editors
- or - a Cookbook for an EMACS", B.S. Thesis,
MIT/LCS/TM-165, Massachusetts Institute of
Technology, May 1980.

•

[5] Weinberg, G., "The Psychology of
Programming", New York, Van Nostrand
,971, p. 11O.

Computer
Reinhold,

(6J Dijkstra, E., "On the GREEN language
the DoD", Sigp~an notices, Vol. 3
1978.

submitted to
No. 10, Oct

(7] Ro'Se,Frank, "Joy of Hacking", Science 82, Vol. 3
No.9, Nov 82, pp. 58-66.

(8] "The Hacker Papers", Psychclogy Today, August 1980.

(9] sdcarl!lin, "Real Programmers", UUCP-net, Thu Oct
21 16:55:16 1982

- A.3.14-

-

APPENDIX

B. SERIOUS

1. SIGGRAPH Video Review

•
2. Mechanical Theorem Proving

3. Expansion of Alvey SE Strategy

Human-Computer Interaction: the Focus of Two New Issues

Two new issues (12 & 13) of the SIGGRAPH video review
(SVR) have recently been completed. What is unique is that
they are organized around a single theme: human-computer in
teraction. The tapes are an edited compilation of the vide.oses
sions at CHI '83, the 1983 Conference on Human Factors in
Computing Systems. Each tape is one hour long, and contains
a number of titles which illustrate important aspects of interac
tion and input. Techniques, user interface management tools,
technologies and sample applications are examples of topics
covered. The examples are short, and were chosen to give as
good an overview as possible as to the current state-of-the-art
in interaction. The collection should be of interest to systems·
designers, researchers, students and managers.

The appearance of these tapes as part of the SVR is in keep
ing with the charter of SIGGRAPH, and the recommendations
of the SIGGRAPH-sponsored 1982Workshop on Graphical
Input and Interaction Techniques. The CHI '83 video sessions,
organized by Sara Bly, Michael Harris and Donald Patterson
collected, for the first time, a wide assortment of high-quality
tapes on the subject. The conference was sponsored by
SIGCHI and the Human Factors Society. But since it was held
in cooperation with (among others) SIGGRAPH, and since
SIGGRAPH had in place a mechanism for tape editing and
distribution, it was natural that an edited version of the session
should be distributed. by SVR. The tapes have been edited for
SVR by Bill Buxton, Copper Giloth and Raul Zaritsky with the
cooperation of Tom DeFanti.

.~'.
~" Contents oj Issue 13:

Edited 3/10/84
I. Blit (Bell Labs)
2. The Movie Manual Project (MIT)
3. The Office of the Professional (Imperial College)
4. Put That There (MIT)
5. Program Visualization (CCA)
6. Magnetic Fusion Experiment Control Center (Lawrence

Livermore Labs)
7. Sketchpad (MIT) (not shown at CHI '83)

~'.
~i, Contents oj Issue 12:

Edited 3/10/84
1. Rapid Prototyping Using Flair (TRW)
2. Towards A Comprehensive UIMS (U of T)
3. Cousin Interface System (CMU)
4. Tiger System Demonstration (Boeing)
S. Video Games by Example (Atari)
6. Mockingbird (XEROX)
7. SSSP Demo (U of T)
8. Selection-Positioning Task Study (U of T)

Contents oj Issue I:
Edited S/IS/80
I. TOPES-Bell Laboratories
2. Newswhole-University of Toronto
3. VideoCel-Computer Creations, Inc.
4. Sunstone-Ed Emschwiller
S. Voyager 2-1.. Blinn et. aI. ..
6. Information International Inc. Demo Reel
7. DNA with Ethidium-N. Max et. aI.

!.. B. 1.) -

Contents oj Issue2:
Edited 8/30/81
1. The Compleat Angler-s-T. Whitted
2. Vol Libre-:-L.. Carpenter
3. JPLlSaturn-J. Blinn et. aI
4. Peak-No Snitly
S. Doxorubicin/DNA-N. Max et. aI
6. Digital Effects Demo Reel
7. MAGI/Synthavision Demo Reel
8. Spatial Data Mgt. System-c. Herot et. al.
9. Pantomation-T. DeWitt et. aI.
10. Artifacts-The Vasulkas

Contents oj Issue 3:
Edited 8/30/81
I. CTS Flight Simulator-Evans and Sutherland
2. Time Rider-JVC
3. Imagination-Acme Cartoon Company, Inc.
4. Dubner Demo Tape
S. Vidsizer-Dan Franzblau
6. Zgrass Paint Demo-Giloth et. aI.

Contents oj Issue 4:
Edited 8/30/81
I. Abel Demo Reel-W. Kovacs et. al.
2. Image West Demo Reel·
3. Ohio State Computer Graphics Research Group Terrain

Model-C. Csuri et. al.
4. Computer-Assisted Dance Notation-T. Calvert et. aI.
S. The GRIP-7S Man-machine Interface-University of

North Carolina Computer Science Department
6. Graphics Interactions at NRC-M. Wein et. aI. National

Film Board of Canada

Contents oj Issue 5:
Edited 10/22/82
1. Evans & Sutherland Demo '82
2. The Tactical Edge-Evans & Sutherland
3. Carla's Island-Nelson Max, LLL
4. Aurora Demo
S. Digital Effects Sampler '82
6. Real Time Design, Inc. Zgrass Demo
7. Marks & Marks Demo

. Contents oj Issue 6:
Edited 10/22/82
1. Abel '82 Demo Reel
2. Galileo-Jim Blinn, et. aI., JPL
3. Mimas/Voyager II-Jim Blinn, et. aI., JPL
4. Non-Edge Computer Image Gen.-Grumman
5. Disspla Animation-ISSCO
6. Tomato Bushy Stunt Virus-Arthur Olson
7. Interactive Raster Graphics Sampler-UNC
8. Ron Hays Music-Image Sampler

-

•

-

Contents of Issue 7:
Edited 1117/82
1. Triple-I Digital Scene Simulation Reel
2. TRON reference-Disney
3. MAGI/Synthavision '82 Demo
4. Yideocel '82-Computer Creations
5. Cranston-Csuri Demo Reel
6. Four Seasons of Japan/Expo '85-NHK
7. Acme Canoon Company Samples '82
8. ADAM-Arthur Olson and T. J. O'Donnell
9. 1982Experimental Works-Texnai C.G.L.
10. Sorting Out Sorting Excerpt-U. Toronto

Contents of Issue 8:
Edited 10/27/83
1. Smalltalk-Xerox Corp.
2. Lisa-Apple Corp.
3. Warpitout-Veeder
4. Soma=-Gillerman
5. Act llI-Winkler & Sanborn
6. Laser Show at SIGGRAPH '83-Heminover & Rollefstad

Contents of Issue 9:
Edited 10/27/83
1. Economars Earth Tours-Upson
2. Toyo Links Demo
3. Antics-Abe
4. Japan Computer Graphics Lab, Inc.
5. Bo Gehring Demo
6. Omnibus Video, Inc.
7. Translation Part 3-Moran
8. Julia I Excerpts-e-Peitgen & Saupe
9. Space Simulator=-Galicki
10. Marks & Marks/Novocon
11. Solid Modeling-Zaritsky & Herr

Contents of Issue 10:
Edited 10127/83
I. When Mandrills Ruled ... -Watterberg
2. Cranston-Csuri
3. Ohio State University-Zeltzer & Van Baerle
4. Pan Optica Preview 'S3-Gordon
5. Ray Tracing=-Barr & Long
6. Pacific Data-Images
7. NHK Special Programs Division
8. Humanon=Francois
9. Light & Shadow-Nakamae
10. University of North Carolina Sampler
11. Benesh Notation-Singh
12. Blooming Stars Excerpt-Genda

Contents oj Issue 11:
Edited 10/27/83
1. Star Trek IIGenesis-ParamountiLucasfilm
2. Non-Edge CIG-Grumman
3. Digital Effects Demo
4. The Cube CUBE-Gerhard
5. SPN-SEIBU Productions Network
6. Symmetry Test l1A-Newell
7. Composite News-Burson
8. A/V Tour at SIGGRAPH '83-Veeder & Morton
9. Shirogumi Sampler
10. Movie Maker-IPS, Inc.
11. Pixel Play-Nakajima
12. Growth/Mysterious Galaxy-Kawaguchi
13. Digital Harmony-Whitney Sr. et. al.

