ATLAS COMPUTER LABORATORY

g A CEs 2 N S R

SCIENCE RESEARCH COUNCIL

LoRRAINE

PIGS

PDP15
INTERACTIVE
GRAPHICS
SYSTEMN

BY
W D SHAW

Atlas Computer Laboratory
Chilton

Didcot

Oxfordshire

OX11 0QY

October 1974

INTRODUCTION

CONTENTS

OPERATING PIGS

1.1 Loading

1572 Screen Layout
%3 Commands

1.4 Command Sources
1.5 Command Selection
16 Command Syntax
1.7 Argument Types
1.8 Menus

1.9 Global Commands
1.10 Error Messages
1.11 Quitting

WRITING A MENDEL PROGRAM

251 Introduction

2.2 MENDEL Commands

2.3 Command Modes

2.4 Create Mode

2.5 PRTE Initialication: Context |

2.6 Menu Declaration: Context 2

2.7 Subroutine Declaration: Context 3
2.8 Global Command Definition: Context 4
2.9 Argument Getting: Context 5

2.10 Menu Definition:. Context 6

2.11 Program Termination: Context @

2.12 Edit Mode b

2.13 Examples

USING THE MENDEL EDITOR-ASSEMBLER

3l Internal Operation of the Editor-Assembler
362 Structure of the Editor-Assembler
3.3 Loading the Editor-Assembler

3.4 Operator Commands to the Editor-Assembler
8l&5 List File Format

3.6 Dump File Format

3.7 Prompting Messages

3.8 Error Messages

39 Examples

OPERATION OF

4.1 PRTE -
4.2 PRTE -
4.3 PRTE -
4.4 PRTE -
4.5 PRIAE. =

THE PIGS RUN TIME ENVIRONMENT

Main Control Loop

Initialisation

Command Polling

Command Reconciliation and Execution
Menu Activation

WRITING A GRAPHICS APPLICATION PROGRAM

L L n
S -

Initialising a Graphics Application Program
Argument Transmission in Application Procedures
Special PRTE Subroutines
Examples

Page

vii

__,~__
WWRNNOWO LU —

15

15

L9
15
16
16
18
19
19
21
21
24
24
29

247

27
27
27
29
3i
31
32
32
34

37

37
3
38
38
38

45

45
46
46
51

6. OVERLAYING A GRAPHICS APPLICATION PROGRAM

oo o
W nN -

Debugging the GAP

The Overlay Loader - XCHAIN

Overlaying PRTE

Overlaying a Graphics Application Program
Writing a GAP Overlay Description

7. DOCUMENTING A GRAPHICS APPLICATION PROGRAM

NN
SN -

PDP15 Libraries at ACL
GAP Documentation

GAP - Written Description
GAP - Listings

8. FUTURE ENHANCEMENTS

.

00 CO 0O CO o 0O OO0
00~ Oy 1 PN —

.

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

MENDEL Editor for PRTE
Protection against System Crashes
New Command Sources
Core Management
PIGS under other Operating Systems
Source Languages for Application Procedures
Messages '
Argument Input
EXAMPLE DOCUMENTATION, PATH
PIGS LIBRARY
PIGS COMMON BLOCKS
PIGS DISPLAY FILE STRUCTURE, LIGHTBUTTON FILES
MNB FILE STRUCTURE
OVERLAY DESCRIPTIONS AND LOAD MAPS
PRTE AND MENDEL COMMAND SYNTAX
RESERVED PRTE SYMBOLS
MENDEL COMMAND LIST

MENDEL SUBROUTINES

PIGS ERROR MESSAGES

- 11 -

55

55
5%
56
29
59

61

61
62
62
- 63

65

65
65
65
65
66
66
67
67

69
79

83

O
~1

(@]
(%]

111

s

114

117

121

FIGURE

TABLE

FIGURE

6~1

PIGS

INDEX OF FIGURES AND TABLES

Display

Editor-Assembler DAT Slot Usage

Editor—-Assembler Control Characters

Command Node Listing Format

PRTE
PRTE
PRTE
PRTE
PRTE

PRTE
PRTE

Main Control ‘

Command Table and Display Initialisation
Command Polling

Command Reconciliation

Menu Activation

Argument-Getting Functions

Argument~Putting Subroutines

Special PRTE Subroutines

PRTE

Core Allocation Memory Map

GAP Core Allocation Memory Map

- iii -

Page

28
30
33

39
40
41
42
43

47
48
49-50

-7
58

INTRODUCTIOHW

FRAW

-y -

INTRODUCTTION

PIGS is a set of procedures which simplifies the design of interactive
graphics programs on the PDPIS5. The system is composed of an
interpretive language, MENDEL (for MENU DEFINITION LANGUAGE), and a
collection of procedures called the PIGS Run Time Environment (PRTE).

In designing a Graphics Application Program (abbreviated GAP), MENDEL

is used to describe the organisation of commands available to the

operator into groups called menus. PRTE uses the binary output of the
MENDEL assembler to display menus on the CRT, thus suggesting contexts

of available commands. When an operator selects a command and defines

its arguments, control is passed to a pre-specified user procedure to
perform the desired function. It is possible for a GAP to share many

of the PRTE subrcoutines tc save core and provide more flexible interaction.

This manual explains how to operate and design graphics applications
programs using PIGS. Chapter | contains a description of facilities
available to an operator, while the remaining chapters provide
information of use primarily to the GAP designer. Some knowledge of
the DOS operating system, overlay system (XCHAIN) and graphic code-
generating package (FOG) is assumed. The recommended documentation
covering these topics is:

(1) ©PDP15 User Note 1

(2) DOS Users' Manual

(3) CHAIN and EXECUTE Manual, PDPI15 User Notes 3, &4
(4) TFOG - FORTRAN GRAPHICS on the PDP15

Throughout the manual examples will be taken from a demonstration program,
PATH, which is described in Appendix A according to the documentation
suggestions given in Chapter 7.

PATH is available on DECtape 155 for practice and experimentation.

- vii -

2 OPERATING PIGS

This chapter contains operational information common to all graphics
application programs using the PIGS run time environment. In order
to completely understand a particular GAP, it will also be necessary
to consult the designer's documentation of its commands, displays,
and data base which is available in the Graphics Application Program
Library.

Examples in this and subsequent sections are drawn from a simple
interactive graphics program called PATH. This graphics application
has commands which allow an operator to draw an object and the path

it is to follow using a computer=-read stylus. The operator may command
the program to play back the animation on the display at various speeds.
It might be a good idea at this point to read the general description of
PATH and its commands given in Appendix A, parts (4) and (6).

1.1 Loading

Assuming that a GAP has been debugged and is ready for use, it will
normally be available on a DECtape in the racks near the PDP15.
The number of the tape is given in the program documentation.

Since the PIGS run time system is very large, GAPs will always have
been organized into overlays using the systems program, XCHAIN.
XCHAIN outputs files with several different extensions which must all
be on the PDP15 disc at run time. For any given application there
will be two binary files on the tape with extensions XCT, and XCU,
and a set of n binary files with extensions L@1, 1L§2,...L¢n. In
addition, the MENDEL assembler passes menu and command information to
PRTE via a binary file with extension MNB; this file must also be
transferred to the disc. As an example, PATH consists of the
following 8 binary files on DECtape 155.

PATH XCT
PATH XCU

PATH L1
PATH 1.¢2
PATH L@3
PATH Lp4
PATH L§5

From XCHAIN

PATH MNB From MENDEL

To move these files from tape to disc it is necessary to use the DOS
operating system and the Peripheral Interchange Program, PIP. DOS
alvays signals its readiness to accept commands by typing the character $
on the system teletype; PIP requests a command using the > character.

Typing the character <cntrl C> will always return control to DOS.
It is important to begin any session by turning OFF (unlit) all
of the pushbuttons below the display and typing <entrl C > and
LOGOUT on the system teletype.

The underlined commands below will transfer the PATH binary files
from DECtape 155 to the scratch disc area. To ready the tape, mount
it on drive unit u and set the WRITE switch to LOCK. When typing,
command lines are terminated by <er>. Comments in the example are

preceded by the character / and should not be typed. DOS messages
will appear on the display if VT is ON.

<entrl C > / GET DOS monitor .
LOGIN SCR / LOG IN to scratch disc area.
' / SCR could be replaced by operator's UIC
? KEEP OFF /.Clear I/0 assignments
BIP / Get Peripheral Interchange Program
DOSPIP V6A
> T DK « DTw PATH XCT (B) / transfer XCT file
> T DK <« DTy PATH XCU (B) / transfer xcu file
> T DK = DTy PATH LOI1 (B) [/ transfer link files
> T DK <« DTy PATH LG22 (B)

T DK <« DTy PATH 1.¢5 (B)

T DK <« DTy PATH MNB (B). / Transfer MENDEL binary
<cntrl C>

DOS~15 V2A

AV VvV Vv

If in doubt at any point, ask an operator at the 1906A console for
help. Please note that GAPs cannot be run directly from DECtape.
Once the files are on the disc the DECtape is no longer needed and
may be switched to LOCAL, rewound, and returned to its rack.

Next, the operator should consult the documentation for any particular
I/0 requirements the GAP might have. These could include mounting a
particular magnetic tape or DECtape; switching on the BSI, v(CS3
synthesizer, or DMAC pen follower. If at all in doubt, let a 1906A
operator set up the peripherals.

It will often be necessary to make certain device allocations to the
DOS monitor's DEVICE ASSIGNMENT TABLE (DAT) before loading the. GAP,
PRTE uses only default assignments, but the application may have
special requirements. Including the PRTE device assignments for
information only, the proper DAT slot assignments for PATH are:

A TTA 4 / PRTE - KEYBOARD INPUT
A DK b / PRTE - DISK

A VTA 10 / PRTE ~ DISPLAY

A VWA 11 / PRTE - SPARKPEN

A NON 16 / PATH - DMAC (not used)

DAT slot -3 is used by PRTE for error message output but cannot be
ASSIGNed by the operator. '

Finally, the operator must turn off the VI@4 display by typing:
$ VT OFF
and ensure that the VWO! sparkpen is ON and the LK35 keyboard is OFF.

The system overlay program, EXECUTE, is used to load the GAP into

core and start it running. In DOS the operator should type the
characters E <sp> followed by the GAP name. At this point the teletype
will output two linefeeds and execution will begin. To load PATH for
example, type:

$ I PATH <cr>
If at this point DOS types out the message:
I0PS 4

it means that some device is not on-line or is not switched ON. Ready
the peripheral and type <cntrl R> on the teletype. Other IOPS errors
may occur because of mistyping the DAT slot assignments or forgetting
to transfer one of the files from DECtape to disc. Try the entire
sequence once more, if in doubt, and then summon a 1906A operator for
assistance. Typing <entrl C> will bring back DOS with the default

DAT slot assignments. '

When the GAP has been loaded, the message:
>PIGS n

will be output. At this point the name of the MNB file should be input.
For PATH, simply type:

>PATH <cr>

When the PIGS display appears on the VT@4, PRTE is ready to accept

_commands.

1.2 Screen Layout

The layout of any display using PRTE has a standard form with only a
few variations. Figure 1.1 shows the initial display put up by PATH.

The standard display used by the PIGS run time environment consists of
a large enclosed central workspace bordered on the top, bottom,

and right sides by message and command areas. The displayed text

may be composed of large or small characters of the designer's choice.
The large characters are easier to read and photograph but use up

more of the workspace and allow fewer characters per item,

Each of the areas bordering the central workspace has a specific
function. Beginning at the top of the screen and working clockwise,

the topmost area is for operator prompting. Messages containing
possible courses of operator action may be placed there by the GAP.
These will change during the course of interaction and are of particular
aid in learning to use a new package.

Just below the prompting space is the error message area. When an
error occurs or is about to occur in a procedure, the teletype bell
will ring and a flashing message will appear in this space. The
prompting area may suggest a recovery procedure at this time. The
text will disappear when the condition is corrected or after the next

operator command.
-3‘_

FIGURE 1-1

- PIGS DISPLAY

Prompting Messages

™ = o ARE) . P23 ENU
s TO QUIT, PUSH BUTTON 1 AGAIN MENU i Control Lightbuttons (2)
rror B> ERROR 203 FATE INIT,
Messages e EXIT
(Blinking)
DRAW 3
l PLAYB 1, 2 Lecal Lightbuttons (16)
PN REDRA 2
. DATCL
- USEGR . YEo<® COMMAND
Main Display = DATA AREAS
Area = \\\
N / BACKG -
\
\{] /
. . ‘ i - STYLUS
Lightpen Tracking | ~ .
Cross = = TRACKING DOT
i ~1
USEST USEKE_,_—SHOW 2 QUIT SR BIGELRUGS e
: VWA LTA ' / 1=
NeybiEdEd &L DAV 10,3~
Input Display =
and Cursor PENAC ACCEF ‘EL\\‘~\
-/97" YES / KRXX \

/ V/ ’3/ OFFSET
Pushbuttons e, 7 // / Iy 5 6 DISPLAY AREA
Lightbutlons q JA

(6)

Pushbuttons (1it)

To the right of the error and prompting messages is the menu control
area. Two text strings appear permanently in this space. The name
of the current command set will appear below the characters MENU.

The name of an alternative menu will appear below EXIT. These
commands, unlike messages, are sensitive to selection with the active
stylus. Note that a small command data area appears next to each
name. Such areas may contain information about the adjacent command
and often change during the course of interaction.

The long vertical region below the menu control space is the local
command area. Commands appearing in this region change from menu
to menu. As many as sixteen names and data areas may appear in the
local command area. Like menu names, local command names may be
selected using the stylus.

At the very bottom of the screen is the pushbutton command area.
One command name may appear over each button with a data space below
it. Pushbutton names are stylus-—sensitive.

Monitoring of typed commands occurs character by character in the
keyboard input area just above the pushbutton names. The last typed
text remains displayed until the first keystroke of a new command.
Like the error and prompting messages, this text is not stylus
sensitive.

The last PRTE display region has the same appearance as the pushbutton
control area but is located slightly above the keyboard input text.
The global command area consists of six command names which remain
constant regardless of the menu name. Each command name is stylus-—
sensitive although the matching data space below it is not.

Usually, a graphics application confines its display to the central
enclosed workspace. It is possible, however, for a GAP to turn off
the standard PRTE display and use the entire screen as a work area.

1.3 Commands

In the course of interaction with an operator, the PIGS run-time
environment may receive requests from a variety of peripherals. These
orders are called commands. Their text names form a language for
communication between man and machine. When displayed, these names
are called lightbuttons.

In constructing a GAP, the designer writes a subroutine for each
function in the package and assigns a command name to it. When

PRTE receives a command it causes execution of the matched subroutine
in core and seeks the next command.

1.4 Command Sources

PRTE spends most of its time looking for orders from its command
sources. This going from door-to-door is aptly referred to as
polling. The possible sources of commands are:

(1) Lightbuttons

(2) Pushbuttons

(3) Real Time Clock
(4) Keyboard

Quite often only one or two of these devices is appropriate for the
type of interaction desired. The designer decides which sources
will be polled when a particular set of commands is displayed.
These sources are referred to as agctive. Attempted input from an
inactive source is ignored.

1.5 Command Selection

Corresponding to each possible PRTE command source are one Or more
source devices. In most cases only one of these hardware input
devices may be active for each of the four command sources.

(1) Lightbuttons

Lightbuttons, including the displayed pushbutton names, may be selected
using either the lightpen or the VWOl sparkpen (abbreviated LPN and
VWA). PRTE signals the operator that a lightbutton has been touched,
or Ait, by blinking the button on and off for about } second. This
allows the operator to move the stylus away from the button and thus
avoid executing the command more than once. Occasionally, however,

it is desirable to repeatedly execute a command for as long as its
corresponding lightbutton is being hit. An example might be a command
to rotate a displayed object one or two degrees at a time. Repeated
hits on such a button would produce the effect of continuous rotation
of the object.

It is up to the GAP designer to decide whether the lightpen or sparkpen
is the active source device. He may provide a command to switch between
the stylii or he may not. If there is such a command, the sparkpen must
be turned ON when changing source devices, otherwise an IOPS 4 error
will occur. If such an error does occur, simply switch the pen ON and
type <entrl R> on the system teletype to continue; subsequently the
sparkpen may be turned OFF whenever desired.

If there is a command to change stylii, the active source device should
be obvious from the associated command data area. Assuming the sparkpen
is active, it will emit a harmless, continuous spark when the switch on
the tablet is in the ON position. Like spark plugs in a car, the
electrodes of these pens corrode and wear out. Treat the pen gently

and turn it off when not in constant use,

The ywo! tablet senses the position of the sparkpen using foil
microphones positioned along two edges of the flat surface. These

mi crophones are used to time each spark and should not be obstructed

by any object. The tablet is normally set up for right-handed people
with the microphones to the top and left sides. Left—handed users
should ask a 1906A operator to set the left-hand switch on the sparkpen

logic and re—orient the tablet. Paper may be placed on the surface of
the tablet, but this is not necessary.

The stylus itself should be grasped with the white line near the tip
facing upwards. The proximity of the pen to the tablet surface is
detected as three states: far, mear and touch. Slight downward pressure
on the stylus against the tablet will cause the biro to retract and
the pen to enter touch mode. Near mode is entered when the stylus is
lifted slightly; 3 or 4 inches above the surface of the tablet the
sparkpen is in far mode and its position cannot be accurately sensed.

When the stylus is in near or touch mode, PRTE maps its location on
the tablet surface into a relative position on the CRT and displays
a bright dot called the tracking dot at this point. The operator will
quickly find it natural to watch the display and not the stylus while
drawing or pointing.

To select a particular lightbutton, first imagine that an iavisible
rectangle surrounds the text name. Move the stylus in near mode

until the cursor lies within this rectangle; pressing the pen down at
this point will cause selection. When the lightbutton begins to blink,
lift the pen up into near mode to avoid multiple lightbutton hits.

If the lightpen is the active stylus, a slightly different selection
procedure is necessary. The lightpen detects light from the CRT
directly using a photocell. The sensitivity of this cell is regulated
by a small knob just below the screen on the left. This knob should
be turned all the way clockwise for maximum sensitivity. To select a
particular lightbutton, point the pen at the text name and press the
button on the top of the stylus all the way down. When the text
begins blinking, release the button to avoid multiple hits.

(2) Pushbuttons

As a command source the pushbuttons are unique in that they may be
selected by either the active stylus or by one of the six blue contact
buttons beneath the screen. Each button may light up when pressed,

or it may not, depending on the application program.

Pushbuttons are also unique in that they are commonly used to control
a GAP subroutine within the execution of a command. In this case,

the pushbuttons will probably not be sensitive to selection at polling
time. In PATH, for instance, pushbuttons !, 2, and 3 -(left to right)
are used to control the active stylus within the commands DRAW

and DRAWB but are not sensitive at other times.

(3) Real Time Clock

The 50 Hz clock may be used by GAP subroutines to schedule the repeated
execution of commands at some time interval; a good example would be

a command to dump an application database regularly. A GAP may

signal to the operator that a scheduled command is being executed by
placing a message in the prompting area.

