
ATLAS COMPUTER LABORATORY

PIG S MAN U A L

SCIENCE RESEARCH COUNCIL

PIG
P D P 1 5

I N T ERA C T I V E

G RAP HIe S

S Y S T E r1

BY

W D SHAW

Atlas Computer Laboratory
Chilton
Didcot
Oxfordshire
OXII OQY

October 1974

INTRODUCTION

-
CONTENTS

Page

vii

I . OPERATING PIGS

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
I. 10
I. II

2.

Loading
Screen Layout
Commands
Command Sources
Command Selection
Command Syntax
Argument Types
Menus
Global Commands
Error Hessages
Quitting

3
5
5
6
9

10
12
12
13
13

WRITING A HENDEL PROGRAM

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.

Introduction
MENDEL Commands
Command Hodes
Create Hode
PRTE Initialisation: Context I
Menu Declaration: Context 2
Subroutine Declaration: Context 3
Global Command Definition: Context 4
Argument Getting: Context 5
Menu Defini tion:. Context 6
Program Termination: Context 0
Edit Mode
Examples

IS

15
15
15
16
16
18
19
19
21
21
24
24
25

USING THE MENDEL EDITOR-ASSEHBLER

3.1 Internal Operation of the Editor-Assembler
3.2 Structure of the Editor-Assembler
3.3 Loading the Editor-Assembler
3.4 Operator Commands to the Editor-Assembler
3.5 List File Format
3.6 Dump File Format
3.7 Prompting Hessages
3.8 Error Messages
3.9 Examples

27

27
27
27
29
31
31
32
32
34

4. OPERATION OF THE PIGS RUN TIHE ENVIRONMENT

4.1
4.2
4.3
4.4
4.5

5.

PRTE - Hain Control Loop
PRTE - Initialisation
PRTE - Con~and Polling
PRTE - Command Reconciliation and Execution
PRTE - Henu Activation

37

37
37
38
38
38

WRITING A GRAPHICS APPLICATION PROGRAJ.1-1

5. I
5.2
5,3
5.4

Initialising a Graphics Application Program
Argument Transmission in Application Procedures
Special PRTE Subroutines
Examples

45

45
46
46
51

- 1. -

...

7.1 PDPI5 Libraries at ACL
7.2 GAP Documentation
7.3 GAP Written Description
7.4 GAP - Listings

55

55
55
56
59
59

61

61
62
62

.63

65

65
65
65
65
66
66
-67
67

69

79

83

93

97

105

111

113

114

I17

121

6. OVERLAYING A GRAPHICS APPLICATION PROGRAM

6.1 Debugging the GAP
6.2 The Overlay Loader - XCI~IN
6.3 Overlaying PRTE
6.4 Overlaying a Graphics Application Program
6.5 Writing a GAP Overlay Description

7. DOCUMENTING A GRAPHICS APPLICATION PROGRAM

8. FUTURE ENHANCEMENTS

8.1 MENDEL Editor for PRTE
8.2 Protection against System Crashes
8.3 New Command Sources
8.4 Core Management
8.5 PIGS under other Operating Systems
8.6 Source Languages for Application Procedures
8.7 Messages
8.8 Argument Input

APPENDIX A EXAMPLE DOCUMENTATION, PATH

APPENDIX B PIGS LIBRARY

APPENDIX C PIGS COMMON BLOCKS

APPENDIX D PIGS DISPLAY FILE STRUCTURE, LIGHTBUTTON FILES

APPENDIX E MNB FILE STRUCTURE

APPENDIX F OVERLAY DESCRIPTIONS AND LOAD MAPS

APPENDIX G PRTE AND MENDEL CO~lliANDSYNTAX

APPENDIX H RESERVED PRTE SYMBOLS

APPENDIX I }ffiNDELCOMMAND LIST

APPENDIX J }ffiNDELSUBROUTINES

APPENDIX K PIGS ERROR MESSAGES

- ii -

...

FIGURE

TABLE

FIGURE

INDEX OF FIGURES AND TABLES

)-1 PIGS Display

3-) Editor-Assembler DAT Slot Usage

372 Editor-Assembler Control Characters

3-3 Command Node Listing Format

PRTE Main Control

4-2 PRTE Command Table and Display Initialisation

4-3 PRTE Command Polling

4-4 PRTE Command Reconciliation

4-5 PRTE Henu Activation

5-) PRTE Argument-Getting Functions

5-2 PRTE Argument-Putting Subroutines

5-3 Special PRTE Subroutines

6-1 PRTE Core Allocation Memory Map

GAP Core Allocation Memory Map

- 1.1.1. -

...

-

Page

4

28

30

33

39

40

41
42

43

47

48

49-50

57

58

-

U C T I 0 ~'JINTROD

- v -

-
'--

I N T ROD U C T ION

PIGS is a set of procedures which simplifies the design of inte~active
graphics programs on the PDP15. The system is composed of an
interpretive language, MENDEL (for MENU DEFINITION LANGUAGE), and a
collection of procedures called the PIGS Run Time Environment (PRTE).

In designing a Graphics Application Program (abbreviated GAP), MENDEL
is used to describe the organisation of commands available to the
operator into groups called menus. PRTE uses the binary output of the
MENDEL assembler to display menus on the CRT, thus suggesting contexts
of available commands. ~Vhenan operator selects a command and defines
its arguments, control is passed to a pre-specified user pr~cedure to
perform the desired function. It is possible for a GAP to share many
of the PRTE subroutines to save core and provide more flexible interaction.

This manual explains how to operate and design graphics applications
programs using PIGS. Chapter I contains a description of facilities
available to an operator, while the remaining chapters provide
information of use primarily to the GAP designer. Some knowledge of
the DOS operating system, overlay system (XCI-lAIN)and graphic code
generating package (FOG) is assumed. The recomnlended documentation
covering these topics is:

(I) PDP 15 User Note
(2) DOS Users' Manual
(3) C}JAINand EXECUTE Manual, PDP15 User Notes 3, 4
(4) FOG - FORTRAN GRAPHICS on the PDP15

Throughout the manual examples will be taken from a demonstration program,
PATH, ~vhich is described in Appendix A according to the documentation
suggestions given 1n Chapter 7.

PATH is available on DECtape 155 for practice and experimentation.

- V11 -

. .•

-
I. OPERATING PIGS

This chapter contains operational information common to all graphics
application programs using the PIGS run time environment. In order
to completely understand a particular GAP, it will also be necessary
to consult the designer's documentation of its commands, displays,
and data base wh ich is available in the Graphics Application Program
Library.

Examples ~n this and subsequent sections are drawn from a simple
interactive graphics program called PATH. This graphics application
has commands which allow an operator to draw an object and the path
it is to follow using a computer-read stylus. The operator may command
the program to play back the animation on the display at various speeds.
It might be a good idea at this point to read the general description of
PATH and its commands given in Appendix A, par,ts (4) and (6).

I. I Loading

Assuming that a GAP has been debugged and is ready for use, it will
normally be available on a DECtape in the racks near the PDPI5.
The number of the tape is given in the program documentation.

Since the PIGS run time system is very large, GAPs will always have
been organized into overlays using the systems program, XCHAIN.
XCl-lAlNoutputsfiles with several different extensions wh i ch must all
be on the PDP15 disc at run time. For any given application there
will be two binary files on the tape with extensions XCT, and XCD,
and a set of nbinary files w ith extensions L01, L02, •..L0n. In
addi tion , the :HENDEL assembler passes menu and command information to
PRTE via a binary file with extension }mB; this file must also be
transferred to the disc. As an example, PATH consists of the
f oLl.ow ing 8 binary files on DECtape 155.

PATH XCT
PATH XCD

PATH L01
PATH L02

"- PATH L03
PATH L04
PATH L05

PATH HNB

From XCHAIN

From :HENDEL

To move these files from tape to disc it is necessary to use the DOS
operating system and the Peripheral Interchange Program, PIP. DOS
a.Iway s signals its readiness to accept commands by typing the character $
on the system teletype; PIP requests a command using the> character.

- 1 -

...

--
Typing the character < cnt.nl: C> will always return control to DOS.
It is important to begin any session by turning OFF (unlit) all
of the pushbuttons below the display and typing < cntirl. C > and
LOGOUT on the system teletype.

The underlined commands below will transfer the PATH binary files
from DEClape 155 to the scratch disc area. To ready the tape, mount
it on drive unit u and set the WRITE switch to LOCK. When typing,
command lines are terminated by <cr>. Comments in the example are
preceded by the character / and should not be typed. DOS messages
wi Ll appear on the display if VT is ON.

$ <cntrZ C >
f LOGIN SCR

/ GET DOS monitor
/ LOG IN to scratch disc area.
/ SCR could be replaced by operator's UIC
/_Clear I/O assignmen t's
/ Get Peripheral Interchange Program

$'KEEP OFF
~ PIP

DOSPIP V6A
> T DK + DTu PATH XCT (B) / transfer XCT file
> T DK -e- DTu PATH XCU (B) / transfer XCU file
> T DK ~-DTu PATH L0 I (B) / -transfer link files
> T DK + DTu PATH L0 L (B)

> T DK -<- DTu PATH L05 (B)
> T DK + DTu PATH MNB (B), / Transfer MENDEL binary
> <cntrZ C>
$ DOS":'15V2A

If ~n doubt at any point, ask an operator at the 1906A console for
help. Please note that GAPs cannot be run directly from DECtape.
Once the files are on the disc the DECtape is no longer needed and
may be switched to LOCAL, rewound, and returned to its rack.

Next, the operator should consult the documentation for any particular
I/O requirements the GAP might have. These could include mounting a
particular magnetic tape or DECtape; switching on the BSI, VCS3
synthesizer, or DMAC pen follower. If at all in doubt, let a 1906A
operator set up the peripherals.

It wi.Ll often be necessary to make certain device allocations to the
DOS monitor's DEVICE ASSIGN}ffiNTTABLE (DAT) before loading the,GAP.
PRTE uses only default assignments, but the application may have
special requirements. Including the PRTE device assignments for
information only, the proper DAT slot assignments for PATH are:

A TTA 4 / PRTE - KEYBOARD INPUT
A DK 6 / PRTE - DISK
A VTA 10 / PRTE - DISPLAY
A VVIA 11 / PRTE SPARKPEN
A NON 16 / PATH - DMAC(not used)

DAT slot -3 is used by PRTE for error mess~ge output but cannot be
ASSIGNed by the operator.

- 2 -

..,

-
Finally, the operator must turn off the VT04 display by typing:

$ VT OFF

and ensure that the VWOI sparkpen is ON and the LK35 keyboard ~s OFF.

The system overlay program, EXECUTE, ~s used to load the GAP into
core and start it running. In DOS the operator should type the
characters E <sp> followed by the GAP name. At this point the teletype
will output two linefeeds and execution will begin. To load PATH for
example, type:

$ E PATH <cr>

If at this point DOS types out the message:

lOPS 4

it means that some device is not on-line or is not switched ON. Ready
the peripheral and type <cntrl R> on the teletype. Other lOPS errors
may occur because of mistyping the DAT slot assignments or forgetting
to transfer one of the files from DECtape to disc. Try the entire
sequence once more, if in doubt, and then SUlnmona 1906A operator for
assistance. Typing <cniml. C> will bring back DOS wi.th the default
DAT slot assignments. .

When the GAP has been loaded, the message:

>PIGS Vn

will be output. At this po~nt the name of the MNB file should be input.
For PATH, simply type:

>PATH <cr>

When the PIGS display appears on the VT04, PRTE ~s ready to accept
~commands.

1.2 Screen Layout

The layout of any display using PRTE has a standard form with only a
few variations. Figure 1.1 ·shows the initial display put up by PATH.

The standard display used by the PIGS run time environment consists of
a large enclosed central workspace bordered on the top, bottom,
and right sides by message and command areas. The displayed text
may be composed of large or small characters of the designer's choice.
The large characters are easier to read and photograph but use up
more of the workspace and allow fewer characters per item.

Each of the areas bordering the central wo rkspace has a specific
function. Beginning at the top of the screen and working clockwise,
the topmos t area is for operator promptrinq , Hess ages containing
possible courses of operator action may be placed there by the GAP.
These will change during the course of interaction and are of particular
aid in learning to use a new package.

Just below the prompting space is the error message area. '\-.lhenan
error occurs or is about to occur in a procedure, the teletype bell
w ilI ring and a flashing mess age will appear in this space. The
prompting area may suggest a recovery procedure- at this time. The
text will disappear when the condition ~s corrected or after the next
operator command.

'-_ ...

FIGURE _i-l PIGS DISPLAY

Prompting Messages

Error
Messa
(Blink

/
TO QUIT, PUSH BUTTON 1 AGAIN

--p I MENU
I••• PATH IN~ Control Li

gcs ERROR 203
cing)

EXIT

DRAW 3

PUYB 1 , 2 Local Lightb

~,V REDRA 2...•

/'
V -""I DATCL

I~
I USEGR YE",

~

play •... I<;~ I, d-~//f I1_~,

~

<, I I 1

Vi
~

,Trdcking 0 5T

I I ! vr- T

.i->:
U~E~T USE~~ QUIT GLOB-VWA LTA !!!!!

.~ DIvW 10,3_ .> Isplay
or. .~

,..PENAC »> ACCEr
~

~
YES xxxxx
, ' /

ghtbuttons (2)

uttons (16)

Main Dis
Area

CO~~D
DATA AREAS

.. Lightpen
Cross

YLUS
RACKING DOT

AL LIGHTBUTTONS (6)

Keyboard
Input D~
and-Curs

.>
Pushbut tons
Lightbuttons

(6)
~D~~0~

--~.
Pushbuttons (lit)

OFFSET
DISPLAY AREA

-

'--

To the right of the error and prompting messages is the menu controZ
area. T\.]Otext strings appear permanently in this space. The name
of the current command set w i lI appear below the characters i'lENU.
The name of an alterria t i.ve !"_enuwi 11 appear below EXIT. These
commands, unlike messages, are sensitive to selection vi th the active
stylus. Note that a small conmand data area appears next to each
name. Such areas may contain information about the adjacent command
and often change during the co~rse of interaction.

The long vertical regi0n below the menu control space is the local
command area. Commands appearing in this region change from menu
to menu. t\smany as sixteen names and data areas may appear in the
local command area. Like menu names, local command names may be
selected using the stylus.

'--

At the very bottom of the screen is the pushbutton command area.
One command name may appear over each button with a data space below
it. Pushbutton names are stylus-sensitive.

Monitoring of typed commands occurs character by character in the
keyboard input area just above the pushbutton names. The last typed
text remains displayed until the first keystroke of a new command.
Like the error and prompting messages, this text is not'stylus
sensitive.

The last PRTE display region has the same appearance as the pushbutton
control area but is located slightly above the keyboard input text.
The global command area consists of six command names which rema~n
constant regardless of the menu name. Each command name i.s stylus
sensitive although the matching data space below it is not.

Usually, a graphics application confines its display to the central
enclosed wo rkspace , It is possible, howeve r, for a GAP to turn off
the standard PRTE display and use the entire screen as a work area.

1 • 3 Commands

In the course of interaction with an operator, the PIGS run~time
environment may receive requests from a variety of peripherals. These
orders are called commands. Their text names form a language for
communication between man and machine. ffi1endisplayed, these names
are called lightbuttons.

In constructing a GAP, the designer writes a subroutine for each
function in the package and assigns a command name to it. \~en
PRTE receives a command it causes execution of the matched subroutine
in core and seeks the next command.

1 • 4 Coro:mand Sources

PRTE spends most of its time looking for orders from its command
sources. This going from door-to~door is aptly referred to as
polling. The possible sources of commands are:

- 5 -

..•

--

(I) Lightbuttons
(2) Pushbut tons
(3) Real Time Clock
(l~) Keyboard

Quite often only one or two of these devices is appropriate for the
type of interaction desired. The designer decides wh ich sources
will be polled when a particular set of commands is displayed.
~hese sources are referred to as active. Attempted input from an
inactive source is.ignored.

1.5 Command Selection

Corresponding to each possible PRTE command source are one or more
source devices. In most cases only one of these hardware input
devices may be active for each of the four command sources.

(I) Lightbuttons

Lightbuttons, including the displayed pushbutton names, may be selected
using either the lightpen or the VWOI sparkpen (abbreviated LPN and
V\-JA). PRTE signals the operator that a lightbutton has been touched,
or hit, by blinking the button on and off for about! second. This
allows the operator to move the stylus away from the button and thus
avoid executing the command more than once. Occasionally, however,
it is desirable to repeatedly execute a command for as long as its
corresponding lightbutton is being hit. An example might be a command
to rotate a displayed object one or two degrees at a time. Repeated
hits on such a button would produce the effect of continuous rotation
of the object.

It is up to the GAP designer to decide whether the lightpen or sparkpen
1S the active source device. He may provide a cOID1llandto switch between
the stylii or he may not. If there is such a cOID1lland,the sparkpen must
be turned ON when changing source devices, otherwise an lOPS 4 error
will occur. If such an error"does occur, simply switch the pen ON and
type <cntrl R> on the system teletype to continue; subsequently the
sparkpen may be turned OFF whenever desired.

If there is a command to change stylii, the active source device should
be obvious from the associated cOID1llanddata area. Assuming the sparkpen
is active, it will emit a harmless, continuous spark when the switch on
the tablet is in the ON position. Like spark plugs in a car, the
electrodes of these pens corrode and wear out. Treat the pen gently
and turn it off when not in constant use,

The VWOI tablet senses the position of the sparkpen using foil
microphones posi ti.oned along two edges of the flat surface. These
microphones are used to time each spark and should not be obstructed
by any object. The tablet is normally set up for right-handed people
with the microphones to the top "and left sides. Left-handed users
should ask a 1906A operator to set the left-hand switch on the sparkpen

- 6 -

-
logic and re-orient the tablet. Paper may be placed on the surface of
the tablet, but this is not necessary.

The stylus itself should be grasped with the white line near the tip
facing upwards. The proximity of the pen to the tablet surface is
detected as three states: far~ near and touch. Slight downward pressure
on the stylus against the tablet will cause the biro to retract and
the pen to enter touch mode. _Near mode is entered when the stylus is
lifted slightly; 3 or 4 inches above the surface of the tablet the
sparkpen is in far mode and its position cannot be accurately sensed.

l.Jhenthe stylus is in near or touch mode, PRTE maps its location on
the tablet surface into a relative position on the CRT and displays
a bright dot called the tracking dot at this point. The operator will
quickly find it natural to watch the display and not the stylus while
drawing or pointing.

To select a particular lightbutton, first imagine that an iavisible
rectangle surrounds the text name. Move the-stylus in near mode
until the cursor lies within this rectangle; pressing the pen do\vuat
this point will cause selection. l.Jhenthe lightbutton begins to blink,
lift the pen up into near mode to avoid multiple lightbutton hits.

If the lightpen is the active stylus, a slightly different selection
procedure is necessary. The lightpen detects light from the CRT
directly using a photocell. The sensitivity of this cell is regulated
by a small knob just below the screen on the left. This knob should
be turned all the way clockwise for maximum sensitivity. To select a
particular lightbutton, point the pen at the te~~ name and press the
button on the top of the stylus all the way down. When the text
begins blinking, release the button to avoid multiple hits.

(2) Pushbuttons

-- As a command source the pushbuttons are urn.que i,n that they may be
selected by either the active stylus or by one of the six blue contact
buttons beneath the screen. Each button may light up when pressed,
or it may not, depending on the application program.

- Pushbuttons are also unique in that they are commonly used to control
a GAP subroutine within the execution of a command. In this case,
the pushbuttons will probably not be sensitive to selection at polling
time. In PATH, for instance, pushbuttons I, 2, and 3 -(left to right)
are used to control the active stylus within' the commands DRAW
and DI{AHBbut are not sensitive at other times.

(3) Real Time Clock

The 50 Oz clock may be used by GAP subroutines to schedule the repeated
execution of con~ands at some time interval; a good example would be
a command to dump an application database regularly. A GAP may
signal to the operator that a scheduled command is being executed by
placing a message in the prompting area.

- 7 -

--
(4) Keyboard

Like the lightbuttons, there are several alternative devices which may
be used as the keyboard command source: the LK35 keyboard (LTA) on the
display console or the system teletype (TTA). A command for switching
between devices mayor may not be available, depending on the particular
GAP.

Characters typed on the active device are always displayed in the
keyboard input area of the CRT. Optionally, LK35 input may be echoed on
the system teletype as we lI; a command is not selected until carriage
return or altmode is typed. At this time if there is a lightbutton
displayed for the command, it will blink. Characters may be deleted from
'the input string by typing <rubout>; the entire string is cleared by
typing <cntrl U>.

After typing the first character of the new command, and before
terminating it, no other command soutce is active. Clearing the input
string with <cnt.rl. U> causes polling to resume , however , with no command
having been executed. Also, typing <cntrl P> on the system teletype
may cause return to the PRTE polling loop - but only try it in an
emergency.

There are several peculiarities of the keyboards which have not yet been
cured and may cause some annoyance.

The most important of these is interference between the V\j~l sparkpen
and the Lio5 keyboard. Hhen both are running, electronic noise
from the spark is occasionally picked up by the keyboard circuitry
and interpreted as character input ~fuen this happens all other command
sources become inactive and, most noticeably, the cursor on the display ,
no longer reflects sparkpen movement. To clear this condition turn
the tablet OFF and type <cntrl U> on the LK35. Then turn the keyboard
OFF using the small toggle swi t ch on the right-hand vertical side of
the V'T.0/1 console table; turn the tablet back ON to select commands
using the sparkpen. Work is in progress to cure this hardware fault.

The second peculiarity also concerns the LK35 but is only mildly
ir'ri tati.ng , The keyboard has a shift lock key which may be
inadvertently hit. There is no way of knowing if the device is locked
into upper case except by typing. To clear the condition, hit the
shift key and type <cntrZ U>.

The last keyboard problem occasionally occurs on the system teletype
when one has switched from TTA to LTA and then attempts to return to
TTA. At this point all polling will cease, as in the sparkpen
interference situation, until any key is struck on the system teletype.
Ihis clears a handler conflict; normal polling w iL'l resume wi th IIA
active and the keyboard input string empty. There is no ''layto cure
this software fault without altering the DOS operating system.

- 8 -

, ..

-

1.6 Command Syntax

When an operator selects commands by typing on the active keyboard
source, certain punctuation rules, like terminating the line with
<cr> or <altmode>, must be followed~ These rules - or syntax -
are specified in a formal manner in the Appendix; here they are
illustrated by example.

Sometimes, in designing a command, it is convenient to closely
associate with it a set of parameters called arguments. Typed after
the text command name, these values are made available to the GAP
subroutines wh i le the command is being executed. In PATH, for
example, typing the string:

DRAW, 1 <cr>

causes PRTE to pass along the value to the application subroutine;
cel 1 is opened for sketching.

The most general form of a typed command is a command name followed
by one or more a~guments and terminated by <cr> or <altmode>. As
in the simple example above, the command name must be separated from
its arguments by a comma. Similarly, each argument is separated from
its successor by a comma, as in:

PLAYBACK, 1, 2, 50 <cr>

Note that there is no punctuation between the last argument and the
terminator <er->. A command may have no more than 14 arguments;
blanks are ignored, except within text strings.

The arguments to a command need not be explicitly specified, however.
An argument may be omitted by typing only the trai i.i.ng comma in its
place. The second argument is omitted in the example below:

.~ PLAYBACK, 1" 50 <altmode>

- Arguments which have been omitted are assigned standard, or default,
values by GAP subroutines. If an argument which must be specified is
omitted an error message wi lL appear on the display and the command
will be ignored.

Arguments may also be omitted by truncating the argument string wi th
a <er->or <al.tmode>c All three arguments in the previous example
assume default values if:

PLAYBACK <cr>

is typed. Exactly the same thing w ould happen if the command PLAYBACK
were selected using the lightbutton source.

A final consideration about the syntax of commands is the number of
characters which must be typed to completely specify a command name.

- 9 -

...

-

With the small text display, PRTE matches a 5-character name if
it has been placed in abbreviate mode by the GAP. Otherwise it looks
for a 9-character name. PRTE is a lways in abbreviate mode if the
large text display is being used; more than 5 characters may be typed
but they will be ignored from the sixth onwards. It is never necessary
to pad a genuinely short command name in order to make it 9 characters
long.

1.7 Argument Types

As detai led above, a valid command consists of a command name followed
by a string of arguments separated by commas. By the time these
arguments reach a GAPsubroutine, the only distinction made in
argument types is between text strings and numbers. To al Low greater
prec~s~on all numbers are stored in double precision floating point
format. The total length of all string arguments to a commandmust
be less than 70 characters.

String arguments may be entered in one of two .basic formats: unquoted
or quoted. Unquoted strings must begin wi, th an alphabetic character
and are terminated by blank, comma, <cr>,or <aZtmode>. Quoted strings
are begun and terminated by a pair of single or double quotes.
Blanks, co~mas and any other character except <aZtmode> or <cr> may
be embedded in quot.e d strings. Note that command names, which are simply
strings, may be unquoted or quoted. Therefore, if a command is
displayed wi th embedded blanks or a non-alphabetic initial character,
its name must be quoted when selecting it via a keyboard device.
Below are examples of valid and invalid string arguments.

Valid strings:

DRAW75
, SELECTl'>3,
"FINDl'>4"
'6"l'>HOLE'
MBAR61l'>
, ••• PEG'
" I ' l'>HOLE"
, 6"l'>DIAJ.vlETER'

Invalid strings:

.DRAHB
PLACEl'>BELOW
11 I" l'>HOLEII

, 61l'>DIAJ.vIETER"

Number arguments have a very flexib Le format consisting of three parts:
a radix indicator, a signed mantissa, and a signed exponent. If a
number is preceded by the character [1, octal radix is assumed. After
the radix i:-cdicator a sign may appear followed by the mantissa.
The latter may have only an integer part, only a fractional part, or
both separated by a full stop. Exponentiation may be specified after
any form of the mantissa by typ ing the character + f oI Lowe d by a
signed integer; if octal radix has been indicated the base of the
exponent is 8. As they are stored in double precision format, the

- 10 -

-

value of number arguments must be less than 1075 and greater than 10-75;
the accuracy ~s 33 bits (9 digits).