•

Two new hours of videotape from SIGCHI '83 have been
edited and duplicated to form issues 12 and 13 of the
SIGGRAPH Video Review. Each issue is on videotape and is
one-hour long. The material in the tapes is in full color and
represents advanced applications of computer graphics
technology, both hardware and software.

Both 3,4· U-matic and VHS formats are available. We do
not make Beta or lh· reel-to-reel tapes. PAL and SECAM
tapes also are not available.

The JA " tapes are one-hour long. One issue fits on one tape.
Thus, the two new issues occupy two tapes. At the ACM SIG
GRAPH member price of S50/tape, both issues come to SI00.
The non-member prices is 560/tape, so both are S120. Educa
tional institutions may use the member price. For overseas air
mail, please include an extra SI0/tape, or 520 for the set.
Similarly, all 13 issues come to 5650 for members, S780 for
non-members, plus S130in additional postage for overseas air
mail if necessary.

The VHS videotapes are two hours long. Two issues are on
each tape, except for issue 7. Issues 1& 2, 3 & 4, 5 & 6, 8& 9,
10& 11 and 12& 13 are each SSOfor members, and 560 for
non-members. Issue In is $40 for members, and S50 for non
members.

The same surcharge of SIO/tape applies for overseas
postage. Thus the new issues, 12 and 13 are S50 for members
and S60 for non-members. All 13issues are 5340 for members,
$410 for non-members, with an additional 560 for overseas air
mail.

Ordering in/ormation:
1. You MUST send a check payable in U.S. funds drawn on a
U.S. bank. I will return purchase orders unfilled. Return air
mail postage is included in the price for North American
orders. If you arc in an extreme rush, include your federal
Express number.
2. Make the check payable to SIGGRAPH.
3. Send check and order to: SIGGRAPH c/o Tom DeFanti,
UlC/ EECS, Box 4348, Chicago, Illinois 60680.
4. Write or call for clarifications. My phone number is (312)
996-5485. I do not loan copies or provide press copies.
S. For best results, include a statement specifying which tapes
you want and in which format. Or, include this form and circle
the appropriate items below:

Tape format: 3,4 W or YHS

Issues wanted: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Name and address of person to receive tapes: _

- B.I.2-

-

B.2 Mechanical Theorem Proving

The following is the output from

using a mechanical theorem prover

to tackle the Second Example on

Section C.3 (page 17). •

-

ERIL version R1.0 Rutherford Appleton Laboratory - Informatics Division
___________ ----Simple verification example ---------

Welcome To

EE E E E E RR R R R II l.l.
EE RR RR II II
EE RR RR II l.l.
EE E E E RR R R R II l.l. •
EE RR RR II l.l.
EE RR RR II l.l.
EE E E E E RR RR II l.l.l.l.l.l.

Equational Reasoning: an Interactive Laboratory

Pre-release version - All rights reserved - Jeremy Dick - Nov 1984

ERIl.version R1.0 Rutherford Appleton Laboratory - Informatics Division
______________________ Simple verification example--------..:-------
COMMANDS: h Help (menu display)

f Finish session
n anNotate console log
o reOrder equalities
q Quit to PROl.OG
r Remove equalities
s Superpose equalities
w Write equalities to file
x eXecute a command file

e
1

Apply equalities
Build system
Copy equalities
Display ,
Escape to new shell
Load algeora/equalities
Move equalities

a
b
c
d

m

ENTER co:nmand:
>b

(h for Help)

CD~~+e..r ?'l"""Oj~~ £-or
~k0 v..+- ~-o..~ o~S. We. \.AS.Q_

prove ~o e.q,v.'"b..-t~O"'5:-

ERlL \S a

0'91 -+ :;x_
CCVt1).x.

To ,
00 ~.~ ,) \N e... u.se. ~ e.\ \ - k~ I.N""

oS- "O.Q.6.~+-~o",-a.~ ~\A\h?\\~a,.J:.~o",.
_ 'R ,? 1 -

-

ERIL version R1.0 RutherfordAppleton Laboratory - InformaticsDivision
________________ Simple verif~<:ationexample--- ----
SYSTEM CONFIGURATION: Console Log: on/OFF
E QUA LIT Y SET S Display Sort Order Equali ty count
Label.•Name..•••...••....•'!'ype.•....••Trace••••File••..•File.•...Total..Current
R Rules . => 0.. Ofr bylhs kbord 0 0
C Confluent Set => On On bylhs 0 0
H To be proved =?= On On 0 0

CONFIGURATIONOPTIONS: Label change equality set defaults

n create New equality set.
r Reset configuration
t set screen Title
c Console log on/off
b nelp
f Fir.ishconfigurations

..

- ------------------------------
ENTER option:
>f

s~~~ +l,...+- E.RIL h-ut
-To -poreJ cas s, -thre.€. seA;

c

H +-hL se} 05- ~p~e.s~ to be.
rrove_d.

R -z,.--d C Uo.)~\) b~
To ~ ~6~~e.s
~""D..ve: be.e.""

- B.2.2 -

-
ERIL version R1.0 Rutherford Appleton Laboratory - Informatics Division
--------------------Si.:nple verification example-----------------
R Rules 0--------------------------
C Confluent Set 0

H To be proved o
------------------------- ------------------------------ENTER command:
>1 H console
ENTER To be proved
H1:
>O*q + x = x.

exprtype consulted 1816 bytes 1 sec.
- renamed consulted 1388 bytes 0.183331 sec.

- - - reduced consulted ~30~ bytes 2.21657 sec.

(h for Help)

(f to finish)

Hev-e: v-:>e.
~pe... .,.", -rkL
1-v.X' e.DJJ-~~o",t •
I-)e... ~\ ~~ -to
pv-ove.. .

H1:
H2:
>(q +

H2:
H3:
)f.