(4) Keyboard

Like the lightbuttons, there are several alternative devices which may
be used as the keyboard command source: the LK35 keyboard (LTA) on the
display console or the system teletype (TTA). A command for switching
between devices may or may not be available, depending on the particular
GAP,

Characters typed on the active device are always displayed in the
keyboard input area of the CRT. Optionally, LK35 input may be echoed on
the system teletype as well; a command is not selected until carriage
return or altmode is typed. At this time if there is a lightbutton
displayed for the command, it will blink. Characters may be deleted from
‘the input string by typing <rubout>; the entire string is cleared by
typing <entrl U>,

After typing the first character of the new command, and before
terminating it, no other command source 1s active. Clearing the input
string with <entrl U> causes polling to resume, however, with no command
having been executed. Also, typing <entrl P> on the system teletype

may cause return to the PRTE polling loop - but only try it in an
emergency.

There are several peculiarities of the keyboards which have not yet been
cured and may cause some annoyance.

The most important of these is interference between the VW@1 sparkpen

and the LK35 keyboard. When both are running, electronic noise

from the spark is occasionally picked up by the keyboard circuitry

and interpreted as character input When this happens all other command
sources become inactive and, most noticeably, the cursor on the display
no longer reflects sparkpen movement. To clear this condition turn

the tablet OFF and type <entw»l U> on the LK35. Then turn the keyboard
OFF using the small toggle switch on the right-hand vertical side of

the V7¢4 console table; turn the tablet back ON to select commands

using the sparkpen. Work is in progress to cure this hardware fault.

The second peculiarity also concerns the LK35 but is only mildly
irvitating. The keyboard has a shift Zock key which may be
inadvertently hit. There is no way of knowing if the device is locked
into upper case except by typing. To clear the condition, hit the
shift key and type <entrl U>.

The last keyboard problem occasionally occurs on the system teletype
when one has switched from TTA to LTA and then attempts to return to
TTA. At this point all polling will cease, as in the sparkpen
interference situation, until any key is struck on the system teletype.
This clears a handler conflict; normal polling will resume with TTA
active and the keyboard input string empty. There is no way to cure
this software fault without altering the DOS operating system.

1.6 Command Syntax

When an operator selects commands by typing on the active keyboard
source, certain punctuation rules, like terminating the line with
<er> or <altmode>, must be followed, These rules - or syntax -
are specified in a formal manner in the Appendix; here they are
illustrated by example.

Sometimes, in designing a command, it is convenient to closely
associate with it a set of parameters called arguments. Typed after
the text command name, these values are made available to the GAP
subroutines while the command is being executed In PATH, for
example, typing the string:

DRAW, 1 <er>

causes PRTE to pass along the value to the application subroutine;
cel 1 is opened for sketching.

The most general form of a typed command is a command name followed
by one or more arguments and terminated by <cr> or <altmode>. As

in the simple example above, the command name must be separated from
its arguments by a comma. Similarly, each argument is separated from
its successor by a comma, as in:

PLAYBACK, 1, 2, 50 <¢r>

Note that there is no punctuation between the last argument and the
terminator <er>. A command may have no more than 14 arguments;
blanks are ignored, except within text strings.

The arguments to a command need not be explicitly specified, however.
An argument may be omitted by typing only the trailing comma in its
place. The second argument is omitted in the example below:

PLAYRACK, 1,, 50 <altmode>

Arguments which have been omitted are assigned standard, or default,

values by GAP subroutines. If an argument which must be specified is
omitted an error message will appear on the display and the command

will be ignored. '

Arguments may also be omitted by truncating the argument string with
a <¢r> or <altmodz>.. All three arguments in the previous example
assume default values if:

PLAYBACK <cr>

is typed. Exactly the same thing would happen if the command PLAYBACK
were selected using the lightbutton source.

A final consideration about the syntax of commands is the number of
characters which must be typed to completely specify a command name.

With the small text display, PRTE matches a 5~character name if

it has been placed in abbreviate mode by the GAP . Otherwise it looks
for a 9-character name. PRTE is always in abbreviate mode if the

large text display is being used; more than 5 characters may be typed
but they will be ignored from the sixth onwards. It is never necessary
to pad a genuinely short command name in order to make it 9 characters

long.

1.7 Argument Types

As detailed above, a valid command consists of a command name followed
by a string of arguments separated by commas. By the time these
arguments reach a GAP subroutine, the only distinction made in
argument types is between text strings and numbers. To allow greater -
precision all numbers are stored in double precision floating point
format. The total length of all string arguments to a command must

be less than 70 characters.

String arguments may be entered in one of two basic formats: unquoted

or quoted. Unquoted strings must begin with an alphabetic character

and are terminated by blank, comma, <cr>,or <altmode>. Quoted strings

are begun and terminated by a pair of single or double quotes.

Blanks, commas and any other character except <altmode> or <cr> may .
be embedded in quoted strings. Note that command names, which are simply
strings, may be unquoted or quoted. Therefore, if a command is

displayed with embedded blanks or a non-alphabetic initial character,

its name must be quoted when selecting it via a keyboard device.

Below are examples of valid and invalid string arguments.

Valid strings:

DRAW75
'SELECTA3'
"FINDAG"
"6'"AHOLE'
AABARG 1A
'...PEG'

"1 'AHOLE"
'6"ADIAMETER'

Invalid strings:

.DRAWB
PLACEABELOW

1"]ll AHOLE"
'6'"ADIAMETER"

Number arguments have a very flexible format consisting of three parts:
a radix indicator, a signed mantissa, and a signed exponent. If a
number is preceded by the character #, octal radix is assumed. After
the radix indicator a sign may appear followed by the mantissa.

The latter may have only an integer part, only a fractional part, or
both separated by a full stop. Exponentiation may be specified after
any form of the mantigsa by tyvping the character 4+ followed by a
signed integer; if octal radix has been indicated the base of the
exponent is 8. As they are stored in double precision format, the

]0

value of number arguments must be less than 1075 and greater than 10
the accuracy is 33 bits (9 digits).

The complete format for a number argument, although powerful, is
lengthy. In practice only some form of the mantissa need be typed.
I1f the character # does not precede the number, decimal radix is
assumed; the default for omitted signs in mantissa or exponent is +.
Below are some examples of valid and invalid number arguments.

Valid numbers:

-123456789
12345.6789
134=40
40.413
~+AA3. 1415942
W=7 11

Invalid numbers:

1234567890D1
100474
1.5436.4
#999

In summary, there are four major rules for composing syntactically
well-formed commands:

(1) The body of a command consists of a command name followed
by arguments separated by commas.

(2) The command name is simply a text string and must be
quoted if it contains embedded blanks, commas, or begins
with a non—alphabetic character.

(3) Arguments may be numbers or strings, or they may be omitted.
(4) A command is terminated by <cr> or <altmode>.

Below are included some examples of valid and invalid commands:
Valid commands:

DRAWB,3 <cr>

DATACL <altmode>

DRAW75, ' 6"AHOLE' , "AT",360, 1,0234+3 <cr>
DRAW75, ,,#1000 , #1042 <cr>

"1'AHOLE" ,DRILLS, 'FORAQOIL' <qltmode>

Invalid commands:

NOCOMMA 3 <c¢r>

MUST,QUOTE, 6"AHOLE <altmode>

TOOMANY , 1,2,3,4,5,6,7,8,9,10,11,12,13,14,00P51 <ewr>
BADARGS, 'GOBBLL, #94 <cr>

75,

)

1.8 Menus

Once source devices and selection procedures are understood, it is
still necessary to know at what times a command may be typed. In
general, if the name of the command in question is displayed on the
screen it may be selected with any active device. However, because
of space limitations on the display and in core, it is often not
possible for all the commands of an application program to be
available for selection at once.

For this reason related commands are grouped together into sets called
menus. When a particular menu is active (or current) its name will
appear in the control area of the screen beneath the fixed characters
MENU. A set of local commands and pushbutton names peculiar to the
current menu will be displayed in their respective areas of the screen. -
Any of these commands are available for operator selection. Normally

the commands contained in a given menu are sufficient to complete

some small portion of the application task. - =

Usually, the menus comprising a GAP are hierarchically organised: a menu
may contain commands which cause new menus to become-active. For example,
the first menu which appears on the screen when PATH is loaded contains
the name of another menu in the GAP: BACKG. Selecting this command will
cause the appropriate menu to appear on the display along with its
associated local and pushbutton names. Simultaneously, the name of the
top level menu, PATH, will appear in the control area below the fixed
string, EXIT. Selecting PATH will cause a return to the top level menu.

In summary, the control area of the display has two principal
functions: naming the currently active menu and allowing return to a
higher level menu. As in the menu PATH, however, any command may
cause a new menu to become active. Usually the name of such a command
is identical to the name of the menu it makes current. There is no
question of missing a menu change, because on activating a new menu the
0ld command names will disappear from the display for a short time,
making the switch unmistakeable.

1.9 Global Commands

Local and pushbutton commands may only be selected when they appear
on the display as part of the current menu. Global commands, by
contrast, are always available regardless of the active menu and
need not all be displayed.

As many as six of the set of global commands for a particular GAP

1 .y appear on the screen just above the keyboard display. These
lightbuttons function normally, but are not affected by menu changes.
Like other commands they may be selected using any active device.

In addition to these six, there may be any number of non-displayed
global commands which cannot be selected using lightbuttons, but

' may be chosen using any other source device. The operator should

refer to the particular GAP documentation for the names of non-displayed
globals. There are several such commands in PATH: SKEDL, for instance,
allows scheduling of commands for selection by the real time clock.

1. 10 grror Messaggg

A complete list of error messages is given in Appendix K of this
manual. There are, sadly, five separate categories of errors which

may occur during the execution of a GAP:

(1) GAP errors
(2) PRTE errors
(3) ¥FOG errors
(4) OTS errors
(5) IOPS errors

GAP, PRTE, and FOG errors all appear on the display in the error
message area and cause the teletype bell to ring. None of these
errors should cause the application to terminate. In the case of
PRTE and YOG errors, control always returns to the comuand polling
cycle. Program control after a GAP error may return to the polling
sequence or to the application subroutine. In the latter case the
prompting area may. contain suggestions about correcting the condition.
Erzor messages disappear upon selection of the next command.

GAP documentation should contain information about the errors its
programs issue. Error numbers less than 100 are generated by PRTE,
in the range 100-199 by FOG, 200 upwards by the GAP itself.

0TS and IOPS errors normally cause the application program to terminate
and control to return to the DOS operating system. These errors will
appear on the system teletype and, except for IOPS 4 (device not

ready), should be noted in the system log book. Such errors ought not to
occur in a GAP which has been debugged.

1.11 Quitting

Having finished a task using an applications program, there are two
ways to return control to the operating system: by package command, or
by typing <entrl C> on the system teletype. If there is a session
terminating command in the package it is best to use it as there may
be open files which need to be closed.

2t WRITING A MENDEL PROGRAM

2.1 Introduction

The graphics application designer uses the MENU DEFINITION LANGUAGE,
MENDEL, to describe the organisation of commands and menus to the PIGS

run time environment. It may also be used by an operator to edit the
command structure of an application to facilitate his style of interaction
or to meet particular problem demands. As in Chapter 1, most examples

in this chapter will be drawn from the graphics application, PATH. The
MENDEL description of PATH appears in Appendix A.

2.2 MENDEL Commands

MENDEL commands are compiled by the editor-assembler to create or modify

a binary file on disc or DECtape. This file, with extension MNB, is
accessed by the run time environment during initialisation and when
changing the active menu. The mechanics of loading and running the MENDEL
editor—-assembler are described in Chapter 3. Suffice it to say here that
commands may be typed to the editor-assembler one at a time, or read from
an ASCII text file on some storage device.

Regardless of whether commands are typed directly or read from a file,
each has the same form; MENDEL commands use the same syntax as PRTE
commands, described in Section 1.6. A single difference is that
comments may appear in a MENDEL program by preceding the text with the
character /. The following sample statements are accepted by the
editor—assembler:

/JTHIS IS A COMMENT. <er>
COM,MNDEC,~1,DO, YYMND /DEFINE COMMAND MNDEC <cr>
MENU,MDL <altmode>
Note that a comment by itself is a well-formed statement ignored by the

editor—assembler.

2.3 Command Modes

MENDEL commands may be issued with one of two purposes: to create a new
binary MNB file or to edit an existing file. Consequently, the first
command to the editor—assembler sets the mode in which subsequent
statements will be obeyed. Most MENDEL statements are valid in either
create mode or edit mode; the few which are not are marked in the list
of commands in Appendix I.

The principal difference between the two modes is not in the function

of commands, but in the order in which they may be executed. Edit mode
comnmands may be issued in any order, while create mode commands must,

for efficiency reasons, follow a rigid sequence. A second difference

is that MNB file size, which determines the number of commands and menus
which may be defined in an application, may be altered only in create
mode. Tt is possible that a later version of PRTE will itself contain
the MENDEL editor, thus allowing run time changes in the active MNB file.

—-15_

NGLOBLS — Maximum number of global commands contained in the
application. Again, add a few spares.

(2) BIGBT

The BIGBT command is valid only in create mode as it alters the structure

of every command in the MNB file. 1If this statement is encountered by

the assembler, the large lightbutton characters will be displayed and only
5 characters of application command names matched. 1If the BIGBT statement
is not encountered,the small display size will be used.

' (3) ABREV,ALOGIC

This command sets the initial command name matching size of PRTE to 5
characters instead of 9 characters. Only 5-character command names are
matched with the large display.

ALOGIC - Optional logical argument. Must be the text string TRUE
or FALSE.
- If omitted, TRUE is assumed.
TRUE - Only the first 5 characters of command names
need be specified.
= FALSE= Entire command name must be specified (max 9 chars).

(4) KEYB,AKEYBD,AECHO

KEYB selects the initially active keyboard source device and whether or
not typed characters are echoed on the system teletype. If KEYB is not
encountered, the LK35 will be the active keyboard with no echo.

~ AKEYBD - String argument specifying the active keyboard.
LTA~ LK35 keyboard
TTA~ System teletype
If omitted, LTA is assumed.
AECHO - String argument specifying whether or not LTA input is
echoed on TTA.
ONLY- Do not echo
ECHO ~ Echo
If omitted, ONLY is assumed.

(5) STYLS,ASTYLS

o Defines the initially active stylus source device to PRTE. If the
command is omitted, the sparkpen will be used.

ASYTLS -String argument specifying the active device.
VWA -Sparkpen
LPN ~Lightpen
1f omitted, VWA is assumed.

.—]7_.

(6) DELAY,NMILSEC

Sets delay time after command selection and before command exccution.
During this time any associated lightbutton will wink. This delay does
not apply to commands marked for immediate execution. (See ADOCODE
argument of COM command). A delay of 250 milliseconds is assumed if
the DELAY command is not encountered.

NMILSEC -~ Number of milliseconds to delay before execution.
If omitted, 25p is the default value.

(7) SAVE,ALOGIC

Each menu described using MENDEL contains information, such as command
data area text,which may alter at run.time. When the active menu is
changed new data is lost if the copy of the menu in core is not written
out over its corresponding MNB block. If the editor—assembler encounters
the SAVE command the core image of any menu flagged using the SVMNU
statement will be written over its corresponding MNB file definition
before the menu becomes inactive. (The SVMNU command is described in
context 6, below). Time and effort in maintaining current display

data is saved, but the disadvantage of permanently altering the MNB
file is incurred until the MENDEL source is reassembled. If the SAVE
command is omitted, SVMNU requests are ignored and no menus are saved.

ALOGIC
TRUE - Enable saving of flagged menus.
FALSE- Disable saving of flagged menus.
If omitted, TRUE is assumed.

2.6 Menu Declaration: Context 2

Each menu defined using MENDEL is allocated a single data block in the
MNB file and given a unique 9-character name. The names and block

numbers are kept in a permanent m-block MENU ADDRESS TABLE (MAT)

beginning at block 2 of the MNB file. Each block of the table may contain
as many as 41 entries. The number of blocks actually allocated for the
MAT is determined from the NMENUS argument of the CREAT command.

The purpose of context 2 is to assign block addresses to menu names

in the MAT before any application command definitions actually occur.
Because a menu change may be specified in the definition of a command,
it is helpful to know the block numbers of all menus. Declaring the
menu names in context 2 lets the assembler completely process each
command in a single pass.

Menu names are stored and matched as 9-character strings regdrdless
of the command matching mode set by ABREV or BIGBT. In subsequent
contexts referencing a menu name which has not been declared will
cause an assembly error. Menu names which are declared but never
defined will not be flagged as errors.

.]8.

(8) MNDEC,AMENU,AMENU, ..

There is only one valid command in context 2: MNDEC ends context 1

and enters a list of menu names in the Menu Address Table. The cormmand
must have at least one argument and may have as many as will fit in a
70-character line; the MNDEC command may be repeated as many times as
desired within context 2.

AMENU ~Menu name (maximum 9 characters). Quoted strings are
allowed. These names do not appear on the run-time display.

2.7 Subroutine Declaration: Context 3

Menu definition using MENDEL requires matching an application subroutine
name with each command name so that the run—time enviromment can cause
execution of the appropriate procedure in core. These subroutine names
are kept in an s block Subroutine Name Table (SNT) immediately after

the MAT in the MNB file. After completing the processing of a create
mode program, the assembler uses the SNT to construct the Jump Table,

a relocateable binary file which, when loaded, contains the entry point
address of each application procedure.

As the ordering of the names in the SNT corresponds to the ordering of
entry point addresses in the Jump Table, only the index in the SNT of

the procedure to be executed need be stored with each command. When a
particular command is selected PRITE picks up its associated SNT index

and jumps to the procedure indirectly via the entry point address in
the Jump Table.

The purpose of context 3 of a create mode MENDEL program is to declare
all subroutine names to be included in the SNT. The 1 to 6-character
names are stored 62 entries per block, the number of blocks being
determined from the ASUBBR argument of the CREAT command. The order of
specification of the proccdure mames is unimportant, but references in
later contexts to undeclared subroutine names will cause an error message.

(9) SBDEC,ASUBBR,ASUBBR...

There is only one valid command in context 3. The SBDEC command
terminates context 2 and causes the MAT to be written out to the MNB
file. At least one argument to SBDEC must be given, but as many as

desired may be specified. The command may be repeated within context 3,

ASUBBR -Procedure name (maximum 6 characters).

2.8 Global Command Definition: Context 4

Contexts 4, 5, and 6 of a MENDEL program are concerned with command
definition., Each displayed or non-displayed application command is
represented by a 10 word node whose structure is given in Appendix E.
Comuand nodes are grouped 24 per block with a 10-word header node to
form menu blocks.

The global command nodes belonging to a particular CGAP reside in
g contiguous menu blocks following the SNT. The number of blocks
allocated is determined by the NGLOBLS argument to the CREAT command.
The purpose of context 4 of a MENDEL program is to enter nodes in
those blocks representing the global commands of the application.