The complete format for a number argument, although powerful, is
lengthy. In practice only some form of the mantissa need be typed.
If the character # does not precede the number, decimal radix ~s
assumed; the default for omitted signs in mantissa or exponent is +.
Be Low are some examples of valid and invalid number arguments.

Valid numbers:

-123456789
12345.6789
131'-40
40.1'13
.+M3.14159t2
#-77. It 1

Invalid numbers:

1234567890Dl
lOOt74
1.51'36.4
#999

In summary, there are four major rules for composing syntactically
well-formed commands:

(I) The body of a command consists of a command name followed
by arguments separated by commas.

(2) The command name is simply a text string and must be
quoted if it contains embedded blanks, commas, or begins
wi th a non-alphabetic character.

(3) Arguments may be numbers or strings, or they may be omitted.
(4) A command is terminated by <CT'> or <al.imode>,

Below are included some examples of valid and invalid commands:- Valid commands:

- DRAl.JB,3<er->
DATACL <a Ztmode >
DRAW75, ,6"llHOLE', "AT" ,360, 1,0231'+3 <er->
DRAlV75.,,#1000 ,/;101'2<C1'>
"I'llHOLE",DRILL8, 'FOMOIL' <al tmode>

Invalid commands:

NOCOJvIHA3 <CT'>
NUST,QUOTE, 6"llHOLE <aZtmode>
TPO d.Al~Y, 1,2,3,4,5 ,6,7,8,9 ,10 ,11,12, 13, 14 ,OOP S! <aT'>
BADARGS, 'GOBBLE, #94 <aT'>

- 11 -

...

-
1.8 Henus

Once source devices and selection procedures are understood, it is
still necessary to know at what times a corrunandmay be typed. In
general, if the name of the command in question is displayed on the
screen it may be selected with any·active device. However, because
of space limitations on the display and in core, it is often not
possible for all the commands of an application program to be
available for selection at once.

For this reason related commands are grouped together into sets .called
menus. When a particular menu is active (or current) its name will
appear in the control area of the screen beneath the fixed characters
}ffiNU. A set of local commands and pushbutton names peculiar to the
current menu will be displayed in their respective areas of the screen.
Any of these cOlnmands are available fo~ operator selection. Normally
the commands contained in a given menu are sufficient to complete
some small portion of the application task. .

Usually, the menus comprising a GAP are hierarchically organised: a menu
may contain commands which cause new menus to becomecac t i.ve, For example,
the first menu which appears on the screen when PATH is loaded contains
the name of another menu in the GAP: BACKG. Selecting this command w.iLl.
cause the appropriate menu to appear on the display along with its
associated local and pushbutton names. Simultaneously, the name of the
top level menu, PATH, wi.Ll appear in the control area ·below the fixed
string, EXIT. Selecting PATH will cause a return to the top level menu.

In summary, the control area of the display has two principal
functions: na~ing the currently active menu and allowing return to a
higher l~vel menu. As in the menu PATH, howeve r, any command may
cause a new menu to become active. Usually the name of such a command
is identical to the name of the menu it makes current. There is no
question of missing a menu change,because on activating a new menu the
old command names will disappear from the display for a short time,
making the switch unmistakeable.

1.9 Global Commands

Local and pushbutton commands may only be selected when they appear
on the display as part of the current menu. Global commands, by
contrast, are always available regardless of the active menu and
need not all be displayed.

As many as six of the set of global commands for a particular GAP
1_,'_yappear on the screen just above the keyboard display. These
lightbuttons function normally, but are not affected by menu changes.
Like other commands they may be selected using any active device.

- 12 -

...

-

In addition to these six, thore may be any number of non-displayed
elobal commands wh i ch cannot be selected using lightbuttons, but
may be chosen using any other source device. The operator should
refer to the particular GAP documentation for the names of non-displayed
globals. There are several such commands in PATH: SKEDL, for instance,
allmvs scheduling of commands for selection by the real time clock.

1.10 Error Messages

A complete list of error messages is given in Appendix K of this
manual. There are, sadly, five separate categories of errors wh i.ch
may occur during the execution of a GAP:

(I) GAP errors
(2) PRTE errors
(3) FOG errors
(4) OTS errors
(5) lOPS errors

GAP, PRTE, and FOG errors all appear on the display in the error
message area and cause the teletype bell to ring. None of these
errors should caUbe the application to terminate. In the case of
PRTE and :F'OGerrors, control always returns to the command polling
cycle. Program control after a GAP error may return to the polling
sequence or to the application subroutine. In the latter case the
prompting area may contain suggestions about correcting the condition.
Er~0r messages disappear upon selection of the next command.

GAP documentation should contain information about the errors its
programs issue. Error numbers less than 100 are generated by PRTE,
in the range 100-199 by FOG, 200 upwards by the GAP itself.

,"
OT8 aridrops errors normally cause the application program to terminate
and control to return to the DOS operating system. These errors wi II
appear on the system teletype and, except for lOPS 4 (device not
ready), should be noted in the system log book. Such errors ought not to
occur in a GAP which has been debugged.

I. II Quitting

Having finished a task using an applications program, there are two
ways to return control to the operating system: by package command, or
by typing <cntrl C> on the system teletype. If there is a session
terminating cOIIU11andin the package it is best to use it as there may
be open files wh i ch need to be closed.

- 13 -

...

-
2. WRITING A MENDEL PROGRAM

2.1 Introduction

The graphics application designer uses the MENU DEFINITION LANGUAGE,
~lliNDEL,to describe the orgQnisation of con~ands and menus to the PIGS
run time environment. It may also be used by an operator to edit the
command structure of an application to facilitate his style of interaction
or to meet particular problem demands. As in Chapter 1, most examples
in this chapter will be drawn from the graphics application, PATH. The
~lliNDELdescription of PATH appears in Appendix A.

2.2 MENDEL Commands

MENDEL commands are compiled by the editor-assembler to create or modify
a binary file on disc or DECUipe. This file, wi th extension MNB, is
accessed by the run time environment during initialisation and when
changing the active menu. The mechanics of loading and running the MENDEL
editor-assembler are described in Chapter 3. Suffice it to say here that
cOllLmandsmay be typed to the editor-assembler one at a time, or read from
an ASCII text file on some storage device.

-
Regardless of whether cornnlandsare typed directly or read from a file,
each has the same form; MENDEL command s use the same syntax as PRTE
commands, described in Section 1.6. A single difference is that
comments may appear in a HENDEL program by preceding the text with the
character /. The following sample statements are accepted by the
editor-assembler:

/THIS IS A COHMENT. <cr>
COM,},1NDEC,-1,DO,IT.t-fND/DEFINE COMMAND MNDEC <cz->
NENU,HDL <al.tmode>

. ..__ Note that a comment by itself ~s a well-formed statement ignored by the
editor-assembler •

2.3 Command Hodes

-
MENDEL commands may be issued wi th one of tHO purposes: to create a new
binQry MNB file or to edit an existing file. Consequently, the first
command to the editor-assembler sets the mode in which subsequent
statements wi.Ll be obeyed. Most HENDEL statements are valid in either
create mode or edit mode; the few which are not are marked in the list
of command s in Append ix I.

The principal difference between the t.womodes is not in the function
of cornmand s, but in the order in wh i.chthey may be executed. Edit mode
conunands may be issued in any order, wh ile create mode commands must,
for efficiency reasons, follow a rigid sequence. A second difference
is that l'r:m file si ze , wh ich determines the number of cormunnds and menus
wh i.chmay be defined in an application, may be altered only in create
mode. It is possible that a later version of PRTE will itself contain
the MENDEL editor, thus allowing run time changes in the active MNB file.

- 15 -

....

-
NGLODLS - Maximum number of global commands contained in the

application. ABain, add a few spares.

(2) BIGBT

The BIGBT con~and is valid only in create mode as it alters the structure
of every command in theNNB file. If this statement is encountered by
the assembler, the large lightbutton characters wi ll be displayed and only
5 characters of application command names matched. If the BIGBT statement
1S not encountered,the small display size will be used.

(3) ABREV,ALOGIC

-
This command sets the initial command name matching size of PRTE to 5
characters instead of 9 characters. OnLy 5-character command names are
matched with the large display.

ALOGIC - Optional logical argument. Must be the text string TRUE
or FALSE.
If omitted, TRUE is assumed.
TRUE - Only the first 5 characters of command names

need be specified.
FALSE- Entire command name must be specified (max 9 chars).

'- (4) KEYB, AKEYBD ,AECHO

KEYB selects the initially active keyboard source device and whether or
not typed characters are echoed on the system teletype. If KEYB is not
encountered, the LK35 will be the active keyboard wi.th no echo ,

--

AKEYBD - String argument specifying the active keyboard ,
LTA- LK35 keyboard
TTA- System teletype
If omitted, LTA is assumed.

AECHO - String argument specifying whe ther or not LTA input 1S

echoed on TTA.
ONLY - Do not echo
ECHO- Echo
If omitted, ONLY is assumed.

(5) STYLS ,ASTYLS

Defines the initially active stylus source device to PRTE. If the
command is omitted, the sparkpen will be used.

ASYTLS -String argument specifying the active device.
VI~A-Sparkpen
LPN -Lightpen
If ouri t t-cd , V~'JA1S assumed.

- 17 -

(6) DELAY,N.IILSEC

Sets delay time after command selection and before command execution.
During this time any associated lightbutton will wink. This delay does
not apply to command s marked for i.mmediate execution. (See ADOCODE
argument of COM command). A delay of 250 milliseconds is assumed if
the DELAY command is not encountered.

NMILSEC - Number of milliseconds to delay before execution.
If omitted, 250 1S the default value.

(7) SAVE,ALOGIC

Each menu described using MENDEL contains informatio~ such as command
data area text,which may alter at run.time. 1-1henthe active menu is
changed new data is lost if the copy of the menu in core is not ,rritten
out over its corresponding MNB block. If the editor-assembler encounters
the SAVE command the core image of any menu flagged using the SWfi~U
statement will be written over its corresponding ~rnBfile definition
before the menu becomes inactive. (The SVMNU command is described in
context 6, below). Time and effort in maintaining current display
data is saved, but the disadvantage of permanently altering the HIm
file is incurred until the MENDEL source is reassembled. If the SAVE
conrnand is omitted, SVMNU requests are ignored and no menus are saved.

ALOGIC
TRUE - Enable saving of flagged menus.
FALSE- Disable saving of flagged menus.
If omitted, TRUE is assumed.

2.6 Menu Declaration: Context 2

Each menu defined using MENDEL is allocated a single data block in the
MNB file and given a unique 9-character name. The names and block
numbers are kept in a permanent m-block MENU ADDRESS TABLE (MAT)
beginning at block 2 of the MNB file. Each block of the table may contain
as many as 41 entries. The number of blocks actually allocated for the
MAT is determined from the NMENUS argument of the CREAT command.

The purpose of context 2 is to assign block addresses to menu names
in the MAT before any application command definitions actually occur.
Because a menu change may be specified in the definition of a command,
it is helpful to know the block numbers of all menus. Declaring the
menu names in context 2 lets the assembler completely process each
conunand in a single pass.

Menu names are stored and matched as 9-character strings regardless
of the command matching mode set by ABREV or BIGBT. In subsequent
contexts referencing a menu name wh ich has not been declared will
cause an assembly error. Menu names which are declared but never
defined will not be flagged as errors.

- 18 -

...

-
(8) f·lNDEC,AHENU,MmNU,•••

There is only one valid command 1n context 2: MNDEC ends context 1
and enters a list of menu names 1.11 the Menu Address Table. The command
must have .:Itleast one argument and may have as many as will fit in a
70-character line; the H.NDEC command may be repeated as many times as
desired within context 2.

MlliNU- Menu name (maximum 9 characters). Quoted strings are
allowed. These names do not appear on the run-time display.

2.7 Subroutine Declaration: Context 3

-

Menu definition using HENDEL requires matching an application subroutine
name with each command name so that the run-time environment can cause
execution of the appropriate procedure in core. These subroutine names
are kept in an s block Subroutine Name Table (SNT) immediately after
the MAT in the MNB file. After completing the processing of a create
mode program, the assembler uses the SNT to cons·truct the Jump Table,
a relocateable binary file which, .••«hen loaded, contains the entry point
address of each application procedure.

-

As the ordering of the names in the SNT corresponds to the ordering of
entry point addresses in the Jump Table, only the index in the SNT of
the procedure to be executed need be stored with each command. \~en a
particular command is selected PRTE picks up its associated SNT index
and jumps to the procedure indirectly via the entry point address in
the Jump Table.

-
The purpose of context 3 of a create mode MENDEL program is to declare
all subroutine names to be included in the SNT. The I to 6- character
names are stored 62 entries per block, the number of blocks being
determined from the ASUBBR argument of the CREAT command. The order of
specification of the procedure names is unimportant, but references in
later contexts to undeclared subroutine names wiH cause an error message.

(9) SBDEC,ASUBBR,ASUBBR •••

There is only one valid command in context 3. The SBDEC command
terminates context 2 and causes the MAT to be written out to the MNB
file. At least one argument to SBDEC must be given, but as many as
desired may be specified. The command may be 'repeated within context 3.

ASUBBR -Procedure name (maximum 6 characters).

- 2.8 Global Command Definition: Context 4

Contexts 4, 5, and 6 of a MENDEL program are concerned with command
definition. Each displayed or non-displayed application command is
r eproscnted by a 10 word node who se structure is given in Appendix E.
Coutn.md uod es ar c groupcd 2/f per block wi th a IO-word header node to
form menu bZocks.

- 19 -

The global conwGnd nodes belonging to a particular GAP reside in
g conti6uOuS menu blocks following the SNT. The number of blocks
allocated is determined by the NGLOBLS argument to the CREAl' con~and.
The pur}Jose of context 4 of a :t'!ENDELprogram is to enter nodes in
those blocks representing the global commands of the application.

Conmland nodes are entered in a menu block at the current command cursor
pos~t~on. In a create mode program, entry into context 4, 5,or 6
causes the cursor to point to the first conwand node of the first menu
block allocated. There 'ar e !-'!ENDELstatements in both create and edit
modes which re-posi tion the cursor. Since this allows command nodes to
be skipped, unaccessed nodes are always preset to the null conwand.

The first six nodes of the first global menu block define commands to
be displayed in the global command area. The remainder of the nodes
describe non-displayed global commands. Unused displayed commands may
be skipped by inserting COM statements with no arguments.

There are two valid HENDEL statements in the global conwand definition
program unit:

(10) GLOBL

With no arguments, this command ends context 3 and causes the SNT to be
written out to the HNB file.

(11) COM,ANAME,NARGS,ADOCODE,ASUBBR,AMNUCODE,AMENU,ADATA

The CO}! statement describes an application command to the PIGS run-time
environment. Information about the GAP conwand is entered in the current
command node and the cursor is incremented. COH has 7 arguments, any
of which may be omitted. If all are omitted, a null conwand is entered
in the current node. In context 4,if the current menu block is filled,
the cursor is automatically positioned to the first conwand node of the
next menu block allocated. An error results if all allocated blocks
are already full. The arguments to COH are:

ANAME - 5 or 9-character command name. Blank if omitted.
NARCS - Maximum number of arguments associated with the command;

a value of -) means an indefinite number may be
specified.
If omitted, 0 is assumed.

ADOCODE- One of 4 strings specifying how the associated
application procedure is executed:
DO - Call procedure after interval set by the DELAY

command.
DONOW- Call procedure without any delay.
DONT - Command inactive until activated by the GAP.

When activated, operates like DO. Inactive
commands are not displayed until activated.

DTNOH- Command inactive. Operates like DONOH when
activated by the GAP.

If omitted, DO is assumed.

- 20 -

• '9

-

'-

ASUBBR - Name of associated application procedure. The name
must have been previously declared using the SBDEC
command. If omitted, no procedure is executed when
the command is selected.

A}lNUCODE- One of 4 strings describing protocol if a menu change
is to occur. Execution of the exit procedure of the
current menu or the entry procedure of the new menu
may be specified.
Code Menu protocol

MENU
ENTER
EXIT
GO

Exit, new menu, entry
New menu , entry
Exit, new menu
New menu

AMENU
If omitted, MENU is assumed.

- Name of new menu to be activated. Must have been
previously declared using. the MNDEC command. If
omitted, no menu change occurs.
5 or 9-character string to be initially displayed
in the command data area. Blank if omitted.

ADATA

2.9 Argument Getting: Context 5

The function of this context is unimplemented in PIGS V2. However,
the single command must be present to close context 4:

(12) ARGET

Closes context 4 and causes the current global menu block to be wr itten
to the MNB file.

2.10 Menu Definition: Context 6

-

The bulk of a create mode MENDEL program 1S concerned with describing
the control, local, and pushbutton commands composing the various menus.
Context 6 basically consists of a group of COM statements for each lllenu
named in the MAT. Each menu definition begins with a MENU statement
and ends with a subsequent MENU statement or the termination of context 6.
The order of occurrence of the definitions is irrelevant.

'--

A menu definition may contain three types of commands: header description
statements, cursor movement statements, and command definition statements.
The effect of the statements is to generate header entries or command
nodes in the single menu block assigned by the MNDEC declaration. Any
of the three types of statements may be omitted excep t the MENU command.
If all other statements are omitted, a null menu is created. For obvious
reasons it is best to include at least a menu exit command.

The ~rdering of both header description and cursor movement statements
within a menu definition is not crucial. The order of the co~nand
nodes generated in the menu block is crucial. The programmer is well
advised to follow the sequence illustrated by PATH MDL in Appendix A.

- 21 -

-
As shown in Appendix E, the first two nodes of the associated MNB menu
block describe the entry and exit commands displayed in the control area
of the screen below MENU aridEXIT; The application procedures
associated with these commands double as the entry and exit procedures
for the menu, respectively. These subroutines may, of course, be omitted.
If a hierarchic structuring for the menus is desired, the exit command
should cause activation of the next higher, or father, menu. Descent
to lower brother menus ~s usually implemented using local commands.

Some care should be taken to ensure that the menu change protocol caused
by the exit command does not cause an untimely initialisation of an
application data base. Remember that the MENU argument to the COM
statement causes execution of both the exit procedure of the old menu
and the entry procedure of the new menu. Since the entry procedure to
a father menu will occasionally initialise a GAP data base, and because
selecting an exit command wi.II cause the associated exit procedure
to be executed anyhow, the GO argument· to the COM statement is ordinarily
used to specify the menu change for the exit command.

The next 6 nodes in the MNB menu block define the displayed pushbutton
commands, 1-6, left to right. It is often convenient to use the
pushbuttons for simple interaction wi thi.nthe execution of some GAP
command. If this is the case, the pushbuttons may be labelled by
omitting the ASUBBR and AlYi.ENUarguments in COH commands for the
appropriate nodes.

The remaining 16 nodes in the MNB menu block define the local commands,
displayed at the right-hand screen edge. All 16 nodes need not be used;
.it is useful to separate the commands into subgroups using null commands,
and no loss of polling efficiency is incurred. In writing a menu
definition it is obviously important to know the current cursor position.
When a MENU statementis encountered in a create mode program, the cursor
is initialised to point to node I, the entry command. Several cursor .
positioning commands are included in context 6 for clarity and convenience.
It is always best to use the ENTER,EXIT,PUSHB, and LOCAL statements as
illustrated in Appendix A.

All context 6 commands are described below. The three header description
conunands are:

(13) MENU ,ANAHE

The MENU command begins a menu definition in context 6. Any previously
defined menu block is written to the MNB file. The cOlnmand cursor is
initialised to point to the first node of a menu block filled with null
commands. At least one menu definition must be present in a create
mode program.

ANAME - 9-character (maximum) menu name previously declared
using the ~rnDEC statement. May not be omitted.

(14) DSABL,ADEV,ADEV •..

The DSABL command specifies which conunand sources will not be polled
when the menu being defined is activated by PRTE. The DSABL cociunand
need not appear; all unspecified sources will be polled. DSABL may
have an indefinite number of arguments and ordering is irrelevant.

- 22 - ...

-

ADEV - One of four strings specifying which of the command
sources 1S to be disabled.

, KEYB
LTBUT -
PUSHB -
CLOCK -

Keyboard source
Lightbuttons
Pushbuttons
Real time clock

(15) SVMNU,ALOGIC

Controls the saving of the current menu by PRTE. The core image of the
menu wiH be wr i.t ten to the MNB file on activation of a new menu if the
SAVE statement. was encountered in context 1.

ALOGIC -Optional logical argument
Must be the text string
TRUE or FALSE.
If omitted, TRUE is assumed.
TRUE - save the state of the menu

currently being defined
FALSE - Do not save
If omitted~ TRUE is assumed.

The four cursor movement statements are, 1n recolmnended use order:

(16) ENTER

positions the command cursor at command node 1, the entry corrmand.

'--
(17) EXIT

'-- positions the cursor at node 2, the exit command.

•.•..- (18) PUSHB,NBUTTON

Position~ the cursor at the node corresponding to pushbutton NBUTTON
(nodes 3-8).

NBUTTON Number of pushbutton, 1-6, left to right~
If omitted, 1 is assumed.

(19) LOCAL

'--
positions the cursor at the first local command node, 9.

The only other legal command in context 6 is the CO}!command. Its
arguments and function are as described for context 4.

- 23 -

...

-
2.11 Program Termination: Context 0

The final unit of a create mode MENDEL program has the function of
termi.nating assembly ;:mdnaming a starting menu for PRTE. The END
command must be present in a create mode program.

(20) END,AMENU

Terminates context 6 and writes out the last menu block defined. After
the MNB header block is recorded the file is closed.

AMENU - Name of starting menu to be ENTER'ed by PRTE at run time.
If omitted, the first menu declared by an MNDEC statement
is assumed.

2.12 Edit Mode

If an MNB file already exists, having been const:ructed using a create
mode program, MENDEL may be used to edit ini.tialisation parameters,
application commands, and menus. If extra space in the l'1NBfile is
available, it is possible to add new commands and menus. All create
mode statements except CP~AT and BIGBT are valid in edit mode as well.

On beginning an edit, MENDEL reads into core the old MNB header block,
MAT, and SNT. Subsequent GLOBL and MENU edit cOTIll11andscause the
associated MNB menu blocks to be retrieved. On completion of each edit
command, the original data blocks are overwritten with the altered data
blocks in core. Thus in edit mode only, contexts may be entered in any
order desired. In edit mode the GLOBL and l'lliNUcommands position the
cursor at the last defined conunand node +1.

The f oLl.owi ng two commands begin and end a MENDEL edit. They may not
appear in a create mode program.

(21) EDIT,ANAME

Begins a MENDEL edit. The original MNB header, MAT, and SNT are
retrieved.

ANAME - Name and extension of MNB file to be opened for editing.
If the extension is omitted, MNB ~s assumed. The argument
may not be completely omitted.

(22) FIN

Terminates an edit by closing the MNB file.

The following commands are valid only within edit mode contexts 4, 5,
or 6:

(23) POS,NRELATIVE

or

(21~) POS ,ACOl'1NAME

- 24 -

...

-
This command repositions the command cursor in the current menu block
or group of menu blocks. In global context all allocated menu blocks
are available - block boundaries are ignored. In context 6 only the
single menu block allocated to the current open menu is available.

'-

-
NRELATIVE - Number of commands to move the cursor forwards or

backwar d s ,
NRELATIVE may be negative. If omitted, ~ is assumed.

ACOHNAME - 5 or 9-charader (maximum) application command name
to be searched for by the editor-assembler. If found,
the cursor is left pointing at the node defining the
named command. If not found, the cursor position
remains unchanged.

(25) TOP

Positions the command cursor at node 1 of the first allocated menu block.

(26) BOT

Positions the command cursor at the first free node beyond the last
defined command node of the allocated menu block/blocks.

(27) REP,ANAME,NARGS,ADOCODE,ASUBBR,AMNUCODE,AMENU,ADATA

Replaces the command at the current cursor position. The cursor rema~ns
unchanged. Arguments to REP are identical to COM.

(28) DEL

Replaces the command at the current cursor position with a null command
node. The cursor remains unchanged.

2.13 Examples

For an example of a create mode MENDEL program please see Appendix A.
Below are included examples of MENDEL editing, carried.out on the MNB
file produced by assembling PATH ~IDL.

Example

'- Replace global command USESTYLUS wi.th a command named USEPEN. The
latter has no arguments, is defined by the application procedure XSTY,
and is to be executed wi th the normal delay after command selection.
No menu change is to occur and the data area should initially read
'SPARK' •

- 25 - ...

-
EDIT,PATH /OPEN PATH MNB FOR EDlTING
GLOBL /ENTER CONTEXT 4
POS,USESTYLUS /POSITION CURSOR AT USE SYTLUS
REP,USEPEN"DO,XSTY, ,,SPARK /REPLACE OLD COMMAND
FIN /TERMINATE EDIT

Example 2

Add a new menu to PATH named BONZO with entry conunandDOG and exit
command BAND. A new glopal command, MUSIC, will activate menu BONZO.
The menu will be saved on menu change.

EDIT,PATH /OPEN PATH }1NBFOR EDITING
SAVE,TRUE /ENABLE MENU SAVING
SBDEC,FOO /DECLARE A NEhTSUBBR
MNDEC,BONZO /DECLARE A NEH MENU
GLOBL /ENTER CONTEXT 4
COM,HUSIC,,,,HENU,BONZO /ADD GLOBAL COl1f.1AND
MENU,BONZO /BEGIN BONZO MENU DEFINITION
ENTER /CURSOR TO CO}mAND NODE I
COH,DOG"DO,FOO /FOO IS ENTRY PROCEDURE
EXIT /CURSOR TO COHMAND NODE 2
COM,BAND,,"GO,PATH ACTIVATE MENU PATH
FIN /TERMINATE EDIT

- 26 -

...

-

3. USING THE MENDEL EDITOR-ASSEMBLER

The MENDEL editor-assembler may be used either to generate a new MNB
binary file from a create mode program or to alter an existing file.
The assembler can also produce a binary relocateable Jump Table
for PRTE, a source program listing, and a dump of the MNB file.