O*q+x =?= x

1)*x + (r - x) = q*x + r.
(q+1)*x+(r-i) ='?= qlx+r

ERIL version R1.0 Rutherford Appleton Laboratory - Informatics Division
------------------Simple verification exa:nple- ----

Label load equality set
a load Algebra
h Help
f Finish load option

LOAD OPTIONS:

ENTER option:
>R verax
ENTER label cf set to receive new equalities:
)R

(f to Finish)

REDUCING
REDUCING

_ matched consulted 1100 bytes 0.716677 sec.
_ replaced consulted 668 bytes 0.700003 sec.
R1: o-x =?= X
H1: x ='?= x

He...-e.. ~ e_ 'a oe-e.

to~d \~ ~v,\e.S
~~ -0. ~te..
(So~e_ 0}tke
"Of?~ "To ~k
.~po~~\~:)

PROVED H1: x ='?= x
CHOOSE function precedence:
a - < + gives cin(X)+X1 => X1-X
b + < - gives X-X1 => cin(X1)+X
r Reject
>b
REDUCING H2: (q+')lx+(~in(x)+r) ='?= qlx+r
H2: (q+1).x+(~in(x)+r)='?= qlx+r

- B.2.3·-

-
ERIL version R1.0 Rutherford Appleton
------------------Simple verification
R Rules 7
R1: O+X => X
R2: 1.X => X
R3: a*x => a
R~: x-x, => min(X1).X
R5: min(X)+X => a
R6: X+X1+X2 => X.(X1.X2)
R7: X*X1+X2*X1 => (X.X2)*X1

Laboratory - InformaticsDivision
exarnple--------------

C Confluent Set a
----------------------.------------------------------------

H To be proved 2
H1: a*q+x =7= x

PROVED }
H2: (q+1)·x+(r-x) =7= q*x+r

{ (q+')*x+(min(x)+r) =7= q·x+~ }

•

ENTER command:
>m
ENTER label of equality to move:
>R all
MOVING Rall:
ENTER label of destination se~:
>C
ENTER label of set to receive ne~ equalities:
>R

(b for Help)

(f to Finish. b for Help)

(f to Finish)

(f to Finish)

\ ~ CO v-..."",-a....o 1 S+-t,.,rl-- ~
3~.ra.-ho", o~ ~\N V'V..\~ R-a.+
.~re.. Ct:7~~~ -5- --r\.....e_
5·\"e.~O~~.

ERIL version R1.0 Rutherford ~?pletcn Laboratory - Info~2tics Division.
__________________________Simple ve~ificatic~ exa~ple------------------------
H To be proved 2 I ' '.
H1: Olq+X =?= x -rk 'P~~"""""'" "'O;-\~

H2: ~~~~~~x:(r-x) =7= q*X+T 7+~~~~ -:""~~+~~~
(q+1)*x+(min(x)+r) ='?= ~*·x~,} -r-h.t 31..r'S'7 ~?C"~

;;~~~~----~~~---~-:;:-~----------------------------~,;~-~-~-~.~~~-----
PAUSE:
ENTER Continue or Halt (c/h)
>c

- B.2.4 -

-
MOVING Rl: O+X => X
c i: O+X => X

TO C

- - - - - superpos consulted 6260 bytes 3.06669 sec.
MOVING R2: ,*X => X TO C
C2: 1'X => X
MOVING R3: O*X => 0 TO C
C3: O*X => 0
MOVING R4: X-X, => min(Xl).X TO C
C4: X-Xl => minCX1)+X
MOVING R5: minCX)+X => 0
C5: minCX)+X => 0
MOVING R6: X+Xl.X2 => X+(Xl.X2)
C6: X+Xl+X2 => X+(Xl+X2)
MOVING R9: min(X)+(X+Xl) => Xl
C7: min(X)+(X+Xl) => Xl
MOVING R14: X+O => X TO C
CB: X+O => X
MOVING R21: minCO) => 0 TO C
C9: minCO) => 0
MOVING P20: min(min(X»+Xl => X+Xl
Cl0: min(min(X»+X1 => X.Xl
REDUCING Cl0: X+Xl => X+X1
MOVING R29: min(min(X» => X TO C
Cll: min(min(X» => X
MOVING R32: X+min(X) => 0
Cl2: X.min(X) => 0
MOVING R35: X+(min(X)+Xl) => Xl
C13: X+(min(X)+Xl) => Xl
MOVING R7: X*X1+X2'Xl => (X+X2)*Xl
C14: X*Xl+X2*Xl => (X+X2)*Xl
CHOOSE function precedence:
a + <, gives (l+X)*Xl => X1+X*Xl
b * < + gives X+Xl'X => (1+X1)*X
r Reject
>a
REDUCING H2:
REDUCING H2:
PROVED H2:

TO C

TO C

TO C

•

TO C

TO C

TO C

TO C

q*x+x+(min(x)+r) =1= q*x+r
qlx+r =?= q*x+r
q*x+r =?= q*x+r

- B.2.5 -

-
Rutherford Appleton Laboratory - Informatics Divisio.

-------------------------Sic~le verification example---- ----------

go-t \.... ~_, "plS""'Oye.d..

ERIL version Rl.O

H To be proved
H1: O*q+x =7= x

{ PROVED}
H2: (q+')*x+(r-x)

{ PROVED }

2

=?= q·x+r

PROVED
--.--- -------

H2:

PAUSE:
ENTER Continue or Halt (c/h)
>h
MOVE FINISHED

ERIL version Rl.0

•

Ruthe~ford ~ppleton La~oratory - Informatics Division
----------------Simp~e ve:"ifica:.io:iex~ple ----------
R Rules 7
R59: (1+X)·Xl => Xl+X·Xl
R60: (X+l)*Xl => X*Xl+Xi
R~3: X+(Xl+cin(X+Xl» => 0
R65: X"Xl+(X2·Xl.•X3) => (X+X2}*X1+X3
R17: min(X.Xl).(X.(Xl+X2) => X2
R54: X.(Xl.(min(X+Xl)+X2» => X2
R67: min(X·Xl).(X+X2)·Xl => X2*Xi
----------------------------+_._-----------------
C
C9:
C 1 :
C2:
C3:
C~:
C8:
e11:
:5:
C12:
Co:
C7:
C13:
C14:

Confluent Set 13
minCO) => 0
O+X => X
,*X => X
O.X => 0
X-Xl => min(Xl).X
X.O => X
cin(min'X» => X
Llit.(X).X => 0
X.min{X) => 0
X+Xl.X2 => X+(Xl+X2)
min(X)+(X+Xli => Xl
X.(min(X).Xl) => Xi
X*Xl+X2*Xl => {X+X2)·Xl

~-----~~~~-;;~~~--;----------;;-------------------:--
Hl: O*q+x =?= X

{ PROVED}
H2: (q+1)·x+{r-x) =?= ~·x+r

PROVED }
--_._-----------------------
ENTER commanc:
>f
CONFIRM exit fro~ ERIL (:In):
>

- B.2.6 -

(h for Help)

•••••

B.3 Expansion of Alvey SE strategy

•

-
ALVEY SOFTWARE ENGINEERING PROGRAMME

1. GOALS AND OBJECTIVES

1.1 The Central Goals

Future IT products can be expected to be more complex than those of
today and thus to place greater demands upon the people building them.
The IT industry must meet this challenge, even though there is a
growing recognition that system development techniques are inadequate
for the large systems of today, let alone those of tomorrow.

It is accepted today that the development of a substantial new
computer system carries a number of significant risks and it is by no
means uncommon for such systems to be delivered late, over-budget and
incapable of meeting the complete requirements of the purchaser. Some
systems, after considerable expenditure of human effort and money,
fail to materialise at all.

•

Skilled programmers are a scarce resource which is not being used
efficiently. The industry is fragmented by organisation, by language
and by target computer. One result of the consequent lack of
commonality of environment or concentration of resources is that many
programmers are not provided with even the simplest programming aids,
let alone sophisticated ones. The economies of scale necessary to
justify their introduction have not been perceived to exist.

Despite these problems, the UK does not lag behind other countries in
software engineering, except perhaps the USA. The UK is certainly
regarded as the leader in Europe in this field. Efforts to improve
software engineering practice are crucial if important developments in
technology are not to be wasted or cast into disrepute through poor
production methods. The UK must not allow other countries to
overtake it, for if it does, UK research work will be exploited by
other countries to the detriment of our industry.

Software engineering may be considered as having two major goals for
the future:

- improved quality ie satisfying criteria such as performance,
reliability, security, on-schedule delivery and meeting the needs of
the user;

- improved productivity ie reducing cost, not just of the development
but of the life-cycle as a whole, including maintenance and future
evolution.