Command nodes are entered in a menu block at the current command cursor
position. In a create mode program, entry into context 4, 5,or 6
causes the cursor to point to the first command node of the first menu
block allocated. There ‘are MENDEL statements in both create and edit
modes which re-positionthe cursor. Since this allows command nodes to
be skipped, unaccessed nodes are always preset to the null command.

The first six nodes of the first global menu block define commands to
be displayed in the global command area. The remainder of the nodes
describe non~displayed global commands. Unused displayed commands may
be skipped by inserting COM statements with no arguments.

There are two valid MENDEL statements in the global command definition
program unit:

(10) GLOBL

With no arguments, this command ends context 3 and causes the SNT to be
written out to the MNB file.

(11) COM,ANAME,NARGS,ADOCODE ,ASUBBR , AMNUCODE , AMENU , ADATA

The COM statement describes an application command to the PIGS run—time
environment. Information about the GAP command is entered in the current
command node and the cursor is incremented. COM has 7 arguments, any

of which may be omitted. If all are omitted, a null command is entered
in the current node. In context 4,if the current menu block is filled,
the cursor is automatically positioned to the first command node of the
next menu block allocated. An error results if all allocated blocks

are already full. The arguments to COM are: =

ANAME - 5 or 9-character command name. Blank if omitted.
NARGS - Maximum number of arguments associated with the command;
a value of -1 means an indefinite number may be
specified.
. If omitted, § is assumed.
ADOCODE~ One of 4 strings specifying how the associated
application procedure is executed:
DO - Call procedure after interval set by the DELAY
command .
DONOW~ Call procedure without any delay.
DONT - Command inactive until activated by the GAP.
When activated, operates like DO. Inactive
commands are not displayed until activated.
DTNOW~ Command inactive. Operates like DONOW when
activated by the GAPD. o
If omitted, DO is assumed.

20

ASUBBR - Name of associated application procedure. The name
must have been previously declared using the SBDEC
command, = If omitted, no procedure is executed when
the command is selected.

AMNUCODE=- One of 4 strings describing protocol if a menu change
is to occur. Execution of the exit procedure of the

current menu or the entry procedure of the new menu
may be specified.

Code Menu protocol
MENU Exit, new menu, entry
ENTER New menu, entry
EXIT Exit, new menu
GO New menu
If omitted, MENU is assumed.
AMENU ~ Name of new menu to be activated. Must have been

previously declared using the MNDEC command. If
omitted, no menu change occurs.

ADATA = 5 or 9-character string to be initially displayed
in the command data area. Blank if omitted.

2,9 Argument Getting: Context 5

The function of this context is unimplemented in PIGS V2. However,
the single command must be present to close context &4:

(12) ARGET

Closes context 4 and causes the current global menu block to be written
to the MNB file.

2.10 Menu Definition: Context 6

The bulk of a create mode MENDEL program is concerned with describing

the control, local, and pushbutton commands composing the various menus.
Context 6 basically consists of a group of COM statements for each menu
named in the MAT. Each menu definition begins with a MENU statement

and ends with a subsequent MENU statement or the termination of context 6.
The order of occurrence of the definitions is irrelevant.

A menu definition may contain three types of commands: header description
statements, cursor movement statements, and command definition statements.
The effect of the statements is to generate header entries or command
nodes in the single menu block assigned by the MNDEC declaration. Any

of the three types of statements may be omitted except the MENU command.
If all other statements are omitted, a null menu is created. For obvious
reasons it is best to include at least a menu exit command.

The ordering of both header description and cursor movement statements
within a menu definition is not crucial. The order of the command
nodes generated in the menu block is crucial. The programmer is well
advised to follow the sequence illustrated by PATH MDL in Appendix A.

As shown in Appendix E, the first two nodes of the associated MNB menu
block describe the entry and exit commands displayed in the control area
of the screen below MENU and EXIT. The application procedures

associated with these commands double as the entry and exit procedures

for the menu, respectively. These subroutines may, of course, be omitted.
If a hierarchic structuring for the menus is desired, the exit command
should cause activation of the next higher, or father, menu. Descent

to lower brother menus is usually implemented using local commands.

Some care should be taken to ensure that the menu change protocol caused
by the exit command does not cause an untimely initialisation of an =
application data hase. Remember that the MENU argument to the COM
statement causes execution of both the exit procedure of the old menu

and the entry procedure of the new menu. Since the entry procedure to

a father menu will occasionally initialise a GAP data base, and because
selecting an exit command will cause the associated exit procedure

to be executed anyhow, the GO argument to the COM statement is ordinarily
used to specify the menu change for the exit command.

The next 6 nodes in the MNB menu block define the displayed pushbutton

commands, }-6, left to right. It is often convenient to use the =
pushbuttons for simple interaction within the execution of some GAP

command. If this is the case, the pushbuttons may be labelled by

omitting the ASUBBR and AMENU arguments in COM commands for the

appropriate nodes.

The remaining 16 nodes in the MNB menu block define the local commands,

displayed at the right-hand screen edge. All 16 nodes need not be used;

it is useful to separate the commands into subgroups using null commands,

and no loss of polling efficiency is incurred. In writing a menu

definition it is obviously important to know the current cursor position.

When a MENU statementis encountered in a create mode program, the cursor

is initialised to point to node 1, the entry command. Several cursor
positioning commands are included in context 6 for clarity and convenience. =
It is always best to use the ENTER,EXIT,PUSHB, and LOCAL statements as

illustrated in Appendix A.

All context 6 commands are described below. The three header description
commands are: :

(13) MENU, ANAME

The MENU command begins a menu definition in context 6. Any previously
defined menu block is written to the MNB file. The command cursor is
initialised to point to the first node of a menu block filled with null
commands. At least one menu definition must be present in a create
mode program,

ANAME ~9~character (maximum) menu name previously declared
: using the MNDEC statement. May not be omitted.

(14) DSABL,ADEV,ADEV...

The DSABL command specifies which command sources will not be polled
when the menu being defined is activated by PRTE. The DSABL command
need not appear; all unspecified sources will be polled. DSABL may
have an indefinite number of arguments and ordering is irrelevant.

- 22 -

ADEV ~ One of four strings specifying which of the command
sources 1s to be disabled.

KEYB

LTBUT
PUSHB
CLOCK

(15) SVMNU,ALOGIC

Keyboard source
Lightbuttons
Pushbuttons
Real time clock

Controls the saving of the current menu by PRTE. The core image of the
menu will be written to the MNB file on activation of a new menu if the
SAVE statement. was encountered in context 1.

ALOGIC -Optional logical argument
Must be the text string
TRUE or FALSE.
If omitted, TRUE is assumed.

TRUE

save the state of the menu
currently being defined

FALSE ~ Do not save
If omitted, TRUE is assumed.

The four cursor movement statements are, in recommended use order:

(16) ENTER

Positions the command cursor at command node 1, the entry command.

(17) EXIT

Positions the cursor at node 2, the exit command.

(18) PUSHB,NBUTTON

Positions, the cursor at the node corresponding to pushbutton NBUTTON

(nodes 3-8).

NBUTTON Number of pushbutton, 1-6, left to right.

If omitted,

(19) LOCAL

1 is assumed.

Positions the cursor at the first local command node, 9.

The only other legal command in context 6 is the COM command. Its
arguments and function are as described for context 4.

23

2.11 Program Termination: Context §

The final unit of a create mode MENDEL program has the function of
terminating assembly and naming a starting menu for PRTE. The END
command must be present in a create mode program,

(20) END,AMENU

Terminates context 6 and writes out the last menu block defined. After
the MNB header block is recorded the file is closed.

AMENU - Name of starting menu to be ENTER'ed by PRTE at run time,
If omitted, the first menu declared by an MNDEC statement
is assumed.

2.12 Edit Mode

If an MNB file already exists, having been constructed using a create
mode program, MENDEL may be used to edit initialisation parameters,
application commands, and menus, If extra space in the MNB file is
available, it is possible to add new commands and menus. All create
mode statements except CREAT and BIGBT are valid in edit mode as well.

On beginning an edit, MENDEL reads into core the old MNB header block,
MAT, and SNT, Subsequent GLOBL and MENU edit commands cause the
associated MNB menu blocks to be retrieved. On completion of each edit
command, the original data blocks are overwritten with the altered data
blocks in core. Thus in edit mode only, contexts may be entered in any
order desired. 1In edit mode the GLOBL and MENU commands position the
cursor at the last defined command node +1.

The following two commands begin and end a MENDEL edit. They may not
appear in a create mode program.

(21) EDIT,ANAME

Begins a MENDEL edit. The original MNB header, MAT, and SNT are
retrieved.,

ANAME - Name and extension of MNB file to be opened for editing.

If the extension is omitted, MNB is assumed. The argument
may not be completely omitted. . '

(22) FIN
Terminates an edit by closing the MNB file.

The following commands are valid only within edit mode contexts 4, 5,
or 6:

(23) POS,NRELATIVE

or

(24) POS,ACOMNAME

= B4 =

This command repositions the command cursor in the current menu block
or group of menu blocks. In global context all allocated menu blocks
are available - block boundaries are ignored. In context 6 only the
single menu block allocated to the current open menu is available.

NRELATIVE - Number of commands to move the cursor forwards or
backwards.
NRELATIVE may be negative. If omitted, § is assumed.
ACOMNAME = 5 or 9-character (maximum) application command name
to be searched for by the editor-assembler. If found,
the cursor is left pointing at the node defining the
named command. If not found, the cursor position
remains unchanged.

(25) TOP

Positions the command cursor at node 1 of the first allocated menu block.

(26) BOT

Positions the ccmmand cursor at the first free node beyond the last-
defined command node of the allocated menu block/blocks.

(27) REP,ANAME,NARGS,ADOCODE , ASUBBR, AMNUCODE , AMENU , ADATA

Replaces the command at the current cursor position. The cursor remains
unchanged., Arguments to REP are identical to COM.

(28) DIL

Replaces the command at the current cursor position with a null command
node. The cursor remains unchanged.

2.13 Examples

For an example of a create mode MENDEL program please see Appendix A.
Below are included examples of MENDEL edltlng, carried out on the MNB
file produced by assembling PATH MDL,

Example 1

Replace global command USESTYLUS with a command named USEPEN. The
latter has no arguments, is defined by the application procedure XSTY,
and is to be executed with the normal delay after command selection.

No menu change is to occur and the data area should initially read
'SPARK'. :

- 25 -

EDIT,PATH /OPEN PATH MNB FOR EDITING

GLOBL /ENTER CONTEXT 4

POS,USESTYLUS /POSITION CURSOR AT USE SYTLUS
REP,USEPEN, ,DO,XSTY,, ,SPARK /REPLACE OLD COMMAND
FIN /TERMINATE EDIT

Example 2
Add a new menu to PATH named BONZO with entry command DOG and exit

command BAND, A new global command, MUSIC, will activate menu BONZO.
The menu will be saved on menu change.

EDIT,PATH /OPEN PATH MNB FOR EDITING
SAVE, TRUE /ENABLE MENU SAVING
SBDEC,F00 /DECLARE A NEW SUBBR

MNDEC , BONZO /DECLARE A NEW MENU

GLOBL JENTER CONTEXT 4 |
COM,MUSIC, , , ,MENU,BONZO /ADD GLOBAL COMMAND
MENU, BONZO /BEGIN BONZO MENU DEFINITION
ENTER /CURSOR TO COMMAND NODE I
COM,DOG, ,DO,FO0 /FOO IS ENTRY PROCEDURE
EXIT /CURSOR TO COMMAND NODE 2
COM, BAND, , , ,GO,PATH ACTIVATE MENU PATH

FIN /TERMINATE EDIT

- 38 -

3= USING THE MENDEL EDITOR-ASSEMBLER

The MENDEL editor-assembler may be used either to generate a new MNB
binary file from a create mode program or to alter an existing file.
The assembler can also produce a binary relocateable Jump Table
for PRTE, a source program listing, and a dump of the MNB file.

3.1 Internal Operation of the Editor-Assembler

The MENDEL editor—assembler exists as an execute program consisting of
the files MENDEL XCU and MENDEL XCT on the system disc area, <SYS>,

When loaded, it first asks the operator, for an option string consisting
of various control characters and the application name. According to

the parameters received, it may produce, in order, an assembled or edited
MNB file, a numbered listing of the source code, a listing of the Menu
Address Table, a listing of the Subroutine Name Table, a relocateable
Jump Table, and an ASCII dump of the binary MNB file.

3.2 Structure of the Editor-Assembler

The MENDEL execute program is coded in FORTRAN, It is organized so that
a single high-level subroutine executes each control option. The main
program, named MENDEL, merely. retrieves and parses the option string

and determines which of the procedures to call.

The actual task of producing an MNB file from source code falls to
subroutine YYMDLA. This procedure reads one MENDEL command at a time

from the source input device and parses it using borrowed PRTE routines.
Each MENDEL statement is interpreted by a single FORTRAN subroutine,
entered via a Jump Table, tc preduce MNB file entries. Global information
such as context and error data is contained in common blocks.

Subroutines YYMNUL and YYSBRL list the MAT and SNT of the MNB file on
the source listing device. They will not be entered unless YYMDLA has
also been called.

The production of the binary relocateable Jump Table is a fairly
intricate task executed by the high~level subroutine YYJMPI. This
procedure opens the specified MNB file and reads the SNT. YYJMPT outputs
a global transfer vector code for each subroutine name declared,along
with other necessary loader information. A separate low-level procedure
is used to produce each type of code.

When all control options have been processed, MENDEL closes any open files
and either exits to DOS or asks for the next option string.

3.3 Loading the Editor—Assembler

Before loading the editor-—assembler it may be necessary to make a few
device assignments. Table 3~1 describes MENDEL DAT slot usage and
recommended devices. :

._27..

_82..

OCTAL

EDITOR-ASSEMBLER DAT SLOT USAGE

TABLE 3-1

S — I/0 DATA TYPE OF FILE RECOMMENDED
- SLOT . TYPE MODE " FILE ACCESS EXTENSION DEVICE ASSIGNMENTS
3 PROMPTING MESSAGES | OUTPUT | 5/7 ASCII | NONE NONE - TTA
OPERATOR COMMANDS INPUT 5/7 ASCII | NONE NONE TTA
ERROR MESSAGES OUTPUT | 5/7 ASCII | NONE NONE TTA
13 SOURCE LISTING OUTPUT | 5/7 ASCII | SEQUENTIAL LST DKA, TTA
ERROR MESSAGES OUTPUT | 5/7 ASCII | SEQUENTIAL LST DKA, TTA
MAT LISTING OUTPUT | 5/7 ASCII | SEQUENTIAL LST DKA, TTA
SNT LISTING OUTPUT | 5/7 ASCII | SEQUENTIAL o DKA, TTA
DUMP LISTING OUTPUT | 5/7 ASCII | SEQUENTIAL DMP DKA,TTA
JUMP TABLE OUTPUT | BIN SEQUENTIAL BIN DKA¥
17 MNB FILE OUTPUT | BIN RANDOM MNB ‘DKA
MNB FILE (FOR INPUT BIN RANDOM MNB DKA
MAT, SNT, DUMP)
20 SOURCE COMMANDS INPUT | 5/7 ASCII | SEQUENTIAL MDL DKA,TTA

*
Slot 13 may not be assigned to TTA if a Jump Table is to be output.

Note that if slot 13 is assigned to TTA, the Jump Table control character
may not be included in the command string. VI may be ON or OFF. 1If slots
13, 14, and 20 are all file-oriented, 4 I/0 buffers must be alloca§ed
using the DOS BUFFS command. DAT slot 20 must be assigned to TTA if the
'I' option is to be used. Since MENDEL XCT and XCU are located on the
system disc area, DAT slot -4 should be assigned to <SYS>,

To load the MENDEL editor-—assembler, type:
$ E MENDEL

The example below illustrates the loading procedure necessary to assemble
the create mode MENDEL program, PATH MDL. -

$ DOS V2A ‘

$ A <SYS> -4 <er> /LOAD FROM SYSTEM DISC
$ ADK 20 <er> . /PATH MDL IS DISC FILE
$ BUFFS 4 <cr> /NEED 4 1/0 BUFFERS

$ E MENDEL <cr> /LOAD EDITOR-ASSEMBLER .

3.4 Operator Commands to the Editor-Assembler

When the editor-assembler is loaded and running it will issue the prompting
message:

MENDEL
OPT <« FNAME?
>

The character > is an invitation to type an option string. The latter

consists of a string of control characters followed by the character <«
and the application name.

Each file accessed by the editor-assembler will have the same first name
as the application name supplied in the option string. . A different
extension is used for the various I/0 files, however. TFor example,

when assembling the MENDEL program PATH, the following files may be
referenced:

PATH MDL SOURCE FILE

PATH MNB BINARY OBJECT (FOR PRTE)
PATH LST SOURCE, MAT, SNT LISTING
PATH BIN JUMP TABLE (LOADABLE)
PATH DMP DUMP FILE

The source, MAT, and SNT listings will be included one after another in
file PATH LST if slot 13 is assigned to a file-oriented device.

The control character part of the option string determines which
editor—assembler functions will occur. Multiple control characters
should be concatenated without commas. A list of the characters and
their functions is given in TABLE 3-2. Although control characters

may appear in any order in the option string, the functions they

select always occur in the order given in the table. Thus if the
character E is included, MENDEL will ignore all other control characters
and immediately exit to DOS.

—.29...

._.OE_

TABLE 3-2

EDITOR-ASSEMBLER CONTROL CHARACTERS

COMMAND FORMS: <CONTROL CHARACTERS><+<FILENAME>»<cr>

E <er>
EXECUTICON
c FUNCTION
CHARA TER ORDER
gt 1 Exit to DOS immediately
B 2 Execute the MENDEL statements in file <FILENAME> MDL to create or edit file
<FILENAME> MNB. A DAT slot 20 should be file oriented. Syntax errors abort
processing.
I 3 Interactively execute the MENDEL statements input via DAT slot 20 to create’
or edit file <FILENAME> MNB. Slot 20 must be assigned to TTA. Commands
may be retyped if syntax errors occur, MENDEL command FIN causes termination
L 4 List source code on file <FILENAME> LST(only if B or I option also used).
*
M 5 List Menu Address Table on file <FILENAME> LST(only if B or I option also used)
% ‘
S 6 List Subroutine Name Table on file <FILENAME>(LST only if B or I option also
used) . :
J) Produce a Jump Table for file <FILENAME> MNB in file <FILENAME> BIN.
0 8 Produce a DUMP of MNB file <FILENAME> MNB in file <FILENAME> DMP.
A 9 Do all of the above except E and I.

+ May only be used by itself.

% Ignored if

L not also included.

If B and I are both included, B is ignored.

Typing the option string below will cause MENDEL to assemble the create
mode program contained in file PATH MDL and produce a Jump Table in- file
PATH BIN,

MENDEL

OPT«FNAME?
>BJ«PATH<cr>

3.5 List File Format

If the L control character is included in the option string, each MENDEL
statement or comment line encountered will be numbered and output to the
list file device. Unfortunately the character <tab> is not recognized
by some of the handlers and so will not be output.