3.1 Internal Operation of the Editor-Assembler

The ME1'DEL editor-assembler exists as an execute program consisting of
the files MENDEL XCU and MENDEL XCT on the system disc area, <SYS>.
When loaded, it first asks the operato~ for an option string consisting
of various control chm~acters and the application name. According to
the parameters received, it may produce, in order, an assembled or edited
MNB file, a numbered' listing of the source code, a listing of the Menu
Address Table, a listing of the Subroutine Name Table, a relocateable
Jump Table, and an ASCII dump of the binary MNB file.

3.2 Structure of the Editor-Assembler

The MENDEL execute program is coded in FORTRAN. It is organized so that
a single high-level subroutine executes each control option. The main
program, named MENDEL, merely. retrieves and parses the option string
and determines wh i.chof the procedures to call.

The actual task of producing an MNB file from source code falls to
subroutine YYMDLA. This procedure reads one MENDEL command at a time
from the source input device and parses it using borrowed PRTE routines.
Each l'fENDELstatement is interpreted by a single FORTRAN subroutine,
entered via a Jump Table, to produce MNB file entries. Global information
such as context and error data is contained in common blocks.

Subroutines YYMNUL and YYSBRL list the MAT and SNT of the MNB file on
the source listing device. They will not be entered unless YYMDLA has
also been called.

The production of the binary relocateable Jump Table 1S a fairly
intricate task executed by the high-level subroutine YYJNPI. This
procedure opens the specified l'rnB file and reads the SNT. YYJMPI outputs
a global transfer vector code for each subroutine name declared,along
with other necessary loader information. A separate low-level procedure
is used to produce each type of code.

'--
Hhen all control options have been processed, MENDEL closes any open files
and either exits to DOS or asks for the next option string.

3.3 Loading the Edi~or-Assembler

Before loading the editor-assembler it maybe necessary to make a few
device assignments. Table 3-1 describes MENDEL DAT slot usage and
recommended devices.

- 27 -

...

TABLE 3-1

EDITOR-ASSEMBLER DAT SLOT USAGE

OCTAL
.SLOT FUNCTION I/O

TYPE
DATA
MODE

TYPE OF FILE RECOMME~~ED
FILE ACCESS EXTENSION DEVICE ASSIGNMENTS

N
ex>

3 PROMPTING MESSAGES OUTPUT 5/7 ASCII NONE NONE - TTA
OPERATOR COMMANDS INPUT 5/7 ASCII NONE NONE TTA

ERROR MESSAGES OUTPUT 5/7 ASCII NONE NONE TTA

13 SOURCE LISTING OUTPUT 5/7 ASCII SEQUENTIAL LST DKA,TTA
ERROR MESSAGES OUTPUT 5/7 ASCII SEQUENTIAL LST DKA,TTA
:tv1ATLISTING OUTPUT 5/7 ASCII SEQUENTIAL LST DKA,TTA
SNT LISTING OUTPUT 5/7 ASCII SEQUENTIAL LST DKA,TTA
DUMP LISTING OUTPUT 5/7 ASCII SEQUENTIAL DMP DKA,TTA
JUMP TABLE OUTPUT BIN SEQUENTIAL BIN DKA",

17 MNB FILE OUTPUT BIN RANDOM MNB DKA
MNB FILE (FOR INPUT BIN RANDOM MNB DKA
MAT, SNT, DUMP)

20 SOURCE COMMANDS INPUT 5/7 ASCII SEQUENTIAL MDL DKA,TTA

*Slot 13 may not be assigned to TTA if a Jump Table is to be output•

.{
I

I

-
Note that if slot 13 is assigned to TTA, the Jump Table control character
may not be included in the command string. VT may be ON or OFF. If slots
13 14 and 20 are all file-oriented, 4 I/O buffers must be allocated
using ~he DOS BUFFS command. DAT slot 20 mllst be assigned to TTA if the
'I' option is to be used. Since HENDEL XCT and XCU are located on the
system disc area, DAT slot -4 should be assigned to <SYS>.

To load the HENDEL editor-assembler, type:

$. E HENDEL

The example below illustrates the loading procedure necessary to assemble
the create mode HENDEL program, PATH NDL.

$ DOS V2A
$ A <SYS> -4 <01~>

$ A DK 20 <or>
$ BUFFS 4 <or>
$ E HENDEL <or>

/LOAD FROM SYSTEM DISC
/PATH HDL IS DISC FILE
/NEED 4 I/O BUFFERS
/LOAD EDITOR-ASSEHBLER

3.4 Operator Cornmands to the Editor-Assembler

Hhen the editor-assembler is loaded and running it will issue the prompting
message:

HENDEL
OPT .(-FNAHE?
>-. The character > is an invitation to type an option string. The latter

consists of a string of control characters followed by the character +

and the application name.

Each file accessed by the editor-assembler will have the same first name
as the application name supplied in the option string .. A different
extension is used for the various I/O files, however. For example,
when assembling the HENDEL program PATH, the foLl.owi.ng files may be
referenced:

-
PATH J:.IDL
PATH Jl1NB
PATH LST
PATH BIN
PATH DMP

SOURCE FILE
BINARY OBJECT (FOR PRTE)
SOURCE, HAT, SNT LISTING
JUMP TABLE (LOADABLE)
Dill1PFILE

The source, MAT, and 8NT listings will be included one after another 1n
file PATH LST if slot 13 is assigned to a file-oriented device.

The control character part of the option string determines which
editor-assembler functions will occur. Multiple control characters
should be concatenated without commas. A list of the characters and
their functions is given in TABLE 3-2. Although control characters
may appear in any order in the option string, the functions they
select always occur in the order given in the table. Thus if the
character E is included, ME~DEL will ignore all other control characters
and iuunediately exit to DOS.

- 29 -

...

TABLE 3-2

EDITOR-ASSEMBLER CONTROL CHARACTERS

COMMAND FORMS: <CONTROL ClliL~CTERS>+<FILENAME><cr>

E <Cl'>

CHARACTER EXECUTION
ORDER

FUNCTION

wo

+ Exit DOS immediatelyE I to

B 2 Execute the MENDEL statements in file <FILENAME> MDL to create or edit file
<FILENAHE> HNB. DAT slot 20 should be file oriented. Syntax errors abort
processing.

I 3 Interactively execute the MENDEL statements input via DAT slot 20 to create'
or edit file <FILENA.'1E> HNB. Slot 20 must be assigned to ITA. Commands
may be retyped if syntax errors occur. MENDEL command FIN causes tcrnination

L 4 List source code on file <FILENA..l1E>LST(only if B or I option also used).

*H 5 List Menu Address Table on file <FILENAJffi>LST(only if B or I option also used)
-

*S 6 List Subroutine Name Table on file <FILENA.'1E>(LST only ifE or I option also
used).

J 7 Produce a Jump Table for file <FILENAME> HNB in file <FILENAHE> BIN.

0 8 Produce a DUNP of HNB file <FILENA:.'1E>HNB in fiIe <FILENAHE> DNP. .
A 9 Do all of the above except E and 1.

+ May only be used by itself.
* Ignored if L not also included.

If B and I are both included, B is ignored.

-
Typing the option string below will cause MENDEL to assemble the create
mode program contained in file PATH MDL and produce a Jump Table in file
PATH BIN.

MENDEL
OPT-<-FNAME?
>BJ-<-PATH<Cl~>

3.5 List File Format

If the L control character 1S included in the option string, each ME~~EL
statement or comment line encountered will be numbered and output to the
list file device. Unfortunately the character <tab> is not recognized
by some of the handlers and so will not be output.

If the M option is selected, a listing of the MAT will follow the source
listing. The following format is used:

MENU NAME BLOCK NUHBER IN HNB FILE

- If the S option is included in the option string, an SNT listing will
follow the HAT printout. The application subroutine names are simply
listed in the order they occur in the SNT and Jump Table.

3.6 Dump File Format

-
The Dump facility of MENDEL -is necessary because the MNB file is output
in lOPS BINARY data mode and cannot be inspected using the DOS text
editor. The layout of a DMP file closely follows the l'1NBfile structure
given in Appendix E.

Dump files are broken down into sections according to ME~~EL contexts
and physical blocks (256 words). The folloHing labels identify contexts
1-6:

Label Context

HEADER
MENU TABLE 2
SUBROUTINE TABLE 3
GLOBALS 4
ARGET 5
MENUS 6

New blocks are identified by the offset label:

***,/,;, BLOCK n

The entries comprising each context are numbered in order of occurrence
and listed in convenient formats.

Header block entries are word-numbered and listed as either integer
values or text strings. The meaning of each entry should be clear
from Appendix C.

- 31 -

...

-
The }~T and SNT entries appear exactly as they would ~n a list file
produced by the M and S control characters,

The portions of the DlTHP file describing the GLOBAL, ARGET, and HENU
contexts use a conunon format for listing menu blocks. A word-numbered
list of the header node values is output followed by a decoded entry
for each of the 24 command nodes. Table 3-3 describes the layout and
meaning of each field of a command node listing.

3.7 Prompting Hessa~es

MENDEL types the message:

MENDEL
OPT+FNAME?
>

to indicate its readiness to accept an option. string. If the I control
character is included, > is also the invitation to type the next MENDEL
statement.

Although MNB files may be edited using statements 1.nan·MDL file, they.
are normally altered interactively using the I control character.
As an aid, edit mode MENDEL statements which reference the command
cursor aLway s cause the altered corrnnandnode to be decoded and listed on
DAT slot 3 (TTA). The listing format is identical to that given in
Table 3-3 for Dump files - minus the labels. The POS statement ~s
particularly useful for examining MNB file command nodes.

3.8 Error Messages

All error messages output.by the editor-assembler, except one, go to
both the source list file and DAT slot 3. The message;

COMMAND ERROR, IGNORED

is output only to the teletypes if an illegal control character or poorly
formed option string has been entered. The malformed string is ignored
and the corrected version should be retyped.

As each MENDEL statement is encountered, the editor-ass~mbler checks its
syntax and the validity of its arguments. T·h'eaction taken by MENDEL if
an error occurs depends upon whether or not the I control character was
included in the option string.

If it was not included, MENDEL lists the offending statment and outputs
the following messages to the source list device and TTA:

K STATEMENT CAUSING ERROR
ERROR NUMBER N
'/(***)'< SUCCEEDING COMl-'lANDSNOT OBEYED ·,'<it*it*

where K is the line number and N is the error numbe r- All files are
closed and succeeding commands are not executed but are checked for
superficial syntax errors. Assembly or editing fails and subsequent
control characters are ignored. The MNB file may no longer exist or
it may be garbage.

- 32 -

...

(r { ((({ ((r r r ((

TABLE 3-3

C:OMHA},j"D NODE LISTING FORKA.T

ww

I SMALL IDX Cm21A1I.1J:) DATA ARG I W SUB EXE ~.!E~"UI L. BU'l'TOilS!
LAEEL !

I I I I
LARGE

I I L. BUTTONS IDX COX DATA I ARG I W SUB EXE HE:\U

DI!'1'A INTEGER TEXT TEXT INTEGER INT. INT. INT INT. INT. INTEGER
T:i?E

n U'J t::::lVl :TC Vl Z - I ,...._- r-t ••• --! '" - (':l - Gt'::'
0 ,.., ,_. ro :J C 0 - - x x ,.....~ ~
~ III CD 0 H '" 0 5- ,.... 0,...· o ro ,.... (':l ,.... ;3 0

H :J '1 '" o H ,.., Zr-n !? n ,.." o ,.., (':l n
il> ,.., ;>;" . o r.> 0 U'JX C C Cl ;>;"
:J ,.... \.0 11> l' '1 o :;::n Z ,.., (!l r-t ro ;::;
o..::l ,.... I Ul 0 0,,0 <? X rt> :J Ul :J

()':l ,.."n Ul n 0 § 03 . ,..." 0.. ,.... 0.."" c
::l

Z~
r.> :::' Hl H3 r+ H 0 5-0 :0: o..c.> il> ZCJ III .0 0'<

0..0 CH ¥ H Il> ::l O:J 'IS' Ul ::l~ :J Q

<? H t"'P.> III '1 0.. j ~c... Ul H ~ H
C. t"'n r. o t'O •....... ::l 0 3 0 - '1 (5

:<: e-t :Tr-t C 1-" . ,.... f5 n r.> n (') 0
r=

0

FUNCTION •....~•... - n <? (l) r.> ;3 (/) (/) III ,.... :J (l) ;:l n Hl
rr :J '0 H H (1) :J il> C 0.. C ro
:To. @ n ::l ,.... r+ Ul r-t C 0.. n ::l
,.... (1) n :To.. ,.., ::l 0 ro n H n C :T(':l
::l X III 0 III III rJ) P.> ::l 0. :TO ::rH P.> t:

::l ~1 '1 r+ n t:r' 0 III CJ (1) ::l
P.> """' 0..3 III III r+ (1) ::l III :J 0 ::l ~ a

::l . Il> n ,.... ro'O 00 Hl 0" 0 I:l r.>
S 0 :J r-t QJ <: (1) '0 11> 0 ..." g. ro r-r 0.. (l) H (1) X Il> ,_. 0 t:
:J '1 (':l 0 Ul ,.... ,_. :J ,....
to: n ::l Ul P.> n Ul n 0.. r.> •....• r"t

C III C 0 III t: •.....0
0":; a a """' r-r n r-r S
,_. Ul rJ 0 ro t-'- •....• ro S 0 0'
0 0 t"'H 0 0. Il> 0 ::l III n 0
o H t"'Hl Z r-t ::l to: ::l n
;>;" H :!; ro to: c ro. ,.... :!; n ~ ,.... C-'O ,.... H o

::l ,....0 0 r-t H (/) ,.... . rt
0. :::§ H :T 0 Ul ,....
0 Z o M' -e
x Il> 0 ::l ell 0 M' CJ
•....... P.> [- 0 0. 0 r"t<.~ •....... C t:r' (')

I
0 '0 ~E(i) 0'. 0-..." ro ,.... (1) .

Il> Ul

-~ "'1

I

-
If the I control character was included in the option string and a
fault occurs, only the error number will be typed out. The offending
statement is ignored and MENDEL asks for it to be retyped by outputting
the prompting character, >.

Upon termination of an edit or assembly, MENDEL outputs several messages
to both TTA and the list device. The first of these indicates the
number of errors and source lines encountered:

****~,**,.•** n ERRORS, m LINES.

The second message notes either the success or failure of MENDEL processing:

NORMAL EXIT or

********** ASSEMBLY ABORTED AT LINE k

Numbered MENDEL errors are explained in Appendix K along with PRTE
diagnostics. Typing <cntrZ P> will not restart the editor-assembler.

3.9 Examples

The two examples below illustrate the complete loading procedure and
option strings necessary to assemble file PATH MDL and edit PATH,MNB.

Example 1

Assemble PATH MDL and produce a source, MAT, SNT, and Dump listing on TTA.

$ DOS V2A
$ A <SYS> -4 <cr>
$ A DK 20 <er->
$ A TTA 13 <er->
$ VT ON <cr>
$ < cnt rl: X>
$ E MENDEL <cr>
MENDEL
OPT-<-FNAME?
>BLMSD+PATH <cr>

/LOAD FROM SYSTEM DISC
/PATH MDL IS DISC FILE

./LISTING TO TTA

/TURN ON DISPLAY
/ONLY NEED 3 BUFFERS

/OPTION STRING?
/NO JUMP TABLE ALL01-JED

SOURCE LISTING OF PATH

***,~*,"*,.•** 0 ERRORS, N LINES. /END OF ASSEMBLY
NORMAL EXIT

MAT LISTING
SNT LISTING
DUMP LISTING

MENDEL
OPT-<-FNAME?

> E <cr>
$ DOS V2A
$

/NEXT OPTION STRING?
/EXIT TO DOS.

Example 2

-

Edit PATH MNB, making the lightpen the starting s:tylusdevice.

$ DOS V2A
$ A <SYS> -4 <cr> ILOAD FROM SYSTEM DISC
$ A TTA 20 <cr> IINTERACTIVE COMMAND INPUT
$ E MENDEL <cr> 10NLY NEED 3 BUFFS
MENDEL
OPT+FNAHE?
>I-<-PATH<cr->
>EDIT,PATH <cr>
>STYLUS,LPN <cr>
ERROR NUHBER 8
>STYLS,LPN <cr>
>FIN <cr>
NORMAL EXIT
MENDEL
OPT+FNAME?

>E <cr>
$ DOS V2A
$

10Pl'ION STRING?
I INTERACT
IEDIT HODE
IBAD COMMAND NAHE
ICO}MAND IGNORED
IUSE LIGHTPEN
lEND INTERACTION
INO LINE COUNT GIVEN

i

INEXT OPTION STRING
IEXIT TO DOS

- 35 -

...

-
I

4. OPERATION Of TRE PIGS RUN TrME E~~rRONMENT

The PIGS run time environment is coded largely in FORTRAN IV. The
routines may be grouped by function into four sets: initialisation,
command polling, command reconciliation, and menu activation. Figures
4-1 through 4-5 include flowcharts of these four functions and the PRTE
main control loop. Each function is flowcharted separately and linked
to the main control loop by a circled letter. A general discussion of
the run time envirornnent is included below.

4.1 PRTE - Main Control Loop ,
~~en a Graphics Application Program is·loaded using EXECUTE, PRTE
subroutine PIGS receives control via a JMS1; instruction in the Jump
Table. This JMS* instruction is output by the ~iENDEL editor-assembler
and serves merely to ease the overlay construction process using XCHAIN.

'-
402 PRTE - InitiaHsation

Subroutine PIGS controls all PRTE functions. It first initialises the
run time environment, interpreting header information contained in block
1 of the MNB file output by MENDEL. Then the menu blocks containing
global command nodes are read into the bottom of the Command Table array.
The size of the common block· containing the Command Table is adjusted at
load time by a pseudo-instruction located in the Jump Table so that
all global command nodes will fit into core. FOG subroutines are used
to generate the display file structure (see Appendix D) which, when
executed by the VTI5 processor, creates the CRT display. Any
error wh i.choccurs during PRTE initialisation will cause the program
to terminate with a teletype message.

._
Having initialised the display and run time environment, subroutine PIGS
activates the starting menu of the application and executes its entry
procedure. A new menu is activated simply by reading the appropriate
MNB block into the Command Table above the globals. The lightbutton
display files need not be changed since the text command names are
referenced indirectly as addresses in the Command Table. It is only
necessary to blank off the lightbutton display files during menu block
input.

For the remainder of an interaction Se881.0n, PRTE simply remains 1.n
the following command interpretation loop:

(1) Poll active devices until a command is selected.

(2) Retrieve the command's name and arguments.

(3) Execute the associated application procedure, if required.

(4) Retrieve a new menu, if required, and go to (1)0

The steps are briefly discussed below.

- 37 -

...

-

4.3 PRTE - Command Polling

:rnterruptions such as error messages or typing <,cntl'Z P> cause control
to be transferred to step (1), above. In polling for a new command,
PRTE repeatedly examines each active device until the operator selects
a command or until a clock scheduled command becomes due. Polling
immediately ceases and command selection information is returned to
subroutine PIGS.

4.4 PRTE - Connnand Reconciliation and Execution

Because the form of the command information varies from device to device,
PRTE must next convert it into its standard internal format: a text
command name and the word index of the related Command Table node.
This reconciliation process includes argument parsing in the case of
typed input.

At this point subroutine PIGS blinks the associated lightbutton, if it
exists, and clears the previous error and prompting messages. If an
application procedure is associated with the command, the index of its
starting address in the Jump Table is found in the command node. A
JMS* to the application subroutine is simulated. Control returns
directly to PIGS.

4.5 PRTE - Menu Activation

As the final step in the connnand interpretation loop, PRTE exam~nes the
selected command node after command execution to determine whether a
new menu must be activated. If so, the setting of two bits in the node
determines whether or not the exit and entry routines for the old and
new menus, respectively, will be executed. .Ac ti.vatLon of a new menu
occurs as describ~d in Section 4.2.

- 38

...

-
FIGURE 4-1 PRTE tlAIN CONTROL

CLEIIl{ PRTE },RROB.
ABOl{1' FLAG.

8 ,1~ll'i' TO em: n.oi.
(] 001']"'l''-I '1""""--- __ .---.. J\. h • ui H

TAgLE

[-_.-a _fiC~IVATE s:rARTI~~
('].[,;"1\' OUT U-'-LD -1 HENU .USING BLOCK \::-:-t. -..
\J - " ---I j --_.__<cnt.nl: P? ;\,";1)

J\RCUHI~NJ'S \ NUHBE~Ii.~ON HNB ERROR RETuRN IS

\ TO ~'RTE PULL rxc-lr---l C0 ®

/
-':1.----- ..-----\ fii;-------\ ~
]'OIL '(""1\'£' AR5E ARGUHENTS \ ./ '

~ ,; ",""~,; ~,p , ..' AND GET \~OIID Y r'-'- /' CC;'211L"l!) ~ .. ---

\

' "OlJhC,:, JJI,v J.eL,,/' ---·--L.:.:\ ;NDEX OF cml~IAc<,) - ----,; ..-'" INACTIVE? »:
FOR NEXT \IN COHNAND TABLE ./

~:O:ll~ND _ _./ ---------.--,-. I T

(y<.-:]-_...._.. ----.-._ ... --'_._----------:-._-------'---_._---'-__---_.-
~ .

I
"'-

.~-~~~----~.... -~..-..... __ ..__ .. ~-...-~-.- - --. _ _.----., .__ .._ ••.....-.. ,.:.

F

NOTE: Circled letters correspond to flowcharts on succeeding }_)ages.

- 39 -

...

-
l'rSURE 4-2 PRTE cmlHAND TABLE AND DISPLAY INITIALISATION

READ HNB SET UP DEVICE
-I> -T> AND MENUING

FILE HEADi~R CONTROL COMHONFROM DISC BLOCKS _j

READ HNB
FILE NAl'!E
l'lW;! TTA

'---_._----_j

f CREATE LIGHT- 1
BUTTON DISPLAYl__FILES

'CREATE T'RACKTNG I

t'l3ORDER, AND I<J
BOA!Ul DISPLAY I
r n.ss-1--"

.--__1__ __,

READ GLOBAL
CONMAND BLOCKS
INTO BOTTOH OF
CO!<INANDTABLE ,

SELECT STARTING
SELECT STARTING '__I' STY.L_US DEVICE
KEynOAlm D!;VICE. r-----I

_. . __ ...~. -41

START DISPLAY],8~1---------i

- 40 -

...

FIGURE 4-3 PRTE C0t-111A:-lDPOLL ING

---~PACK C!lM~ACTER
uno D1SI'LAy[D <I F

I:UFFER

--1-- _j

READ KEYBOARD,
I CHARACTER

T

l

-

DELETE ALl'l~A
CURSOR _

-- ---

. RETURN CHARACTER
STRING

I~:\CODE ACTIVE J
LEV ICE H01W

---T-
1

T

[

/ - I
t--...: READ x, Y, I L-- -,-.....Jr--~ STYLUS POSITION

F l:1~' ----- r==----~ RETURN N/I..}1E_JJ----l REGIST£I~ VALUE ,-t>O
REPOSITION __ --J

TJ~;~ING J ~fL.__~
DETERHINE l';/I.HE
REGISTER VALUE
FRON D1SPLAY

FILE

-p CHARA;;;;R,>TYP/
._ __;f F

<LIGHT1)l.11 TO

~~-----:5(-'--
/' <, Hl:rURN }

/ l'USIlnuTTO:-IS"_,_'!:_t~pu. S.li))Ul'TON T/' _ t--c-; PUSHBUTTON r-::::,
IICTII'£? /' l'RLSSED? --.------,- ~~

/ . <, / l\'U}lBERC F 1 L_,__ -----

~----------/'P-,~~ J DECRGn:N'~--- r DESCllEDULE

CLOCK <, T ../ SCHEn"","D"--.._ POSITIVe 1 co:."",O IF

______ ..__ ("'--:t__ ,-, ' r-c Id':1lJl-,J<
'\.._.J'...;f --- -- --------_--- __~~::~D~~~_~~:__-------------k>- _/

T

- 41 -

...

FIGURE 4-4

COMPUTE HORD
INDEX OF COM
:t<IANDIN CO~1MAND

TABLE

-
PRTE Cm1MAND RECONCILIATION

!
I

I PARSE
ARGUMENTS

I
GET ARGUMENT !

o AS COMMAND
I

NAME I

!
I
I

:

i
I

'CLOCK SOURCE,
RETRIEVE

COMMAND NAME

SEARCH CO~U/tANDTABLE
FOR TEXT W\l!t:. SEARCH
ORDER: CO:-\TROL Cm!l'!MIDS<:J~------_-J
PUSIlBUTTON Cm;::·jt\ND S
LOCAL CO;'J}!ANDSGLOBAL

COHI1Al'\D S

SAVE COMMAND
NAME. RETURN
WORD INDEX IN
COl'1HANDTABLE

- 42 -

...

-

FIGURE 4-5 PRTE BENU ACTIVATION

I SIHULATE JHS* I
TO EXIT

.:>---'----f>. I PROCEDURE OF J
OLD :t-1ENU

----:----=.J-r---.
T

'-------l>y
7

BLANK OFF
LlGHTBUTTON

DISPLAY

READ NEH 1
NENU INTO J

OH}fAND TABLE

~---

l LI~~~~~~~~~ONJ
DISPLAY--T

F.Nno:r:o~>o(;.·•.. O}' T ISINUJ.ATE JHS* TO I
CURIU:~T .~~;~:~~~ +L> El'<Tl{Y PROCEDURE I

SE'l:/ -"l~ NE\v HENU J

RETURN 4:.:.::]0 1
- l~3 -

...

-
5. WRITING A GRAPHICS APPLLCATION PROGRAM

There
using
These

(1)

(2)

(3)

(4)

(5)

(6)

'-

are essentially six tasks in developing a graphics application
PIGS, most of which are common to the design of any large program.
are listed below along with pertinent references:

Determine the desired commands and menus and describe them to
PIGS by writing a MENDEL program (Chapters 2 and 3).

Design the application display (FOG manual).

Design the application data base.

Write an application procedure in FORTRAN IV or MACRO-IS assembly
language for each command (Chapter 5, FORTRAN and MACRO-15 manuals).

Debug the application procedures.

Determine the overlay str~cture of the application procedures
and data base. Combine this overlay structure with that of PRTE
using XCHAIN (Chapter 6, CHAIN manual, PDP15 User Notes 2 and 3):

This chapter deals largely wi t.htask (4), writing application procedure's.
Examples from PATH are included in Section 5.4.