CUrrent software practice is centred on the programming process, and
depends strongly on the skills, experience and resources of individual
workers. Significant problems frequently result from inadequate
effort being devoted to the front end of a development, notably
concept formation, requirements definition, and design. Although
there have been some efforts to study these problems, as well as
interesting advances in both design verification and code
verification, relatively little work has been devoted to integrating
all of the stages into a common framework useful in production
environments. Significant improvements in software productivity will
be achieved when the current practice of repreated 'reinvention of the

- B.3.1 -

-
wheel' is replaced by the widespread re-use of prefabricated
components. In the future then, software practice will tend to focus
more on methodology, design, and component reuse and less on
individualprogramming skills.

System design must include not just softwaredesign, but also hardware
considerations. A narrow view of software engineering as just·a
collection of techniques to produce efficient software is not
adequate. Software engineering should be aimed at the developmentof
high quality systems, ie reliable, secure, efficient and easy to use,
in a way that integrateshardware and software-baseddesign criteria.
In the future it must become information system engineering,not just
software engineering.

In the short term, the UK cannot afford grossly inefficient
utilisation of its scarce skilled programmingresource. Introduction
of simple tools on a wide scale is an essential first step in
increasing programmer productivity, and also in the educational
process needed to prepare for the later exploitation of more
sophisticatedmethodologiesand tools.

•

1.2 Major Objective

To help achieve the general goals of improvedQuality and Productivity
the Software Engineering component of the Alvey Programme is focussed
towards a strategic goal - that in 1989 the UK should be a world
leader in Information System Factories (ISF). This goal is highly
ambitious and competitive, as are the goals of the Japanese 5th
Generation Project. The ISF objective implies a series of sub goals
both in technology and timescale. The Alvey Software Engineering
component will be judged on its ability to show that UK industry has
increased both its software development productivity and software
product quality as a result of striving to achieve the ISF. The
strategy given in this document outlines the route towards the lSF
with planned interim spin-offs so that productivityand quality gains
may be achieved prior to the emergence of the ISF.

What is meant by an InformationSystem Factory? Today, the production
of most application-specifichardware/softwaresystems - such as a
banking network, a corporate management information system or
production control system - does not in general make great use of
development tools. In that sense it is not capital intensive. The
application-specificpart of the Information Technology industry is
characterisedas a cottage industry. It is predicted that it will not
remain so for long, indeed the Japanese are already building 'software
factories'. To stay competitive in producing large, reliable,
application-specificsystems, IT companies will have to make a large
investment in some kind of production facility. Exactly the same
criteria will apply to manufacturing software products. This
expensive facility part hardware, part software, part stored
knowledge - is an InformationSystem Factory.

1.3 Subgoals and Directions

Defining a concrete and ambitious strategic objective crystallisesa
number of more general but worthwhile aims as subgoalsalong the route
to the main goals. Many questions about the balance and directionof
the whole programme can be judged by their contributionto the main
90als.

- B.3.2 -

-
1.3.1 Use

An equally important part of the programme is to create a climate in
which advanced software engineering methods are in demand. This has
started with a programme of investment in and use of today's
technology, with associated training, measurement and evaluation.
This needs to be supported by education in 'formal methods' to prepare
for the widespread introduction of specification and verification.

1.3.2 Measurement

The ISF will only succeed if it can bring radical improvements in
software quality and productivity. These two concepts are notoriously
difficult to pin down, and certainly it is not currently known how to
measure them. The programme is facing up to the difficult task of
developing metrics for quality and productivity. Subgoals must be set
for achievement. Performance must be reported against these goals.
Finally it must be possible to measure the impact of an Information
System Factory. (See Reliability & Metrics Strategy [ref 3J.)

•

1.3.3 Distributed Working

Immediate use must be made of Wide and Local Area Networks to link co
operating designers and programmers tackling common development and
production tasks. This requires investment in the use of current
network technology. Measurements must be made of the improved
performance flowing from these investments.

1.3.4 Research

Substantial research tasks must be undertaken with the goal of
incorporating successful outcomes into products from 1985 onwards.
This requires co-operation between industry and universities. The
correct balance must be struck between basic research, development,
practical experimentation and importing other people's ideas. The
goal of having a commercially viable Information System Factory by
1989 will provide a focus for research. It tips the balance towards
practical experiments, development, and a readiness to exploit other
people's ideas, rather than concentrating solely on basic research for
"scheduled breakthroughs".

1.3.5 Short tera exploitation

A number of subgoals must be established and met along the way to the
selling and exporting of tools over the coming years. The
establishment of strong sales organizations in the key markets is
vital. Some companies have started already in software products.
Many more must make this investment. The programme can make an
extremely valuable contribution through support and direction of this
investment. This is being achieved through close cooperation with
other Government schemes which are more specifically aimed at product
development and marketing, thereby constructing a smooth 'pipeline'
from Alvey R & 0 through to product sales.

- B.3.3 -

-
1.3.6 Standards

The programme must support the development of standards. These will
vary from major international activities ego ISO language standards,
through to informal, Alvey specific, tools interfaces. Close
cooperation must be established with other Government and Industry
standards initiatives. It is anticipated that the increasing use of
formal methods will improve the foundation and creation of standards.

1.4 What Will Happen in Any Case

The Alvey SE strategy is based on the prediction that the production
of application-specific information systems will cease to be a cottage
industry and become a capital-intensive industry.

The main reason has to do with software quality, in the widest sense
of the word. Expectations of software quality, both within the
industry and without, are very low. Today, programmers expect to have
lots of bugs in their code, and the public expect computers to send
them stupid invoices. This situation is not confined to the UK; it is
worldwide. British standards of software quality are relatively high,
while low in an absolute sense. This situation cannot last
indefinitely. In the hardware field, one manufacturer (Tandem) has
grown spectacularly by offering high reliability at a premium. This
has been done against a background of hardware from IBM and others
which is already highly reliable. The incentives to do the same in
software, and the potential payoffs, must be much higher given the
current poor quality of software. It seems highly likely that someone
soon will "do a Tandem" in software, and either keep the method to
himself or sell it very expensively. The Japanese are certainly
trying, as' are the Americans and the French. Without concerted
action, the UK is bound to become an importer of this technology. If
the UK is prevented from importing such technology then the industrial
consequences could be very serious.

•

A number of other current trends are leading towards the
'capitalisation' of the software industry - the growing complexity of
software systems, which demands new techniques and computer assistance
to manage it, the dawning awareness of the tmportance of project and
programming support environments, and the emergence of software
packages which demand new skills to integrate them in particular
applications. Finally, there is the emergence of non-Von Neumann
architectures and VLSI, which are inevitably mixing the software and
hardware design problems, making both more complex. All these are
creating larger and more complex problems, which cannot be solved
without a radically new level of automation and mechanical assistance.

- B.3.4 -

-

2. THE CHANGING NATURE OF SYSTEM DEVELOPMENT

2.1 Su.mary

The expected changes that will result in the most significant
increases in cost-effectiveness of software development over the next
ten years are the following, listed in approximate order of expected
impact.

In the short term

1. incremental changes in programmer productivity through the more
widespread use of design methodologies and tools

2. the coming together of
development life-cycle
environments (IPSEs)

methodologies and tools for the entire
within integrated project support

3. growing standardisation of development methodologies as a
consequence of 2.

4. further refinement of suitable high-level programming languages
appropriate to the integrated development methodologies

5. growing interest in, and use of, formal specification methods and
extension to animation

6. automatic software generation techniques in limited form, probably
first in the area of commercial systems built around Data
Dictionaries.