If the M option is selected, a listing of the MAT will follow the source
listing. The following format is used:

MENU NAME BLOCK NUMBER IN MNB FILE

If the S option is included in the option string, an SNT listing will
follow the MAT printout. The application subroutine names are simply
listed in the order they occur in the SNT and Jump Table.

3.6 Dump File Format

The Dump facility of MENDEL 'is necessary because the MNB file is output
in IOPS BINARY data mode and cannot be inspected using the DOS text

editor. The layout of a DMP file closely follows the MNB file structure
given in Appendix E. '

Dump files are broken down into sections according to MENDEL contexts

and physical blocks (256 words). The following labels identify contexts
1-6:

Label Context

HEADER

MENU TABLE
SUBROUTINE TABLE
GLOBALS

ARGET

MENUS

bW -

New blocks are identified by the offset label:
*5%%% BLOCK n

The entries comprising each context are numbered in order of occurrence
and listed in convenient formats.

Header block entries are word-numbered and listed as either integer
values or text strings. The meaning of each entry should be clear
from Appendix C.

31

The MAT and SNT entries appear exactly as they would in a list file
produced by the M and S control characters,

The portions of the DUMP file describing the GLOBAL, ARGLT, and MENU
contexts use a common format for listing menu blocks. A word-numbered
list of the header node values is output followed by a decoded entry
for each of the 24 command nodes. Table 3-3 describes the layout and
meaning of each field of a command node listing.

3.7 Prompting Messages

MENDEL types the message:

MENDEL
OPT<FNAME?
>

to indicate its readiness to accept an option.string. If the I control

character is included, > is also the invitation to type the next MENDEL
statement.

Although MNB files may be edited using statements in an MBL file, they.

are normally altered interactively using the I control character.

As an aid, edit mode MENDEL statements which reference the command

cursor always cause the altered command node to be decoded and listed on

DAT slot 3 (TTA). The listing format is identical to that given in

Table 3-3 for Dump files = minus the labels. The POS statement is ~
particularly useful for examining MNB file command nodes.

3.8 Error Messages

All error messages output.by the editor-assembler, except one, go to
both the source list file and DAT slot 3. The message:

COMMAND ERROR, IGNORED

is output only to the teletypes if an illegal control character or poorly-
formed option string has been entered. The malformed string is ignored
and the corrected version should be retyped.

As each MENDEL statement is encountered, the editor-assembler checks its
syntax and the validity of its arguments. The action taken by MENDEL if
an error occurs depends upon whether or not the I control character was

included in the option string.

If it was not included, MENDEL lists the offending statment and outputs
the following messages to the source list device and TTA:

K STATEMENT CAUSING ERROR
ERROR NUMBER W
#%&%xk SUCCEEDING COMMANDS NOT OBEYED "###¥%¥%

where K 1is the line number and ¥ is the error number. All files are
closed and succeeding commands are not executed but are checked for
superficial syntax errors. Assembly or editing fails and subsequent
control characters are ignored. The MNB file may no longer exist or
it may be garbage.

' o= 32 =

NU

M
o

Block number of new menu to be activated,
means no menu change will occur,

INT.

1 if entry procedure of new menu is to be
executed on menu change.

EXE
EXE

INT.

1 if exit procedure of old menu is to be
executed on menu change.

SUB
SUB
INT

Index of associated application procedure in
the SNT. @ mcans none associated.

W
W
INT.

1 if command is to be executed with no delay
(DONOW,DTNOVW) .

INT.

] if command is inactive (DONT, DTNOW)

ARG
ARG

INTEGER

Number of arguments.

“TABLE 3-3

DATA
DATA
TEXT

5 or 9-character data area. If command is
unaccessed, the characters NULL will appear
here.

OMMAND NODE LISTING FORMAT

C

COMMAND
coM
TEXT

5 or 9-character command name.
Blank if NULL command.

IDX
IDX
EGER

INT

Starting word index (not cursor index) of
command node within a menu block.

oNs

e
4L

BJITTONS

e
BU

17

c
A

TYPE

L.
L.

/: £

=

L

LAEEL

FUnNCcrIon

1f the I control character was included in the option string and a
fault occurs, only the error number will be typed out. The offending
statement is ignored and MENDEL asks for it to be retyped by outputting
the prompting character, >.

Upon termination of an edit or assembly, MENDEL outputs several messages
to both TTA and the list device. The first of these indicates the
number of errors and source lines encountered:
kkxkxkxxix n ERRORS, m LINES.
The second message notes either the success or failure of MENDEL processing:
NORMAL EXIT or
kdkkkkkddk ASSEMBLY ABORTED AT LINE k

Numbered MENDEL errors are explained in Appendix K along with PRTE
diagnostics. Typing <entrl P> will not restart the editor-assembler.
3.9 Examples

The two examples below illustrate the complete loading procedure and
option strings necessary to assemble file PATH MDL and edit PATH MNB.

Example 1

Assemble PATH MDL and produce a source, MAT, SNT, and Dump listing on TTA.

$ DOS V2A

$ A <SYS> —~4 <cr> /LOAD FROM SYSTEM DISC

$ A DK 20 <cr> /PATH MDL IS DISC FILE

$ A TTA 13 <cpr> _/LISTING TO TTA

$ VT ON <er> C -
$ <entrl X> /TURN ON DISPLAY

$ E MENDEL <cr> /ONLY NEED 3 BUFFERS

MENDEL

OPT<FNAME? JOPTION STRING?

>BIMSD<PATH <cr> /NO JUMP TABLE ALLOWED

SOURCE LISTING OF PATH

kkFdkLRid% ¢ ERRORS, N LINES. /END OF ASSEMBLY

NORMAL EXIT
MAT LISTING
SNT LISTING
DUMP LISTING
MENDEL .
OPT<FNAME? /NEXT OPTION STRING?
>E <cpr> /EXIT TO DOS.
$ DOS V2A

$ "'3[%"‘

Example 2

Edit PATH MNB, making the lightpen the starting stylus device.

$ DOS V2A

$ A <SYS> ~4 <cr> /LOAD FROM SYSTEM DISC

$ A TTA 20 <cr>
$ E MENDEL <cr>
MENDEL
OPT<FNAME?
>I<«PATH <cr>
>EDIT,PATH <cr>
>STYLUS,LPN <cr>
ERROR NUMBER 8
>STYLS,LPN <cr>
>FIN <¢cr>
NORMAL EXIT
MENDEL
OPT<«FNAME?
>E <cr>

$ DOS V2A

$

/INTERACTIVE COMMAND INPUT
/ONLY NEED 3 BUFFS

/OPTION STRING?

/ INTERACT

/EDIT MODE

/BAD COMMAND NAME
/COMMAND IGNORED
/USE LIGHTPEN

/END INTERACTION

/NO LINE COUNT GIVEN

/NEXT OPTION STRING
/EXIT TO DOS

35.

4. OPERATION OF THE PIGS RUN TIME ENVIRONMENT

The PIGS run time environment is coded largely in FORTRAN IV. The
routines may be grouped by function into four sets; jinitialisation,
command polling, command reconciliation, and menu activation., Figures
4-1 through 4-5 include flowcharts of these four functions and the PRTE
main control loop. Each function is flowcharted separately and linked
to the main control loop by a circled letter. A general discussion of
the run time environment is included below. '

4,1 PRTE - Main Control Loop

When a Graphics Application Program is loaded using EXECUTE, PRTE
subroutine PIGS receives control via a JMS* instruction in the Jump
Table., This JMS* instruction is output by the MENDEL editor—assembler
and serves merely to ease the overlay construction process using XCHAIN.

4,2 PRTE - Initialisation

Subroutine PIGS controls all PRTE functions. It first initialises the
run time environment, interpreting header information contained in block
1 of the MNB file output by MENDEL. Then the menu blocks containing
global command nodes are read into the bottom of the Command Table array.
The size of the common block containing the Command Table is adjusted at
load time by a pseudo-instruction located in the Jump Table so that

all global command nodes will fit into core. FOG subroutines are used
to generate the display file structure (see Appendix D) which, when
executed by the VI15 processor, creates the CRT display. Any

error which occurs during PRTE initialisation will cause the program

to terminate with a teletype message.

Having initialised the display and run time environment, subroutine PIGS
activates the starting menu of the application and executes its entry
procedure. A new menu is activated simply by reading the appropriate
MNB block into the Command Table above the globals. The lightbutton
display files need not be changed since the text command names are
referenced indirectly as addresses in the Command Table. It is only
necessary to blank off the lightbutton display files during menu block
input.

For the remainder of an interaction session, PRTE simply remains in
the following command interpretation loop:

(1) Poll active devices until a command is selected.
(2) Retrieve the command's name and arguments.
(3) Execute the associated application procedure, if required.

(4) Retrieve a new menu, if required, and go to (1).

The steps are briefly discussed below.

- 37 =

4.3 PRTE - Command Polling

Interruptions such as error messages or typing <entrl P> cause control
to be transferred to step (1), above. In polling for a new command,
PRTE repeatedly examines each active device until the operator selects
a command or until a clock scheduled command becomes due. Polling
immediately ceases and command selection information is returned to
subroutine PIGS.

4,4 PRTE - Command Reconciliation and Execution

Because the form of the command information varies from device to device,
PRTE must next convert it into its standard internal format: a text
command name and the word index of the related Command Table node.

This reconciliation process includes argument parsing in the case of
typed input. ‘

At this point subroutine PIGS blinks the associated lightbutton, if it

exists, and clears the previous error and prompting messages. If an

application procedure is associated with the command, the index of its . -
starting address in the Jump Table is found in the command node. A

JMS* to the application subroutine is simulated. Control returns

directly to PIGS.

4,5 PRTE - Menu Activation

As the final step in the command interpretation loop, PRTE examines the
selected command node after command execution to determine whether a
new menu must be activated. If so, the setting of two bits in the node
determines whether or not the exit and entry routines for the old and
new menus, respectively, will be executed. .Activation of a new menu
occurs as described in Section 4.2.

- 38 -

FIGURE 4-1 PRTE

- MAIN CONTROL

] :

MP%AOTO CONTROL

SET PRIE EEROR

e {2 LOOD FROM JURNP
TABLE

T;J PRESET CONHON
VARIABLE VALUES

L arory riac

®

ACTIVATE STARTIN&
CLEAR OUT CLD MENU USING BLOCK

ARCUMENTS FILE

A

in

v I

]’OI s (GBI
SOURCE DEVICES

FOR NEXT /

CONDMAND

SO =

- g A
NUMBER FROM MNB / ool <ontrl p> AND

) @
. // INITIALISE —W\\
f-={ COIMAND TADLLE)

AND DISPLAY /

CLEAR PRTE LRROR
ABRORT FLAG,

ERROR RETURN IS
TO FRYE POLLIN

©
T

ARSE ARCUMENTS \ ,/’//////\\\\\\
&

AND GET WORD CAMAND

INDEX OF COMMAND /= ==& INACTIVE? > """" L
IN COMMAND TABLE el

1 ¥

| BLINRK
. LIGHLIBUYTON FOR | .

<o
DELAY TIME -
INTERVAL

A /mr - _
| ™~ /

LIGHTHUTION
LOCAT IO,
IF PRESENT

DETERSTRR, }
l
J

(m
.\]

(CLEAR ERROR

"LAGS

NOTE:

!
. CLEAR i
l DISPLAY ALD = PROMPT JHG !l

H

USE INDEX IN Juup |

SRR, ‘IABLE TO SIMULATE 4
A JMS* TO APPLICA-
{ TION PROCEDURE

o

DISPLAY

4

L e -

i
\

T //ﬁ/ﬁ MLYU N

<. REQUIRED? ,3*

Ny 25

vttt ot
/ T

READ 1R Wi \
BLNU USTNG

BLOCK LU
GO D

Circled letters correspond to flowcharts on succeeding pages.

.-39..

4~2

N

READ MNB

PRTE

FILE NAME
FRO:T TTA

CREATE TRACKTNG

DOT, BORDER, AND

KEYBOARD DISPLAY
FILES

\

READ MNB
FILE HEADER
FROM DISC

zi’

CREATE LIGHT-
BUTTON DISPLAY
FILES

COMMAND TABLE AND DISPLAY INITIALISATION

SET UP DEVICE
AND MENUING
CONTROL COMMON
BLOCKS

READ GLOBAL
COMMAND BLOCKS
INTO BOTTOM OF

SELECT STARTING
KEYBOARD DLVICE

™

COMMAND TABLE

SELECT STARTIN
r STYLUS DEVICE

START CLOCK

...40...

START DISPLAY

FICURE 4-3 PRTE - COMM.

PACK CHARACTER
INTO DISPLAYED
BUFFER

¥

DECODLE ACTIVE
DEVICE WORD

READ KEYBOARD,
| CHARACTER

<

ND POLLING

<er> OR

+

<altmode>?

i

CHARACTER
TYPED?

DELETE ALPHA
CURSOR

KEYBOARD
ACT1VE?

r——| sryLus postrTon

v

READ X, Y, =

. {RETURN CHARACTER

STRING

F
S .
Li1GHT~ \\
LIGUTPEN
: BUTTONS ~1>/ACTMO
ACIIVL e

RETURRN NAME

<LIGHT')U1TON>_
HIT?

b ; ‘)r’
T_/ REGISTER VALUE [~F C)
REPOSITION 5
TRACKING [1)
DOT
DETERMINE NAME
: REGISTER VALUE
© FROM D1SPLAY
FILE

"TUUCHI”G" A

Nz

LIGHTEUITON .~ \\\\A

RETURN TEXT

\ : REYURN
b{ruwuuo\ T] rususurron e o

PRE; SSHJ/" NUMBER

e DESCHEDULE

PN (ggi‘;i S/r\ COMMAND TF

CLOCK ST ‘><rscm m,n?\\ﬂ) it ZERO REPEAT

ACTLVE? O:HAND DUE l‘ COURT
f —

COMMAND RAUL ‘

FIGURE 4-4 PRTE

COMPUTE WORD

INDEX OF COM-

MAND IN COMMAND
TABLE

. PUSHBUTTON OR
e} LIGHTBUTTON SOURCE

COMMAND RECONCILIATION

KEYBOARD
SOURCE?

PARSE
ARGUMENTS

GET ARGUMENT
$ AS COMMAND
NAME

CLOCK SOURCE
RETRIEVE
COMMAND NAME

SEARCH COMYAND TABLE
FOR TEXT MAME. SEARCH
ORDER: CONTROL COMMANDS

. |PUSHBUTTON COMMANDS

LOCAL CO:GMANDS GLOPAL
COMMANDS

SAVE COMMAND

NAME. RETURN
WORD INDEX IN
COMMAND TABLE

- 42 -

FIGURE 4-5 PRTE

WRILE OUT OLD
COMMAND TABLE
OVER OLD MNB
MENU BLOCK

MENU ACTIVATION

EXIT FLAG OF
CURRENT COXe N

SIMULATE JMS*
TO EXIT
PROCEDURE OF
OLD MENU

'SAVE
ARD 'suMpu!
OPf10NS TRUE

FOR OLD
MERU?

¥

| =
£

BLANK OFF
LIGHTBUTTON
DISPLAY

READ NLEW
MENU INTO
COMMAND TAPBLE

!

UNBLANK
LIGHTBUTTON
DISPLAY

ENTER ¥LAG OF

SET?

CURRLNT COMMAND -

SIMULATE JMS* TO

~J ENTRY PROCEDURE

OF NEW MERU

..[}3...

5. WRITING A GRAPHICS APPLICATION PROGRAM

There are essentially six tasks in developing a graphics application
using PIGS, most of which are common to the design of any large program,
These are listed below along with pertinent references:

(N Determine the desired commands and menus and describe them to
PIGS by writing a MENDEL program (Chapters 2 and 3).

(2) Design the application display (FOG manual).
(3) Design the application data base.

%) Write an application procedure in FORTRAN IV or MACRO-15 assembly
language for each command (Chapter 5, FORTRAN and MACRO-15 manuals).

(5) Debug the application procedures.
(6) Determine the overlay structure of the application procedures

and data base. Combine this overlay structurc with that of PRTE
using XCHAIN (Chapter 6, CHAIN manual, PDP15 User Notes 2 and 3).

This chapter deals largely with task (4), writing application procedures.
Examples from PATH are included in Section 5.4.

5.1 1Initialising a Graphics Application Program

A graphics application program running under PIGS ordinarily consists
of some data tables or common blocks, a display file structure, and a
set of application procedures. When PRTE begins running, the entry
procedure of the starting menu will be automatically executed. This
procedure should initialise the application data base and may be used
todirect preliminary operator choices by activation and deactivation
of displayed commands.

The entry procedure of the starting menu may also define the application
display using FOG. To link the main application display file to the
PIGS display, use the FOG commands:

CALL RCHOOS (16)
CALL DRAW (1,MAIN(1))

after defining the main display file, MAIN. The FOG commands:

SCHOOS (16), DINIT,RINIT, and SINIT
sbould never be used by the application program. Remember that the
display is active, All files must be well-formed before the main file

is linked to the PRTE display. The initial display attributes set by
FOG are unchanged by the PRTE display.

- 45 =

A et g =

5.2 Argument Transmission in Application Procedures

The principal difference between ordinary FORTRAN IV oxr MACRO-15
routines and graphics application procedures written using these
languages is in the method of retrieving arguments parsed by the run
time environment. To allow more flexibility in the number and types
of arguments a command may have, PRTE classifies and places arguments
in several common blocks accessible to both the run time environment
and the GAP., Actual argument values are retrieved by application
procedures using special PRTE functions. Application procedures are
coded as subroutines with no formal arguments.

Each PRTE argument-getting routine is a logical function which is .TRUE.
if the argument was specified and .FALSE. if it was omitted. Each of.
these functions has at least 2 parameters: an argument index and an
argument variable to hold the returned value. The index is simply the
position of the desired argument in a complete command string, numbered
from left to right with argument number 1 being the text command name.

If the desired argument was omitted, the value of the supplied argument
variable remains unchanged, allowing easy specification of default values.

Table 5-1 describes the various PRTE argument-getting functions and
their parameters. Although the functions correspond to particular
FORTRAN data types, they may also be used from MACRO-15 procedures by
utilising the FORTRAN argument transmission protocol (see Chapter 3,
PDP15 FORTRAN IV OPERATING ENVIRONMENT manual).

Occasionally it is useful for one application procedure to call another.
In this case a second set of PRTE routines may be used to put arguments
in the argument common block for retrieval by the called procedure.
These argument-putting subroutines are described in Table 5-2. Before
each call of an application procedure, PRTE argument common must be
initialised. Arguments may then be put in the common area and the
application procedure called. For convenience, PRTE initialises the
argument common block when the argument index of any argument-putting
routine used is negated. The example below illustrates the FORTRAN
equivalent of the command i

SHOW, 3<er>

in PATH.
CALL PUTARG (~2,3)
CALL SHOW

Further information about a command and its arguments may be obtained
by a GAP directly from the argument common blocks manipulated by PRTE.
Of particular use are argument types, command source device, and number

of arguments specified. Argument common blocks ARGTP, CARG, and DARG
are described in Appendix C.