5.1 In1.t.ia1isinga Graphics Application Program

A graphics application program running under PIGS ordinarily consists
of some data tables or common blocks, a display file structure, and a
set of application procedures. When PRTE begins running, the entry
procedure of the starting menu will be automatically executed. This
procedure should initialise the application data base and may be used
to direct preliminary operator choices by activation and.deactivation
of displayed commands.

The entry procedure of the starting menu may also define the application
display using FOG. To link the main application display file to the
PIGS display, use the FOG commands:

CALL RCHOOS (16)
CALL DRAW (I,MAIN(I»

after defining the main display file, MAIN. The FOG commands:

SCHOOS (16), DINIT,RINIT, and SINIT

should never be used by the application program. Remember that the
display is active. All files mllst be well-formed before the main file
is linked to the PRTE display. The initial display attributes set by
FOG are unchanged by the PRTE display.

'- .

- 45 - ..•

-
S.2 Areument Transmission in Application Procedures

The principal difference between ordinary FORTRAN IV or MACRO-IS
routines and graphics application procedures written using these
languages is in the method of retrieving arguments parsed by the run
time environment. To allow more flexibility in the number and types
of arguments a command may have, PRTE classifies and places arguments
in several common blocks accessible to both the run time environment
and the GAP. Actual argument values are retrieved by application
procedures using special PRTE functions. Application procedures are
coded as subroutines with no formal arguments.

Each PRTE argument-getting routine is a logical function which is .TRUE.
if the argument was specified and .FALSE. if it was omitted. Each of
these functions has at least 2 parameters: an argument index and an
argument variable to hold the returned value. The index is simply the
position of the desired argument in a complete cornnlandstring, numbered
from left to right with argument number 1 being the text command name.
If the desired argument was omitted, the value of the supplied argument
variable remains unchanged, allowing easy spec i.fi.ca t i.on of default values.

Table 5-1 describes the various PRTE argument-getting functions and
their parameters. Although the functions correspond to particular
FORTRAN data types, they may also be used from t~CRO-15 procedures by
utilising the FORTRAN argument transmission protocol (see Chapter 3,
PDP15 FORTRAN IV OPERATING ENVIRONMENT manual).

Occasionally it is useful for one application procedure to call another.
In this case a second set of PRTE routines may be used to put arguments
in the argument common block for retrieval by the called procedure.
These argument-putting subroutines are described in Table 5-2. Before
each call of an application procedure, PRTE argument common must be
initialised. Arguments may then be put in the common area and the
application procedure called. For convenience, PRTE initialises the
argument common block when the argument index of any argument-putting
routine used is negated. The example below illustrates the FORTRAN
equivalent of the command;

SHOW,3<cr>

a.n PATH.

CALL PUTARG (-2,3)
CALL SHm~

Further information about a command and its qrguments may be obtained
by a GAP directly from the argument conmon blocks manipulated by PRTE.
Of particular use are argument types, command source device, and number
of arguments specified. Argument common blocks ARGTP, CARG, and DARG
are described in Appendix C.

5.3 Special PRTE Subroutines

Although HENDEL may be used to set up the initial state of PRTE active
devices, commands, data areas, and display, it cannot control PRTE
flexibly during interaction. Instead, FORTRAN-callable subroutines
have been provided to enable dynamic control over selected PRTE
functions (such as data area-display and command scheduling). Table
5-3 describes all currently available PRTE special subroutines. These
subroutines receive their arguments via the normal FORTRAN IV calling
sequence.

- 46 - ...

r r r r r - .• r - r (r (r

TABLE 5-1

PRTE. ARGUMENT - GETTING FtrnCTIONS'~

S"JBROUTINE ARGWcSNTS D'SSCRlnIO~ GL03AL
REFER:X::::ES

GSTCH GETCH2 Get cbaracte'rstring, left justified, blank filled. I ALO,,!
NOAH.G Integer iedr..xof argume:1t srvc
STRING First element of real array to hold returned string
NOCHl\R Returns number of characters in string argument
MA.'\CH Haximum number of characters before overflow

GETDI GETDI2 Get double int"'gernu~ber GETDP
NOARG Integer index of arf;ur.1ent
DUBINT Returns double integer argument value

GETDP GETDP2 Get double precision numher ABORT
NOARG Integer index of argument
DUBPRE Returns double precision argunent value

GETFIL GETFII. Get file and
e ,

If extension is GETCHtext name ext cns i.on,
NOARG present, it must be separated from the f~le name by F:-;P':iE

a blan3c (use quotes)
STRING First element of real 2-vord array to return file

name and extension
EXT Left justified, 3-character default extension

GETLOG GETLOG Get logical argument. Either the string TRUE or
FALSE must have been typed.

NOARG Integer Lnd ex of argur.lent ABORT
LOG Returns logical value, .TRUE. or .FALSE. GETCH

GETSI GETSI2 Get single intl..!ger number A:SORT
NOARG Integer index of number GETDP
Il'."TEGR Returns integer argu:nentvalue

I

GETSR GETSR2 Get single real number

I

GETDP
NOARG Integer index of argument
REALNO Returns real argument value

I

><Each logical function may also be used as a subroutine.
Functions are .FALSE. if the desired argument was omitted.

I

TABLE 5-2

PRTE ARGUMENT-PUTTING SUBROUTINES

SUBROUTINE
NAME ARGUMENTS FILE

NAME DESCRIPTION GLOBAL
REFERENCES

, ..

FUTCH PUTCH2 Puts a character string in argument common ABORT
NOARG)~ Integer argument index }:lVC
STRING First element of real array containing string argument
NOCHAR Number of characters in string to be moved

I PUTDI PUTDI2 Puts a double integer number in argument common PUTDP
NOARG* Integer argument index
DUBINT Double integer number to be moved

PUTDP PUTDP2 Puts a double precision number in argument common ABORT
NOARG* Integer argument index
DUBPRE Double precision number to be moved

PUTSI PUSI2 Puts a single integer number ln argument common PUTDP
NOARG* Integer argument index
INTEGR Integer number to be moved

PUTSR PUTSR2 Puts a real number in argument common PUTDP
NOARG* Integer argument index
REALNO Real number to be ~oved

I

*First argument index used before the application procedure call must be negated to initialise PRTE argument
common blocks.

r r r r (r r

TABLE 5-3

SPECIAL PRTE SU3ROUTI1~S

SCBROUTINE. AH.GUNENTS FILE
NAJI1E DESCRIPTION GLOB..'\L

REFEREKCES

,.
Activates in ifACTCM ACTCM a cd~and the eu~rent menu. Ignored CHFED
command already.active Il\BITS

riVC
COHXll..l1 First element of array containing 5/7 ASCII command name

CLE:?,R CLERR2 Clears the current error message c:isplay xvc

CLP~'1 CLPRH Clears the current prompting message display nvc
D,\CTCH DACTCM Deactivates a command in the current menu. Ignored if cmnm

command already inactive EDITS
:fVC

COl'lNAH First element of array containing 5/7 ASCII command nar::e

DSKEDU DSKEDU. Deschedules a command in the PRTE clock schedule buffer. DSCHED
No action if command not s cn edu Le d

CO:·ll~.~'f First array element of the 9-character corr.mandname to be
descheduled .

DISERR DISERR Displays a IT,essage in the error display area and rings the PRI~l
teletype bell HESDIS

STRING First array element of the 5/7 ASc:;nmessage to be displayed
NOCH.AR Numb e r of ci1aracters in the message
IREST <enta-l: P> r.::startaddress. (Use ~R:'IlZETin common block

ERRCO::-Jif no special address 1.S desired,)

l::RP ERP Displays a GAP error rr.essagenumber and returns to calling EIUZ;·1ES
procedure

NUMBER This integer value +200 will be displayed as the error
numbe r

I
-

PRO:fPT PROHPT Displays a message in the pr ompt i.ng rr.essagedisplay arC'!a XESDIS
STRING . First array element of the 5/7 ASCII rr.essagcto be displayed
NOCF..I\.H. Numb e r of characters in the'message

TABLE 5-3 (Continued)

SPECIAL PRTE SUBROUTINES

ARGm!E~TS
FILE
1\~1E DESCRIPTION· GLOBAL

REFERE1\CES

V1
o
I

Qur , t QUIT Exits PRTE and returns to DOS
S~DUL SKEDUL Schedules a command ~n the PRTE clock schedule buffer. SCHED

.The cOQI!landwill be selected when the time interval
specified has elapsed

Com!l\J.'1 First array ele:r.entof the 9-character command name
INTSEC Interval in seconds before the scheduled command becomes

due again
INTPLS Interval in clock pulses (20 milliseconds) before the

scheduled command beco:nesdue again. Total interval is
I:l-lTSEC+ If'lPLS

KRPEAT Nu:nberof times the comnand ~s to be executed
~;HP:AT = -1 means execute indefinitely

~'DAT WDAT Displays a 5 or 9-character message ~n a sp'ecifiedcommand wM:.\1J
data area. The number of characters used ~s dependent
upon the display size

CO!-fNAM First array element of the 9-character command name whose
data area is to be changed

STRING First array element of the 5 or 9-character 5/7 ASCII
string to be displayed

-

5.4 Examples

Below are included several examples of GAP application procedures
extracted from PATH. TIle first subroutine, is called by PINIT, the
entry procedure for the starting menu of PATH. Note that it creates the
PATH display file structure and links it to the PRTE display using FOG
save register 16. As INITD may also be entered via command PATH in
menu PATH, care has been taken to see that the display linking code is
executed once only (INITD may not be overlayed, however, since IITIHE
is not in common).

The second example illustrates the use of the PRTE argument-getting and
.data area display routines. Subroutine SHOlVIT is entered upon selection
of command SHOH ,vi th any active source device. The subroutine behaves
slightly differently if the source device was not a keyboard (IDCOME * I):
the current cel number, NUH, is incremented and becomes the default
argument value (all arguments are cons id'ered to be of type omitted when
the source device is not a keyboard). The subsequent subroutine call
to GETSI either retrieves a typed integer value or passes on the default
value of NUM. In order to display the cel or path number in the data
area of command SHOW, it was first necessary to use the FORTRAN ENCODE
statement to convert the integer to a 5/7 ASCII string. To use PRTE
subroutine ~®AT to display the data, it is necessary to provide the
text command name, CNAM(I), as an argument. The coding used may cause
a problem if one later decides to change the conwand name using MENDEL,
and then forgets to change the data statement in the application procedure.
This annoyance may be avoided by retrieving the command name using the
GETCH furiction:

CALL GETCH(1,CN~~(1),NOC}Uffi,9)
CALL WDAT(CNAM(l),CDAT(l»

The above coding causes the same data area display and makes procedure
SHOWIT more independent of the MENDEL command specification.

- 51 -

-
Example I

SU DR Ot:ITI N E I N IT D
c
C INITIALE ES THE APPLICATION DISPU-\Y'
C FILES AND LINKS T:iE~~ TO THE PIGS DISPLAY.
C

C r.~1M0 NI PT H f) ,t'\ T I L 0 IS (102 Ii) , I F ILL (1 0 5 0) , M{'II N LX5 ~)
COfilf'10N/13(\C Y GI ID DIS (256)
C m~t'10 NI DA T n 1:1 mID (3 75)
EXT ERN AL X C R OSS

C
C
C
~

INIT WORK DISPLAY
LDISCl)=0
CALL DCHOOSCLDIS ,1)
CALL SETPTC 0,0, e)

-- .
C
C
95

INITIALIZ E BACKGROUND DISPLAY
18 DIS (1) = 0
CAL L DCH 0 OS 08 f) IS, 1)
CA L L S E TPT (0, 0, 0)

C
C
C

SET UP ~1Al N DISPLAY

MM N DC1) = 0
CALL DCHOOSCiilAI·ND, 1)
CA L LOR A IN C 1 9 L j) IS (1))
CAL L DI7A! ..JC 1, IB DIS (1)
CAL L DR AW(1, XCR 0 S S)
MffiIDC 1)=0
CALL GR I D (~~mID (1) t 1)
CA L L BLAN K C MCR I D (1))
CAL L DRA'.~(19 tfl GiiI D (i))

C
C LIN K TO PR TE MAl N DISPLAY USI r~G .
C FOG SAVE REGIS TER 16. ONCE ONLY
C CODE.

IF (I 1TP'1 E • ~JE. 0) GOT a 100
II TP1 E=1
C.lI L L R CH OOS(16)

10 CALL DRA14 (1, f'1AI N DC 1))
CALL DCHOOSCMAIND, 1)

C
100 CCWTnnlE

RETU~N
END

DOSPIP V6A

>

- 52 -

...

-

Example 2

SliRR OlITIN E SH OINIT
c
c
c
C
C
C
C
C
C

C 0"1 ['ilAN n:
S H 01.,', ~J l.' M
SH OW

nIS PLAYS CEl OR PA Tll NUMBER < NLn~> AND MAX ES
IT THE CURRENT CEl. STYLUS HIT STEPS CEl Nl!~lBER.
IF TYPED AND ~tJLH1> O~HTTED, SHOWS CURRDIT CEl.

DHi n·!SI o Net,]:', MC2) , CDiH C2)
COMMmv PTHDi\ T I I D DLIMC2~M8) , I CUR, N ex::R V
CO~1r10NI N1 GTP II DDt/J(32), IDC O~1E
DATA CNAM/5HSHOW ,5H I

C
C GET CEl NUMBER

NUM=rc UR
IFCIl)COfY1E .NE. 1) NIH'1=NUM-l
CAll GETSI (2, NtH1l
IF CNU~1 & LT. 1 G OR. N UM • GT. 12)) N Ut~=1
IC UR=NUM

C
C DIS PL AY C EL AND N UMBER

ENCODEC re , CDAT, i) NU~j
FORMATC 13)
CAl l \mA T (C ~J(-\M(I) , CD AT (1))
CALL BlKDIS

CAL. L SH O~J(Nl.I(y))
C

RE Tl!R N

DOSPIP V6 {\

>

- 53 -

...

-
6. OVERLAYlNG A GRAPHICS APPLICArlON PROGr~

The PIGS run time environment is coded mo stly in ;FORTRAN IV and would
nearly fill the bottom 32K of PDPI5 core (including device handlers and
DOS) were it not overlayed. ifuen overlayed, the run time environment
uses about 10K of store (excluding device handlers and DOS). In order
to achieve this core economy and allow application procedures to share
PRTE and FORTRAN run time environment subroutines, graphic application
programs must be loaded with PRTE routines using the overlay building
program, XCI-JAIN.

6.1 Debugging the GAP

Overlaying a GAP with XCHAIN is a comparatively lengthy procedure
requiring several minutes to complete the necessary library searches.
For this reason, and because it is not possible to use DDT {Dynamic
Debugging facility) with overlayed programs, it is wise to test application
procedures separately from PRTE as much as possible. Otherwise, FORTRAN
or MACRO-IS I/O statements must be used to tr8r~ down errors, a lengthy
process when compared with the debugging time required using DDTo Semantic
errors in MENDEL programs are never difficult to find and do not require
the GAP to be re-CI-JAINedunless the Jump Table was affected 0

6.2 The Overlay Loader - XCHAIN

The DOS command XCHAIN brings into core the Atlas Laboratory version of
the overlay loader, CHAIN. The latter is fully discussed in the PDPi5
CHAIN manual. XCHAIN is described in PDPIS User Notes 2 and 3. Both
references are essential to a proper understanding of the overlay process.

Briefly, XCHAIN outputs separate binary disc files containing overlay
information, the core image of resident code, and the core image of each
overlay (link). Collectively these files constitute an EXECUTE program
which can be loaded and run using the DOS 'E' (EXECUTE) command.

In producing these files XCHAIN requires the following information:

(1) Name of execute program

(2) Library filenames and other load parameters

(3) Resident routine names

(4) Link names and the routines which reside in them

(5) A description of the manner in wh ich links overlay each other

This information, the overlay description~ may either be read from a
disc file named CHAINX SRC, or input interactively using the system
teletype. The discussion below assumes that a disc file description LS

- 55 -

. ..

-

used. Overlay information and a load map are produced on disc file
cuxrax LST.

6.3 Overlaying PRTE

IVhenoverlaying GAP procedures ,;viththe run time enviromnent, the PRTE
links are kept separate from any GAP links required. Figure 6-1
illustrates how PRTE resident code and links would reside in core by
themselves. There are five links whi.ch overlay each other in the F!tTE
link area. Each link has a separate function as described below:

Link name Function .•
LKI
LK2
LK3

Presets constant common values
Opens, reads, and writes to the MNB file
Creates the PRTE display and initialises
source devices
Polls source devices for 'conullands
Reconciles connnands and parses text argument

connnand

LK4
LK5

string

A complete load map for PRTE by itself is given in Appendix F and includes
a list of the filenames of the routines included in each link and the
resident code. The information required by XCHAIN to overlay PRTE is
included prior to the load map as part of the C}~INX LST file.

The binary files wh ich compose PRTE are all loaded from the PIGS library
file, .LIBRP BIN. Appendix B includes an index of these routines and a
brief description of their function. Note that in some cases the filenames
do not nlatch the entry point names of the subroutines. This does not
influence overlaying, but XCHAIN load maps always give the filenames of
routines loaded.

All PRTE overlay links are specified in the CHAINX overlay description
using the library prefix, #, and the subroutine entry point name. The
library prefix ensures that XCHAIN will load the named routines from
file .LIBRP BIN as external link components, callable from other links
or the resident code. Referencing an external link subroutine causes
the link to be read into core. PRTE subroutines required within a link,
but not specified in the description using the library prefix, are loaded
from the library as internal link components: . Internal "link subroutines
are not callable from other links or from the resident code.

The five links defined in the PRTE CHAINX description (Appendix F)
overlay each other in a I.SK area of core just below the resident
code. Each link is loaded by a subroutine call to an external link
component from the resident subroutine, PIGS. During the execution
of a command, a maximum of 3 overlay changes in PRTE normally occurs:

LK4 to LKs
LKs to LIZ3
LK3 to LK4

(polling to reconciliation)
(if new menu required)
(resume polling)

- 56 -

....

FIGURE 6-1 PRTE CORE ALLOCATION

HEnORY HAP

.BOOTSTRAP

.LINK .TABLE

PRTE RESIDENT CODE
AND LABELLED Co.MMON
(CONTAINS LTA HANDLER
AND DUMMY PFA HANDLER)I

ii------------------------------~
I PRTE LINK AREA(.SGOM+3)~ !!--------------------------------~
j
i
I
I

UNUSED

(.SCOM+2) __ > ;----------------------.----------~
EXECUTE

DISC HANDLER
VT 15 HANDLER

BUFFERS (2)

RESIDENT MONITOR
(CONTAINS SYSTEM
TELETYPE HANDLER)

SCOM TABLE

INTERRUPT SERVICE

* All constants above are 6ct.alradix
The upper 32K of core is unused under DOS

- 57 -

...

77777*

77636

77505

61055

55173

i .,

-

30000 (depends on
buffers and
handlers
required by
the GAP)

100

o

(each buffer
= 400 wds)

FIGURE 6-2

(.SCON:+3)__ ~

(.SCOM+2 ~

GAP CORE ALLOCATION

ME~IORYHAP

BOOTSTRAP

LINK TABLE

COMBINED PRTE AND
GAP RESIDENT CODE,
LABELLED CO:t.>1}ION,
LTA HAl\T])LERAND
DUMMY PFA HANDLER

.

PRTE LINK AREA

GAP LINK AREAS,
IF ANY

GAP BLANK COMMON

FREE CORE
--

EXECUTE
DISC AND VTIS HANDLERS,
HANDLERS REQUIRED BY
THE GAP
BUFFERS (2 on. HORE)

RESIDENT MONITOR
(CONTAINS SYSTEM
TELETYPE HANDLER)

.SCON:TABLE

INTERRUPT SERVICE

*All constants above are octal radix.
The upper 32K is unused under DOS.

- 58 -

...

-

77777*

77636

(size varies with
number of external
link components)

100

o

-
If no menu block I/O is required only 2 overlay changes occur. Since
XCHAIN is roughly 5 times faster than the original CHAIN provided by
DEC the delay is not noticeable.

6.4 Overlaying a Graphics Application Program

A GAP has approximately 10K of the lower 32K of core (exclusive of PRTE
and the DOS operating system) in which to fit its own resident code and
links. In the future it may be possible to use the upper 32K of store
for free storage and display files, but not at present. More than the
10K of .core is made effectively available by sharing some of the FORTRAN
.run time environment routines used by PRTE. Some graphics application
programs, like PATH, will be able to run as purely resident code within
the 10K unused by PRTE.

In practice overlaying a GAP with PRTE is a matter of slightly modifying
the skeleton CHAINX description given in Appendix F to include the
application's resident code and links. Apper.dix F includes the PATH
CHAINX specification, while Figure 6-2 illustrates core allocation for
PRTE and a GAP with overlays.

Normally GAP and PRTE links should not overlay each other. A CAP link
may overlay the PRTE link area only if no link-resident PRTE routine
is called before cOlmnand execution is finished and control returns to
PRTE. Ot.herwi.se the GAP link will overlay itself wi t.hdisastrous results ..

If there is no danger of a GAP link overlaying itself, application
procedures may call certain of the PRTE resident or link subroutines.

PRTE routines CLOCK, CLOCHK, and DSCHED for example, are shared by PATH
(r.eferto Appendix B for a list of shareable PRTE rout i.ne.s)", In order
to reference a link subroutine which is not normally an external link
component, the desired entry point name must be added explicitly to its
usual rRTE link d~finition and preceded by the library indicator, #,
as has been done in the PATH overlay description (otherwise the
subroutine will be loaded into the resident code area)~ Care should
be taken to avoid duplicating reserved PRTE names with applications
procedure or common block names. A list of these names appears in
Appendix H.

6.5 1.Jritinga GAP Overlay Description

Included belmv is a step-by-step description of how to build a CHAINX
overlay description for a GAP. Responses to each XCHAIN prompting
message are given. Only the responses should be inserted in the CHAINX
file. Familiarity with both the CHAIN Manual and XCI{AINUser Notices
previously referenced is essential .

.(1) NM1E XCT FILE
.>GAPNAM

The designer should reply with the name of the graphics application
program.

(2) LIST OPTIONS & PARAMETERS
SZ,PAR,PAL,XSP,VTC/PIGDSP,DISER,PROHP,LAYDAT,COHTAB,OUTMOD/

- 59 -

...

-
It is useful, but not essential, to include the parameters SZ,PAR, and
PAL. Parameter XSP must be included since this directs SCHAIN to search
t.hePIGS library file, .LIBRP BIN, on the system disc area. The VTC
option should also be included to ensure that no PRTE or GAP common
block containing a display file crosses an 8K bank boundary. (Care must
also be taken to see that application procedures containing display
files or indirectly dispZayed t.ext: strings remain resident.) The
designer should insert GAP co~non block names containing display files
or displayed text between the slashes following the VTC option.

(3) DEFINE RESIDENT CODE
>GAPN~~,APLICI,APLIC2, .•.

The designer must reply with the filename of the Jump Table (GAPNAM,
always the same as the name of the GAP) and the filenames of any
resident GAP procedures or block data.programs (APPLICI,APLIC2 .•.).
Combined files constructed using DOS utility programs PIP or UPDATE may
be used instead of naming each application procedure separately. File
CPATH, mentioned in the PATH overlay description, is such a combined
file. Any subroutines required by the GAP resident code will be loaded
either from the user library file (.LIBRS), the PIGS library (.LIBRP)
or the system library (.LIER). If not declared as external link components,
such routines will also be resident.

(4) DESCRIBE LINKS & STRUCTURE
>LKI=#,COMVAL
>LK2=#YYSTRT, OPMNB, RDMNU, WTMNU
>LK3=#DISINT
>LK4=#POLL
>LK5=#RESOLVE
> DEF'INE GAP LINKS; IF' ANY
>LKI:LK2:LK3:LM: LK5
> - DEF'INE GAP OVERLAY S'l'RUCTURE, IF' ANY
><space><altmode>

These replies describe both the PRTE and GAP overlay structure. The PRTE
links should Dnly be altered to make a normally internal link component
into an external link component. Any names desired except for LKl,LK2,
LK3,LK4, and LIG may be used as GAP link names.

- 60 -

...

-
7. DOCUHEN'UNG A GAAPHJ;CS APPLICATION PROGR/IX

One of the happy consequences of following any progra~ning convention,
such as the argument-passing scheme used by PRTE, is that libraries
of useful programs may be compiled, saving programming time and effor!:.
One of the unhappy consequences is that someone must describe in
everyday language ~lRt is in such libraries. Graphics applications
programs which have been debugged and are ready for general use should
be documented according to the guidelines presented in this chapter.

7.1 PDPI5 Libraries at ACL

There are 5 libraries which may be of use to the GAP designer at ACL:

(I) The System Library

Largely FORTRAN-oriented, this librar~ exists on the system
disc area as .LIBR Bn:~ Its contents are documented in the
FORTRAN IV Operating Environment Hanual. No sources are
available.

(2) The PDP15 Routine Library

Consisting of useful FORTRAN and MACRO routines, the library
is documented in a manual of the same name. Source files for
the routines exist on DECtapes 1000-1099. The PDP15 Routine
Library also contains useful GAP procedures and shareable
PRTE routines.

(3) The PIGS Library (see Appendix B)

This library
and contains
procedures.
GAP Library.

exists as file .LIBRP BIN on the system disc area
PRTE subroutines and a few commonly-used GAP
A source listing of the library is given in the
Source files exist on DECtapes 156-159.

(4) The DECUS Library

Consisting largely of systems programs, the DECUS Library also
contains some very useful FORTRAN-callable subroutines obtained
from the DEC user's organisation. Source files and binaries
exist on DECtapes 50-99.

(5) The GAP Library

All graphic applications implemented US1.ngPIGS are contained
in this library, on DECtapes 150-199. The documentation
consists of program listings and a manual containing descriptions
of each GAP.

Documentation for all of the above libraries LS kept l.nthe bookshelves
by the PDPI5.

- 61 -

...