In the medium term

7. spread of powerful networked, personal workstations

8. consolidation of the use of formal specification methods coup1ed
with verification and growth in use of (semi-) automatic software
generation

9. development of reusable software and hardware modules, rigorously
tested and formally documented

10. second generation IPSEs adapted to support activities 8 and 9
above, coupled with greater use of higher-level languages.

And in the longer term:

11. the consolidation of the developments above into Information
System Factories, coupled with the use of Intelligent Knowledge
Based Systems, to provide 'automatic' assisted system development
from user requirements expressed in high-level terms appropriate
to the application rather than the implementation.

- B.3.5 -

-
The crucial, and inter-related, technical developments underlying
those changes will be:

1. integrated system (software and hardware) development
methodologies supported by programming tools, administrative
procedures and management information in an integrated environment

2. formal specification, leading to 'animation' and verification

3 reusable software and hardware components

4 automatic software generation

5 measurement and quality assurance and certification

These are discussed more fully below. •

2.2 Integrated Syate. Develop.ent Process

One view of the system development life-cycle is the following:

REQUIREMENT SPECIFICATION
OVERALL DESIGN
DETAILED DESIGN
CONSTRUCTION
TESTING

typically costs
20-50%
total development
budget

OPERATION - not usually quoted

RECTIFICATION
&

EVOLUTIONARY
DEVELOPMENT

euphemistically
called

maintenance
typically costs
50-80%

Many design methodologies and software tools exist and are in sporadic
use today, but the state of the art leaves much to be desired. For
however good some of the tools may be, there are two serious problems.

First, they do not support a development methodology or capture any
data relevant to the management of the development process. Second,
most tools support coding activities but fail to support the life
cycle in its entirety, or even fail to be compatible with other
relevant tools. There is a need for more tools to assist with
software specification, design, testing, rectification and
development, as well as with management of software projects; and
there is a need to integrate them into a coherent life-cycle support
environment built on a database.

Recently there has been widespread recognition of these problems, with
a resulting effort to develop better tools; a prime example is the
growing work on the Ada Programming Support Environment (APSE), which
should lead to a qualitative and quantitative improvement over today's
state of the art. Viewed in the wider context of software engineering
advances generally, two important short term benefits from such work
should be increased programmer productivity in the technical tasks of
project development and increased management awareness and control,
leading to better decision making and costing. Moreover, the growth
in use of integrated project support environments (IPSE) should

- B.3.6 -

-
provide the framework within which subsequent advances, such as
improved specification and verification methods, can take place. This
last point argues for a need for flexibility in IPSEs. They must not
be closed systems incapable of accommodating improved techniques as
these are developed elsewhere.

Whilst there are a number of issues still under debate, there does
seem to be fairly widespread agreement on certain key characteristics
that these environments will display.

First, and of crucial importance, there will be far less emphasis on
the actual source text of the program than there is at present.
Typical current practice focuses far too much attention on the source
code representation of a program and far too little on other
representations - expressions of requirements and various levels of
specification. The tools which are most commonly employed are those
concerned with manipulating and testing the source code
representation. Yet most software projects that are 'unsuccessful' by
some measure have already gone irretrievably wrong by the time that
the first line of source code has been written. If there is to be
real progress on the issues of effectiveness and cost then attention
must be shifted from the code to requirements and design, and projects
must be far more concerned with the 'higher level' representations.
(Note that such a shift of attention is entirely compatible with an
aproach which emphasises re-use of existing components rather than
always developing everything from scratch.)

•

Second, the environments will support a high degree of project
visibility and traceability. At any stage of a project all relevant
information will be readily available and there will be a proper basis
for measurement of progress and detection of problems. For any
identifiable activity there will be a record, not only of the end
product of that activity, but also of the decisions (both positive and
negative) which were taken during that activity.

Third, the environment will support various kinds of
Management control, access control and configuration control
an important part in addressing software effectiveness and

costs.

control.
all play
software

Reviewing the three issues above emphasis on 'higher level'
representations, visibility and control leads to an inevitable
conclusion: any given project employing such an environment must
follow a defined methodology. This is not to say that the environment
offers only a single methodology, but it is necessary for any given
project to employ some defined methodology, and it is necessary for
the supporting environment to 'recognise' this methodology (or at
least certain aspects of it). Really, it is the methodology which
addresses the issues of software quality and cost. The degree to
which these issues are addressed depends upon the quality of the
methodology and how well it is supported.

2.3 Formal Specification

The first qualitative change that will occur in system development
will be the use of formal specification techniques. It is a large
leap from today's practice to automatic program qeneration on a large
scale, to proving theoretically that systems meet their requirments,
to easy re-use of system components; but in each case the first step
is formal specification.

- B.3.7 -

-
Today's functional specifications are written in English, often with a
liberal sprinkling of design detail in the difficult parts.

Specifications written in natural language have the major defects
that:

a. they are imprecise, ie are subject to conflicting interpretations

b. they may be logically inconsistent without the fact being apparent

c. they are apt to be incomplete

d. they cannot be used for (mechanically assisted) formal reasoning.

Use of natural language does not force the specifier to be precise at
all times. In some cases he may be unaware of imprecision, which thus
slips through; in other, he may decide to gain precision and by
default the method chosen will probably be to take some design
decisions and specify the requirement in terms of an implementation.
Neither result is satisfactory.

The development of formal specification techniques should ultimately
overcome these difficulties and lead to complete, precise
specifications which do not contain any unnecessary design detail.
Experience has already shown that efforts to translate natural
langauge specifications into a logical form show up inconsistencies,
ambiguities and omissions.

During the development of the complete specification, particular
specifications can be 'animated' in the sense that their logical
consequences can be explored. Questions such as What will happen
if••? can be answered precisely, and the specification improved or
modified as appropriate. In this way, purchaser and supplier can gain
the clearest understanding of the system requirements. Another use
would be simulation of critical aspects of the system, for example the
user interface of a Command and Control System, so as to give the
customer an early understanding of them.

Ultimately, formal methods can provide a very clear contractual basis
for the statement of requirements and thus help to Avo11l 1l1Iiip\1te~
about whether the system meets the requirements or not.

Numbers are hard to come by, but it is probably fair to say that most
computer systems have to change after only a limited period of
operation because the true operational requirements are, with the
benefit of hindsight, perceived to be different from those originally
requested. It has been argued that that is not so much a problem as an
inherent characteristic of the real world which must be catered for in
the development process. Systems must be designed to be capable of
evolution. A rigorous path from specification through to
implementation, with all the steps recorded, is essential if newly
understood requirements can be fed in again at the beginning of the
process without requiring a complete rewrite of the system.

- B.3.8 -

-
2.4 Re-usable System Co.ponents

Today, hardware is thought of in terms of components whose behaviour
is well understood and which can be put together in a number of ways
to build a system. In the future, software will more and more come in
packages until it too can be regarded as providing a set of component
parts out of which software or mixed hardware/software systems can be
constructed.

A number of trends will work together to bring this about. First,
packaged software will account for a higher proportion of software
sales to meet the enormous need for inexpensive software for personal,
home or other small computer systems. Tailor-made software will be
too expensive for this market and suppliers competing to reduce
production costs will find it necessary to use mass production
techniques, eg standardised design techniques, specialised tools,
integrated project development environments.

Second, skilled programmers are a scarce resource and will continue to
be so. Development techniques which provide a path away from today's
labour-intensive methods will permit levels of production control and
documentation adequate to the development of truly re-usable software.

Third, design by components appears to offer the only solution to the
problem already encountered today that some systems are so large and
complex that their operation is hard to comprehend, their performance
impossible to predict and their design impossible to optimise. Design
in terms of components may permit only theoretical sub-optimisation
but in practice this may be vastly superior to what could be obtained
otherwise; and the ability to predict performance and cost, in advance
of implementation, will be a major benefit.