5.3 Special PRTE Subroutines

Although MENDEL may be used toset up the initial state of PRTE active
devices, commands, data areas, and display, it cannot control PRTE
flexibly during interaction. Instead, FORTRAN-callable subroutines
have been provided to enable dynamic control over selected PRTE
functions (such as data area display and command scheduling). Table
5-3 describes all currently available PRTE special subroutines. These
subroutines receive their arguments via the normal FORTRAN IV calling
sequence.

- 46 -

o i =

TABLE 5-1

PRTE ARGUMENT -~ GETTING FUNCTIONS:¥
SUBROUTINE S FILE Py GLOZAL
WAV ARGUMENTS NAE DESCRIPTION REFERZNCES
GETCH GETCH2 Get character string, left justified, blank filled. AZORT
NOARG Integer index of argument A
STRING First element of real arrav to hold returned string
NOCHAR Returns number of characters in string argument
MAXCH Maximum number of characters before overflow
GETDI GETIDI2 Get double integer number GETDP
NOARG Integer index of argument
DUBINT Returns double integer argument value
GETDP GETDP2 Get double precision number ABORT
NOARG Integer index of argument
DUBPRE Returns double precision argument value
GETF IL GETFIL Get text file name and extension. If extension is GETCK
NOARG present, it must be separated from the file name by FNAME
a blank (use quotes)
STRING First element of real 2-word array to return file
name and extension .
EXT Left justified, 3-~character default extension
GETLOG GETILOG Get logical argument. Either the string TRUE or
FALSE must have been typed.
NCARG Intecger index of argument ABORT
LOG Returns legical value, .TRUE. or .FALSE. GETCH
GETSI GETSI2 Get single intceger number AZORT
NOARG Integer index of number GETDP
INTEGR Returns integer argument value
GETSR GETSR2 Get single real number GETDP
NOARG Integer index of argument 3
REALNO Returns real argument value

“Each logical function may also be used as a subroutine.
Functions are .FALSE. if the desired argument was omitted.

_8~l7...

TABLE 5-2

PRTE ARGUMENT~PUTTING SUBROUTINES

SUBROUTINE ' FILE GLOBAL
ay

NAME ARGUMENTS NAME DESCRIPTION REFERENCES

PUTCH PUTCHZ Puts a character string in argument common ABORT
NOARG* Integer argument index MVC
STRING First element of real array containing string argument
NOCHAR Number of characters in string to be moved

PUTDI PUTDIZ2 Puts a double integer number in argument common PUTDP
NOARG* Integer argument index
DUBINT Double integer number to be moved

PUTDP PUTDP2 Puts a double precision number in argument common ABORT
NOARG* Integer argument index
DUBPRE Double precision number to be moved

PUTSI PUSI2 Puts a single integer number in argument common PUTIDP
NOARGH* Integer argument index
INTEGR Integer number to be moved

PUTSR PUTSR2 Puts a real number in argument common PUTDP
NOARG* Integer argument index

. REALNO Real number to be moved

Flrst argument index used before the appllcatlon procedure call must be negated to initialise PRTE argument

common blocks.

.6+7.

TABLE 5-3

SPECIAL PRTE SUZROUTINES

SUBROUTINE. o FILE = GLOBAL
2 AN ARGUMENTS NAME DESCRIPTION REFERENCES
ACTCM . ACTCM Activates a cogpand in the cutrent menu. Ignored if CMFIND
command already .active INBITS
. MVC
COMNAM First element of array containing 5/7 ASCII command name
CLERR CLERR2 Clears the current error message display MVC
CLPRM CLPRM Clears the current prompting message display MVC
DACTCM DACTICM Deactivates a command in the current menu. Ignored if CMFIND
command already inactive INBITS
- MVC
COMNAM First element of array containing 5/7 ASCII command name
DSKEDU DSKEDU . Deschedules a command in the PRIE clock schedule buffer. DSCHED
. No action if command not scheduled
COMNAM First array element of the 9-character command name to be
descheduled .
DISERR DISERR Displays a message in the error display area and rings the PRINI
teletype bell ‘ MESDIS
STRING First array element of the 5/7 ASCII message to be displayed
NOCHAR Number of characters in the message
IREST <cntrl P> restart address. {Use NRMRET in common block
ERRCON if no specizl address is desired.)
ERP ERP Displays a GAP error message number and returns to calling ERRMES
procedure
NUMBER This integer value +200 will be displayed as the error
ntmber
PROMPT PROMPT Displays a message in the prempting message display area MESDIS
STRING First array element of the 5/7 ASCII message to be displayed
NOCEAR Number of characters in the message

- QG -

SUDROUTINE

RAME

ARGUMENTS

]

FILE
NAME

TABLE 5=-3 (Continued)

SPECIAL PRTE SUBROUTINES

DESCRIPTION

GLCBAL
REFERENCES

QUIT

QUIT

Exits PRTE and returns to DOS

SKEDUL

COMNAM
INTSEC

INTPLS

NRPEAT

SKEDUL

Schedules a command in the PRTE clock schedule buffer.

"The command will be selected when the time interval

specified has elapsed

First array element of the 9~character command name
Interval in seconds before the scheduled command becomes
due again

Interval in clock pulses (20 milliseconds) before the
scheduled commahd becomes due again. Total interval is
INTSEC + INTPLS

Number of times the command is to be executed

NRPIAT = -1 means execute indefinitely

SCHED

WDAT

COMNAM

STRING

WDAT

Displays a 5 or 9-character message in a specified command
data area. The number of characters used is dependent
upon the display size

First array element of the 9-character command name whose
data area is to be changed

First array element of the 5 or 9-character 5/7 ASCII
string to be displayed

WMNU

5.4 Examples

Below are included several examples of GAP application procedures
extracted from PATH. The first subroutine, is called by PINIT, the
entry procedure for the starting menu of PATH. Note that it creates the
PATH display file structure and links it to the PRTE display using FOG
save register 16. As INITD may also be entered via command PATH in
menu PATH, care has been taken to see that the display linking code is
executed once only (INITD may not be overlayed, however, since IITIME

is not in common). :

The second example illustrates the use of the PRTE argument-getting and
~data area display routines. Subroutine SHOWIT is entered upon selection
of command SHOW with any active source device. The subroutine behaves
slightly differently if the source device was not a keyboard (IDCOME # 1):
the current cel number, NUM, is incremented and becomes the default
argument value (all arguments are considered to be of type omitted when
the source device is not a keyboard). The subsequent subroutine call

to GETSI either retrieves a typed integer value or passes on the default
value of NUM. 1In order to display the cel or path number in the data

area of command SHOW, it was first necessary to use the FORTRAN ENCODE
statement to convert the integer to a 5/7 ASCII string. To use PRTE
subroutine WDAT to display the data, it is necessary to provide the

text command name, CNAM(l), as an argument. The coding used may cause

a problem if one later decides to change the command name using MENDEL,

and then forgets to change the data statement in the application procedure.

This annoyance may be avoided by retrieving the command name using the
GETCH function:

CALL GETCH(!,CNAM(1),NOCHAR,9)
CALL WDAT (CNAM(1),CDAT(1))

The above coding causes the same data arca display and makes procedure
SHOWIT more independent of the MENDEL command specification.

..51....

ExamE le 1

SUBROUTINE INITD

CINITIALIZES THE APPLICATION DISPLAY
FILES AND LINKS THEM TO THE PIGS DISPLAY.

ERAVEN RIS

COMMON/ PTHDAT/LDIS (102 4),IFILLCIG50) ,MAL N X52)
COmMMON/BACYK G/ IB DIS (256)

COMMON/DATRR M GRID(CITS)

EXTERNAL XCROSS

INIT WORK DISPLAY
LDISC 1)Y= 0
CALL DCHOOS(LDIS, D
CALL SETPT(3, 0, 2

gOon

oo

INITIALIZ E BACKGR OUND D ISPLAY

95 IBDIS(1):= 0
CALL DCHOOS(I3 DIS,
CALL SETPT(@, 8,2

SET UP MAIN DISPLAY

G ICRIER

MATED()= 0

CALL DCHOCS(MAIND, 1D
CALL DRAWCI,LDIS(I1))
CAL L DRAW(CI1, IBDIS (1))
CALL DRAW(C 1, XCRGSS)
MeRIDC 1=

CALL GRID(M®RID(D, D
CALL BLANK(M®R IDC 1))
CALL DRAW(CI1, MGRIDC 1))

LINK TO PRTE MAIN DISPLAY USING.
FOG SAVE REGISTER 16, ONCE ONLY
~ CODE,

IFCIITIME NE. @) GO TO 109

I17TiME= |

CALL RCHOO0S(16)

10 CALL DRAWC I, MAI NDC 1))

CALL DCHOOS(MAIND, 1)

€Y IO 16

102 CONTINUE
RETURN .
END
DOSPIP VGA

>

...52_.

Examgle 2

OO OO0

oo

[N e]

SUBROUTINE SHOWIT

C OMI4AN D
SHOW, N1'M
SHOW

DISPLAYS CEL OR PATH MNUMBER <NUM> AND MAKES
IT THE CURRENT CEL. STYLUS HIT STEPS CEL N UMBER.
IF TYPED AND <HNUM> OMITTED, SHOWS CURRENT CEL.,

DIMENSION CHNAM(C2),CDAT(2)
coMmon/PTHDAT/IDDUM 294 8), ICUR,NOCRV
COMIMON/AR GTP/IDDM(32), IDCOME

DATA CNAM/S5HSHOW , 5SH 4

GET CEL NUMBER

NUM= IC UR
IFCIDCOME JNE, 1) NUM=NUM I

CALL GETSI(2,NUM

IF(NUM (LT, | .OR, NUM .GT. 12) NUM=1
IC UR=NUM .

DISPLAY CEL AND NUMBER

ENCODEC 18, CDAT, DD NUM

FORMAT(13)
CALL WDATCCMAMC 1) ,CDATCI1))

CALL BLKDIS
CAL L SHOWC NUM

RE TURN
E#D

DOSPIP V§a

>

..53...

6. OVERLAYING A GRAPHICS APPLICATION PROGRAM

The PIGS run time enviromment is coded mostly in FORTRAN IV and would
nearly fill the bottom 32K of PDP15 core (including device handlers and
DOS) were it not overlayed. When overlayed, the run time environment
uses about 10K of store (excluding device handlers and DOS). In order
to achieve this core economy and allow application procedures to share
PRTE and FORTRAN run time environment subroutines, graphic application
programs must be loaded with PRTE routines using the overlay building
program, XCHAIN.

6.1 Debugging the GAP

Overlaying a GAP with XCHAIN is a comparatively lengthy procedure

requiring several minutes to complete the necessary library searches.

For this reason, and because it is not possible to use DDT (Dynamic
Debugging facility) with overlayed programs, it is wise to test application
procedures separately from PRTE as much as possible. Otherwise, FORTRAN

or MACRO-15 I/0 statements must be used to track down errors, a lengthy
process when compared with the debugging time required using DDT, Semantic
errors in MENDEL programs are never difficult to find and do not require
the GAP to be re~CHAINed unless the Jump Table was affected.

6.2 The Overlay Loader - XCHAIN

The DOS command XCHAIN brings into core the Atlas Laboratory version of
the overlay loader, CHAIN. The latter is fully discussed in the PDPI5
CHAIN manual. XCHAIN is described in PDPI5 User Notes 2 and 3. Both
references are essential to a proper understanding of the overlay process.

Briefly, XCHAIN outputs separate binary disc files containing overlay
information, the core image of resident code, and the core image of each
overlay (link). Collectively these files constitute an EXECUTE program
which can be loaded and run using the DOS 'E' (EXECUTE) command.

In producing these files XCHAIN requires the following information:

(1) Name of execute program

(2) Library filenames and other load parameters

(3) Resident routine names

(4) Link names and the routines which reside in them

(5) A descriptionof the manner in which links overlay each other
This information, the overlay description, may either be read from a

disc file named CHAINX SRC, or input interactively using the system
teletype. The discussion below assumes that a disc file description is

.-55_

used. Overlay information and a load map are produced on disc file
CHAINX LST.

6.3 Overlaying PRTE

When overlaying CGAP procedures with the run time environment, the PRTE
links are kept separate from any GAP links required. Figure 6~I
illustrates how PRTE resident code and links would reside in core by
themselves. There are five links which overlay each other in the FRTE
link area. Each link has a separate function as described below:

Link name A Function

LK1 Presets constant comnon values

LK2 Opens, reads, and writes to the MNB file

LK3 Creates the PRTE display and initialises command
source devices o

LK4 Polls source devices for commands

LK5 Reconciles commands and parses text argument
string

A complete load map for PRTE by itself is given in Appendix F and includes
a list of the filenames of the routines included in each link and the
resident code. The information required by XCHAIN to overlay PRTE is
included prior to the load map as part of the CHAINX LST file.

The binary files which compose PRTE are all loaded from the PIGS library
file, .LIBRP BIN. Appendix B includes an index of these routines and a
brief description of their function. Note that in some cases the filenames
do not match the entry point names of the subroutines. This does not

influence overlaying, but XCHAIN load maps always give the fZlenames of
routines loaded.

All PRTE overlay links are specified in the CHAINX overlay description
using the library prefix, #, and the subroutine entry point name. The
library prefix ensures that XCHAIN will load the named routines from

file .LIBRP BIN as external link components, callable from other links

or the resident code. Referencing an external link subroutine causes

the link to be read into core. PRTE subroutines required within a link,
but not specified in the description using the library prefix, are loaded
from the library as internal link components,. Internal link subroutines
are not callable from other links or from the resident code,

The five links defined in the PRTE CHAINX description (Appendix TF)
overlay each other in a 1.5K area of core just below the resident
code. Each link is loaded by a subroutine call to an external link
component from the resident subroutine, PIGS. During the execution
of a command, a maximum of 3 overlay changes in PRTE normally occurs:

LK4 to LKS (polling to reconciliation)

LK5 to LK3 (if new menu required)
LK3 to LK4 (resume polling)

...56...

FIGURE 6-1 PRTE CORLE ALLOCATION

MEMORY MAP

77777%
'BOOTSTRAP —
LINK TABLE —
PRTE RESIDENT CODE
AND LABELLED COMMON
(CONTAINS LTA HANDLER
AND DUMMY PFA HANDLER)
| 61055
PRTE LINK AREA
(.SCOM+3) ___ 55173
| |
% UNUSED
i
(.SCOM+2) - | 30000 (depends on
i i buffers and
! EXECUTE il
required by
the GAP)
DISC HANDLER
VT15 HANDLER
| BUFFERS (2) 3 (each buffer
= 400 wds)
RESIDENT MONITOR '
(CONTAINS SYSTEM |
TELETYPE HANDLER) !
SCOM TABLE i 156
INTERRUPT SERVICE i 0

* All constants above are octal radix
. The upper 32K of core is unused under DOS

— 57‘_

FIGURE 6-2

MEMORY MAP

(.SCOM+3) N

GAP CORE ALLOCATION

BOQTSTRAP

LINK TABLE

COMBINED PRTE AND
GAP RESIDENT CODE,
LABELLED COMMON,
LTA HANDLER AND
DUMMY PFA HANDLER

PRTE LINK AREA

GAP LINK AREAS,
IF ANY

GAP BLANK COMMON

FREE CORE

EXECUTE

DISC AND VT15 HANDLERS,
HANDLERS REQUIRED BY

THE GAP

BUFFERS (2 OR MORE)

RESIDENT MONITOR
(CONTAINS SYSTEM
TELETYPE HANDLER)

.SCOM TABLE

INTERRUPT SERVICE

xAll constants above are octal radix.
The upper 32K is unused under DOS.

- 58 -

17777%

77636

(size varies with
number of external
link components)

100

If no menu block I/0 is required only 2 overlay changes occur. Since
XCHAIN is roughly 5 times faster than the original CHAIN provided by
DEC the delay is not noticeable.

6.4 Overlaying a Graphics Application Program

A GAP has approximately 10K of the lower 32K of core (exclusive of PRTE
and the DOS operating system) in which to fit its own resident code and
links. In the future it may be possible to use the upper 32K of store
for free storage and display files, but not at present. More than the
10K of core is made effectively available by sharing some of the FORTRAN
run time environment routines used by PRTE. Some graphics application
programs, like PATH, will be able to run as purely resident code within
the 10K unused by PRTE.

In practice overlaying a GAP with PRTE is a matter of slightly modifying
the skeleton CHAINX description given in Appendix F to include the
application's resident code and links. Appendix ¥ includes the PATH
CHAINX specification, while Figure 6-2 illustrates core allocation for
PRTE and a GAP with overlays.

Normally GAP and PRTE links should not overlay cach other. A CAP link
may overlay the PRTE link area only if no link-resident PRTE routine
is called before command execution is finished and control returns to
PRTE. Otherwise the GAP link will overlay itself with disastrous results.

If there is no danger of a GAP link overlaying itself, application
procedures may call certain of the PRTE resident or link subroutines.

PRTE routines CLOCK, CLOCHK, and DSCHED for example, are shared by PATH
(refer to Appendix B for a list of shareable PRTE routines). In order
to reference a link subroutine which is not normally an external link
component, the desired entry point name must be added explicitly to its
usual PRTE link definition and preceded by the library indicator, {#,

as has been done in the PATH overlay description (otherwise the
subroutine will be loaded into the resident code area):. Care should

be taken to avoid duplicating reserved PRTE names with applications
procedure or common block names. A list of these names appears in
Appendix H.

6.5 Writing a GAP Overlay Description

Included below is a step-by-step description of how to build a CHAINX
overlay description for a GAP. Responses to each XCHAIN prompting
message are given. Only the responses should be inserted in the CHAINX
file. Familiarity with both the CHAIN Manual and XCHAIN User Notices
previously referenced is essential.

(1) NAME XCT FILE
>GAPNAM

The designer should reply with the name of the graphics application
program.,

(2) LIST OPTIONS & PARAMETERS .
SZ,PAR,PAL,XSP,VIC/PIGDSP,DISER, PROMP,LAYDAT , COMTAB, OUTMOD/

59

It is useful, but not essential, to include the parameters SZ,PAR, and
PAL.. Parameter XSP must be included since this directs SCHAIN to search
the PIGS library file, .LIBRP BIN, on the system disc area. The VIC
option should also be included to ensure that no PRTE or GAP common
block containing a display file crosses an 8K bank boundary. (Care must
also be taken to see that application procedures containing display
files or <ndirectly displayed text strings remain resident.) The
designer should insert GAP common block names containing display files
or displayed text between the slashes following the VIC option.

(3) DEFINE RESIDENT CODE
>GAPNAM,APLICI ,APLIC2,...

The designer must reply with the filename of the Jump Table (GAPNAM,

always the same as the name of the GAP) and the filenames of any

resident GAP procedures or block data.programs (APPLIC1,APLIC2...).

Combined files constructed using DOS utility programs PIP or UPDATE may

be used instead of naming each application procedure separately. File
CPATH, mentioned in the PATH overlay description, is such a combined

file. Any subroutines required by the GAP resident code will be loaded
either from the user library file (.LIBR5), the PIGS library (.LIBRP)

or the system library (.LIBR). If not declared as external link components,
such routines will also be resident.