-
7.2 GAP Documentation

Documentation of a debugged graphics application using PIGS includes a
set of program listings and a written description of the us~ and internal
operation of the package. The document at ion should be submi t ted , along
with DECtape source files, to the PDP15 operator on duty at the 1906A
console for typing and distribution.

7.3 GAP - Hritten Description

Each of the numbered topics described below should be included in the
GAP written description. The description should be written on lined
paper, in ink. The description of PATH in Appendix A should serve as
an example. "

(1) Name

(a) Name of Application
(b) GAP designer's name
(c) Date
(d) Filenames and location (DECtape number) of EXECUTE

files, ME~~EL source file, CHAINX LST file, GAP source
and binary files.

(2) Purpose

A brief description of the application problem and solution,
allowing rapid scanning through the library.

(3) Loading Procedure

(a) Physical device readying (such as BSI start-up,
DECtape mounting~ DMAC boards required)

(b) Usual device assignments required
(c) Buffer assignments needed
(d) A teletype listing example of 3(b) and (c)

(4) Description

(a) Problem description
This section should elaborate on the particular problem
wh ich the GAP approaches, the methods used in the solution,
and general information on how to use the package

(b) Input and Output
Should include a description of device input and output
formats and their meaning, DAT slots used

(c) Internal Data Base
Should describe the structure and meaning of prbblem area
data base arrays or common blocks. The relationship to
the GAP display should be included, if applicable

(d) Display Structure
Should include a description of the GAP display file
structure and the meaning of any special displays used.
Sample sketches of the CRT.may be helpful

- 62 -

...

-•

(5) }ffiNDELSource Listing

Teletype print-out jncludcd here to clarify section (6), below.
The source code should be well comnented.

(6) Nenu and Command Description

This section follows the general outline of the MENDEL source
listing of section (5) and discusses the function of the commands
which comprise the GAP. The following subsections should be
included:

(a) Global commands (displayed)
(b) Global command s (non-displayed)
(c) Menus

1. Menu name
2. Exit co~~and
3. Enter command
4. Pushbutton commands
5. Local commands

Each command description should deal with the command's function,
data area, and the Ioll.owi.ng data about its arguments:

Function
Type and permissible values
Default value if omitted

(7) Error Messages

Should include an explanation of each error number and the
appropriate action to be taken by the operator.

(8) Example

Should include the comruands necessary to perform one full
interactive problem solution or loop converging on a solution.

7.4 GAP - Listings

When submitting an application for inclusion in the GAP library, the
following lineprinter listings should be included:

(1) MENDEL source
(2) CHAINX LST for the GAP
(3) GAP source for all procedures

.,...63 .,...

...

-
8. ;FUTURE ENHANCEMENTS

During the design of PIGS a number of ideas for useful software have
arisen which are not yet implemented, either because of lack of time
or because they were thought better left until more experience wi.t h
the first system was gained. This chapter merely catalogues some of
the ideas for future evaluatio~.

8.1 MENDEL Editor for PRYE

The HENDEL editor has been written in such a way that its inclusion as
an overlay of PRTE would be simple. Inclusion of the editor in PRTE
wcul.dallow reorganisation and addition of menus and commands at
run time to meet unexpected problem requirements. The utility of such
a system depends on being able to write applications procedures using
either FOCAL or command macros (see 8.6).

8.2 Protection against System Crashes

Things fall apart! The wise GAP designer will provide a data base
dumping command as part of his package. PRTE could dump automatically
at regular intervals using its scheduling mechanism if it knew the nanle
of the GAP dumping conmland. Variables in the HNB file header have
already been allocated for dump command name and time interval, but are
not used in PIGS V2.

A useful feature for debugging, backup, and evaluation is a session log
of executed commands and errors. Entries in the log would include a
type code, time, and the ASCII command string or message. The log
wou l.dprobably exist as a disc file, portions of which could be listed
from PRTE.

8.3 Ne\"Command Sources

Commands are already available within MENDEL to reference the DHAC pen
follower and the ICL 1906A computer as command sources. lfuen suitable
handlers for the two devices are completed~incorporating them into the
PRTE polling loop should be trivial.

8.4 Core Management

The GAP designer currently has only about 10K of the lower 32K of store
in wh ich to squeeze procedures, data base, and display files while the
upper 32K sits empty because the DOS loader cannot access it. It is
possible, however, to place data and display files in upper store and
reference them from lower core. FOG could be slightly modified to
assemble display files in the upper 32K of store and start them
running. Some sort of fixed block size core management routines
would be required.

- 65 -

..•

-

A second possibility for utilising upper store is that the overlay
builder and loader could be slightly modified to relocate execute
programs into upper (or Lowe r)core. PRTE would communicate wi th a GAP
in lower store via special subroutine calls. The Jump Table would
reside in Lower store wi.th the GAP. Such a system woul.d allow the use
of DDT with GAP application procedures running under PRTE. Run time
PRTE and FORTRAN procedures could not, however, be shared. The loading
time necessary for a GAP would be drastically reduced.

8.5 PIGS under other Operating Systems

PRTE was designed specifically for the DOSJ5 operating system.
Although FORTRAN coded, its operational philosophy is heavily dependent
on the use of a disc-based, single-user executive.

Because it polls for commands rather than waits for interrupts,
conversion of PIGS for a mUltiprogramming system (such as the Resource
Sharing Executive, RSX) wou Ld require design changes to aLl ow efficient
epu usage. PIGS could be converted for interrupt-driven command input,
or, less efficiently, time slicing could be incorporated in the polling
loop to give other system users better response.

Although PIGS was designed to consist of shareable subroutines,. it is
not re-entrant and therefore would require a major overhaul to service
multiple users. For the same reason, splitting PRTE and the GAP into
two processes is a non-trivial task (but very similar to using PRTE
in upper core under DOS).

8.6 Source Languages for Application Procedures

Within an interaction session an operator may find he spends much of
his time repeating a part'icular set of cOlmnandswith only slightly
varying parameters. In some cases the GAP designer may have foreseen
such a situation and provided a single conwand to do that job. In many
Cases however, theconwand loop in use is a function of the particular
problem, and cannot therefore be dealt with specially in the general
problem approach taken by the GAP. It seems that a language for defining
simple application procedures at run time would lessen operator time
spent in such problem loops. An interpretive language is the obvious
candidate, obviating the need for compilation and loading.

PDPIS FOCAL (like BASIC) is one language under consideration. The
most sensible candidate, however, isa command macro facility wi thin PRTE
itself. Macros would be stored as text files on the disc in PRTE
command format. Arguments could be bound before execution of the macro
using a set of special argument buffers, or during execution by using
the "left" argument facility (see 8.8). Definition of macros ,.•auld be
possible using the PDPlS text editor, or by storing GAP co~nands
when a PRTE flag is set. Macros could be used to define new application
commands if the MENDEL editor were included in PRTE.

- 66 -

...'

-
8.7 Hessages

A _,-cll-vrrittengraphics application program may contain many error
and prompting messages. Since these messages require much core space
and rarely change, they might easily be kept as random access disc files.
Individual messages could then be referenced by number.

\..Jhenlearning to use a GAP, it would be useful at first to have more
guidance than the occasional prompting area message. A help file could
include useful information about each command's function and arguments.
Help information could be displayed by the operator as desired.

8.8 Argument input

Included in MENDEL, but currently. undefined, is the ARGET statement.
If implemented, the ARGET command would open a special MNB menu block
for definition. This menu wou Ld c.ontaina number cifstandard commands
for defining arguments. Each command could be used either to fill a
special argument buffer (see 8.6) or to replace 'a left argument. Left
arguments could be indicated in a cOlmnandby using the character, * ,
and wou Ld cause the ARGET menu to be temporarily activated. Typical
ARGET commands might activate procedures to retrieve the X or Y
coordinates of a point specified with the stylus, the distance between
two points, some text, or the time. All such commands would return
text strings to either fill an argument buffer or replace the character,*,
in the co~nand string.

A second useful argument input facility would be a non-parse OPtion for
GAP commands. If the number-of-arguments-parameter to the HENDEL COH
command were specified as -2 for a particular GAP command (-I means
Lnd ef i.n i.t e number of arguments), PRTE wou Ld never parse that; command's
argument string but simply pass the entire command string to the
associated application procedure. Only left arguments in the argument
string would be detected and evaluated., This facility would be useful
for transmitting co~nands with non-PRTE syntax to programs in the
linked ICL 1906A computer.

- 67 -

......

A P PEN DIe E S

, .•.

APPENDIX A - EXAMPLE DOCUMENTATION, PATH

(I) Name
PATH

by H D SHAW 9/16/74

Filename

PATH XCT
PATH XCU
PAtH LOI
PATH L02
PATH L03
PATH L04
PATH LOS
PATH HDL
CHAINX LST
PINIT SRC
STYDT2 SRC
DATACL SRC
BLKDIS SRC
INITD2 SRC
PAGECL SRC
DRAWC SRC
REDRl'..\\T SRC
DATB SRC
CEL SRC
DRAWB SRC
BACKGR SRC
PLAYBA'SRC
SHOI..JSRC
FRATE SRC
GRI.DAT SRC
SHOI-JITSRC
LTPENI SRC
CPATH BIN

Function

-
A

DECtape location

PATH EXECUTE
FILE

MENDEL SOURCE
LOAD },1AP

GAP SOURCE FILES

UPDATE FILE

Definition and playback of simple animated sequences.

(3) Loading Procedure

155
155
155
155
155
155
155
155
155
163
163
163
163
163
163
163
163
163
163
163
163
163
163
163
163
163
158
155

Before starting PATH, the V\~01 sparkpen should be turned ON and the LK35
keyboard OFF. No special DAT slot assignments or extra I/O buffers are
required.

- 69 ~

A

-

[:OS-l ~ V?'l').
si.o« ~10U"\JT DICT14PE 155 O:·J lNI T 1
J'~{E:1TP 0 F l'

$LO CiI"\J SCH

$PIP

OOSPIP V6{\

>C DK'-DTl

>rC

005-1 ~ V2A
$\)1' OFF

E P.ATH

PIGS V2
>PATH

(4) Description

A serious problem in both conventional and computer animation is finding
a natural means of describing character movement. One convenient solution
is to mimic a motion by using the sparkpen to draw it wi.th the speed and
positional changes desired , wh i.l.e the computer digitizes points on the
motion curve (path) at some constant frequency. If the character (eel)
is then moved by the computer from point to point at the same frequency
a simple animated sequence is generated which closely resembLes what; the
operator wanted with no need to define internal computer coordinate
systems or key frames. Unfortunately, only very simple animation can be
described in this manner: no distortion, scaling, or rotation is possible.

PATH uses the above approach to allow the operator to animate simple
hand-drawn eels against a fixed background. Although the lightpen may
be used to select commands, only the sparkpen should be used for drawing
since it is time independent. Initially the sparkpen and LK35 keyboard
are the active stylus and keyboard devices, respectively.

Within the computer, cels and paths are stored identically and are, in
fact, interchangeable. Each drawing is given a unique number between
I and 10 when it is defined. Cels and paths are always referenced in
PATH commands by their identifying number. The definition of each
drawing is kept in common block PTHDAT and may be displayed when desired.
The background definition, by contrast, exists only as a display file
in common block BACKG. Both of these important data areas are described
below:

- 70 -

...

-
A

COMMON/BACKG/lBDlS(2S6)

lBDlS(2S6) Background display file.

COHMON/PTHDAT/LDlS(I024),IPTHX(SI2),IPTHY(S12),
lCUR,NOCRV ,ICB (10),ICT (10),lEOT, 11'('"<' 1':T,ILST

LDIS(1024)
IPTHX(S12),IPTHY(512)

ICT(lO)

Displays current cel or path.
Coordinates of all drawings defined.
(lPTHX(N)~IPTHY(N» is either a point
in a connected curve or the starting
point of a connected curve. In the
latter case the X coordinate will be
negated.
Current cel number for playback.
Current path number for playback.
ICB(N) points to the first coordinate
'pair in (IPTHX,IPTHY) of the definition
of drawing N.
ICT(N) points to the last coordinate
pair in (IPTHX,IPTHY) of the definition
of drawing N.
Next free location in (IPTt~,IPTHY).
Last free location 1.n (IPTHX,IPTHY).
Unused.
Number of last drawing defined.
Main display file.

lCUR
NOCRV
ICB (10)

IBOT
ITOP
LOCSET
ILST
MAIND (50)

COMMON/FRATE/IFPS

IFPS Playback rate 1.nframes per second.

The PATH display file structure is relatively simple. Array MAIND is
the main display file containing DRAW's to subfiles LDIS,IBDIS,XCROSS,
and MGRID. Display file IBDIS is used only by the DRAWB command while
LDIS is used by the DRAl.Jcommand and by subroutine SHOW to display a
cel or path. File XCROSS defines the lightpen tracking cross while
file MGRID defines a rectangular grid. The last t"JO files are used
by subroutine STYLI and are initially blanked.

PRTE -

LDIS

.~
_S~V~ ~EQI§T~R~ MAIND~O

16 I XCROSS

I MGRID

- 71 -

...

-
A

(5) MENDEL Source Lis ting

1,,********* PATl! I-1E'JU DEl'-INITIO"J **********
/
I
/ t'1F'JDFL p;-mGEmr,s TO DESCHIPE THE COr1i·jl';"JD STHUCTUhE OF' PATH,
I A }J}\(J(;i\A:vJ "Oi(l'()I\!G SHlPLE L-JTJ.:.f.ACTIVE CO:vJFUTFE .L\.'H'1ATI()\J.
1 1'1\ TiI (\.LLO\·;S {\'~ O!'l·.i~ATOh TO I ~PUT A CUi'\VE (C?\LLFD P. PATH OB
1 P-Ct!EVY> !~\JD A CHAdl\CTF'E (CALLED A CEL) USl'JG Tl1F: TABLET
1 OB LI GHTPE\J. HE ''JAY THF~ CAUSE THE CFL TO MOVE ALO\~r, THF.
1 PATH l·lITH THE SA:'1E VELOCITY CHPI\JGES I',-ITH HHICH IT \·:AS
1 DhJ\\·.~Il.
1
I
1********** DEFINE PATH I"JITIALIZATION **********
I
I MFNUS I·.;ILL BE IN BINARY FILE PATH M:-')R.
I BELOC[ITEABLE BI,\)AHY JUiVlP Tf.lJ3LE HILL BE IN FILE PATH BIN.
I
CHElI'[',P{.\TH, 5,62, 2Lj
Bl GDT
ABFl.EV, 'i'j',UE
KEYB, LTA
STYLS; Ij\'iA
rF.LAY,2(')0
SAVE, Fi\LSE
I
I
I*****~':;'***DECLARE l\1E:\JU NA~1ES **********

IROOM FOil 5 ME\lUS, 62 SUBBRS, 2Lj GLOB.4L.
IUSES LAHGE LI l-liTiJUTTO\! D1 SPLAY
IUSE 5 CHAW\CTl'H COC1:vJA\JD f\F.rJiiEIJIA'fIO'\JS.

ILK35 XEY?OARD I\JITIALLY SELECTED
IIJ\oJ[11 SPAh;<PF'J BJI TIALLY SELECTED.
IBLINK LI GHTBUTTO\j SELECTED FOR 20C1 MILLISfC

IDO NOT lomITE OUT SIJ.1~U'ED ~!E.\lUS.

I
MNDEC, PATH, B.~CI{G IPATH AND Bl\C;{G AI:E ONLY MENUS BUT THE CRFAT

ICOMMA~D ALLO~ED EOOM FOE 5 •
I
I
1********* DECLARE SUBROUTINE NAMES **********
1
SBDEC, tiSE::;TY ~DAT!',CL, DlIA\·?C, SKEDL, DSKED
S3DFC, f'U\YP{\, QUI T, iI:EDR~I·!, ~ I'.J IT
SBDEC~ USEGRI, llS)O:;{EY,B!ICKGn, S:l()\o)l T

IDECLAHE FACH SURROUTl~E
INA~E ASSOCI~TFD WITH

IS0l-1E COY1MA'\JD.

I
I
1********** DEFINE GLOBAL CO~~A\JDS **********
I
1 THE FEiST SIX DEF'I\JED APPF.AH AS LI GHTBUTTO:l!S.
I
GLOI3L ISTAln GLOBL DEFINITIO")
COM, USF:STYLUS, 1, DO, llSESTY,., IJU.r\ ITO SELFCT OTHER STYL.llS.
CO~1. U;;F;{EYB:':D, 2, D:J, U;~Ei\EY , , , L TA
OJ~1.SliO;'!' 1, DO, ~;HO'...;I r
co»
COi·l,QljIT"DO,QUIT", '!!!!!!!!!'
CO:-1
CO~·1.~:T~EDL, 5. Do\)nU, Sl{EDL
CO~,DS~F.D.l.DO~O~,DS~ED
1
I
1********** AhGET ~*********
I
I NOT CUi-iRF\JTLY I>WLEME.;\JTED. EUT CO~E'lA\)D BELO'.oi ~HJST DE PEESE\lT.
/

ITO SELECT OTHER KEYDHD.
IDIS~LAY CFL OR PATH.

IFXI TS PHOGE/\M PATH.

ISCHED'CLFS A Cm1MA'IlD
IDESCHVD~L}S A CO~MA\JD

A}\(;ET
I
1
I "

- 72 -

, ..

I
/*******"l<.i">: GHOUl' CO,..1;,ll\NDS 1:>1"1'0 ~lFNUS *****.;'****
I

•...-

I F~~C!! CO>E·1!\\JD i'iAY DE LI~KED TO (I DFCLAHED SUE'!~OUTL\JE.
I
~;E'·JU,FI~Ti·[ISl'ART ~E\JU 'J(\\1ED PAil!.
F:\)T1::;~ IDF.Fl\jFS l'1F::\lLJ "JfHl': !-\\j[) E.'HEY iWUTI"JE
CC;1,h,\TIl"DCl,PI\JIT",' I'JIT' 1\'ILl., APPFAl(PFLOT:} ';v.PJU' I'J

ICO\JTi"(OL A::n~"'.A. P,LSO CLE.~l·~S D(\ TA. BASE.
I NO rx r T C01>lt-1AND FOil TOP LEVFL r'1E~lU
I
I
PUSJ'l.B,1 IDFFINE PUSHDUTTO~ 1 •

ITHFSE 3 ARE O'JL¥ A DISPLAY USED BY A
ICONMA~D SUDROUTI\JF. NOT ASSOCIATED
IWITH A SUBROUTINE.

eOM,PE~{lCTI~E,.DO\JT
COM,s~rpOIN1·.,DONT
CO~!,ACCEi-'l., DONT
I
LOCAL IDEFI'JES LOCAL CO~~{I~DS.
CO~··1.,vr{[)~·1,,2.1DO_,Di~\\'!C.J.1.JI l' IDRAH A. -C}.L o« PAT}I.
CO~1,l-'LAYBACt(,3,DO,PL!:\.YDA.,,,' 1,1' IPLAYEACK THE 110TIO(\J AT A

IGIVE\l ?...ATE.
CON, HFDk(-!.I,j, 1. DO,. HEDi,J\P.,.' l'
CO~1,Di~'fCLi:~",i1" DO, DP.TP,CL
COM,USF.G~ID.,DO,USEGfiI.,,' ~O'
COi1
COM

I HED?(~ \'.! A CFL OE FA TH.
ISA11E AS CO:'1;';A\JD P(-"TH.

I US E emI D \'iHE"J D~'!A\'ll 'J G.
IN ULL COW1AN DS.

CO~·1.,~'1C1{G"" :I oJ GO.1 EttC}((i
I
I
I
l>'jENU~BAC:-<G
F.IlTEh
CO['1, BACKG
I
PUS;-JB,l
CO~'L,FPJl\CTI VE~ ~ DONT
co-:~SET1~() I 0)T .• ~ DO\) T
COM~ACCEPT,.DONT
/
FXIT
COl'. ,"1"",C\-Ti-;" , , , GO. PA TE
I
LOC!~,L
CO,1~DhAI'::I,., ;)0, DACElii-i
I
I
I*****,~**i:" TFI;'l>l.I\li\ TE l',E\) DEL PliO Gi';JV1 *~,***** *"'*

/ACTIVATE \)E\o} t-1E','lJU.• BACKG.

It1E('.)U NAMED BACKG. NO ENT!1Y COH~L:'\t\1D

IRETURN TO ME\JU PATH.

I
EN}), PATH ISTARTWG i'1E:-JU IS ~At,mD PATH.

- 73 -

-
A

A

-
(6) HENU ant.! Command Description

(a) Global Commands (displayed),PATH

USESTYLUS, IDEV

Uses procedure USESTY (from .LIBRP) to change the active stylus
device. The tablet must be ON otherwise an IOPS4 message will
occur. The data area names the active device, 'Vt.JA'or 'LPN'.

IDEV '/)
-I

omitted

Sparkpen active
Lightpen active
Sparkpen active

USEKEY,KDEV,LECHO

Uses procedure USEKEY (from .LIERP) to change the active keyboard
device. The data area names the ·active device, 'TTA' or 'LTA'

KDEV '/)

omitted
LECHO 0

-I
omitted

TTA keyboard active
LTA keyboard active
No change in device
No echo on TTA
Echo on TTA
No change in ech6

SHOH~NCEL

Causes a cel or path to be displayed and makes it the current eel
number. The data area shows the number of the displayed drawing.
If selected using the active stylus, the current cel number is
incremented and displayed.

NCEL ,/)-10

omitted

QUIT

Number of the cel to be made current and displayed.
If NCEL > I'/),NCEL=Iis assumed.
The current eel number is displayed.

Causes exit to DOS operating system.

(b) Global Cornmands (non-displayed), PATH

SKEDL,CNAME,ITER,INTM,INTS,INTP

Uses procedure SKEDL (.LIBRP) to schedule a command for repeated
execution at a given time interval.

omitted
~0

omitted
~0

omitted
~0

omitted
The repeat interval is

CNAME
ITER

INTM

INTS

INTP

Command name. May not be omitted.
Number of times command will be selected.
Command to be repeated indefinitely or
until descheduled by the operator.
ITER = - 1
Repeat interval in minuteso assumed
Repeat interval ~n seconds
o assumed
Repeat interval ~n clock pulses (20 millisec)
o assumed

INTM+INTS+INTP.

- 74 -

..•

-

DSKED ,CNAME

Uses subroutine DSKED (.LIBRP) to deschedule a command.

CNAME string
omitted

Name of command to be descheduled.
Deschedule all commands in the clock scheduling
buffer.

(c) }fENU Commands

MENU ,PATH

ENTER--
PATH

The associated entry procedure, PINIT, initialises the GAP display
and data base. Unlike DATCLEAR, it also clears the background
display.

EXIT

There is no exit command for PATH.

PUSHB

Only pushbuttons 1-3 are used by PATH and all are inactive until
procedure STYLI is entered via the DRA\v or DRAHB command. STYLI
reads the pushbuttons directly, using them as described below.

PENACTIVE

this lightbutton appears when STYLI has been entered via the DRAW
or DRAWB command. It turns the active stylus ON or OFF. The data
area reads 'YES' or 'NO'. Pushbutton I must be pressed before
startin~~ and after terminating a drawing.

SETPOINT

This lightbutton appears when STYLI has been entered v~a the DRAW
or DRAWB command and the lightpen is the active stylus device.
The data area reads 'YES' or 'NO' if the next coordinate pair read
will start a new connected curve, or not. Thus pushbutton 2 can be
used to move the tracking cross around withou t; 'drawing'.

ACCEPT

This lightbutton appears when STYLI has been entered via the DRAW
or DRAHB command and the grid option is in use (see USEGRID
command, below). Pressing pushbutton 3 causes the data area to
flip between XXXXXXXXX and blank. The current stylus posltlon
is mapped onto the closest grid point and accepted as the next
coordinate of the drawing.

LOCAL

DRAW, IBUBS,NUMBER

If selected with a stylus device, this co~nand increments the
current. path number by 1 (it is initially 0) and enters procedure
STYLI to accept a drawing. IBUBS, the minimum distance between
consecutive accepted points, is usually 0. (It must be zero for
a good path definition.) The data area shows the drawing .number
being defined.

- 75 -

'. ...

-
A

A

IBUBS number

NUMBER
omitted
1-10
omitted

Bubble size~ as above
A value of 10 is useful for thinning a
cel dr awi.ng , but 0 mus t be used for a path.
Unchanged
Number of drawing to be defined
Current path number used

PLAYBACK, lCUR,NOCRV, lFPS

Causes the current eel to be animated using the current path.
The first point of the cel matches the points in the path.
lCUR 1-10 Drawing number to be made current cel number

omitted Current cel number used and unchanged
NOCRV 1-10 Dr awi.ng number to be made current path

number
omitted

lFPS 1,2,5,10,25,50
omitted

REDRAH,NOCRV

Current path number used and unchanged
Playback rate, frames per second
Use current playback rate
(initially 25 frame? per second)

Same as DRA\v command, but does not increment the current path
number. This con~and should be used to redefine the last drawing.

NOCRV]-10
omitted

DATCLEAR

Number of drawing to be redefined
Redefine the last drawing

Clears the data base and drawing display.

USEGRID

Uses procedure USEGRI (.LIBRP) to select the grid option of STYLI.
All coordinates entered into the current drawing are first mapped
onto the nearest point of a displayed rectangular grid if the data ~
area of USEGRI reads 'YES'. Selecting the command 'again resets
the option to 'NO'.

BACKG

Activates menu BACKG.

ENTER

BACKG

l''fENU,BACKG

EXIT. No procedure associated, merely names the menu

PATH
GO's to menu PATH, no exit procedure associated

PUSHB

There are three pushbutton commands, identical to those in menu PATH

- 76 -
, .•..

LOCAL

DRAWB
the background display.
command , The dr awi.ng bubble
then reset to its old value.

Uses procedure STYLI to define
There are no arguments to this
size is tem?orarily set to 10,

(7) Error Messages

Number Description

203 Drawing data base over f low
The data base must be cleared using PATH and
the drawing repeated

204 Drawing display file overflow
Again, command .PATH should be used

(8) Example

The following co~~ands form a typical interactive loop in defining an
animated sequence using PATH. (Typed commands are preceded by>.
Comments are preceded by / and should not be typed.)