2.5 Automatic Software Generation

Automatic software generation is in use now in a limited way, and is a
very powerful technique for producing commercial software of the type
that consists of simple, repetitive processing applied to a complex
database. The development of data dictionaries in the commercial
sphere, the trend to put the structure of applications into the
database rather than into the programs, will encourage automatic
software generation so that it can be expected to be a common
technique in transaction processing within five years.

The experience thus gained, coupled with advances in specification
techniques and the availability of a wide variety of software
components, will subsequently enable automatic software generation to
be applied to increasingly more complex processing tasKS. It is here
that Intelligent Knowledge Based Systems can be expected to make their
greatest contribution to Software Engineering, in particular in
determining and enforcing consistency of specifications and of the
transitions from requirements specification to design and from design
to implementation.

2.6 Measurement and Quality Assurance & Certification

Today it is difficult to predict the costs and timescale of a software
development project, to measure the progress and productivity of the
project team and to measure the quality of the finished product.

- B.3.9 -

-
The widespread adoption of integrated project support environments
built on database technology will facilitate new research on the
quantitative aspects of software development. A significant
improvement in management effectiveness, productivity and product
quality will occur when respectable metrication is introduced into the
software development process.

Quantitative assessment of the benefits of new tools and techniques
will provide a major stimulus to the introduction of further new
techniques and further research, as hard-headed senior managers will
be more easily persuaded to make the necessary investment funds
available when presented with reputable, quantitatively argued cases
with measurable pay offs.

Metrics and formal methods are the keys to effective quality
assurance. The developers of good quality assurance techniques will
enjoy a significant commercial advantage. The current shaky
reputation of software will mean that the ever broadening range of
customers will gravitate towards products bearing something akin to
the BSI kite mark for simple products and components. Customers
wanting more sophisticated products will favour suppliers who can
offer independent, top class quality assurance and certification as
part of the legal contract.

•

- B.3.10 -

-
3. STRATEGY

3. 1 SUJIIIDAry

Consultation has shown that there is very strong agreement in
industry, Government and the academic community on the technical
directions that the software engineering programme should take.

The Alvey SE Programme has as its long term objective the creation of
the Information Systems Factory. This is predicated on technical
progress in the two crucial areas of:

1. PRODUCTIVITY
2. QUALITY

To ensure continuous benefit during the period preceeding the
achievement of the ISF the SE Programme proposes a strategy which
encourages intermediate levels of technology transfer by encouraging
not just research but:

i. Exploitation: efforts to ensure that existing methods are
effectively used and their benefits gained by industry as a
whole, and continuing efforts to bring the fruits of
research out into industrial use, with the associated
investment and training.

ii. Inteqration: development of integrated methodologies and
sets of tools for hardware and software development covering
all phases of the system life-cycle.

iii. Innovation: research and development to extend the
methodologies and techniques of software engineering.

To give a feel for the activities which will be covered by innovation,
integration and exploitation figure 1 shows the system development
life cycle subdivided into

1. Methods and processes - how things are developed.

2. Management - monitoring and control of methods and processes.

3. Environment - the workplace, tools and equipment with indications
of where in the classification various key elements of the
strategy occur. Figure 1 is a summary which is expanded in the
following sections.

- B.3.11 -

-

STRATEGY

Innovation

and

Understanding

Integration

and

Implementation

Exploitation

and

Evaluation

Methods Specification Blend techniques

and V & V into life cycle

Processes Reliability method for both

Quality hardware and

Metrics software

Reusability

Measure use

of IPSE
•

Management Models of

development

and mainte-

nance processes

and methods

Integrate Evaluate use

development methods of IPSE

with management

techniques

Environment Influence on

Productivity

and Quality

IMMI, IKBS, DCS

Build IPSEs Make IPSE

available via

Centres

Figure 1

_ 'D ., 1'"1 _

-
3.2 Exploitation

Today, most small to medium projects in the UK (and elsewhere) confine
their use of tools to simple text editors, compilers or assemblers,
linkers and simple debugging aids. Occasionally, a design technique
such as Jackson Structured Programming or MASCOT will be used.

In the rare cases that a more systematic approach is felt to be
necessary, and additional tools to support the approach are required,
they are commonly developed ad hoc, on a project specific basis, and
thrown away when the project is complete. The high cost of this
approach both in terms of tool development and in re-training staff to
use new tools and techniques for each project, has militated against
the systematic use of tools throughout the UK software industry.

There is therefore great scope for improvements in software quality
and productivity, in the short term, by encouraging the widespread
acceptance and use of even simple tools, of the kinds currently in use
in more restricted environments. Three things are needed to bring
these improvements about:

•

i. provision of a set of tools in a standard, compatible form

ii. measurement of the effect (positive or negative) on quality
and productivity due to the new methods, tools and training.

iii. education of both management and software staff1 management
must be shown that investment in tools does payoff, and
software staff must be educated in the systematic
development and production methods that enable the tools to
be used cost-effectively.

A short term attack on these three factors will be crucial not only in
bringing about the much-needed improvements in quality and
productivity, but also in providing wide appreciation of the nature
and benefits of software engineering and the demand for more advanced
techniques.

In the longer term, continued efforts will be needed to ensure that
the results of research are developed and exploited. The 'development
gap' between research and production has been a problem in Britain for
many years, and the software engineering programme will tackle it
directly by commissioning innovative research and development projects
rather than just funding research. Moreover, the main objective of
the proposed 'Software Production Centre' (see section 3.6) is to make
advanced tools directly available to British industry for experimental
evaluation and genuine production work.

- B.3.13 -

-

3.3 Integration

The second major need identified is for Integrated Project Support
Environments (IPSE). The common understanding of an IPSE is that it
should contain a compatible set of specification, design, programming,
building and testing tools, supporting a development methodology that
covers the entire life-cycle, together with management control tools
and procedures, all using a central project database. That is already
a very demanding requirment, exceeding that of the Ada APSE, but even
then it does not go far enough. It does not cover multiple-language
development~ it does not cover mixed hardware and software
deve10pment~ it does not cover reusable components.

There is certainly no agreement that one particular programming
language meets all foreseeable needs, though there are individual
proponents of this view for different languages. There is also
considerable investment in software in the languages of the 60s and
70s, which will tend to prolong their life for reasons of
compatibility, cost of re-training and so on. This multiplicity of
languages, coupled with a recognition of the need to move towards re
usable software, argues for multi-language IPSEs where systems can be
built out of components in a variety of languages.

•

Simi.lar considerations apply to mixed hardware and software systems.
It is clear that there are enough similarities between the hardware
and software design processes, and the administrative and management
procedures appropriate to them, for there to be benefit in using one
IPSE for hardware and software development. Furthermore, it is
important that the requirements analysis, functional specification and
much of the design work can be done independently of decisions whether
particular modules should be implemented in hardware or software. For
such modules, their function must be defined, their place in the
overall design established and their performance requirements known;
economic, timescale and other criteria may then be used to determine
how they should be implemented.

A fully integrated IPSE as just described is exactly the Information
System Factory that is the major objective of the programme, It 1s a
long term objective, but it is important to be clear about what the
objectives are in order to see how to move towards them, and in
particular to determine the role of UNIX and Ada APSE developments in
this process.

one conclusion that emerges strongly is that there is still a great
deal of research and development to be done before such an integrated
PSE can be built. Two important areas needing R & Dare:

i. formal, rigorous methods of specification of requirements,
and techniques to express designs and determine how far they
meet their specifications for performance, reliability,
correctness etc~

- B.3.14 -

-
ii. methods of structuring software or hardware system components

for wide re-use; the nature of their interfaces to each
other, the appropriate types of global design to incorporate
them; how to document them; how to search for and locate
them.