(4) DESCRIBE LINKS & STRUCTURE
>LK1=#COMVAL
>LK2=f{YYSTRT, OPMNB, RDMNU, WIMNU
>LK3=#DISINT ‘
>LK4=#POLL
>LK5=#RESOLVE
> DEFINE GAP LINKS, IF ANY
>LK1: LK2:LK3:LK4: 1LKS
> DEFINE GAP OVERLAY STRUCTURE, IF ANY
><gpace><altmode>

These replies describe both the PRTE and GAP overlay structure., The PRTE
links should cnly be altered to make a normally internal link component
into an external link component. Any names desired except for LKI1,LK2,
LK3,LR4, and LK5 may be used as GAP link names.

60.

7. DOCUMENTING A GRAPHICS APPLICATION PROGRAM

One of the happy consequences of following any programming convegtlon,
such as the argument-passing scheme used by PRTE, is that libraries

of useful programs may be compiled, saving programming time and effort.
One of the unhappy consequences is that someone must describe in
everyday language what is in such libraries. Graphics applications
programs which have been debugged and are ready for general use should
be documented according to the guidelines presented in this chapter.

7.1 PDP15 Libraries at ACL

There are 5 libraries which may be of use to the GAP designer at ACL:

(1) The System Library

Largely FORTRAN-oriented, this library exists om the system
disc area as .LIBR BIN. Its contents aredocumented in the
FORTRAN 1V Operating Environment Manual. No sources are
available. '

(2) The PDP15 Routine Library

Consisting of useful FORTRAN and MACRO routines, the library
is documented in a manual of the same name. Source files for
the routines exist on DECtapes 1000-1099. The PDP15 Routine
Library also contains useful GAP procedures and shareable
PRTE routines.

(3) The PIGS Library (see Appendix B)

This library exists as file .LIBRP BIN on the system disc area
and contains PRTE subroutines and a few commonly-used GAP
procedures. A source listing of the library is given in the
GAP Library. Source files exist on DECtapes 156-159.

(4) The DECUS Library

Consisting largely of systems programs, the DECUS Library also
contains some very useful FORTRAN-callable subroutines obtained
from the DEC user's organisation. Source files and binaries
exist on DECtapes 50-99.

(5) The GAP Library

All graphic applications implemented using PIGS are contained

in this library, on DECtapes 150-199. The documentation

consists of program listings and a manual containing descriptions
of each GAP.

Documentation for all of the above libraries is kept in the bookshelves
by the PDPIS5.

_61...

7.2 GAP Documentation

Documentation of a debugged graphics application using PIGS includes a
set of program listings and a written description of the use and internal
operation of the package. The documentation should be submitted, along
with DECtape source files, to the PDP15 operator on duty at the 1906A
console for typing and distribution.

7.3 GAP - Written Description

Each of the numbered topics described below should be included in the
GAP written description. The description should be written on lined

paper, in ink. The description of PATH in Appendix A should serve as
an. example.

(1) Name

(a) Name of Application

(b) GAP designer's name

(¢) Date

(d) Filenames and location (DECtape number) of EXECUTE
files, MENDEL source file, CHAINX LST file, GAP source
and binary files. -

(2) Purpose

A brief description of the application problem and solution,
allowing rapid scanning through the library.

(3) Loading Procedure

(a) Physical device readying (such as BSI start—-up,
DECtape mounting, DMAC boards required)

(b) Usual device assignments required

(c) Buffer assignments needed

(d) A teletype listing example of 3(b) and (c)

(4) Description

(a) Problem description
This section should elaborate on the particular problem
which the GAP approaches, the methods used in the solution,
and general information on how to use the package

(b) 1Input and Output
Should include a description of device input and output
formats and their meaning, DAT slots used

(¢) 1Internmal Data Base
Should describe the structure and meaning of problem area
data base arrays or common blocks. The relationship to
the GAP display should be included, if applicable

(d) Display Structure
Should include a description of the GAP display file
structure and the meaning of any special displays used.
Sample sketches of the CRT .may be helpful

62

(5)

(6)

@

(8)

7.4

MENDEL Source Listing

Teletype print-out included here to clarify section (6), below.
The source code should be well commented.

Menu and Command Description

This section follows the general outline of the MENDEL source
listing of section (5) and discusses the function of the commands

which comprise the GAP. The following subsections should be
included: :

(a) Global commands (displayed)
(b) Global commands (non-displayed)
(¢) Menus

1. Menu name

2, Exit command

3. Enter command

4, Pushbutton commands

5

. Local commands

Each command description should deal with the commands function,
data area, and the following data about its arguments:

Function

Type and permissible values

Default value if omitted

Error Messages

Should include an explanation of each error number and the
appropriate action to be taken by the operator.

Example

Should include the commands necessary to perform one full
interactive problem solution or loop converging on a solution.

GAP - Listings

When submitting an application for inclusion in the GAP library, the
following lineprinter listings should be included:

(1) MENDEL source
(2) CHAINX LST for the GAP
(3) GAP source for all procedures

- G5 =

8. FUTURE ENHANCEMENTS

During the design of PIGS a number of ideas for useful software have
arisen which are not yet implemented, either because of lack of time
or because they were thought better left until more experience with
the first system was gained. This chapter merely catalogues some of
the ideas for future evaluation.

8.1 MENDEL Editor for PRTE

The MENDEL editor has been written in such a way that its inclusion as
an overlay of PRTE would be simple. Inclusion of the editor in PRTE
would allow reorganisation and addition of menus and commands at

run time to meet unexpected problem requirements. The utility of such
a system depends on being able to write applications procedures using
either FOCAL or command macros (see 8.6).

8.2 Protection against System Crashes

Things fall apart! The wise GAP designer will provide a data base
dumping command as part of his package. PRTE could dump automatically
at regular intervals using its scheduling mechanism if it knew the nane
of the GAP dumping command. Variables in the MNB file header have
already been allocated for dump command name and time interval, but are
not used in PIGS V2.

A useful feature for debugging, backup, and evaluation is a session log
of executed commands and errors. DLntries in the log would include a
type code, time, and the ASCII command string or message. The log
would probably exist as a disc file, portions of which could be listed
from PRTE.

8.3 New Command Sources

Commands are already available within MENDEL to reference the DMAC pen
follower and the ICL 1906A computer as command sources. When suitable
handlers for the two devices are completed,incorporating them into the
PRTIE polling loop should be trivial.

8.4 Core Management

The GAP designer currently has only about 10K of the lower 32K of store
in which to squeeze procedures, data base, and display files while the
upper 32K sits empty because the DOS loader cannot access it. It is
possible, however, to place data and display files in upper store and
reference them from lower core. FOG could be slightly modified to
assemble display files in the upper 32K of store and start them
running. Some sort of fixed block size core management routines

would be required.

...65..

A second possibility for utilising upper store is that the overlay
builder and loader could be slightly modified to relocate execute
programs into upper (or lower)core. PRTE would communicate with a GAP
in lower store via special subroutine calls. The Jump Table would
reside in lower store with the GAP., Such a system would allow the use
of DDT with GAP application procedures running under PRTE. Run time
PRTE and FORTRAN procedures could not, however, be shared. The loading
time necessary for a GAP would be drastically reduced.

8.5 PIGS under other Operating Systems

PRTE was designed specifically for the DOSI5 operatlng system.
Although FORTRAN coded, its operational philosophy is heavily dependent
on the use of a disc—based single-~user executive.

Because it polls for commands rather than waits for interrupts,
conversion of PIGS for a multiprogramming system (such as the Resource
Sharing Executive, RSX) would require design changes to allow efficient
CPU usage. PIGS could be converted for interrupt—driven command input,
or, less efficiently, time slicing could be incorporated in the polling
loop to give other system users better response.

Although PIGS was designed to consist of shareable subroutines, it is
not re-entrant and therefore would require a major overhaul to service
multiple users. For the same reason, splitting PRTE and the GAP into
two processes is a non—-trivial task (but very similar to uSLng PRTE

in upper core under DOS).

8.6 Source Languages for Application Procedures

Within an interaction session an operator may find he spends much of

his time repeating a particular set of commands with only slightly
varying parameters. In some cases the GAP designer may have foreseen
such a situation and provided a single command to do that job. In many
cases however, thecommand loop in use is a function of the particular
problem, and cannot therefore be dealt with specially in the general
problem approach taken by the GAP. It seems that a language for defining
simple application procedures at run time would lessen operator time
spent in such problem loops. An interpretive language is the obvious
candidate, obviating the need for compilation and loading.

PDP15 FOCAL (like BASIC) is one language under consideration. The

most sensible candidate, however,isa command macro facility within PRTE
itself. Macros would be stored as text files on the disc in PRTE
command format. Arguments could be bound before execution of the macro
using a set of special argument buffers, or during execution by using

the "left" argument facility (see 8.8). Definition of macros would be
possible using the PDP15 text editor, or by storing GAP commands

when a PRTE flag is set. Macros could be used to define new application
commands if the MENDEL editor were included in PRTE.

- 66 -

8.7 Messages

A well-written graphics application program may contain many error

and prompting messages. Since these messages require much core space
and rarely change, they might easily be kept as random access disc files.
Individual messages could then be referenced by number.

When learning to use a GAP, it would be useful at first to have more
guidance than the occasional prompting area message. A help file could
include useful information about each commands function and arguments.
Help information could be displayed by the operator as desired.

8.8 Argument Input

Included in MENDEL, but currently. undefined, is the ARGET statement.
If implemented, the ARGET command would open a special MNB menu block
for definition. This menu would contain a number o6f standard commands
for defining arguments. Each command could be used either to fill a
special argument buffer {(see 8.6) or to replace’'a left argument. Left
arguments could be indicated in a command by using the character, * ,
and would cause the ARGET menu to be temporarily activated. Typical
ARGET commands might activate procedures to retrieve the X or ¥ '
coordinates of a point specified with the stylus, the distance between
two points, some text, or the time. All such commands would return
text strings to either fill an argument buffer or replace the character,*,
in the command string.

A second useful argument input facility would be a non-parse option for
GAP commands. I1f the number-of-arguments—parameter to the MENDEL COM
command were specified as -2 for a particular GAP command (-1 means
indefinite number of arguments), PRTE would never parse that command's
argument string but simply pass the entire command string to the
associated application procedure. Only left arguments in the argument
string would be detected and evaluated.. This facility would be useful
for transmitting commands with non-PRTE syntax to programs in the
linked ICL 1906A computer.

67

APPENDICES

APPENDIX A - EXAMPLE DOCUMENTATION, PATH

(1) Name
PATH
by W D SHAW 9/16/74
Filename Function DECtape location
PATH XCT 155
PATH XCU . 155
PATH LOI 155
PATH 1.02 PATH EXECUTE 155
PATH 103 FILE 155
PATH LO4 155
PATH LO5 . 155
PATH MDL MENDEL SOURCE 155
CHAINX LST LOAD MAP 155
PINIT SRC 163
STYDT2 SRC 163
DATACL SRC 163
BLKDIS SRC 163
INITD2 SRC 163
PAGECL SRC 163
DRAWC SRC 163
REDRAW SRC 163
DATB SRC GAP SOURCE TFILES 163
CEL SRC 163
DRAWB SRC - 163
BACKGR SRC 163
PLAYBA SRC 163
SHOW SRC 163
FRATE SRC 163
GRIDAT SRC 163
SHOWIT SRC 163
LTPEN! SRC 158
CPATH BIN UPDATE FILE 155

(2) Purpose
Definition and playback of simple animated sequences.

(3) Loading Procedure

Before starting PATH, the VW@l sparkpen should be turned ON and the LK35
keyboard OFF. No special DAT slot assignments or extra I/0 buffers are
required. :

- 69 -

D0S-15 v2a
$LOG MOUMT DECTAPE 155 ON UNIT 1
KEEP OFF

SLOGIN SCR
$PIP
DOSPIP V6A

>C DK«DT1

>7 G

P0S-15 vaAa
SVT OFF

E PATH ' =

PIGS va
>PATH

(4) Description

A serious problem in both conventional and computer animation is finding

a natural means of describing character movement. One convenient solution
is to mimic a motion by using the sparkpen to draw it with the speed and
positional changes desired, while the computer digitizes points on the
motion curve (path) at some constant frequency. If the character (cel)

is then moved by the computer from point to point at the same frequency

a simple animated sequence is generated which closely resembles what the
operator wanted with no need to define internal computer coordinate

systems or key frames. Unfortunately, only very simple animation can be
described in this manner: no distortion, scaling, or rotation is possible.

PATH uses the above approach to allow the operator to animate simple
hand-drawn cels against a fixed background. -Although the lightpen may
be used to select commands, only the sparkpen should be used for drawing
gince it is time independent. 1Initially the sparkpen and LK35 keyboard
are the active stylus and keyboard devices, respectively.

Within the computer, cels and paths are stored identically and are, in
fact, interchangeable. Each drawing is given a unique number between

I and 10 when it is defined. Cels and paths are always referenced in
PATH commands by their identifying number. The definition of each
drawing is kept in common block PTHDAT and may be displayed when desired.
The background definition, by contrast, exists only as a display file

in common block BACKG. Both of these important data areas are described
below:

70

COMMON/BACKG/ IBDIS (256)
IBDIS(256) Background display file.

COMMON/PTHDAT/LDIS (1024) , IPTHX (512) ,IPTHY (512),

ICUR,NOCRV,ICB(10),ICT(10),IBOT,IT ™ -

LDIS (1024)

IPTHX (512), IPTHY (512)

ICUR
NOCRV
ICB(10)

ICT (10)

IBOT
ITOP
LOCSET
ILST
MATND (50)

COMMON/FRATE/ ITPS

IFPS

€T, ILST

Displays current cel or path.
Coordinates of all drawings defined.
(IPTHX (W), IPTHY(W)) is either a point
in a connected curve or the starting
point of a connected curve. In the
latter case the X coordinate will be
negated.

Current cel number for playback.
Current path number for playback.
ICB(W) points to the first coordinate
pair in (IPTHX,IPTHY) of the definition
of drawing V.

ICT(N) points to the last coordinate
pair in (IPTHX,IPTHY) of the definition
of drawing N.

Next free location in (IPTHX,IPTHY).
Last free location in (IPTHX,IPTHY).
Unused.

Number of last drawing defined.

Main display file.

Playback rate in frames per second.

The PATH display file structure is relatively simple. Array MAIND is

"the main display file containing DRAW's to subfiles IDIS,IBDIS,XCROSS,

and MGRID. Display file IBDIS is used only by the DRAWB command while
LDIS is used by the DRAW command and by subroutine SHOW to display a
cel or path. File XCROSS defines the lightpen tracking cross while
file MGRID defines a rectangular grid. The last two files are used

by subroutine STYLI and are initially blanked.

SAVE REGISTER

 1LDIS

> MAIND =>(

...71_

| IBDIS

XCROSS

MGRID

(5) MENDEL Source Listing

ekt PATH MENU DEFINITION sofokododkdoleok

/
/ :
/ MENDFL PHROGRANMS TN DESCRIPBFE THE COMMAND STHUCTURE OF PATH,
/ 8 PhOGHAM rOit DOING SIMPLE INTERACTIVE COMFUTEFLR ANIMATION.
/7 PATH ALLOWS AN OFERATOR TO INPUT A CURVE (CALLEKD A PATH OR
/ P-CUEVY) AND A CHARACTFR (CALLED A CEL) USING THF TABLET

/ OR LIGHTPEN. HE MAY THEN CAUSE THE CFL TO MOVE ALONG THE
/ PATH WITH THE SAME VELOCITY CHANGES WITH WHICH IT VAS

/ DAL .

/

/

/

/

/

/

wksksxrdi*x DEFINE PATH INITIALIZATION #dksokksksk

MEFNUS WILL, BE IN BINARY FILE PATH MNE.
RELOCATIABLE BINARY JUMP TARLE WILL BF IN FILE PATH BIN.

/

CREAT,PATH, 5, 62,24 /ROOM FOI & MENUS, 62 SUBBRS, 24 GLOBAL.

BIGBT " /USES LARGE LICHTDUTTON DISPLAY

ABREV, THUE /USE 5 CHARACTIFR COMMAND ARRBEVIATIONS.

KEYB,LTA /LK35 KEYPOARD IVITIALLY SELFCTED

STYL S VuA /UV0L SPARKPEY INITIALLY SELECTED.

TELAY s 269 /BLINK LIGHTRBUTTON SELECTED FOR 200 MILLISEC

SAVE, FALSE /D0 NOT WRITE QUT SVMNU'ED MENUS.

/

/

/kkdorgdok gk DECLARE MENU NAMES sokskododosoksodd

/

MNDEC, PATH, BACKG : /PATH AND BACKG ARF ONLY MENUS BUT THE CRYAT
/COMMAND ALLOVED LOOM FOE S .

/

/7 3

sadsokckkoktk DECLARE SUBROUTINE NAMES skekokskor sk

/

SBDEC, USESTY s DATACL > DRAVC, SKEDL s DSKED /DECLARE FACH SUBROUTINE

BDECS PLAYRA,QUI T, REDRAVLFINIT /NAME ASSOCINTIFD WITH

SBDEC, USEGRI s USEXEY » BACKGR s 5HOVIT /SOME COMMAND.

/

/ : .

sk dkdckdkx DEFINE GLOBAL COMMANDS ofskskskdosioskokok

/ .

/ THE FIRST SIX DEFINED APPFAR AS LIGHTRUTTONS.

/

GLOBL /START GLOBL DYFINITION ;

COM, USESTYLUS, 1, D0, USESTY» » 5, VA /TO SELFCT OTHER STYLUS.

COM, USFXEYRHD, 2, DD, USEKEY» s 5L TA /TO SELECT OTHFER KEYBRED.

DM, SHOW, 1, D0 SHOVIT © /DISFLAY CFL OR PATH.

CcoM

COis QUIT, > D0 QUL Ty 2111 LTI /FX1TS PROGHAM PATH.

CoM

COM, S1F DL, 55 DOVOU, SKEDL /SCHEDULES A COMMAND

COM, DSHED, 1, DOND W, DSKED /DESCHFDULFS A COMMAND

Y i

/

Jctekoyokockokoksk ARGTUT s okekodeok ok eolskk

/7

/ NOT CURRFNTLY IMPLEMENTED, EUT COMMAND BELOY MUST BE PRESENT.
y; .

ARGET

/

7

/ \

..72...

/

sxkFRKEx i GROUD COMMANDS INTO MINUS kR iokawk

/

/ FACH COMmAVD MAY RE LINKED 10 A DFECLARED SURNOUTINF.

/
METUS PATH
FNTER

COMsPATH, b DNLPINITs 55" INIT?

/

/

PUSHEB., 1
COM,PENACTIVE, » DONT
COuls SETPOINT, »PONT
COMLACCEP 15 > DONT

/

LOCAL

COM, DRAW, 2, D0, DHAVC, 5 ' 17

COM,PLAYBACK, 3, DO PLAYEA, 55 ¢

COV, RFDEAU, 1, DO REDEAY, 55 ' 10

COM, DPATCL AR, » DD, DATACL

/ THESE

/START MENU NAMED PATH.