DRAW
PENACTIVE

I At this point
PENACTIVE
DRAW
PENACTIVE

/Def i.ne cel 1
IPress pushbutton

cel 1 1S drawn with the sparkpen
IPress pushbutton
IDefine path 2
IPress pushbu tton 1 to start

to start

to quit

I Draw path as you want the cel to move
PENACTIVE IQuit drawing
PLAYBACK

I At this point the
at 25 frames per

lillDRAW

PENACTIVE
I Now redraw path 2

PENACTIVE

current cel, I, will move along the current path, 2,
second with the motion desired.

IPath 2 was not as
Idesired, this will
Iredefine it
IStart drawing

/Quit drawing
I A background may be defined by changing menus to BACKG

BACKG IChange menus
/Define the background
IStart drawing

The stylus
10 rasters before

DRAWB
PENACTIVE

/ Now draw a background.
I must be moved at least
/ any lines will appear.

PENACTIVE /Quit drawing
PATH /Return to menu PATH
PLAYBACK lAnd playback cel I,

I Now; to type, turn the sparkpen OFF and the
I LTA keyboard ON to avoid interference
I Playback the animated sequence in slow motion:

>PLAYBACK,I,2,10 110 frames per second
>QUIT IExit to DOS

path 2

77 -

...

-
A

••••

B
APPENDIX B - PIGS LIBRARY

The PIGS library is a binary file, .LIBRP BIN, residing on the system
disc area. It contains all the relocateable binaries necessary to
overlay both the PIGS run time environment and the MENDEL editor-assembler.
It also contains special PRTE control and application routines useful
to the GAP designer.

All of the subroutines in the library are FORTRAN-callable, but some
may be used only by PRTE. The routines are listed in 4 categories:

(1) Non-shareable PIGS routines
(2) Shareable PIGS routines
(3) Special PRTE routines
(4) Application procedures

Category (3) routines are fully described in Tables 5-1,5-2, and 5-3
of this manual. Category (2) and (4) subroutines are documented in
the PDPI5 FORTRAN library. A list of all PIGS library routines are
included here, but only Category (I) routines are discussed.

- 79 -

B
PIGS LIBRi\RY INDEX

(I) Non-Sharenble PRIE

PFDUH
ADDCN2
BLANKS
BUTlIT2
BUTINI
CHFHiD
CHINT
COHVAL
DISINT
DOTINT
DOTNV2
ERRHS4
JPSTAR
JUH.PT2
LAYOU2
LTA
NH.'I1U2
NXTCHR
Ol'l'1N132
PARG
PIGDNT
PIGFIL
PIGS2
PINT
PNUN"3
PRCOHT
PRINI
PRm!PT
PRINI
PROHPT
PSTRNG
RD"muZ
RESLIB
SYSDN2
TERHIN
V1£RR2
HINK
I-lN~lU
IvTHNU2
YYCLIN
YYOCD
Y,{FLA
nSTRT

(2) Shareable PRl'E

BUTDIS
CBUTHT
CLOCHK
CLOCK
CVICIl
DSCHED
FNAJ>.1E
GRID
IBITS
INBITS
KEYIN3
KEYS
KEYST3
LPHIT
LTA
Ll'PEN
LTPENI,
BESOIS .
HESINT
HSTR.
MVC
PBHI!
POLL3 I

RESLV2
SellED
STYLI2
TABLET
TARGS2
TIHEP
\-1RTU1'1
YYPRLN

.ACTCH
CLERR2
CLPR.~
DACTC1-1
DSKEDU
DISERR
ERP
GETCH2
GETDI2
GETDP2
GETFIL
GETLOG
GETSI2
GETSR2
PROHPT
PUTCH2
PUTDI2
PUTDP2
PUTSI2
PUTSR2
QUIT
I~DAT

- 80 -

~ .•'

-

(4) Application Procedures

DSKED
SKEDL
USEGRI
USEKEY
USESTY

r r

SUBROUTINE FILENAME
NAME (IF DIFFERENT)

~PFDUM
ADDCOM ADDCM2
BLANKS
BUTRIT BUTHT2
BUTINT
CMFIND
COt-lINT
COHVAL
DISINT

DOTINT
DOTMV2

co ERRMES
LTA.
LAYOUT
NMNU NMNU2

4 NXl'CHR
OPMNB OPMNB2
PARG
PIGDNT
PIGFIL
PIGS PIGS2
PINT
PNUMB
PRCOMT
PRINI
PROMPI -

. r

OVERLAY

r

(I)

r r rr

NON-SHAREABLE PRTE ROUTINES

DESCRIPTION

RESIDENT

LK5
LK4
LK3

LK2
LKI
LK3

LK3
LK4
RESIDENT
RESIDENT
LK3
RESIDENT
LK5
LK2
LK5
LK3
LK2
RESIDENT
LK5
LK5

RESIDENT
LK3

Dummy DMAC handler requited by KEYS
Adds a command node to the menu being defined
Removes blanks from command string input (TARGS)
Checks a simple lightbutton file for hits
Creates the PRTE lightbutton files using FOG
Searches the current Command Table for a particular command name
Opens MNB file and uses header to initialise PRTE Command Table
Presets PRTE constants in co~~on blocks
Creates the PRTE display using FOG and initialises active command
source dev i.ces
Creates tracking dot display
Repositions the tracking dot on the display
PRTE error message handling,contains entry point ABORT
Handler for LK35 and TEKTRONIX keyboards
Creates frame and MENU, EXIT titles fo.rPRTE display
Activates a new ME1~, given an MNB file menu block number
Retrieves the next character from the command string input (TARGS)
Opens MNB file for reading or writing 250--word blocks
Parses the next argument in the command string
Creates the main PRTE display file and sets FOG save register 16
Reads ~~B filename .from TTA
Contains main PRTE control loop. Calls all overlays into core
Parses a signed integer argument in the command string
Parses a number argument in the command string
Decodes a menu block and writes it to the Dump file
Writes a single character to the teletype
Creates the prompting area display file using FOG

Cont'd

I

SUBROUTINE FILENAME
NAME (IF DIFFERENT)

PSTRNG
RDMt-."'U RDMNU2
RESLIB
SYSDNT SYSDN2

TERMIN
VTERR VTERR2
\>lINK

WMNU
VlTMNU \>JTMNU2
YYCLIN
YYDCD

0:> YYFLA
N YYSTRT

~

OVERLAY OR
MENDEL?

LKS
LK2
RESIDENT
LK3

LKS +,

RESIDENT
RESIDENT

LK2

RESIDENT
LK2

\

\

\

DESCRIPTION

Parses a string argument in the command string
Reads a menu block from the MNB file into the Command Table
Causes certain system library routines to be resident
Creates the PRTE display and initialises the source devices
(called by DISINT)
Searches the command string for a terminating character
FOG error handling routine for PRTE
Starts a lightbutton with a given name register value blinking
on and off
Used by \>JDATto write a message in a command data area
Writes a menu block to the MNB file
Decodes a co~~and node into a 5/7 ASCII representation
Unpacks a command node
Blinks a lightbutton for a given time interval
Parses the MNB filename

\

\

-_-- APPENDIX C - PIGS COMMON BLOCKS

A list of PRTE, MENDEL, and PIGS library labelled common blocks is
given below, followed by a description of their contents and function.

MENDEL PRTE Other .LIBRP
COMMON BLOCKS COMMON BLOCKS .COMMON BLOCKS.__
ARGTP . ARGTP GRIDAT

.CARG CARG PSHBUT
CHARS CHARS STYDAT
CODBIN COMTAB
COMTAB DARG
DARG DISER
ERRCON ERRCON
MDLBUF HITBUT
MDLUAR LAYDAT
PAGMNU MNUDAT

OUTHOD
PAGMJ\TU
PIGDSP
PROHP
PUSHB
SCHARR
STYLS
TIMEB

- 83 -

...

-
c

BLOCK
KAHS

VARIABLES

APPEi'lL)IX C - PRTE COHMON BLOCKS

DESCRIPTION

NCO;'!
r-;O.A~Q_GS
ITYPE (15.2)

IDCO!1E

Argu~ent source and type
Index in CONTAB of sel>2ctedcommand
Index of last specified argument
ITYPE (N,I) is the type of the argument N

o Argu:nentN omitted
1-255 String argument, number of characters
256 Number argument
512 Left argument (not implemented. treated as omitted)

ITYPE (N,2) For nu.mberor string arguments, a pointer to the argument
value in common block DARG or CARG. For number ar guraents
ITYPE (N,2) as an index an the R..o\RGarray. Fo.rstring
arguments it is a character index in the SARG array.
(See DARG and CARG, below.)

Source device code for the selected command
o Co~nand called from a GAP procedure using argument-putting routines
1 Keyboard
2 Lig rtbu t ton
4 Pushbutton
8 Real Time Clock

CARG
SARG (15)
IS?

Character argument buffer (see ARGT?)
Contai~s character strings input as arguments
Kext free ch<lracterposition, indexed from 0 in SARG

CHARS
\

ICBAH.
IPLUS
rursus
rcox
IlJPARR
I STAR
I SPACE
IQUOTE
IDQUOTE
IPER
ICR
TALT

I
I

5/7 ASCII character codes used by the command parser. Set by CO?IVAL or \
block data in ME~DEL \

\
\

characte-r

Character under examination
+ (all codes are right justified, 7 bit with zero fill)

,
+
*

May be manipulated to temporarily alter the argument separating

«bl-ank:»,
"

<cr>
«al.tmode»

Cont'd

\
BLOCK
KA!·jE VAR~\BLES

J C0l1TAB

;

i PIGLET(2)
: NODIR
I KGCm1,
; MGSTRT
i NARGBi, :t-lNSTRT,

J}!PDMP,,
! INTD:'fP
! IDSZ
:. LA:BRV
, IJ9)EV

0::>
V1

LHARD
~ LSDEV

LNTERV

NOTREC
MXut~T
NSBREC
FlLOG (2)
FILERR(2),
FILHLP(2)i

; NSBBR
, NlliL.,\U ,
i NBSBR-

, .

. r r (r r -

APPE~IDIXC - PRTE CO~MON BLOCKS

DESCRIPTION

Co~~and Table and ~D~Bfile header information. The size of this common
block is determined at load time by a loader code in the .JumpTable. The
first 64 words contain the ~ll~B file header. The next 25~ words contains ~.
the active menu. The remainder of the common block varies in size accordi g
to the number of global commands defined, but is a minimum of 25~ addition I
words.
9-character, 5/7 ASCII }!NBfilename .
Number of entries in the HAT
Number of global commands defined \
Starting block nurnber of global commands
Block number of argument-getting menu (present, but facility unimplemented)
Block nUlTlberof starting menu
Index in SNT of GAP dump procedure (unimplemented)
Dumping interval in minutes (unimplemented)
Display size (0 or 1)
.TRUE. means abbreviated command mode
Active keyboard code
-1 PFA (unimplemented)
o TTA
1 LTA
2 TEKTRONIX (unimplemented)
.TRUE. if hardcopy echo of keyboard device is desired
Activ~ stylus device code
o Sparkpen
1 Lightpen
2 r~AC (unimplemented)
6 Tektronix (unimplemented)
Wait interval after lightbutton hit in DO loop iterations.
86 iterations = I millisecond
Total number of blocks in the MNB file
.TRUE. if the SVHNU option is to be obeyed. Set by the SAVE command
Starting block number of the SNT
Name of log f iLe (unirnplernented)
Name of error message text file (unimplemented)
Name of help file (unimplemented)
Number of entries in the SNT
Number of MAT blocks available
Number of SNT blocks available

Cont'd

r'

I

APPENDIX C PRTE emIt-IONBLOCKS

BLOCK
~;~:E...=.;::.=----,e-----------r-------------------------------------_

V,\RIABLES

NBGLB
LB~L,,\U
LESBR
LBGBL
LOGO~
IFIL(24)
H.l:IEAD(j 0)

DESCRIPTION

Number of global menu blocks available
Last HAT block used
Last SNT block used
Last global rnenublock used
.TRUE. if commands are to be logged (unimplemented)
Unused, words [11-64 of the HNB file header
Command Table, current menu block header (see Appendix E)
}friEAD(I)is the active command source code word reset by the DSABL command
BIT 17 = 1 Keyboard active
BIT 16 = 1 Lightbuttons active
BIT 15 = 1 Pushbuttons active
BIT 14 = 1 Real time clock active
BIT 13 = 1 BSI active (umirnplemented)
Command Table, control, local, and pushbutton command nodes (see Appendix E)
.The cnrrent menu block is read from the !-INBfile into HHEAD and H;,U.
Character strings in the Command Table are displayed from the lightbutton
files.
Command Table, first global menu block (see Appendix E). The size of !·lGLOBE
is extended by the loader in blocks o[250 words according to the number of
global cornmands defined In the GAP. All global menu blocks are read into
core before the starting menu is entered.

Number argument;buffer (see ARCTP)
Double precision array containing number argument values
Index of next free entry In RARG
Error message string buffer
Holds displayed error message area text
l"laximllmnumber of characters allowed in buffer
X-y coordinates of start of error message display
X-Y coordinates of start of error message display, size 0
X-Y coordinates of start of error message display, size 1

\
\

Cont'd

I

BLJCK
N!~!E VARIABLES -

I

r r

APPENDIX C PRTE COMMON BLOCKS

DESCRIPTION

ERRCON
LERR
LFATL
LDIS'9
LERPRT
LOGSRR
LARGS
LEREST
ERIU,l\N(2)
INTAK
NRHRET
LSTERH.
EHESS(9)
LABORT

Error message flags, addresses, and buffers
.TRUE. if an etror occurred in the last command
.TRUE. if an ABORT error occurred in the last command
•TRUE. if errors are to be displayed (;:1E]\11)ELonly)
.TRUE.. if error messages are to be output to TTA
.TRUE. if error messages are to be logged (not implemented)
.TRUE. if there are arguments to be retrieved and printed (not implemented)

<Cont-ro l: P> restart address for teletype (same as NRMRET)
Name of command causing last error (not implemented)
•TRUE.. if ~[Em)EL 'I' option encountered
Same as LEREST.
Number of last error message which occurred.
Error message teletype output buffer
.NENDEL abort flag (not used)

HITBUT
LXX,LYY
NA1-l~
PB~ml.J(6)
PBD1'M(6)
TPB
TLP

Pushbutton and lightpen hit communicati.onbuffers
X-Y coordinates of start of vector causing a lightpen hit
Name register value set during lightpen hit .
Logi.calstate of each pushbutton .
Logical array used by PBHIT
.TRUE. if a pushbutton hit occurred when lightpen hit was requested
.TRUE. if a lightpen hit occurred when a pushbutton hit was requested

LAYDAT
THEN
~!EN
LHEN
LEXI

Contains fixed text for 'MENU' and 'EXIT' display
'5HHENU! set by Cm!VAL
'SHEXIT' set by CO:-!VAL
Y-coordinate of 'MENU' text
Y-coordinate of 'EXIT' text

MX'LJDAT
IOREC
INREC
NOTCOM
mlUTP
LDIRB
LGLOBF

Contai.nscurrent Command Table and menuing information
Old menu block number
New menu block number
Total number of command nodes in the Corr~andTable (including globals)
Word index of last node in the Command Table
Last:HAT block used
Unused

Cont'd

I' -I

I

·<(-

BLOCK VARIABLES

APPE~1JIX C PRTE COtvlHONBLOCKS

DESCRIPTION

ourxco
IlL\Bj)
FIDlON(2)
KDEV
IREST
~L<\RG,LYHA.RG
HAXCH
IABRV
CBlJF(20)
U:':AR0, LYXAR0
L..\HAR1,L~..A.R1

Keyboard ir..putand teletype output;device and display control
Same as LHARD 111 CO:·ITAB
Name of log fiie (unused)
Active keyboard device code. Same as IKDEV in COHTAB

<Control T>restart address for 1'IA•. Same as NRHRET in ERRCON
Starting X-Y coordinates of keyboard input string display
Haximum number of characters alloved for keyboard input
Same as LA3RV in CO::-ITAB
Keyboard input b~ffer, displayed indirectly
Starting X-Y coordi.natesof keyboard input string display, size 0
Starting X-Y coordinates of keyboard input string display, size 1

00
00

PAG~l}.u
IFSIZ
F0:.c'_l·I(2)
IeREC.
IRSZ

HNB file I/O control
Number of blocks in ~~B file
·5/7 ASCII name of H~B file
Number of last block accessed +1
.Block size, aIways 25~'words

PIGDSP
LPIGDP(20)
LSYSDS(50)
LPRO:·!(!5)
LDISER(l5)
LKEYIN(l6)
LDOT(9)
LLAY(32)
LTBUTS(18)
LTITLE(34)
LP]35:(90)
LLOCAL(230)
LGLOBL(90)
LSOFFI
LSOfF2

PRE display files
PIGS display file
PRE display file
Pror.lptingarea display file
Error message display file
Keyboard input display file
Tracking dot display file
Display file for rectangular border and fixed text
Co~bined liohtbutto11display file
Control area lightbutton display file
Pushbutton lightbutton display file
Local lightbutton display file
Glohal lightbutton display file
Supplemental argument for blanking PRTE display (not used)
Supplemental argument for blanking PRTE display (not used)

Cont'd

I

BLOCK
NAI'iE VARIABLES

ARRYL(15)
MA.,,{PCH
lXP,IYP

i IXP0,IYP0
IXPI,IYPI

I IBUTNO
I PBOLD (6)
I

ISCH(46)

PROHP

r r r

I
i

APPENDIX C PRTE COMMON BLOCKS

DESCRIPTION

Prompting message control and buffers
Text buffer for prompting messages, displayed indirectly
Haximum number of characters allowed in text buffer
Starting coordinates of prompting message display,
Srart i.ng coordinates of prompting message display, size 0
Starting coordinates of prompting message display, size 1

PUSHB Pushbutton hits and state
Button number of last pushbutton hit
Logical state of the 6 pushbuttons

Clock schedule
Clock scheduling array, 9 words/entry
Word 1-4 9 character command name <altmode>

or 0 = end of schedule
-I = garbage entry, descheduled

5 Number of selections before command is descheduled
-I means repeat indefinitely

6 Interval in seconds between selections
7 Interval in clock pulses between selecti-ons
8 Next due time, seconds
9 Next due time, pulses

STYLS
ISDEV
INTERV
NAHREG
ISI-Z

Active stylus device control
Active stylus device code, identical to LSDEV in COMTAB
Same as LNTERV in em-nAB
Name register value of last lightbutton hit
Same as IDSZ in COMTAB

TDIEB
IS'SC
!PULSE
IOFF

ISCHP

LSTH(4)

Cloek command polling and control
Current; time in'seconds
Current time in pulses
o Clock running
1 Clock stopped
Index in clock schedule array of start of next search·
for a due command
Unused

I

APPENDIX C ME~~EL COMMON BLOCKS

ARGTP, CARG, CPARS, COMTAB, DARG, ERRCON, and PAG~u are identical in size and function to labelled concan blocks
of the sa~er.2~ein PRTE.

BLOCK
r;A~,t" VARIABLES DESCRIPTION

1.0
o

""

I eOJBDl I Binary relocateable output buf fe r control for Jump Table Irem::!) Index in ICOD (be10",1) of current loader code word being "ormea
ICDX Bit position of next· six-bit loader code ~n curre::ltcode word
rDAH;1) Index ~n ICOD (below) of currer..tloader data word
IBFLG Unused
I3U;:'(2) Header word pair for output buffer IICaD (2/~) Binory output buffer for one loader record, I

XDLEUF I lIc<1der,menu block, i~\'T , aad S,\'Tbuffers for the'editor-asse~bler I
IHEAD(64) Inclcntical first 64 Hords of CO~lTAB PRTE !to 1.n
MBUF (250) Holds current menu block under definiti.on
m~U(125) Holds one block of the :t-'rAT
DSBR(125) Holds one block of the SNT

I :'iDLVi\R I Control variables and pointers for the editor-assembler IITRP I Curr::!at!',El:\D','Lcontext, s o.ae va Lu e be twe en 0 and 6! lED I .•TRUE. if ~n EDIT mode, .FALSE. if ~n CREAT mode
IPC I..'ordaddress of current corn and node, minus 10
IBLK Current block number under definition
IPN 'Hardaddress, 1.nthe current block, of the last MAT entry defined

II IPS \';ordo.J.dress,~n the current blOCK, of the last SNT entry ~ c : •aeJ.1.nea
F:\A~·;E(2) ~,~;B fi.lename under definition

I . APL:~A.,.'1(2) GAP na:r..e
nx 'REC Block address of last menu defined in the MAT
Nnlr;U Last available HAT block
NTSBR Last available S;~Tblock
NTGLB Numb ,::l' of last global block available
LASTB Last global or local menu block filled-
LIST .TRUE. • c listing of HE1\vEL source being produced1.J..
FLIST(2) Name of list file

Labelled common blocks GRIDAT, PSHBUT, and STYDAT are used by subroutines GRID and STYLI and are fully described
in the PDP15 FORT&u~ LIBRlu~Y.

APPE}.'DIXC - .LlBRP Cm1110N BLOCKS

· I

APPENDIX C - MNB FILE BLOCK POINTERS

The following table is included to clarify the use of pointers and variables by MENDEL and PRTE in accessing
MNB files. The variables are located in common blocks COMTAB,MDLBUF, and MDLVAR, previously discuss~d.

BL~

Number of Number
First last block of blocks Last block Number of
Block available available used Entries

HEADER 1 1 1 1 40

MAT 2 NTMNU NBMNU LBMNU NaDIR

SNT NSBREC NTSBR NBSBR LBSBR NSBBR

GLOBL MGSTRT NTGLB NBGBL LBGBL NGCOM

ARGET NARGB NARGB 1 NARGB 0

MENU 11NSTRT NOTREC NOTREC-NARGB LASTB MBUF (2)

I

APPENDIX D

FOG DISPLAY PIGS !-fAIN-
CONTROL FILE - DISPLAY FILE

(LPIGDP)

\0
N

••

PIGS DISPLAY FILE STRUCTURE*

PROMPTING

HESSAGES
(LPROM)

ERROR

HESSAGES
(LDISER)

KEYBOARD

INPUT- (LKEYIN)

'-
LIGHTBUTTON
HAIN FILE
(LTBUTS)

TRACKING

DOT (LDOT)

DISPLAY BORDER

'ME!-:Dr ;EXIT r TEXT
(LLAY)

USER DISPLAY----~
VIA FOG SAVE
REGISTER 16

PRTE HAIN

DISPLAY FILE
(LSYSDS)

*ARROWS Ir.'DICATE FOG DRA10lCOMMA}''DSTO DISPLAY SUBFILES.
ARRAY NAMES OF DISPLAY FILES ARE GIVEN IN BRACKETS.

PUSHBUTTON

LIGHTEUTTONS·
(LTBUTS)

GLOBAL

LIGHTEUTTONS
(LGLORL)

LOCAL

LIGHT BUTTONS
(LLOCAL)

CONTROL

LIGHTBUTTONS
(LTITLE)

I

I

APPENDIX D

-
PIGS DISPLAY FILE STRUCTURE, LIGHTBUTTON FILES

D

Subroutines CBUTHT and BUTRIT are used by PRTE to detect lightbutton
hits by the active s~yltis device, either the lightpen or sparkpen.
In order for these routines to work properly, lightbutton display files
must follow a rigid format.

Subroutine BUTRIT detects lightbutton hits with the lightpen uS1ng
LPRIT, which simply returns a unique name register value set up in the
.display file. If the sparkpen is the active device, BUTHIT compares
setpoint information in the display file with the stylus position to
determine if a hit has occurred. If so, it retrieves the proper name
register value from the SKIP2 instruction in the file itself.
Lightbuttons are winked by PRTE using a P~12 instruction associated
with each button. .

Subroutine BUTDIS can be used to create lightbutton files with the . ,
required format for hit detection using CBUTRT or BUTRIT. S impl:e
lightbutton files, as they are called, display columns or rows of names
of variable scale. Lightbuttons may be displayed in the offset or
main display area and spacing between buttons is variable. Simple
lightbutton files may also be created using MACRO-IS, as the example
below illustrates.

Example I

PRTE array LTITLE contains the control area lightbutton display file.
The two lightbuttons it contains appear on the display opposite the
text strings 'rlliNU'and 'EXIT'. Each button displayed requires 14
instruction words in the file. An extra 5 words are required to make
a well-formed FOG display file. The control area lightbutton file
could be coded H1 MACRO-IS as f oLl.ows (PRTE uses BUTDIS):

.EBREL
CHARS :::
DNOP
DJMP :::
PX
PY :::
OFFSET =
ISCALE =
:f:>lliNU
MENDAT
EXIT
EXITD

Simple Lightbutton File - LTITLE

060000
200000
600000
144000
140000
I
I

oASCII
.ASCII
.ASCII
.ASCII

·XBI 12
YBI = 1654
XDI = XBI+106
YDI = YBI
XB2 12
YB2 = 1524

fUse 13-bit addresses
/Character string instruction
/Display NOP
/Display'NOP instruction
/Position beam instruction, x direction
/Position beam instruction, y direction
fUse offset area
/Large text for buttons

'PATH'<175> /Button I
'INIT'<175> /Data for button
'BACKG'<175> /Button 2
<175> /Data for button 2

/X-Y coordinates of button I
fin offset area
/X-Y coordinates of data area
fin offset area
/X-Y coordinates of button 2
/below button I

- 93

....