The Alvey programme will include one or more evolving IPSEs, which not
only bring together existing tools and procedures to improve
development cost-effectiveness in the shorter term but are also
capable of incorporating new techniques that emerge from relevant
R & D projects.

3.3.1 ISF and the Three IPSE Generations

The Integrated Project Support Environment (IPSE) is a major product
objective of the programme and a crucial mechanism for blending
together the results of individual research projects. The blending
process is itself a research topic. The blending might well prove to
be more important that any of its constituents when judged in terms of
commercial success. The programme will proceed as follows.

•

(1) Commission development and creation of three generations of
IPSE:

1st)) file
2nd) generation IPSE) database
3rd)) knowledge base

(2) Versions of each generation of IPSE to be sited in SPC (section
3. 5) and NQCC (section 3.6) and selected organisations where
IPSE impact on quality and productivity can be monitored and
reported.

(3) Cooperate with and incorporate aspects of other Alvey areas
towards ISF eg CAD for VLSI, high resolution displays, expert
systems for programmers.

3.3.2 The 1st Generation IPSE

UNIX will be used as the basis for:

(1) The 'Exploitation' Tools Propagation exercises.

(2) The 1st generation (file based) IPSE.

UNIX is rapidly becoming a de facto standard over a very wide range of
systems and organisations and therefore offers the prospect that:

There will be many developments for UNIX which can be taken
advantage of by the Alvey programme.

The market for UNIX-based development environments and tools is
large and growing.

These factors should minimise the amount of tool integration and
development needed to improve today's UNIX environment into a genuine
1st generation IPSE.

- B.3.15 -

-
This is not to say that the Alvey programme is endorsing UNIX as a
standard~ UNIX will be used as a starting place. Nonetheless, it
is envisaged that an active UNIX community will come into being in the
early years of the programme, supported by communications network
facilities.

3.3.3 The 2nd Generation IPSE

The second generation IPSE contains two major components not found in
the 1st generation IPSE:

(1) Database-based tool set (rather than file-based) eg CADES.

(2) Support for geographically distributed project teams e.g.
Newcastle Connection.

As (1) and (2) above are somewhat orthogonal it is expected that
several approaches will be attempted, including the evolutionary
development of the 1st generation, UNIX-based IPSE as well as the
'clean sheet', non UNIX attack, possibly via intermediate steps which
will contain one, but not both, of the distribution and database
components.

•

The 2nd generation IPSE software will run on new hardware~
developments in cheaper CPU power, cheaper, high resolution colour
graphics, and non keyboard input-output devices, for instance, will
facilitate productivity gains due to improved man-machine interaction.
The 2nd (& 3rd) generation IPSE will require new hardware based
components such as:

1. Single user workstation costing £5K with A3 black and
white 2K x 2K pixel graphics.

2. Colour single user workstation costing £10-20K with

2K x 2K pixe~ A3 screen
10 MIPS power CPU
32K microcode store
10 Mbytes physical memory
32 bit arithmetic and data paths
32 bit virtual address space per process
hardware cache, paging, floating point
hardware graphics support
sophisticated i/o devices.

3. 100 Mbits/sec local area network.

4. Gateway to high speed (greater than 1 Mbit/sec) wide area
communications.

5. LAN servers for files and databases.

6. High quality, cheap print server ego laser printer.

7. Full-generality distributed operating system.

8. Sophisticated man-machine interface.

- B.3.16 -

-
The Programmewill stimulate the UKproduction of hardware suitable
for the 2nd Generation IPSE as described above. It is important to
effect this development in a short enough timescale to prevent UK
manufacturers being eclipsed by the USAand Japanese industries in
this large market. Such machines will be available in 1984/5 for
about £5-10K.

3.3.4 The 3rd Generation IPSE

The 3rd generation IPSE (or ISF), containing knowledge bases and
•intelligent' tools, requires significant research which must begin
now if the 1989 target date for the Information System Factory is to
be met.

It is envisaged that the ISF will be defined as much by
economic realities as by any technical goals~ it will
definition) embody the most cost-effective ways of
application-specific IT systems available at the time.

market and
(almost by
producing •

An Information System Factory will probably consist of six main
subsystems:

1. specification and prototyping facilities

2. a Software Development Environment

3. a facility for CADof VLSI and hardware development

4. a database or knowledge base of available software and hardware
components

5. the communication systems, both local and wide area, to facilitate
co-operative development

6. project managementaids.

Howfar advanced these six subsystems are by 1989, and how closely
integrated together, depends on technical advances which are hard to
predict. Markets will exist for the separate components as well as
the unified ISF. The following sketches are probably optimistic in
their assumed rate of technical progress, but help to define the aims.

1. Specification and Prototyping Facilities

Specifications of the system under development will be held internally
in a formal, machine-manipulable form (which is central to the
integration of the whole ISF since it is used by all its
subsystems). There will be extensive facilities to convey these
specifications to people such as system designers and the eventual
users of the application system - by animating the specifications,
producing small prototype systems, question-answering and so on.
Completeness and consistency of the specifications will be checked
automatically.

- B.3.17 -

-
2. Software Development Environment

This will go beyond present-day environments in supporting all phases
of the software lifecycle and in relating them back to the formal
specifications. It will be tailored to support one of several
different development methodologies - depending on the application
area - and will support a defined style of project management.

3. Facility for CAD of VLSI and Hardware Development

With the emergence of special-purpose hardware architectures
implemented in VLSI, the need arises for functions to migrate between
software and hardware during the lifetime of an application system.
So CAD of VLSI cannot be considered as a separate problem. A VLSI
implemented system must meet the same formal specifications as a
software system, and pass the same tests, and vice versa. Therefore
the software development and the VLSI CAD facility need to be centred
around the same specification method and must communicate with one
another.

•

4. Database of Available Components

To compete effectively in making IT application systems, it will be
increasingly necessary to re-use existing software and hardware
components. These components will be very diverse - a component could
be a software product, an integrated circuit, a sub-routine or
fragment of code, an algorithm, a man-machine interface device or one
of a set of formal theories about data structures. A database of such
components will hold some information common to all of them, to answer
questions such as: What does it do? (i.e. its formal specification)
What environment does it require? (language, storage space, power
requirements, inter-connections etc) and can it be adapted to perform
a slightly different function? Some components will be general
purpose and some will be application specific. Initially such
information will be held in a database and searched in various ways;
but in the longer term there is a need for automatic reasoning based
on the data; this broadens the requirement to an intelligent knowledge
based system (IKBS).

5. Communications Systems

A key feature of the I5F is the facility to allow groups of designers
and programmers to work co-operatively, even when geographically
distributed. This will mean a requirement for high bandwidth
communication between co-operating processes, both within site, and
between sites. It must be possible to implement the ISF in a
distributed manner. It is expected that whilst the basic
communications technologies of local and wide area networks will exist
to allow this to occur, nevertheless considerable developments will be
required to meet the special needs of the I5F, expecially in handling
interactive high resolution colour graphics.

- B.3.18 -

-
6. Project Management Aids

Project planning, management and control methods will be developed.
When supported by a comprehensive collection of tools, these
management techniques will provide both professional managers and
technical staff with the ability to effectively plan and control all
aspects of the software development process throughout the life cycle.
These management tools must be intimately integrated into the
development process to ensure that all the appropriate parameters can
be realistically measured.