/DEFINES MENU NAME AND ENTRY ROUTINE

/VILI. APPEAK BFLOW "MENU* [V
/CONTHOL AXFEA.
/ NO EXIT COMMAND FOR TOP L¥VEL MEVU

/VITH A

/DRAV A
13550

ALS0O CLEARS DATA BASE.

/DEFINE. PUSHRUTTON 1.
3 ARE ONLY A DISPLAY USFED BY A
/COMMAND SUBROUTINIE.

SUBEOUTINE.,

/DEFINES LOCAL COM¥ANDS.
‘CFL Ox PATH.

/PLAYBACK THE MOTION AT A

/GIVEN RATE.
/REDRAY A CFL Ok PATH,
/SAME AS COMMAND PATH.

COM,5 USFGARID, » D05 USEGRIs 5 NO!

cor

coM

COM: };ACKG) 355060, BACKG
74

/

/

MENU, BACKG

B TER

€O BACKG

/

PUSHB, 1 .

COMs FENACTIVE, > DONT
COMs SET#NIMNT, 5 DONT
COM,ACCEP T, , DONT

/

FXIT

COML 8T L5 5 GOLPATH
/

LocaL

COM» DRAWH, », D0, PACKGR

/

/

sFAdORE kAR TERMINATE ENDEL
/

ENDs PATH

/USE GRID WHEN DIAWING.
/NULL COMMANDS.

/ACTIVATE NEW MENU, BACKG.

/MENU NAMED BACKG. NO ENTRY

/COMMAND TO DEFINE BACKGRVD.

PHOGUAM skddokatkadxk

/STARTING MENU IS

..73_

NAMED PATH.

NOT ASSOCIATED

COMMAND

(6) MENU and Command Description

(a) Global Commands (displayed),PATH

USESTYLUS, IDEV

Uses procedure USESTY (from .LIBRP) to change the active stylus
device. The tablet must be ON otherwise an IOPS4 message will
occur. The data area names the active device, 'VWA' or 'LPN'.

IDEV. ¢ Sparkpen active
-1 Lightpen active
omitted Sparkpen active

USEKEY ,KDEV,LECHO

Uses procedure USEKEY (from .LIBRP) to change the active keyboard
device. The data area names the active device, 'TTA' or 'LTA'

KDEV @ TTA keyboard active
] LTA keyboard active
omitted No change in device
LECHO ¢ No echo on TTA
=i Echo on TTA
omitted No change in echo

SHOW,NCEL

Causes a cel or path to be displayed and makes it the current cel
number. The data area shows the number of the displayed drawing.
If selected using the active stylus, the current cel number is
incremented and displayed.

NCEL @-16 Number of the cel to be made current and displayed.
If NCEL > 10,NCEL=1 is assumed.
omitted The current cel number is displayed.

QUIT
Causes exit to DOS operating system.

(b) Global Commands (non-displayed), PATH

SKEDL, CNAME, ITER, INTM, INTS, INTP

Uses proéedure SKEDL (.LIBRP) to schedule a command for repeated
execution at a given time interval.

CNAME Command name. May not be omitted.
ITER 20 Number of times command will be selected.
<@ Command to be repeated indefinitely or
until descheduled by the operator.

. omitted ITER = -~ 1

INTM z{ Repeat interval in minutes
omitted) assumed

INTS 20 Repeat interval in seconds
omitted f assumed

INTP =0 Repeat interval in clock pulses (20 millisec)
omitted # assumed :

The repeat interval is INTM+INTS+INTP.

74

DSKED, CNAME
Uses subroutine DSKED (.LIBRP) to deschedule a command.

CNAME string Name of command to be descheduled.
omitted Deschedule all commands in the clock scheduling
buffer,

(¢) MENU Commands
MENU, PATH
ENTER
‘PATH

The associated entry procedure, PINIT, initialises the GAP display
and data base. Unlike DATCLEAR, it also clears the background
display. ‘

EXIT
There is no exit command for PATH.

PUSHB

Only pushbuttons 1-3 are used by PATH and all are inactive until
procedure STYLI is entered via the DRAW or DRAWB command. STYLI
reads the pushbuttons directly, using them as described below.

PENACTIVE

This lightbutton appears when STYLI has been entered via the DRAW
or DRAWB command. It turns the active stylus ON or OFF. The data
area reads 'YES' or 'NO'. Pushbutton | must be pressed before
starting, and after terminating a drawing.

SETPOINT

This lightbutton appears when STYLI has been entered via the DRAW
or DRAWB command and the lightpen is the active stylus device.

The data area reads 'YES' or 'NO' if the next coordinate pair read
will start a new connected curve, or not. Thus pushbutton 2 can be
used to move the tracking cross around without 'drawing'.

ACCEPT

This lightbutton appears when STYLI has been entered via the DRAW
or DRAWB command and the grid option is in use (see USEGRID
command, below). Pressing pushbutton 3 causes the data area to
flip between XXXXXXXXX and blank. The current stylus position

is mapped onto the closest grid point and accepted as the next
coordinate of the drawing.

LOCAL
DRAW, TBUBS, NUMBER

If selected with a stylus device, this command increments the
current path number by 1 (it is initially @) and enters procedure
STYLI to accept a drawing. IBUBS, the minimum distance between
consecutive accepted points, is usually @. (It must be zero for
a good path definition.) The data area shows the drawing number
being defined. :

Z ik

IBUBS number Bubble size, as above o
A value of 1§ is useful for thinning a
cel drawing, but @ must be used for a path.

omitted Unchanged
NUMBER 1-10 Number of drawing to be defined
omitted Current path number used

PLAYBACK, ICUR,NOCRV , IFPS

Causes the current cel to be animated using the current path.
The first point of the cel matches the points in the path.

ICUR 1=1g Drawing number to be made current cel number
~ omitted Current cel number used and unchanged
NOCRV 1-10 Drawing number to be made current path
number
omitted Current path number used and unchanged
IFPS 1,2,55104;25:50 Playback rate, frames per second
omitted Use current playback rate

(initially 25 frames per second)

REDRAW, NOCRV
Same as DRAW command, but does not increment the current path

number. This command should be used to redefine the last drawing.

NOCRV 1-10 Number of drawing to be redefined
' omitted Redefine the last drawing
DATCLEAR

Clears the data base and drawing display.

USEGRID

Uses procedure USEGRI (.LIBRP) to select the grid option of STYLIT.
All coordinates entered into the current drawing are first mapped
onto the nearest point of a displayed rectangular grid if the data
area of USEGRI reads 'YES'. Selecting the command -again resets
the option to 'NO'.

BACKG

Activates menu BACKG.

MENU , BACKG
ENTER

BACKG
EXIT. No procedure associated, merely names the menu

PATH
" G0's to menu PATH, no exit procedure associated

PUSHB

There are three pushbutton commands, identical to those in menu PATH

....76...

LOCAL
DRAWB

Uses procedure STYLI to define the background display.
There are no arguments to this command. The drawing bubble
size is temporarily set to 1@, then reset to its old value.

(7) Error Messages

Number Description

203 Drawing data base overflow
The data base must be cleared using PATH and
the drawing repeated

204 Drawing display file overflow
Again, command .PATH should be used

(8) Example

The following commands form a typical interactive loop in defining an
animated sequence using PATH. (Typed commands are preceded by >.
Comments are preceded by / and should not be typed.)

DRAW /Define cel |

PENACTIVE /Press pushbutton 1 to start
/ At this point cel 1 is drawn with the sparkpen

PENACTIVE /Press pushbutton 1 to quit

DRAW /Define path 2

PENACTIVE /Press pushbutton | to start
/ Draw path as you want the cel to move

PENACTIVE /Quit drawing

PLAYBACK

/ ‘At this point the current cel, 1, will move along the current path, 2,
at 25 frames per second with the motion desired.
REDRAW /Path 2 was not as
/desired, this will
/redefine it

PENACTIVE /Start drawing
/ Now redraw path 2
PENACTIVE /Quit drawing
/ A background may be defined by changing menus to BACKG
BACKG /Change menus
DRAWB /Define the background
PENACTIVE /Start drawing
/ Now draw a background. The stylus
/ must be moved at least 1§ rasters before
/ any lines will appear.
PENACTIVE /Quit drawing
PATH /Return to menu PATH
PLAYBACK /And playback cel 1, path 2
/ Now, to type, turn the sparkpen OFF and the
/ LTA keyboard ON to avoid interference
/ Playback the animated sequence in slow motion:
>PLAYBACK,1,2,1¢ /19 frames pexr second
>QUIT /Exit to DOS

- 77 -

APPENDIX B - PIGS LIBRARY

The PIGS library is a binary file, .LIBRP BIN, residing on the system
disc area. It contains all the relocateable binaries necessary to
overlay both the PIGS run time environment and the MENDEL editor—assembler.

It also contains special PRTE control and application routines useful
to the GAP designer.

All of the subroutines in the library are FORTRAN-callable, but some
may be used only by PRTE. The routines are listed in 4 categories:

(1) Non-shareable PIGS routines
(2) Shareable PIGS routines

(3) Special PRTIE routines

(4) Application procedures

Category (3) routines are fully described in Tables 5-1, 5-2, and 5-3
of this manual. Category (2) and (4) subroutines are documented in
the PDP15 FORTRAN library. A list of all PIGS library routines are
included here, but only Category (1) routines are discussed.

,..79..

PIGS LIBRARY INDEX

(1) Non-Sharecable PRTE (2) Shareable PRIE (3) Special PRTE (4) Application Procedures

PFDOUM BUTDIS L ACTCM DSKED
ADDCM2 CBUTHT CLERR2 SKEDL
BLANKS CLOCHK CLPRM USEGRI
BUTHT2 CLOCK DACTCM USEKEY
BUTINT cvicu DSKEDU USESTY
CMIIND DSCHED DISERR

CMINT FNAME ERP

COMVAL GRID GETCH2

DISINT . IBITS . GETD12

DOTINT) INBITS . GETDP2

DOTMV2 KEYIN3 GETFIL

ERRNMS4 KEYS GETLOG

JPSTAR KEYST3 GETS12

JUMPT2 LPHIT CETSR?2

LAYOU2 LTA PROMPT

LTA) LTPEN PUTCH?

NMNU2 LTPENI PUTD12

NXTCHR MESDIS .. PUTDP2

OPMNB2 MESINT S PUTSI2

PARG MSTR : PUTSR2

PIGDNT Mve QUIT

PIGFIL - PBHIT =~ WDAT

PIGS2 POLL3 '

PINT RESLV2

PNUM3B SCHED

PRCOMT - STEYLI2

PRINI : TABLET

PROMPT TARGS?2

PRINI ~ TIMEP

PROMPT WRTUM

PSTRNG YYPRLN

RDMNUZ

RESLIB

SYSDN2

TERMIN

VTERR2

WINK

WU

WIMNU2

YYCLIN

YYDCD

YYYLA

YYSTRT

—-80_

- [8 -

(1) NON-SHAREABLE PRTE ROUTINES

SUBROUTINE FTILENAME
NAME (IF DIFFERENT) OVERLAY DESCRIPTION
[;fDUM RESTIDENT Dummy DMAC handler requited by KEYS
ADDCOM ADDCM2 Adds a command node to the menu being defined
BLANKS LK5 Removes blanks from command string input (TARGS)
BUTHIT BUTHT2 LK4 Checks a simple lightbutton file for hits
BUTINT LK3 Creates the PRTE lightbutton files using FOG
CMF IND Searches the current Command Table for a particular command name
COMINT LK2 Opens MNB file and uses header to initialise PRIE Command Table
COMVAL LK1 Presets PRTE constants in common blocks
DISINT LK3 Creates the PRTE display using FOG and initialises active command
source devices
DOTINT LK3 Creates tracking dot display
DOTMV 2 LK4 Repositions the tracking dot on the display
ERRMES RESIDENT PRTE error message handling,contains entry point ABORT
LTA. RESIDENT Handler for LK35 and TEKTRONIX keyboards
LAYOUT LKX3 Creates frame and MENU, EXIT titles for PRTE display
NMNU NMNU 2 RESIDENT Activates a new MENU, given an MNB file menu block number
NXTCHR LK5 Retrieves the next character from the command string input (TARGS)
OPMNB OPMNB2 LK2 Opens MNB file for reading or writing 250-word blocks
PARG LK5 Parses the next argument in the command string
PIGDNT LK3 Creates the main PRTE display file and sets FOG save register 16
PIGFIL LX2 Reads MNB filename from TTA
PIGS PIGS2 RESIDENT Contains main PRTE control loop. Calls all overlays into core
PINT LK5 Parses a signed integer argument in the command string
PNUMB LK5 Parses a number argument in the command string
PRCOMT Decodes a menu block and writes it to the Dump file
PRINI RESIDENT Writes a single character to the teletype
PROMPI LK3 Creates the prompting area display file using FOG

Cont'd

- 78 -

SUBROUTINE FTLENAME OVERLAY OR
NAME (IF DIFFERENT) MENDEL? IS GEFR ROy

PSTRNG LK5 Parses a string argument in the command string

RDMNU RDMNU 2 LK2 Reads a menu block from the MNB file into the Command Table

RESLIB RESIDENT Causes certain system library routines to be resident

SYSDNT SYSDN2 LK3 Creates the PRTE display and initialises the source devices
(called by DISINT)

TERMIN LKS - Searches the command string for a terminating character

VTERR VIERR2 RESIDENT FOG error handling routine for PRTE

WINK RESIDENT Starts a lightbutton with a given name register value blinking
on and off : .

WMNU Used by WDAT to write a message in a command data area

WIMNU WIMNU2 LK2 Writes a menu block to the MNB file

YYCLIN Decodes a command node into a 5/7 ASCII representation

YYDCD Unpacks a command node

YYFLA RESIDENT Blinks a lightbutton for a given time interval

YYSTRT LK2 Parses the MNB filename '

APPENDIX C - PIGS COMMON BLOCKS

A list of PRTE, MENDEL, and PIGS library labelled common blocks is
given below, followed by a description of their contents and function.

- 83 -

MENDEL PRTE Other .LIBRP
COMMON BLOCKS COMMON BLOCKS 'COMMON BLOCKS
ARGTP - ARGTP GRIDAT
" CARG CARG PSHBUT
CHARS CHARS STYDAT
CODBIN COMTAB
COMTAB DARG
DARG DISER
ERRCON ERRCON
MDLBUF HITBUT
MDLUAR LAYDAT
PAGMNU MNUDAT
OUTMOD
PAGMNU
PIGDSP
PROMP
PUSHB
SCHARR
STYLS
TIMEB

..f78..

BLOCK

APPENDIX C - PRTE COMMON BLOCKS

s VARTABLES DESCRIPTION
NAME
ARGIP Argument source and type
NCoM Index in COMTAB of selzscted command
NOARGS Index of last specified argument
TEYPE()S5,2) ITYPE (N,1) is the type of the argument N
] Argument N omitted
1-2553 String argument, number of characters
256 Number argument
Sl 2 Left argument (not implemented, treated as omitted)
ITYPE (N,2) For number or string arguments, a pointer to the argument
value in common block DARG or CARG. TFor number arguments
ITYPE (N,2) is an index in the RARG array. For string
arguments it is a character index in the SARG array.
(See DARG and CARG, below.)
IDCOME Source device code for the selected command
Command called fxrom a GAP procedure using argument—putting routines
1 Keyboard
2 Lightbutton
4 Pushbutton
8 Real Time Clock
CARG Character argument buffer (see ARGTP)
SARG (15) Contains character strings input as arguments
A 1SP Next free character position, indexed from @, in SARG
CHARS 5/7 ASCII character codes used by the command parser. Set by COMVAL or
block data in MENDEL
ICHAR Character under examination
IPLUS + {(all codes are right justified, 7 bit with zero f£ill)
IMINUS =
ICOM , May be manipulated to temporarily alter the argument separating character
IJPARR 5
ISTAR *
ISPACE <blank >
1QUOTE '
IDQUOTE n
IPER a
ICR <er>
<«ltmode>

TALT

Cont 'd

- 68 -

APPENDIX C - PRTE COMMON BLOCKS

BLOCK
NAME VARIABLES DESCRIPTION ?
COMTAB Command Table and MNB file header information. The size of this common |
block is determined at load time by a loader code in the Jump Table. The
first 64 words contain the MNB file header. The next 250 words contains
the active menu. The remainder of the common block varies in size according
to the number of global commands defined, but is a minimum of 25§ additional
: words.
: PIGLET(2) g-character, 5/7 ASCII MNB filename
!' NODIR Number of entries in the MAT
i NGCOM Number of global commands defined
4 MGSTRT Starting block number of global commands
! NARGB Block number of argument-getting menu (present, but facility unimplemented)
: MNSIRT Block number of starting menu
! JMPDMP Index in SNT of GAP dump procedure (unimplemented)
| INTDMP Dumping interval in minutes (unimplemented)
? Ipsz Display size (§ or 1)
i LABRV .TRUE. means abbreviated command mode
! IKDEV Active keyboard code
] -1 PFA (unimplemented)
[} TTA
I LTA
2 TEKTRONIX (unimplemented)
LHARD .TRUE. if hardcopy echo of keyboard device is desired
LSDEV Active stylus device code
: $ Sparkpen
1 Lightpen
2 DMAC (unimplemented)
6 Tektronix (unimplemented) !
LNTERV Wait interval after lightbutton hit in DO loop iterations.
86 iterations = | millisecond
NOTREC Tectal number of blocks in the MNB file
MNUWRT . «TRUE, if the SVMNU option is to be obeyed. Set by the SAVE command
NSBREC Starting block number of the SNT
FILOG(2) Name of log file (unimplemented)
FILERR(2) Name of error message text file (unimplemented)
FILHLP(2) Name of help file (unimplemented)
NSBBR Number of entries in the SNT
NBMNU Numbar of MAT blocks available
NBSBR Number of SNT blocks available

| et e

Cont'd

- 99 -

APPENDIX C =~ PRTE COMMON BLOCKS

ERRSTR(15)
MAXECH
IXE,IYE
IXED,IYED
Iy£1,I7E]

EL?CK VARIABLES DESCRIPTICN
_nAME

NBGLB Number of global menu blocks available

LBMNU Last MAT block used

LBSBR Last SNT block ised

LBGBL Last global menu block used

LOGON .TRUE. 1if commands are to be logged (unimplemented)

IFIL(24) Unused, words 41-84 of the MNB file header

MHEAD(i9) Command Table, current menu block header (see Appendix E)

MHEAD(1) 1is the active command source code word reset by the DSABL command
BIT 17 = 1 Keyboard active

BIT 16 = 1 Lightbuttons active

BIT 15 = 1 Pushbuttons active

BIT 14 =1 Real time clock active

BIT 13 =1 BSI active (umimplemented)

MNU (248) Command Table, control, local, and pushbutton command nodes (see Appendix E)
.The current menu block 1s read from the MNB file into MHEAD and MNU.
Character strings in the Command Table are displayed from the lightbutton
files.