/x-x cQo~dinates of data a~ea 2
/(Allof the coordinates above would be
/automatically computed by BUrOIS)

41 /Length of display file ~ NOBUTTON*14+5
o /Return address planted here

DNOP /FOG blanking word
234400+1&177 /SKIP2 - load 1 into name register
220004 /PARAM3 instruction
211056+0FFSEr & 1 /PARAM2 - used to blink a

/button, enable lightpen, and
/select offset area

& 17 /PARAM'I- set scale 1 chars
/Position beam for first
/button name
/Display buttQn name, indirect
/Avo,idindirect address
,/Addressof name. PRTE would
/point to word 1 of command
/node 1
/Position beam for first
/data area. Y value the same
/Display button 1 data area
/Avoid indirect address
/Address of data area. PRTE display
/would point to word 4 of
/command node 1

the previous 14 words

D

XD2
X02

~ XB2+106
~ XB2

LTITLE

/Button 1

203020+ISCALE
PY!YBI
PX!XBI
CHARS*
DJMP
.DSA

.+2

.+2
MENU

PY!YDI
PX!XDI
CHARS*
DJMP
.DSA

0+2
.+2
MENDAT

/Button 2 essentially repeats
234400+1&177
220004
211056+0FFSET&1
203020+ISCALE&17
PY!YB2
PX!XB2
CHARS*
DJMP
.DSA
PY!YD2
PX!XD2
CHARS*

.+2

.+2
,EXIT

.+2
DJMP .+2
.DSA EXITD

/Finish button 2
211056 /PARAM2-turn blink off
DJHP* LTITLE+2 /Return
.DBREL /Back to 12-bit addresses
•END

Subroutine CBUTRT may be used to check for hits on more than one
simple lightbutton file at a time. In order use CBUTRT, a combined
lighGbutton display file must be constructed, using FOG or HACRO-15,
which contains only DRAW's to simple files. CBUTRT scans the combined
file in order to discover the address of each simple file" then calls
BUTRIT.

- 94 -

...

-
D

Example 2

PRTE display file LTBUTS contains the s5.mplelightbutton :filesLPBS,LGLOBL,
LPBS,LGLOBL,LLOCAL, and LTITLE. This combined lightbutton display :file
could be constructed using FOG or ~1ACRO-IS, as shown below.

Using FOG from FORTRAN:
'---

DIMENSION LTBUTS(16)
LTBUTS (I)=0
CALL DCHOOS (LTBUTS,I)
CALL DRA\v (0 ,LPBS(I))
CALL DRA\v (0,LGLOBL(I))
CALL DRAW (0,LLOCAL(I))
CALL DRAW (0,LTITLE(I))

Using MACRO-IS with the same VTIS ins.tructiondefinitions as Example I

1-

.EBREL
DJMS=640000

LTBUTS 17
o

DNOP

/Display file length
/Return address
/Fog blanking word
/DRAH LPBS

/

DJMP .+2
.DSA LPBS
DJMS* .-1
DJMP 0+2
.DSA LGLOBL
DJMS* .-1

/DRAW LGLOBL

/
DJMP .+2 !DRAW LLOCAL
:DSA LLOCAL
DJMS* .-1

/
DJHP .+2 /DRAW LTITLE
.DSA LTITLE
DJMS* .-1

/
DJMP* LTBUTS+I /RETURN
.DBREL
•END

- 9S -

...

-
E

APPENDXX E MNB FILE STRUCTURE

The following tables and illustrations explain the MNB file, menu block,
and command node structures as created by the MENDEL editor-assembler
and interpreted by PRTE. The disc file format of these structures
is related to }fENDEL and PRTE common blocks as described in Appendix C.
The symbols appearing next to the MNB file blocks are COMTAB labelled
common block variables.

The first illustration shows the layout of a well-formed binary MNB
file. Subsequent pages describe the format and function of each of
the 250-word disc blocks which make up such a file.

- 97 -

...

--
E

MNB FILE STRUCTURE

Each block contains 250 binary words

BLOCK NUl-mER OR
POINTER VARIABLE

1NM1E IN HEADER
~----------------------------------~WORDS 1

UNUSED

-_-----------64
HEADER - POINTERS AND CO;.;JSTANTS

250
~ ~ 12

MEl'-.'UADDRESS TABLE

(NBHNU BLOCKS)

~---------------------. (HGSTRT)

GLOBAL COHHANDS
(NBGLB MENU BLOCKS)

"

ARGET MENU BLOCK

LOCAL HENU BLOCK

LOCAL HENU BLOCK

l'V\/V\.--v -'\.- .V""--"-' ~. vv•....•..V\--..-1,..v'L- ...• ~
'v V

(NARGB)

(NARGB) +I

.~.

(NOTREC)

.- 98 -

, .•

-
E

MNB File Header Entries

Only words 1-64 are read into the Cm-1TABcommon block in core. Words
41-250 are curre~tly unused and are set to 0. The function of each
entry is included in the discussion of CO}ITABin Appendix C.

HEADER HORD COMTAB VARIABLE

1-4 PIGLET (2)
5 NODIR
6 NGCOM
7 MGSTRT
8 NARGB
9 MNSTRT
10 JMPDMP
11 IN:rDMP
12 IDSZ
13 LABRV
14 IKDEV
15 LHARD
16 LSDEV
17 LNTERV
18 NOTREC
19 MNUWRT
20 NSBREC

21.-24 FILOG(2)
25-28 FILERR(2)
29-32 FILHLP (2)

33 NSBBR
34 NBMNU
35 NBSBR
36 NBGLB
37 LBMNU
38 LBSBR
39 LBGBL
40 LOGON

41-64 IFIL(24) Present in COMTAB but unused
65-250 Unused and not in COMTAB

..99

...

E ,',MENU Address Table Format

HORD

275
246-250

275
246-250

5

6

}lENU NAHE
(9 CHARACTER 5/7 ASCII)

NENU BLOCK NU;'j!)ER

!lNTTSFn

HENU ~lAHE

l'lE;~U BLOCK NU1-!IlER, .
~.~vV~~0-'-'~

II
12

MENU NAME

-
HEl\'U BLOGK NU_t·\BER

UNUSED.

e . (NmfNU, BLOCKS TOTAL)

-5

HENU NAHE

HENU BLOCK NUl'lEER

UNUSED

-
HENU NAl1E

!·ffiNU BLOCK r';Ur1!3ER

~ AV
UNUSED~~

II
12

241

m;USED

NENU NAME

HENU BLOCK j'U:.mER

*ALL NUHBERS ARE DECIMAL RADIX

100

, .•'

BLOCK

2

(NSBREC)-I

• i~Subrout1ne Name Table Format

PROCEDURE

INllI':X':'HOR])

2 5

3 9

4 13

16

62 245

249-250

-
E

*

BLOCK

PROCEDURE NMIE
(6 CIl!>MCTER 5/7 !>SCII

PROCEDUUE NMIE

PROCEDURE NANE

·v, .•..••..rIr~ .•...• -.,._ ~~ ~v·-"--'

(NSBREC)

PROCEDURE N}\HE

UNUSED

(NBSBR BLOCKS, TOTAL)

63+ (MGSTRT)-1

PROCEDURE NAHE

6l, 5

PROCEDURE NAHE

65 9

66 13 PROCEDURE NAHE
"-

PROCEDURE N!>HE
67 16 -~

245 ~ '"
PROCEDURE NMIE

248

.J 2l, 2l19-250 UNUSED

*ALL NUHTIERS ARE DECH!AL R1\DIX

+PROCEDURF. INDICES liRE USED IN COH}lAND NODES. INDEXING IS CONSECUTIVE
ACROSS BLOCK BOUNDARIES. THIS INDEXING ASSUMES NBSBR=2

101

~

E
,'c

MENU Block Format

FlH;CTlO:~ (CLOBAL CO:'iTEXT) srxsrrxc I·IORD
OF NODE

LAST WORD
OF NODE

HE:-"'U HEADER

GLOBAL

2

3

4

5

6

GLOBAL 7

8

9

:10

II

12

13

14

15

I 16

17

18

19

20

21

22

23

2/,

(NO?-l-
DISPLAYEI

(D ISl'LAYED

I 10

II 20

21 30

31 40

41 50

51 60

61 70

71 '80
)

.
81 90

91 100

101 110

III 120

121 130

131 140

!41 150

151 160

161 170

171 180

181 190

191 200

201 210

211 220

221 230

231 240

2/d 250
~,

GLOBAL Cmn-!AND NODES
HAY CONTnmE IHTH HORE HENU BLOCKS
OF IDENTICAL FOJU-1Al'. ALL BLOCKS lLWE HEADERS

- 102 -

..•'

FUNCT10:--1(~U:NU CONTEXT)

HENU HEADER

ENTER (CONHM-m NODES)
-t

EXIT

PUSHBUTTON

PUSHBUTTON 2

PUSHBUTTON 3

PUSHBUTTON 4

PUSHBUTTON 5

PUSHBUTTON 6

LOCAL

LOCAL 2

LOCAL 3

LOCAL 4

LOCAL 5

LOCAL 6

LOCAL ?

LOCAL ,8

LOCAL ,9,

LOCAL 10

LOCAL II

LOCAL 12

LOCAL 13

LOCAL 14

LOCAL 15

LOCAL 16

* .AU NUHBERS ARE DECIMAL RADIX

..

\o.'ORD

:BIT
1 I

4.10

5-R

BIT

BIT

-
E

HENU IIEADER FORNAT

2

--
J.)__ _ L~__ t---L~-- 16 17- -- -.-::-_ -_.-----

ACTIVE CO:·i::'lANUSOURCE
1351 CLOCK PUSHB LTBUT KEYEDHORD FOR BENUS

NU:-!BER(1-24) OF LAST DEFINED
COM!-!ANDNODE IN TillS HE~U BLOCK

SVMNU FLAG. rr .TRUE. AND SA VE OPTION
•TRUE •• \{lUTE TI-I1S HEI'\U TO DISC

UNUSED

3

Cm1HlulD NODE FORN.I\T

104

COH~1AND NA1>m. 5 OR 9-CI-!ARACTER 5/7 ASCII
<I!LTNOVJ.:,'> IN CHARACTER 6 OR 10. . IF COHHAND
IS INACTIVE, CIU\RACTER 10 CONTAINS
NOlU"U~LCHARACTER I ,AND CHARACTER 1 IS <AL'l'MODE>

DATA AREA. FORHAT IS IDENTICAL TO Cm1;"!ANDNAHE.
BOTH COHHAND NAHES AND DATA AREAS ARE DISPLAYED

I FROH LTi';H'l'!;UTTON FTLES US TNG THF, C1!J\RJ\CTER STRING
INDIRECT INSTRUCTION.

.
-.___ 0_____ ..:...._._._1 -5 .____ 6 7-17 --

I COHHAND HAXIHUH I NO DELAY INDEX OF
ACTIVE NUHBER OF PROCEDURE TO

ARGUNENTS. 0 NORHAL DEL~ BE EXECUTED
0 Cmll-lAND -] NEANS BEFORE IN SNT. 0

INACTIVE ANY Nut-IllER OF PROCEDUPili HEANS NONE.
ARGmlENTS EXECUTIml

i/J I / I /r--'
I EXECUTE EXIT I EXECUTE ENTRY HENU BLOCK

PROCEDURE HEFORE PROCEDURE BEFORE NUHBEP. 011 NE\~
HEND CHM~GE HENU CHANGE NEt-:UTO BE ACTIVATED

o l'lEANSNO NEH HENU.
i/J))0 NOT EXECUTE 11 DO NOT EXECUTE

EXIT PROCEDURE ENTRY PROCEDURE

•-

9

10

- 103

...

-
F

APPENDIX F OVERLAY DESCRIPTIONS AND LOAD }1APS

PRTE

\}(,t,jl', i.CT Fl LE

LI~T O~T10~S & pnRAMETFrlS
> sy.,P{'h :Jr,!.." ;.•:';i',VI e/p I (iLlSP, Dl .5EH, F-HO:••P, LAYDA T, CO:1TAB, 0 llT"lODI
DFFI\)F "FSI fJl-:\jT CODE
>('!liJ
DF::;c,n:-:F t.r-ncs f, STilUCTUi,E
>L~~l ::tlcn'.~:\/I7\! .•
>Lt<~= i/YY ~ Ti-:T, #())J"1 'J p, Ii HD\j\J U, # IolTM\J U
>!..;{3"'~'Dl 51') r
>LKLI=f.1POL['
>LK :,= il cij:,.sOLV
>LK1:LK2:L~3:L~~:LK5
>
LI \ll{ IlH.'L E

775~J5-77636 0(;132

HESI !)Fi'lT CODE
('/',P 7"502- 77 ~(.)'I (j110~J3
PIGS2 76502-775~1 £1003
Ej',:"LI }:;
'n'FLfl
CLEhH2
N~·!\)U8
,JU~li"n:
C!_I)jV!
~jJ\1;(

76LI71 -7C):;:'1l 0(:\011
76~32-76~70 00037
76323-76431 00107
76135-70382 00166
76111-7~13h 00024
76056-70110 00833
756A2-76G5500174

TH1FP 75606-7~,6GI 0005'4
TABLET 75530-756(')5 G0~:56
FOri 735~Jl-75~)?7 02027
\iTEn!~2 73'!Gl-'I3~,~j0 rjfJU20
D~~S4 733~1-73~6~ G0160
YYPJiL\I 73203-733GO (J0076
DIS~RN 73140-73202 00~43
MESDIS 73070-73J37 00050
CVICj,; '/2055- "3i.i67 :,)0213
JPSTAR 7'?f;.L!/I- n':(,S'1 OJ011
IEITS 72011-72643 08033
t15TH
MVC

72b36-72(10 00053
72400-725350013A

LT~. 7!n35-7?377 01343
.PFDCM 71033-71034 00002
PHI'll 70;775-71032 01,)036
LTOI:PE' 736(:3-7077L, 00112
DFF I ;-JE 66(,5:,)- crt 7 7 o I 13ri
{.>f),.i1 70fLILl-7:)('c-2 (j0:~17
• D.'7l 70 566-7(1 ("~3 W)(,) 56
.55 ?D/n7-7'J~,6~; tJC:J67
S'!':li:' 72,L!6L!-'/:!'i76 'jO(113
SP:,;SG 7U:3Ll5-'n;L,G3 ~;(')117
.FLUl 7();')';:;7-'{«>,/j/l U()266
Frr);..:~, E.':>4,,"-f:(:,:,L:7 '!12')1
l\11TA!< f,~:316- (,~;LI/J6 Uf-Jl31
IJ<Ll'l\E (,,'!217- r, r'31 ~i DJ(~ 77
OTSFl~ 6/::,j(17-(-.(1~16 Wj21~j
.CY.? 7'i!_j3~j-'/:;;J~;(~ ~)\)i)22
CO\I'j'!'I.B (,E7:?3-('/',J:I(, ;jll,/()lj

O~jT',:'11'j (.~ «~ /1- r ~:'i ~-!'~ ~··...i1 r-,7
i)H:I)~~,~61 LI:)7-(:'«33 .n I 55
~:\JliDt'! 'I' 'I':; _,~,7 - '1':',,: :3/1 l'j :,VH 16
P1B(·;Tl,J (,1/:16-(;1/J~)6 U{~U/ll

Vj;j((;,TJ (,1:3:,:.,- (,1/; I ':> O:~O'11
DI S};:,' 6131")- (.j :l~)/j (j:)lJ/!S
P:\(:'':'Ji.! 7'Lll/~-'i I:I:'~! :·\~)(·".17
L.·~\'J,·'\.·f''/":''.:j(_P/,J l;-s ~j'~';'~(l

I'USIIFl 61 ~l(ll- (,I 'J!i" ['If-,Ull.,
Hl'L I,'J 61 ;).(')-(,);;'),) :j0(j~:1
C'.\i-':G (d ~:~I- ,.,1'2':-,', U,,');3'(
}J" ilG 61 Il! :)- (,I ;!;:') !_,,~~~';~)(,
T]~<}·.L Gl1 :1:~-/d 1..!~: U~J\di;
C!·jr~J;S (-1 II 't r r,11,l:" !,l()'I'I.lJ
:.,C!:,\,,:\ ('1:,(,1-(>1 1 l() i);;.J~)(,
F'1.ry,/ ('" 't '//1- (.I! j I'! I iJUt) II ~

- 105

F

LI '0,]K - - U<:l
U)~'lVl\L (-()377- ()()7'13 O(l3'15

LI 'J;{ -- L!':~)
II'STilT 6') (,'ifj- (-')773 .io 10/1
PUiFIL (,!}(,J 3-(:J('("1 Od(i :'5
CO:'iI\JT :,.,;~ :.j ~.)- 57777 (}U6()~)
Ot"1\] I_!2 (,{)/tl/D- (':) (12 ()(~153
i([i:,1\] u2 (,J 3 !uj- (.'J 1/37 U~!;i72
\,,'Tt·1\JU2 0;)~6:)- (',)3/1~ U;)U66
F\JAMI' ':J('(,'i 11- ~)71 '/7 U::J 3::)/1
RBI\JIO GO1 1.1 !;)- (".j;~ 5., O(~)11~~
n~\JCm1 !:,,(,1'ri- sr)673 0(,) ~JULI
FILE 55~J7~- 561 ()7 DD373
BINIO 551/16- 5557/1 00LI2"

L!I\J!{ -- 1.1<3
DISINT 6D33 1- 60 773 00L!/~3
BUTI:H 6'n:3Lj- 6(,j330 00275
SYSDN2 57/172- 57777 oo 3f!}6
PIC1D\JT ':J7lJ.j 5-:;7 In! 0:,)065
UWOU2 57~~22- 57'~(:iLI v)(::) 1(,3
PEOtylPI 571 I!r.j_ 57221 D81J62
DISEHI ~'7:) 50- 57 J. 37 D(j(J62
t1FSDJT 56727- 57(j 55 00127
BUTDIS 561 j~~- 56726 [;,)0575
CLOC;, 5C)75··~)6131 00035
KEYST3 5573:)- :;·697/) 0U 1L15
KEYS 555 :il.j- 55727 0015/l
oo1'1\JT 55/!72·· 55553 00062
FOGL; 55255- 55471 00215

LJ.\1!' -- U(ll
POLL3 603 7 1- 68 77 3 g~)LJ~!3
CBUTHT ('(:J '27 s- 6037[') (J007LJ
EUTHT2 S'l2~)3- ~:'7777 [';(::)575
PPH.IT 600 71- 6027L! ~J0 2,::\L!
LPHI T :,T:-JI.!l- :,'/2('i2 ,)01/42
CLOCl-l!{ :,6"32- 57C L!D 00 L)%)7
DSCHETJ :,6i '/2- ::,0L131 002LJl.j
KEYI '.'J3 5~)(,'JJ-5F-171 :]0367
I{EYS 5~/!27- 5~6"12 O(~1 5'1
DJT1:jV2 552 7II - 55 LI2 (, :~~)133
GOTO 6:J()1.!3- 60(170 0002(,

UN!{ -- IX5
HESLV2 ('-:)31 L!- «)773 PJOL;(.CJ
GETCH2 f;'J;j25-6~)313 ~)(:)2(7
li-\lIGS2 57(:')3-:,7777 fJlJ175
P!\!;C 57~1~~3-~7(,~:2";(')230
f'.\JlJ',H3 ~7/;21- ~7352 ;)8332
P5Th.\Jf. 5f:~/!7- 5?'-j;,;\) (/.i~o~)2
PI~T 5G~~J-S6~~f 00307
TF~·.~'!I\J S";1 3(,- :;/""23'i (:r;")! ')2
\);'.lC!!i(:,(-111- :-1(,1:1:' :-'H')~~~;
t'LA'Ji(S 56.)!: j- ~)()11:) :;·,:;'..;51
.F)) ~:'5·/:.J-!:J(CJ:n :',~j132
.!JIi ~)~,(\:;:?-~)5'1,'):) 'Jj~")3/j
•DE ~)~::~',1-::,~,)(,~l;.::J 1:11
• Dr 5~)/!1i-> ~;s:)'-,:) ("j 1~7
.DC ~i:_,:;/;3-:-'5lHl (',1;(')/1'1

GO'IO ~_,~<l)!j-::,5~lNl)'1:)~'.6
DOUPLE 5511 ~_~-5531'~ W)~~(l3

CO;{F, BEe' D
S~11~-77G36 ~2525

- 106 - ...

PATH

Cr-;?\I\1 ACL

'JA:'lF XCI FII.E
>iJ{\ II-!
LIST O!-'TI<l'.)S? j'A!'1A\~FTFhS

-
F

-'VTC/l'I GD!:iP, DI oSFE, fJh()~-1jJ, LAYDI,\ T, CmilTAD, 0 urno D, BACK(J, DATB, P THDA 1'1
ll'FI\1j" hl',~IDl:\J'I cor».
>PATH,Ct'i~rl
DEscm DF LI \):\5 p, SThUG'J UEE
>LKI = !/C()~;:\H\L
>L!{2= flY YSlid', t,: Oi"':-)\]P, 1/i'.DM\!U, tl\,':1":1\1U
>LK3=#DI~I~l'.~CL0CK
>LK4=#POLL,#CLOCHK,#D5CHED
>U\~)=lfhFSOLV
>LKI:LK2:LK3:LK4:LK~
>
LI\)K TABLF

77444-77636 00173

- '

liFS I DE:\! T CO DF.
PATH 77'124-77':43 vJ002a
PI\lIT 77415-77423 00007
51'YD1'2 77':l75-77L!l4 GG~)2I')
mTACL 77226-773 7LJ DU 1LI7
H.KDI5 77162-77225 00044
INITD2 76735-771(1 00225
PAGECL 76040-76734 00~75
DR[-\\olC 7637/~-7h637 00244
, 'r'T"ol-'I\."
nJ!.u.&\.t-1W 76223-76373 r.•r..•., r- 1

\.:,1 -o 1;I.

CEL. 76V,22-7f>222 00201
DH{\\<,lJ3 '/5711-7602100111
Pl\CJ{GE 7~)r;-,67-75710 (,)0122
PLA'r'RA 75~J17-75:,(,6 0Li 55(.-)
SED\·] 71161 Ll-7~.::.o16 {j,'}2!-J3
FR,\TF 7/~(-,13_,7 /! (.13 T) 0o 1
GHIDl'lT 7/4(,::;(;-7/1612 C·DOI3
SHm;I T 'I I: '-42.11 - 7 L! ~)7 7 (-\U 1 t><4
LT,PF'J 1 7/:0~~~J-7LI/123 :JCJIJ(JII
PI (~~;2 '7:i(J~)U-7L:~)17 If) 101:1,;)
HESLIB 73:JCJ7-73:")17 !.)(:'c1l1
YYFLA 7275~-738a~ ~OU37
CLF"J{2 726/11-727/!'1 ':;UIWI
\L1\JU2 7f~/l~)3-72(L',} lYJl66
JU~PT2 72~27-72~52 00J2~
UST'~(F~" 7~2~?:J~~-7';!./_:'26r:L~2:)
ll::,~~.sTY717(':)-72~~:'il (,J(.J~~I:>
I.)SFGllI 71('12-'/I7fL; ;j:)153
\·.'1'1l'!' '/1 ~)«2-71 (,II l:jiliJ3{)
STYL12 65(<"l3- (;7'1'17 :,)21 LI ~
Ph0''-;PT 'II ~)~2-71 !:itS1 (){)Cl/~~)

CLJ')j'.'\1 '!l!,(7-'fI~~21 (;;j~):l3
(,i':ID 7(;«lU-71LI6() [-;rIC(,7
I,::-,\JU 7U/,,',(.)- '1(1 :"77 \1(j 120
S[{VI)).. '1',)?II~·)-7")/j :',7 ;:\:\;~13
DS~-;FI) 7d 1(, 1 - 'I\)~/!L! (_',.i lll/l

- 107 -

.....

F

r~VI ~jI 2 (,5~23- 6S(,32 (lU 1H)
(~FTl),'2 (, :,:l3 3 - (,:, ~)r:2 \)(J 1 'Ie,)
GFTCH2 6~:)ll/j- (,5:332 ('ivJ2 ()7
I.:r \J:{ (/)(,~)~.,- (,SIlLI3 on 17/1
S:\FJJUL 7()O'll;-7U 1~Jv) (i)(')035
DS;U DU 7:)(;122 - '/1·) (.)Ll3 ~HJ022
SCHFD 6L<166- 6/1(>Lj 7 D()r.~()~~

TH,fV 6L1312- 6L1365 (·J085/1
!·:ns 6LJl 3 (,- (,/131 1 UO15LI
I.)Ol'.1V[~ A/I()U 3- 6L:1 35 (101 33
TAL:LET 63725- (,LIO(:)2 00056
ACTr.:'i 63~)LI2- 6372Ll 001 63
!)ACTC~16:l3~E- f:35Lj1 ~H'J1 6Lj
C~FPJD 63U'~3-633S5 !10313
FhP 63023-63(jLj2 ~)vJD2k1
QUIT (i3G 1LI- 63(122 00G07
FOG 61~?I)~,- 630 13 liJ2027
FOr:2 6067 LJ- (irJ 7 64 (10~71
FOe;L! 6!3'-l57-60673 rJvJ21 5
VTl-}iii2 6(.JLj37- 60 LJ56 (j0(iJ2~)
Ei:i-(~1Sf! 6(:l~~57-6(0Lj36 O!'H 60
YY.PHL'J 60161-68256 00(:)'/6
DT <.: T;'!.',1) 6~~116- 6~ 160 08{)!~3.a....,l.H'
[,1£SDl S 60(3/~6- 60115 vJ0(i) 5(:)
CVICH 57565- 57777 00213
JjJSTAF; 6(ih)3 5- 60 &jLj5 0(,-)011
r:'H31 TS 57 50 I! - 57 56 Lj 08061
lEI 1'5 57/~51 - 57503 0(,)033
MSTH 57376'.57/150 (~U053
MlJC 572L:0- 57375 00136
L 1'.Cl. ='5675-57237 013/13
.PFDTj1·1 7U:J20-7f1(:121 ("'1'002
fJriDJl 5S637- 5567/4 vHJ036
LTOLf-'P. 5552~)- 55636 08112
DEI" I'J E. 5LI37::,-5552LJ (H 13(1
EDCODF. 5Lll 2~ - 5L137 I-! 0(iJ255
AD.n SLll I')1- 5Ll11 7 (.-)kiO 17
r.o,ES SO~)21- 6;)03/! 0r~(,)1 II
•D!~ 5L)023- 5Lil 00 00056
ECDIO 5~:jO/~3-5LI022 0376[-J
.ss In711-L17777 011867
coro 117663- LJ771 0 00[:)26
STOP 5::l03Ci- 5(.J[j/12 00C-)13
SPi'1.3G Ll7 5LI11- iJ 7662 00117
.FLTi3 Lj725 f- L;7 :. Lj3 0(~266
FlOPS 146055- L172 5 5 (3121'J1
J\l TEAE L! ') 72'1- 4 6v) 5/4 0.:Ji 31
OOUFLE 'I : :;:::1- I) 572 3 (:)1.~2(iJ3
iiFLEAE LjLlLj;':2- 115520 0lri)77
enSF,i{ LI/121 ~..!-LJ/!L121 (1102110
• C!? LjIII 7(j - I~1121 1 (1rH1 ~2
co:TAB /.13(')72- L!Lj 167 (11(.176
PTHDl\T :l 31)f II - 3 77 7 7 (1Lll 1LI
F;"Cl(G 11~,LI7 ;~- L!30 7 1 ~JO/IUO
mTD I; 17(13 - II 2 II '11 !)O567
A!:GTtJ Ljl (,LI2-/1l7D2 008 III
TI:,jFB 'H(J(j ~- 7:j,:n 7 DO:J13
()l; r-oD L!1~,~3 - I: 1 (,LIl :·::JU67
j-'1 (;IJSP Ll:137(,-LI1552 1:111 ss
~r\!l!iJ.'-\r f·()!j 13- (,(~n2:') 1~()OUr,
s:YJ.S '(\) ; j () 1 - '1U U .) LI U '.1:·:;j'l
Fl',!1 C '1\1 I".: :3~3~-Ii(l 3 7 ~ 0:1\1/11
Dr~En Li82 'lv) - LHi 33 Lj (J:) (J Ljs

- 108 -

~ .. '

i-. ..•r.·<'JU (.;·l~)(\LI-H)'Jl'" ;·l!J:j(·I'l
l.!\) \1(\r ~'i.")?;~-~,L'!,;~'I (W(;('j6

jJlJ:;Hl. ~):·)!iI :3- ~)~:,j~!1 ()()(I'J7
HI TFVI' Ij(')c;!."I-I:(j'c.?(.'l (,jOfJ;l.1
C(',,;F I~:.l;~ 1(J-/lii~./j() ,j 'j!~37
n~I':(i Ij,:'112-/!:J~·~WI (J(1056
CW\h:'; flU1I G- I.;;) 131 Ot,H)1il
::;C!:i\i-'H I;['HI IjiJ-/!U 11 5 !1U(15(;
i-'SliPUT 5UoD5- ~):j':j12 (~:'j(306
r" ,,0:>1 ,) :3361 '/- 33663 (JiJ 0 il5

U\l~~ -- LXI
CO~V~L 33222-33~16 U0375

L I \j;{ -- Lf{2
YYSThT 3:351 :,- 3361 (, IJ(:) 10LJ
PI fiF! L 33/13 (,- 33 512 ,;JQ\:J 55
CO:1I'vT 3263tS-J3/135 00600
nt.'-,If\l "G("_) 32L!63-32(s35 (-)~,Jl53••••• J •• ~. t-.

dx,;')lJ~ 32371 - 3~:'-I f:? 00:]72
\'."P'.\JU;~323(:13- 323 7!~ O~YJ66
?.jt\:-iE 31777-32302 vlO3(JLJ
hPI"JIO :31 !:61~-~q776 0D 1 J 3
l~~''';CO~';3111S0-31663 00504
;'1 LF. 3!J565-31 157 00373
EI 'J I [I 3iH 36- 30 56LI 00427

LBJ1{ -- LK3
rT C"T '." -r- 331 5Li - 336 l 6 Cj0Lli~3LiJ. •.Jl.:oJ J.