Thus an ISF, with all six subsystems implemented to a greater or
lesser extent, will be an essential prerequisite to compete in
producing medium to large scale information systems in the late
nineteen eighties. It will represent a major capital investment for
anyone intending to compete in the field.

••
The discussion so far has concentrated on the development of large,
complex application systems; however, similar remarks apply equally to·
the small systems market. To remain competitive in producing IT
products, companies will have to use advanced specification and
prototyping tools, application development aids and libraries of
components to produce better systems faster. So analogous small-scale
Information System Factories may well dominate the small systems
field, although market forces will drive them more to a low cost, high
volume re gime. The greater dynamism and adaptabiliy of this sector
means that new approaches are always rapidly emerging and can be
rapidly tested in that market. Therefore the Alvey programme will by
no means ignore the small systems market; producing and supporting
small scale Information System Factories will be an important activity
in its own right, as well as a testbed for ideas to be used in the
large-scale systems market.

3.3.5 Concluding Remarks on Inteqration

Thus the strategy for producing the three generations of IPSE requires
a controlled set of concurrent and overlapping research and
development activities. It is important that the 1st and 2nd
generation IPSEs are produced, not just the 3rd generation ISF,
because major gains are expected in software productivity and quality
from their UK installation and exploitation as well as export sales.

3.4 Innovation

The Director (SE) will initiate a programme of research to ensure that
the scenario in section 2 (The Changing Nature of Software
Development) is realised in the UK. This will require a balanced
programme of directed contract work and responsive funding. The
universities will play a Significant part in this work and the SE
programme expects to work closely with other funding bodies and
initiatives. The Director (SE) will sometimes let competition develop
between research teams as well as organising collaborative projects,
some between companies and some including universities as well.

The SE research programme will overlap significantly with other areas
(this is a good thing) and the Alvey Directorate will ensure intra
programme coordination.

- B.3.19 -

-
The three key points to be made about innovation are that

i whilst the general directions in which innovation is needed are
known it would be premature now to try to pick winners and
ignore rival approaches;

ii research projects are often on too small a scale to provide an
adequate testing ground for a new technique;

iii the scale of UK research must be increased to compete with our
international rivals.

Thus the programme will back a number of promising approaches to (for
example) specification, and test them out on life-size projects rather
than attempt to evaluate them in terms of their apparent success in
small-scale use. This approach not only offers a better chance of
selecting useful techniques, it also starts to bridge the 'development
gap' by bringing research results out into a development environment.

•

The current list of research priorities includes:

i. Software Development Methods

- Formal Specification

Verification and Validation

- Reusable Components

- Metrics

- Quality Assurance and Certification

ii. Project Management

- planning and estimating

_ progress and productivity measurement

- budgeting

- standards control

iii. IPSE

- items already indicated above are relevant

evaluation experiments to test changes in productivity and
quality due to use of IPSE in the industrial context

- MMI, VLSI/CAD etc from other Alvey areas but relating to IPSE
construction

- B.3.20 -

-
The list of research priorities will be regularly reviewed and, if
necessary, modified. In addition to the above list which sketches out
some of the work required to achieve the programme's major goals and
objectives it will also fund a small amount of longer term and/or more
fundamental research to maintain a balance between targetted
development and pure research. The theoretical underpinnings of
software engineering are considered to be of vital importance - a
thorough 'understanding' must precede the expensive construction of
the sophisticated ISF-type environments.

3.5 National Quality Certification Centre.

The primary medium term payback activity is seen as the creation of a
National Quality Certification Centre (NQCC) for software products and
components. The NQCC must build up an international reputation. This
will involve the adoption of state of the art techniques on a
continuous basis. The commercial benefit of NQCC approved software
products in an international market is potentially extremely valuable.
As the mass market for software products develops consumers will buy
NQCC approved products rather than unapproved products. The rapid
establishment of such a national capability could give the UK a
significant comm~rcial advantage.

The concepts behind the NQCC are currently in their infancy with only
communications protocols and programming language compilers being
'certified' • The NAG library quality control reputation shows the
potential benefit of extending this concept.

The NQCC should provide a realistic focus for much speculative
research and development work.

The NQCC cannot spring into existence overnight. It is envisaged that
early in the programme one or more R & 0 centres will be established
to develop quality assurance and certification techniques. At least
one centre's medium term aim will be to transform itself into the
Alvey Quality Certification Centre. If the AQCC can establish a
national reputation then the move to genuine 'national institution'
status, possibly as an independent, revenue earning body, should
rapidly follow.

3.6 Software Production Centre

The SE programme will establish a Software Production Centre. This
will not be a research project but a working factory funded to exploit
and incorporate the latest technology. The facilities of the centre
will be made available to software producers for genuine production
work.

This will enable large organisations to tryout 'real' new techniques
before making the necessary in-house investment. It will also enable
small companies to experience the benefits of new technology which
they could otherwise never afford.

The SPC will be aimed at producing software which will pass the tests \
laid down by the National Quality Certification Centre.

Technically, the SPC is to be a multi-lingual, database foundation,
integrated project support environment. It will act as the focus for
the practical embodiment of much research and development work.

- B.3.21 -

It will support not only the development of new software but the
maintenance and evolutionary development of existing products. To
this end, it will be 'multi-lingual', ie it will be capable of
developing systems in, say, Cobol, Fortran and Coral as well as
eventually, say, Ada and Prolog. It will also be 'multi-lingual' in
the sense that anyone of its software products can be constructed
from components coded in several different languages. Such a
requirement will stimulate the development of re-usable software
components and maximise the return on investment in existing software.

The technology contained within the Software Production Centre could
be exported into the sites of the participating organisations by:

a. replication of hardware and software components on the site

b. network access from the site to the Centre •
c. a combination of a and b.

The running of both the NQCC and the SPC will be contracted out to
industry.

3.7 Development Proqraaae

The NQCC and Software Production Centre require a research and
development programme to feed them with new technology. The Director
(SE) will initiate a medium term R & D programme to ensure that the
goals given in section 1 are realised throughout the UK. This will
require a balanced programme of directed contract work and responsive
funding.

3.8 Software Coaponents Brokerage

The Director (SE) will examine the desirability and feasibility of a
centre for software components and products. It will operate by
holding specifications, code etc in a database accessible only via the
Alvey network. Dissemination of components will be only by FTP (file
transfer). Participants will lodge their components and products in
the database with distribution at a charge. Thi.s scheme shou1d

encourage collaboration, technology transfer and the creation of
reusable software components and products, the idea being that it will
be quicker and cheaper to get a subroutine from the brokerage than to
reinvent it.

Two types of software products are envisaged as being handled by the
Brokerage:

a. Packages for sale to the public.
approved by the NQCC.

These should ideally have been

- B.3.22 -

-
b. Reusable software components. These too should ideally have NQCC

approval but will not be on sale generally. They will be available
to the 'trade', ie to those software developers who will attain
increased productivity by using existing components rather than
developing their own and who will contribute components of their
own manufacture. The Software Production Centre should be a major
source of, and customer for, these components.

With seed money from the Alvey programme to assist its launch this
should become a commercially viable operation.

3.9 Product Stimulus

Industry must produce products. The sales of such products are one
important evaluation criterion for the Alvey Programme, other
government initiatives and the health of the industry. However, short
term sales figures will not be the dominant factor for Alvey Programme
assessment.

•

The programme will work collaboratively with other industry and
Government initiatives, such as the Software Products Scheme, to
ensure a smooth transition from Alvey-supported research into more
market orientated activities. This will help to avoid the creation of
an Alvey development gap. Conversely, the programme will welcome
input from such initiatives which perceive market pressures having
implications for the programme's strategy and priorities.

- B.3.23 -