BUT l:\JT :~265 7- 3:3153 v)0275
SYSi)\J2 32351- 326:.,6 003liJ6
PI C))\n 3?2 6/1- 3~3 50 CJvJ(2165
ll\YOtJ2 3:::101-32263 0(1163
PHO\1PI :l~~;_;j7-3~~10(j i[iQlD62
DISEhl ~1172:,-32i)16 (0VjVj 62
V:FSI '\JT 31606-3173/1 00127
PUTDIS ai o r 1- 31605 00575
CLOC;(307 :)il-3lVJ 10 00035
KFYS'j';3 30007-30753 001il5
Ln1'j\JT 38525,- 3!'j 6;J 6 00062

LPE(-- L'{4
pnr_.L0 3 32 1 11 - 3361 6 ~JG403
CPt;"[!iT 33120-33213 00074
DUTi!'!':? 3232 3·-33 117 00S75
PBH 1'1 32 117- :l;?3 ,~;~ ~1020L!
LPHI T 31755-32116 WHil2
CLOClii(313LJ6-3175LJ (,jOLla 7
DSCi-iI':D 31l(.~6-313l!!:i 002/10
~1;:YIN3 3(151 7- 31 1o 5 00367

LI\JK -- LK5
m:SLI)2 33137-33616 Ol'jLJ60
T!\EGS2 32'11!2- 33136 (J0175
PA::iG 32512-387/.;1 00230
P\JU:!,B 321 (-~1-3251 1 (,\-)332
P::; Ti:\]G 31'/U6-321 ~)'l (.11)252
PI \JT :31377-31 705 :J,-J307
TF"~'!I \J 3 1~~7 5- 3 1:37 (, L'01G2
\i;': 1CH" 31 2 5U- 3 12 71r (')[W25
ELf', \) 1(::; 3 1 I 7 7- 3 12 II 7 ,10n51
.FD 31 ()/rS- 31 171) [)(j 132
• Eli :31U11- 3 I()/1/1 ()1)(J3'-1
.TJF: 3.J7IU-3J/ 1[-) :jdlUI
• D!;' 3~;~)~i1- :3!J7!17 ~'jfj137
D" 3';) ~:'J8-:'10 5 ~:,(1 GOU/17• u

COdI': l!FO' D
3UI3(,-7763(, 1175:-ll

-
F

- 109 -

...

-
G

APPENDIX G - PRTE AND MENDEL COMMAND SYNTAX

The following is a BNF grarmnar specifying <cormnand> as the sentence.
It does not represent the fact that the character 9 is now allowed
in an octal number. A maximum of 15 arguments, including the command
name are allowed. Examples o~ valid input is provided in the next
section.

-
<DIGIT>::0/1/2/3/4/5/6/7/8/9
<ALPHA>: =AIB IC ID/. 0 ./X/Y IZ
<CHAR>:::<ANY ASCII CHARACTER>
.J3LANKS>::B LANK/B LA NK<BLA NKS>
<NONTERM>:=<ANY ASCI! CHARACTER EXCEPT BLANK OR , OR CR

OR ALTMODE>
<NTAIL>:=<NONTERM>I<NONTERM><NTAIL>
<CSTRI NG>g:<ALPHA >I<A LPHA><tHAI L>
<STAl L>: :<CHAR >1<CHAR><STA I L>
<STRING>:=<CSTRING>I • <STAlL> ' I a <STAlL> C9

<INTP>:=<BLANKS><DIGIT>/<BLANKS><DIGIT><INTP>
<FRACTION>:: • I • <INTP>
<U-i~A NTISSA >: :<1 NTP>1<1 NTP><FRACrt ON>I <FRACT! ON>
<MANTISSA>:: + <U-MANTISSA>I - <U-MANTISSA>I<UuMANTISSA>

<S-HJTP>:=<INTP>I + <INTP>I - <INTP>
<EXPONENT>:: f c:BLANKS><$-INTP>
<DNUMBER,.: ::<r'lA NTI SSA>1<NANTISSA ><ExP ONENT>

<NUMBER>: <DNUMBER>1 # <BLANKS><DNUMBER>
<0MIT> : : <BLANKS> ,/ ,
<LEAVE>: ::<3 LA.NKS> * <8 LANKS>
<ARG>: :<OMI T>/<LEAVE>I <SIR! r G>/ -eNur'1BER>
<ARGSTRHJG>'::: ~ <BLA NXS><ARG>/<8 LANKS><ARG><:ARGSTRING>
<ENDCOM>::: CR I ALTI¥')ODE
<Co.'YJt1AND>: :<BLA NKS><STRI NG><BLANKS><AR GSTRING> <ENDCOM>

-

- 1 I 1 --

..."

-
H

APPENDIX H - RESERVED PRTE STIlBOLS

In addition to the FOG subroutined names, certain global symbols are
reserved by PRTE and should not be duplicated by the GAP as:

(1) Entry point, procedure, block data, or common block names
(2) External link components
(3) Link names
(4) Filenames

An alphabetical list of reserved PRTE symbols follows:

(.\PDl .r WI E PHCO~T

t.CH:::" I\}P! is PHI"" 1

/\r)f,C():,J JPSTtiH ?hOMP

,~~t (~T!J JU:VJP'!'J P~;,)MP I

HJ\'] z s HI '! nUT F'HO:·1PT- E.liTDI S I{CL.OSE PSHBUT

l.:UH! T KEY 1\) PSTH\JG

E'Vl 1\) T feE" :;'j PUSHB

C:'\l-:G ['(1'\lIT PllTCH

C)';UTHT i{liF(\ D POTDl

CH;i.ltS LiYL'f'l.T· PIJ'fDP

CU;.~i:1 J.AYOUT PUTSI

....•- CLOCI·If< LCLOSF: PUTSR

CL()C:r UN I r QUIT

CL(' f!~1 LKI HDt-l\1U

c-:f I ,~ 1) L}(2 HFSLl B

Cn.!)F'I \J U{3 hE'SOLV

CO,,,!\!'i U<i] SCI-iAi,H

C()'o'lT(~n U<S .sCHFD

CO"i1).l\L U'iH T 'sKFDL

ell! CH LiHI\D S,<E:I)UL

[ACTCM LTA. t;'lYL I

mriG ·...jDT..PUF' STYLS

D! SFH :,~nl..\H\;, i)YSD:-JT

Dr sY~~r.;H rlJ~-t SDI ~I
'fAHGS

DI:_)I'\'T rfjl<.SI \1T 'j'CLOSE

L1(;TI\il' (':\)ULl{\T '!Fit:'-JI"l

1./H"i\)8 ,>;STh TI;\1FE

i.)5Cl-)ED ~l\}C n,-1E,:'

!)S~;YD \1:-'1-JU TI:.J IT

DS:{f~lJl! \));lCHE TilFI\f)

F~:;;iC ()'J ()!',,'l\lB U~EGi::I

eEl Ii our-ton U:~F:I{I:,l'

(,hI)](H H',G:\l~U USFSTY

E.HP PI".itG VTFf:11

EJ~l~:~FS ;·'I:'HIT ;','UI\'!'

Ji\J!"I:-'i)O: 1~F!\. \',:r \];{
CETCiI j~ I (~D\lT F'i\)U

GFTDI rt CODSP t~'.14.1u:~
'-: FElDt' ;~IGFIL \<,'j'i"!\)U

C;V'IFIJ. PIGS >:Chf) :,5

GFTr~:1G j) I \J T yyeL l:~

(;F 'J. ~; r HlJ'JF, Y'l'J)CD

'--, (;f,1::;;; , "'OLL . y.'~FJ..A

C;:': I D
YYI'nL'-J
YYSTi\T

- 113

...

-
APPENDIX I HENDEL COMMAND LIST

CO~~lAN1>
~A:-1E ARGS CONTEXT

VAI.m
CREATE EtIT FUNCTION ME~DEL

SUBROUTINE

CREAT A..'1ANE, NNEi\'US, NSUBBRS, NGLOBLS + 1 SETS MODE AND HNB FILE SIZE YYCRE

:::0IT ANA,'jE + 1 SETS NODE A.'lD RENANES APPLICATION YY£DI

!lIGIlT 1 X USE LARGE LIGHT BUTTONS , ABBREVIATE MODE YYBIG
*.\~;i'.F:V ALOGIC 1 X X ABBREVIATE COHMANDNAMES TO 5 Cll.ARACTERS YYABR
>< *:\EYB AKEYBD ,AECHO 1 X X DEFINE ACTIVE KEYBOARD DEVICE A1'<1>ECHO ON TTA YYKEY

"STYLS ASTYLS 1 X X DEFU:E ACTIVE STYLUS DEVICE YYSTY

DELAY l\~aLSEC 1 X X SET DELAY Ii'< NlLLISECONDS A}'TER CQ}!NAJ.\'DSELECTION YYDLA

*S.wE ALOGIC 1 X X i{\~ITE ME)lU TO DISC ON r1E:W CF.ANGE YYSAVE

>I:\'UEC _A2.j;::~'U, A.'1ENU••• + i X X DECL..t..RE XENU NAHES YY!-~~\D

,,]lDBC ASUllBR, ASUBBR ••• + 3 X X DECLARE APPLICATION SUBROUTINE NANES YYSBD

GLOBL ~. 4 X X 'BEGINS DEFINITION OF GLOBAL CmNAt-Il)S YYGLO

,\~GET ! + 5 X X NOT INPLEHENTED, BUT NUST BE PRESENT IN CREATE HODE nARG

:-1E:-'-J AHEXl: + 6 X X BEGmS DEFINITION OF NA~1EDHEKU YY~':E~
- " ADEV*DS[,BL ADEV . 6 X X DEFINES ACTIVE DEVICES FOR HENU. NANED ARS DISABLED YYDSAB

SV~1.:\llJ "ALOGIC >, 5 X X CUlmENT NENU TO BE HRITTEN TO DISC ON HEl\'U CHA~:GE YYSV~N--------_.
ZNTER ~ 5 X X POSITIONS CO~!:'l"'ND CURSOR AT ENTRY CO~j}!A:ND '.t.'"YE:-lT

- ... -.- ... ----- - _.. ----.~----_ ..__ .___ . -_ .. - -_-- .._._- --- -.-_-_.. -_ .. __----- .--
EXIT >, 5 X X POSITIONS Cml.."IAND CURSOR AT EXIT COHHA"l) YYEXIT-.. ._-_._..- _. --.- - .-.- ...-.. -_. ...•. -..- - ._ -_. .. - -
P~~HB_ NBUTTON >, 5 X X POSITIONS COHY,,\ND CURSOR AT PUSHBUTTON NUMBER YYPUSH.- - - - ~-- .-- ----_._. __ ._--- ..__ ._- " - ..--. .-- .__ .. -- ... ----
LOCAL NLOCAL >, 5 X X POSITIONS COl-fr!AND CURSOR AT LOCAL l\'1J}!BER YYLOCL

*
... .. ." --.'

CO~ A~A~E, NARGS, ADOCODE , ASUBBR. ;; 4 X X DEFINES A COMHANDAT CURRENT CURSOR POSITION YYCOM

*lIXNUCODE • AHE~m, ADA-TA M:D S~EPS TO NEXT COl-fr!AND
,.. - .- -_ - _.-- - ... -

E~'D AHENU + I/J X X TE~lINATES HElm DEFINITION. DEFINES STARTING HENU YYEND

POS l'<'RELATIVE OR ~ 4 X DIS?LACES THE COMHAND CURSOR RELATIVE TO CURRENT '.t.'"YPOS
ACO}!};''0!E POSITIONS CURSOR AT COHMA1'<1>N.hl!E YYPOS-

TOP ~ 4 X POSITIONS Cml:'1Al\'D CURSOR AT FIRST GLOBAL ORMEl\'1JCm~!A).T]) H'TOP

30T >, 4 X POSITIONS CQ}ll-lA~D CURSOR AT LAST GLOBAL OR MENUCm~LA..\1> YYBOT
r-

ADOCODE*,
..

REP AN_-\:>!E, ~4RGSJ ASUBBR >, 4 X REPLACES CO~!.AND AT CURRENT POSITION CURSOR UNCP_~'1GED Yl."'"REP
~fr<1JCODE , A.'1Etm, ADATA

DEL .,. 4 X DELETES Cmfr!AND AT CURRENT POSITION. CURSOR UNC~~GED YYDEL

FIN P••'IT X TERHINATES AN EDIT ~r

-
I

NOTES

1. Arguments

(a) Underlined arguments must be specified.
Al1 other arguments assume default values given in Chapter 2.

. ..__
(b) Arguments beginning with the letter 'A' are strings, with the

letter 'N' are numbcrs,

(c) Arguments succeeded by may be repeated indefinitely.

(d) Square brackets enclosing arguments means a choice.

(e) Arguments succeeded by an asterisk must be one of a set of special
strings:

ASTYLS

Permissible strings

TRUE
FALSE

TTA
LTA

ECHO
ONLY

VWA
LPN

KEYB
LTBUT
PUSHB
CLOCK

DO
DONOW
DONT
DTNOl.J

MENU
ENTER
EXIT
GO

Argument

ALOGIC

AKEYBD-
AECHO

ADEV

ADOCODE

AMNUCODE

2. Context

Context numbers preceded by '+' indicate that the command terminates the
numerically preceding context and begins the context specified. +0
terminates context 6 and enters no context.

- 115 -

((((((((r ... r

APPENDIX J MENDEL SUBROUTINES

These routines are contained in UPDATE file CMENDL BIN ON DECtape 160

NAi'1E DESCRIPTION

CHARS Block data for connnonblock CHARS
DFH;E;AD~ ~ ~S~~e~t~s~u~p~d~e~f~a~u~l~t_MN~:~B~h~e~a~d;e~r~b~l~o~c~k~v~a~l~u~e~s~~ __~~=- __~~ ~ __~~~~ _

~fu,IES Issues error message numbers. Contains entry point ABOR~. __.!_~!~.nameis ERRMS3
--=G-=E=T=F-=I-=-L------+-------=R:-e-t-r-,i,-e-v-e-s--f:::-1"'"'"'·I::-e-n-a-m-eft-omargument common. Same as 1.11 .LIBRP

GETLOG Retrieves filename
ISU~:P~ +- ~C~omputesthe least integer greater than
MDLRAM Jump Table for YYHDLA. Contains addresses of all MENDEL application procedures
MENDEL Ed-itor-assembler main program. Parses option string and executes options
PAGMNU Block data for connnonblock PAGMNU
PROMPT Du~~y PROMPT routine for ME~~EL. Filename 1S PRPDUM~~~~~~:~~~~~----------------------------~. RAD Converts a 5/7 ASCII string into radix 50 loader format
ABR In'-terpretsABREV command
ADCD Adds-a~der code and data item to the relocateable binary output buffer

YYARG Interprets the ARGET comm~a~n~d~ . _
YYBIG I_nterpretsthe BIGBT command
YYBOT .I~tererets t~l36T-~c~0~mn-l-a-n-d'~---~

YYCARG ·Compares a 5/7 ASCII string against a list:of strings
YYCERR Issues an error on illegal context
YYCL Fills the Command-Table with null commands

Cont'd

r

, .

NAME

ITDEL
ITDLA
YYDPMN
YYDSAB
YYEDI
YYEND
YYENT
YYEPG
YYEXIT
YYFLSH
YYGLO

CIJ YYGTB
YYHOUT
YYIGLB
ITIN

4
ITINTP
YYISYM
ITJMPI
ITKEY
YYLCB
YYLCM
YYLMN
YYLOCL
ITLOG
ITLSB

APPENDIX J MENDEL SUBROUTINES

DESCRI:fTION

Interprets the DEL command
Interprets the DELAY command
Writes the 5/7 ASCII Dump File to disc
Interprets the DSABL command
Interprets the EDIT command
Interprets the END command
Interprets the ENTER command
Produces a loader code to end program definition and flushes the output buffer
Interprets the EXIT command
Writes the relocateable binary output buffer to disc and clears the buffer
Interprets the GLOBL command
Maps command cursor index into global menu block needed and inputs the block
Writes out MNB file header block if in EDIT mode
Produces a loader code to declare an internally defined global
Inputs a 250 word disc block
Initialises the relocateable binary output buffer
Produces a loader code to deelare an internal symbol
Produces a relocateable binary Jump Table from the SNT and writes it to slot 13
Interprets the KEYB command
Searches menu blocks for a global or local command name
Searches a single lnenu block for a command name
Searches the MAT for a menu name and returns its block number
Interprets the LOCAL command
Interprets command LOG (not implemented)
Searches the SNT for an application procedure name and returns its index

Cont'd

I

((. f

NAME

YYMDLA
YYHEN
YYIvlND
YYNNUL
YYNCH
YYNCX
YYNED
YYOPEN
YYOUT
YYPLOD
YYPNAl'1
YYPOS

~ YYPRSZ
YYPUSH
YYRELI

, YYREP
4 YYRVEC

YYSAVE
TISBD
TISBRL
YYSHC
YYSPC
YYSRCH
YYSTY
YYSVNN
TISYNB
YYTOP
YYHTB
TIXGLB
YYYABO ,!YYYINT

i

r - r r (((.

APPENDIX J - MENDEL SuBROUTINES

DESCRIPTION

Reads, parses, and interprets HENDEL program and produces an NNB file
Interprets the MENU command
Interprets the NNDEC command
Outputs a listing of the HAT on slot 13
Determines the number of non-blank characters in a 5/7 ASCII symbol
Issues error message 19 if wrong MENDEL context
Issues an error message if not in edit.mode
Opens an IvlNBfile and reads .the header block into core
Writes a menu block to disc
Produces a loader code to set the program load address
Produces a loader code to name a program
Interprets the POS command
Produces a loader code to define program core size
Interprets the PUSHB command
Produces a loader code to define a relocateable instruction
Interprets the REP command
Produces a loader code to define a relocateable transfer vector
Interprets the SAVE command
Interprets the SBDEC command
Outputs a listing of the SNT on slot 13
Outputs the decoded command node at the command cursor pos1t1on
Creates a free command node by moving other nodes in a menu block
Searches a 5/7 ASCII string for a particular character and returns its index
Interprets the STYLS command
Interprets the SWfNU command
Produces a loader code to declare a 5/7 ApeII string as a radix 50 symbol
Interprets the TOP command
Writes a binary 250-word record to disc on slot 13
Produces a loader code to reference an externally defined global s}~bol
Interprets the ABORT command (not used)
Dummy initialisation routine (not used)

r ((((

APPE"N1HX K - PIGS ERROR MESSAGES

ERROR
NlJMBER DESCRIPTION ACTION TAKEN

PRTE OR
MEl'IDELSOURCE

ROUTINE

N

I Keyboard input buffer overflow. Too many characters typed COtnr.1andignored KEYIN

2 Format error in command string Command ignored TARGS

3 .Index of argument to be retrieved is .LT. (1 or .GT. 14 ,. Default argument returned GETDP,GETCH

4 Number' argument to be retrieved, but string argument input Default argument returned GETDP

5 Nu:nberargument to be retrieved would overflow integer variable Default argument returned GETSI -
6 Command index in Command Table out of range Corrunandignored PIGS

7 Menu block nUlIlberout of range New menu not actuated PIGS

8 Command name not recognized Command ignored PIGS

,9 String argument to be retrieved, but number argument input Command ignored GETCH

10 Index of argument to be put is .LT. 0 or .GT. 14 Argument is type omitted PUTDP,PUTCH

11 A necessary argument to this command was omitted ColTlfilandignored YYCRE,YYDSAB
YYEDI,YYHEN
YDI:\D,YYSBD

12 String argument would overflow buffer if retrieved Default ar gumeut; returned GETCH

13 All menu blocks allocated are full Command ignored YYOlJT
-,-

14 Reference to an undeclared application procedure name Command ignored YYCOM

15 Reference to an undeclared menu name Command ignored YYC0:-1,YYEl'.'D,
Yl:~lEN J

Cont'd

APPENDIX K - PIGS ERROR MESSAGES

ERROR
NUMBER DESCRIPTION ACTION TAKEN

PRTE OR
MENDEL
SOURCE

N
N

16· Unrecognized or illegal a~gument for this command Command ignored YYCOH,YYDSAB,
YYKEY,YYSTY

17 Argument value out of range Command ignored YYLOCL,YYPUSH

18 Menu block full, command not entered Command ignored YYCOM

19 Illegal connnandfor this MENDEL context Command ignored YYCERR,YYNCX

20 Command name not found, connnandcursor unchanged Command ignored YYPOS

21 Would position cursor off last menu block. Cursor unchanged Command ignored YYGTB,YYPOS

22 Command illegal in MENDEL edit mode Connnandignored YYBIG

23 Command illegal in ME~'DELcreate mode Command ignored TINED

2[. End of block reached by DEL command , cursor unchanged Command ignored YYDEL

25 File not found MENDEL - Retype option YYHDLA,OPHNB
string

PRTE- Ignore read request

26 File read error MENDEL - Abort assembly or YYI~, YYHDLA
edit RDM}..'U

PRTE - Ignore read request

27 Unexpec ted EOF on input file MEJ:Ij'DEL- Abort assembly or ITIN,RDMNU
edit

PRTE - Ignore read request

Cont'd

(r . r (f (f (r ((

APPENDIX K - PIGS ERROR MESSAGES

ERROR
NUMBER DESCRIPTION ACTION TAKEN

PRTE OR
HENDEL
SOURCE

28 File write error i'-IENDEL- Abort assembly YYOUT,WTMNU
PRTE - Ignore write request

29 HNB file size error Ignore file request OPMNB

30 Clock schedule full or time interval too large Command not scheduled SCHEDL

N
W

I

APPENDIX K PIGS ERROR MESSAGES

Error Numbers between 101 and 199 are FOG Errors

ERROR
NUMBER

DESCRIPTION ACTION TAKEN FOG SUBROUTINE
SOURCE

101 Wrong number of arguments Request ignored ALL
-

102 Badly formed file: DJMP* order not where it should be. Request ignored ALL
possible bad file length

103 Length of file (first array element value) .LT. (/1 Display file undefined DCHOOS

104 Length of text string .LT. 0 No code generated TEXT,ITEXT

10.5 Illegal save-restore code Save and restore DR1\H,RDRAW,IDRA\~

106 Array index value out of range Display file undefined DCHOOS

107 Instructions to be inserted would overflow 8K bank : No·code generated CODE PRODUCING
boundary or array dimension ROUTI:-1ES

I

110 Illegal display class code No code replaced II' prefixed
routines

I I I No current display file address, probably because No code generated Code producing
of missing or faulty DCHOOS routines

112 FOG save register number out of range Request ignored SCHOOS,SINIT
RCHOOS,RINIT

113 FOG save register referericedis undefined, probably Request ignored RCHOOS,RINIT
because of missing or faulty SCROOS or SINlT

Error numbers greater than 199 are GAP errors.
lOPS and OTS ERRORS are explained in the DOS and FORTRAN manuals, respectively

-

A C K NOW LED GEM E N T

The author wishes to thank F R A Hopgood and J R Gallop for their

valuable advice in the design and programming of PIGS.

The manual was prepared with great patience by:

-
J B Chamberlain

G M Miles

K M Gascoigne

Organisation

Typing

Photocopying

- 125 -

...

THE END

...

·~