MGLOBE (259) Command Table, first global menu block (see Appendix E). The size of MGLOBE
is extended by the loader in blocks of 25@ words according to the number of
global commands defined in the GAP. All global menu blocks are read into
core before the starting menu is entered.

VARG Number argument buffer (see ARGTP)
RARG(15) Double precision array containing number argument values
IRP Index of next free entry in RARG

HISER Error message string buffer

Holds displayed error message area text

Maximum number of characters allowed in buffer

X-Y coordinates of start of error message display

X-Y coordinates of start of error message display, size 0
X~-Y coordinates cf start of error message display, size 1

Cont'd

" APPENDIX C - PRTE COMMON BLOCKS

LICK

...L8_

NAME VARTABLES - DESCRIPTION
AL
ERRCON Error message flags, addresses, and buffers
LERR .TRUE. 1if an etrror occurred in the last command
LFATL .TRUE. 1if an ABORT error occurred in the last command
LDisP .TRUE. 1f errors are to be displayed (MENDEL only)
LERPRT .TRUE. if error messages are to be output to TTA
LOGERR .TRUE. 1if error messages are to be lcgged (not implemented)
LARGS LTRUE. 1if there are arguments to be retrieved and printed (not implemented)
LEREST <Control pP>restart address for teletype (same as NRMRET)
ERRNAM(2) Name of command causing last error (not implemented)
INTAK .TRUE. if MENDEL 'I' option encountered
NRMRET Same as LEREST.
LSTERR Number of last error message which occurred.
EMESS(9) Error message teletype output buffer
LABORT MENDEL abort flag (not used)
HITBUT) . Pushbutton and lightpen hit communication buffers
LXX,LYY X-Y coordinates of start of vector causing a lightpen hit
NAMR Name register value set during lightpen hit
PBNEW(6) Logical state of each pushbutton
PBDUM(6) Logical array used by PBHIT .
TPB .TRUE. 1if a pushbutton hit occurred when lightpen hit was requested
TLP .TRUE. 1if a lightpen hit occurred when a pushbutton hit was requested
LAYDAT Contains fixed text for 'MENU' and 'EXIT' display
TMEN 'SHMENU® set by COMVAL
RMEN 'SHEXIT'® set by COMVAL
LMEN Y-coordinate of 'MENU' text
LEXI Y-coordinate of 'EXIT' text
MNUDAT Contains current Command Table and menuing information
IOREC 0ld menu block number
INREC New menu block number
NOTCOM Total number of command nodes in the Command Table (including globals)
MNUTP Word index of last node in the Command Table
LDIRB Last: MAT block used
LGLOBF Unused

Cont'd

...88_.

APPENDIX C = PRTE COMMON BLOCKS

oy VARTABLES DESCRIPTION
QUTMOD Keyboard input and teletype outputy device and display control
IHARD Same as LHARD in COMTAB
FILMON(2) Name of log file (unused)
KDEV Active keyboard device code. Same as IKDEV in COMTAB
IREST <Control P>restart address for TTA..Same as NRMRET in ERRCON
LXMARG, LYMARG tarting X-Y coordinates of keyboard input string display
MAXCH Maximum nurber of characters allowed for keyboard input
TABRV Same as LABRV in COMTAB
CBUF (29) Keyboard input buffer, displayed indirectly
L¥MARD, LYMARD Starting X-Y coordinates of keyboard input string display, size §
LXMARI,LYMARI Starting X-Y coordinates of keyboard input string display, size 1
PAGMNU MNB file 1/0 control
IFSIZ Number of blocks in MNB file
FNA(2) -5/7 ASCII name of MNB file
ICREC Number of last block accessed +1
IRSZ “Block size, always 25§ words
PIGDSP PRTL display files
LPIGDP (20) PIGS display file
LSYSDS(5¢0) PRTL display file
LPROM(15) Prompting area display file
LDISER(15) Error message display file
LKEYIN(16) Keyboard input display file
LDOT(9) Tracking dot display file
LLAY (32) Display file for rectangular border and fixed text
LTBUTS(18) Combined lightbutton display file
LTITLE(34) Control area lightbutton display file
LPBS(90) Pushbutton lightbutton display file
LLOCAL(239) Local lightbutton display file
LGLORBL(99) Global lightbutton display file
LSOFF1 Supplemental argument for blanking PRTE display (not used)
LSOFF2 Supplemental argument for blanking PRTIE display (not used)

Cont 'd

—68_

APPENDIX C - PRTE COMMON BLOCKS

LSTH(4)

B b VARIABLES DESCRIPTION
NAME
{ PROMP Prompting message control and buffers
ARRYL (15) Text buffer for prompting messages, displayed indirectly
MAXPCH Maximum number of characters allowed in text buffer
IXP, IYP Starting coordinates of prompting message display,
IXP@, IYPP Starting coordinates of prompting message display, size §
IXP1,IYPI Starting coordinates of prompting message display, size 1
PUSHB Pushbutton hits and state
IBUTNO Button number of last pushbutton hit
PBOLD (6) Logical state of the 6 pushbuttons
SCHARR Clock schedule
ISCH(46) Clock scheduling array, 9 words/entry
Word 1-4 9 character command name <altmode>
or @ = end of schedule
-1 = garbage entry, descheduled
5 Number of selections before command is descheduled
-1 means repeat indefinitely
6 Interval in seconds between selections
] Interval in clock pulses between selections
8 Next due time, seconds
9 Next due time, pulses
STYLS Active stylus device control
ISDEV Active stylus device code, identical to LSDEV in L COMTAB
INTERV Same as LNTERV in COMTAB
NAMREG Name register value of last lightbutton hit
ISIZ Same as IDSZ in COMTAB
TIMEB Clock command polling and control
I1S%C Current time in'seconds
IPULSE Current time inpulses
10FF $ Clock running
1 Clock stopped
ISCHP Index in clock schedule array of start of next search

for a due command
Unused

._06...

APPENDIX C - MENDEL COMMON BLOCKS

ARGTP, CARG, CHARS, COMTAB, DARG, ERRCON, and PAGMNU are identical in size and function to labelled common blocks
of the same name in PRIE. ’ :

I}\leo‘cx VARIABLES DESCRIPTION
CODBIN Binary relocateable output buffer control for Jump Table
ICDYD Index in ICOD (below) of current loader code word being formed
ICDX Bit position of next.six~bit leoader code in curreat ceode word
IDATWD Index in ICOD (below) of current loader data word
IBFLG Unused)
TBGEEZ) Header word pair for output buffer
ICCD (24) Binary output buffer for one leocader record
MDLBUF Header, menu block, MAT, and SNT buffers for the editor-assembler
THEAD (64) Indentical to first 64 words of COMTAB 1in PRTE
MBUF (258) Holds current menu block under definition
DMNU (125) Holds one block cf the MAT
DSBR(125) Holds one block of the SKT
MDLVAR Control variables and pointers for the editor-assembler

THRP Current MENDEL context, sone value between § and 6

IED ~TRUE. if in EDIT mode, .FALSE. if in CREAT mode

IrC Word address of current command node, minus 1§

IBLK Current block number under definition

IPM Word address, in the current block, of the last MAT entry defined
IRS Word address, in the current dlock, of the last SNT entry defined
FNAME (2) MNB filename under definition

APLNAM(2) GAP name

MNUREC Block address of last menu defined in the MAT

NIMNU Last available MAT block

NTSBR Last available SNT block

NTGLB Number of last global block available

LASTB Last global or local menu block filled

LISTE -TRUE. if listing of MENDEL source being produced

FLIST(2) Name of iist file

APPENDIX C -~ .LIBRP COMMON BLOCKS

Lebelled common blocks GRIDAT, PSHBUT, and STYDAT are used by subroutines GRID and STYLI a2nd are fully described
in the PDP!S5 FORTRAN LIBRARY.

...[6...

APPENDIX C =~ MNB FILE BLOCK POINTERS

The following table is included to clarlfy the use of pointers and variables by MENDEL and PRIE in acce351ng

MNB files. The variables are located in common blocks COMTAB,MDLBUF, and MDLVAR, previously discussed. .
U
S Number of Number
B First last block of blocks Last block Number of
BLOCK TYPE Block available available used Entries

HEADER 1 1 1 1 40
MAT 2 NTMNU : NBMNU LBMNU NODIR
SNT NSBREC NTSBR NBSEBR LBSBR NSBBR
GLOBL MGSTRT NTGLB NBGBL LBGBL NGCOM
ARGET NARGB NARGB 1 NARGB]
MENU _ MNSTRT NOTREC NOTREC—NARGB LASTB MBUF (2)

_26-.

APPENDIX D - PIGS DISPLAY FILE STRUCTURE*

USER DISPLAY

————— — >
VIA FOG SAVE
REGISTER 16
FOG DISPLAY PIGS MAIN st . PROMPTING
CONTROL FILE DISPLAY FILE ¥§§§g§§s
(LPIGDP)
ERROR
MESENGYS PUSHBUTTON
(LDISER)
LIGHTRUTTONS:
KEYBOARD (LTBUTS)
) INPUT ‘
PRTE MAIN -0 (LKEYI) GLOBAL
,\ w»
DISPLAY FILE LIGHTEUTTONS
(LSYSDS) LIGHTBUTTON 3*:) (LGLOBL)
MAIN FILE e
(LTBUTS)
LIGHTEUTTONS
TRACKING (LLOCAL)
- DOT (LDOT) —
ST SO LIGHTBUTTONS

= : S (LTITLE)

'MENU' JEXIT' TEXT
(LLAY)
*ARROWS INDICATE FOG DRAW COMMANDS TO DISPLAY SUBFILES.
ARRAY NAMES OF DISPLAY FILES ARE GIVEN IN BRACKETS.

APPENDIX D - PIGS DISPLAY FILE STRUCTURE, LIGHTBUTTON FILES

Subroutines CBUTHT and BUTHIT are used by PRTE to detect lightbutton
hits by the active stylus device, either the lightpen or sparkpen.

In order for these routines to work properly, lightbutton display files
must follow a rigid format,

Subroutine BUTHIT detects lightbutton hits with the lightpen using
LPHIT, which simply returns a unique name register value set up in the
.display file. If the sparkpen is the active device, BUTHIT compares
setpoint information in the display file with the stylus position to
determine if a hit has occurred. If so, it retrieves the proper name
register value from the SKIP2 instruction in the file itself.
Lightbuttons are winked by PRTE using a PARAM2 instruction associated
with each button. '

Subroutine BUTDIS can be used to create lightbutton files with the
required format for hit detection using CBUTHT or BUTHIT. S<imple
lightbutton files, as they are called, display columns or rows of names
of variable scale. Lightbuttons may be displayed in the offset or
main display area and spacing between buttons is variable. Simple
lightbutton files may also be created using MACRO-15, as the example
below illustrates.

Example f

PRTE array LTITLE contains the control area lightbutton display file.
The two lightbuttons it contains appear on the display opposite the
text strings 'MENU' and 'EXIT'. Each button displayed requires 14
instruction words in the file. An extra 5 words are required to make
a well-formed FOG display file. The control area lightbutton file
could be coded in MACRO~15 as follows (PRTE uses BUTDIS):

Simple Lightbutton File - LTITLE

«EBREL /Use 13-bit addresses

CHARS = 060000 /Character string instruction

DNOP = 200000 /Display NOP

DIJMP = 600000 /Display NOP instruction

PX = 144000 /Position beam instruction, x direction
PY = 140000 /Position beam instruction, y direction
OFFSET = 1 /Use offset area

ISCALE = 1 [Large text for buttons

MENU -ASCII 'PATH'<175> /Button 1

MENDAT LASCIT 'INIT'<175> /Data for button !

EXIT .ASCII 'BACKG'<175> /[Button 2

EXITD JASCII <175> /Data for button 2

-XB1 = 12 /X~Y coordinates of button 1

YBl = 1654 /in offset area

XD1 = XB1+106 /X~Y coordinates of data area 1

YDiI = ¥YBI /in offset area ‘

XB2 = 12 /X-Y coordinates of button 2

YB2 = 1524 /below button 1

XD2 = XB2+106 /X=Y coordinates of data area 2
YD2 = YB2 /(All of the coordinates above would be
' ' 3 /automatically computed by BUIDIS)
LTITLE 41 /Length of display file = NOBUTTON*14+5
¢ /Return address planted here
DNOP /FOG blanking word
/Button 1 2344Qp+1&177 /SKIP2 - load | into name register
220004 /PARAM3 instruction

211056+0FFSET & 1 /PARAM2 -~ used to blink a
/button, enable lightpen, and
/select offset area

203020+ISCALE & 17 /PARAMI - set scale 1 chars

PY!YBI /Position beam for first

PX!XBI /button name

CHARS#* .+2 /Display buttaon name, indirect

DJMP +2 /Avoid indirect address

.DSA MENU -/Address of name. PRTE would
/point to word 1 of command
/node 1

PY!YDI /Position beam for first

PX!XD1 /data area. Y value the same

CHARS* o+2 /Display button 1 data area

DJIJMP 2 /Avoid indirect address

.DSA MENDAT /Address of data area. PRTIE display

/would point to word 4 of
/command node 1

/Button 2 essentially repeats the previous 14 words

234400+18&177

220004

211056+0FFSET&1

203020+ISCALE&17

PY!YB2

PX!1XB2

CHARS* .42

DJIMP o+2

.DSA EXIT

PY!YD2

PX1XD2

CHARS* .42

DIMP ot2

.DSA EXITD
/Finish button 2

211056 /PARAM2~-turn blink off

DIMP* LTITLE+2 /Return

.DBREL /Back to 12-bit addresses

«END

Subroutine CBUTHT may be used to check for hits on more than one
simple lightbutton file at a time. In order use CBUTHT, a combined
lightbutton display file must be constructed, using FOG or MACRO-15,
which contains only DRAW's to simple files. CBUTHT scans the combined
file in order to discover the address of each simple file, then calls
BUTHIT. .

- 94 -

Example 2

PRTE display file LTBUTS contains the simple lightbutton files LPBS, LGLOBL,
LPBS,LGLOBL,LLOCAL, and LTITLE. This combined lightbutton display file
could be constructed using FOG or MACRO-15, as shown below.

Using FOG from FORTRAN:

DIMENSION LTBUTS(16)
LTBUTS (1)=¢

CALL DCHOOS (LTBUTS,1)
CALL DRAW (@,LPBS(1))
CALL DRAW (@,LGLOBL(1))
CALL DRAW (#,LLOCAL(1))
CALL DRAW (@,LTITLE(1))

Using MACRO-15 with the same VTI5 instruction definitions as Example I

+EBREL
DIMS=6400p(:
LTBUTS ¥ i /Display file length
) /Return address
DNOP /Fog blanking word
DIMP .+2 /DRAW LPBS
.DSA LPBS
DIMS* ,~1
/) DIMP +2 /DRAW LGLOBL
.DSA LGLOBL
DIMS*® -1

DIMP .+2 /DRAW LLOCAL
.DSA LLOCAL
DIMS* ,—1

DIMP .+2 /DRAW LTITLE
«DSA LTITLE
DIMS* -1

DJIMP* LTBUTS+1 /RETURN
«DBREL
-END

..95_

APPENDIX E MNB FILE STRUCTURE

The following tables and illustrations explain the MNB file, menu block,
and command node structures as created by the MENDEL editor-assembler
and interpreted by PRTE. The disc file format of these structures

is related to MENDEL and PRTE common blocks as described in Appendix C.

The symbols appearing next to the MNB file blocks are COMTAB labelled
common block variables,

The first illustration shows the layout of a well-formed binary-MNB

file. Subsequent pages describe the format and function of each of
the 250-word disc blocks which make up such a file.

..97._

MNB FILE STRUCTURE

Each block contains 250 binary words

WORDS 1

64

250

BLOCK NUMBER OR
POINTER VARIABLE
NAME IN HEADER

HEADER - POINTERS AND CONSTANTS

e ame e e e e e e ey me Gt cmn e toee v m—— -

MENU ADDRESS TABLE

SUBROUTINE NAME TABLE
(NBSBR BLOCKS)

T g o e T e 2 ey o o T o e O i g o B e W T e e 2 2t

GLOBAL COMMANDS
(NBGLB MENU BLOCCKS)

NANNAV VI THAV VAR VU LV R IAVY

(NBMNU BLOCKS) -

"

ARGET MENU BLOCK

LOCAL MENU BLOCK

(NSBREC)

(MGSTRT)

(NARGB)

(NARGB) +1

LOCAL MENU BLOCK

ANNNANAAAANANANAM NN NN
VVNN“ﬁfV\/\/“v\;M’\ﬂ/MﬂkbAV\/\/\dfw\Avﬂ/»wvv
LOCAL MENU BLOCK

(NOTREC)

.- 98 -

MNB File Header Entries

Only words 1-64 are read into the COMTAB common block in core. Words
41-250 are currently unused and are set to . The function of each
entry is included in the discussion of COMTAB in Appendix C.

HEADER WORD COMTAB VARIABLE
1-4 ' PIGLET(2)
5 NODIR
6 NGCOM
7 MGSTRT
8 NARGB
9 MNSTRT
10 JMPDMP
11 INTDMP'
12 IDSZ
13 LABRV
14 IKDEV
15 LHARD
16 LSDEV
17 LNTERV
18 NOTREC
19 MNUWRT
20 NSBREC
21-24 FILOG(2)
25-28 FILERR (2)
29~32 FILHLP (2)
33 NSBBR
34 NBMNU
35 NBSBR
36 NBGLB
357 LBMNU
38 LBSBR
39 LBGBL
40 LOGON
41-64 IFIL(24) Present in COMTAB but unused
65-250 Unused and not in COMTAB

- 99_

MENU Address Table Formatfc

WORD
1

11
12

241

275
246-250

11
12

241

275
246-250

MENU NAME
(9 CHARACTER 5/7 ASCII)

MENU BLOCK NUMBER

UNIISED

MENU RAME

MESU BLOCK NUMBER

#Vv»«AaaA)vvvihggggvavVVVVVVVVW~VVW

PNAAAANAAAAAT AAANAAAA AN A AN

MENU NAME

MENU BLOCK NUMBER

UNUSED

BLOCK

. (NBMNU, BLOCKS TOTAL)

MENU NAME

MENU BLOCK NUMBER

UNUSED

MENU NAME

MENU BLOCK KUMBER

UNUSED
'

MENU NAME

NANANSANAN NN AN ST

MENU BLOCK NUMBER

UNUSED

*ALL NUMBERS ARE DECIMAL RADIX

- 100 -

(NSBREC)~-1"

. ¥
Subroutine Name Table Format *

PROCEDURE

IEX” HORD BLOCK
) i : : (NSBREC)
PROCEDURE NAME
(6 CHARACTER 5/7 ASCII
2 5
PROCEDURE NAME
3 9
PROCEDURE NAME
4 13 '
PROCEDURE NAME
248
249-250 UNUSED
. (NBSBR BLOCKS, TOTAL)
+
63 1 ; (MGSTRT) -1
PROCEDURE NAME
64 d
PROCEDURE NAME
65 9
66 13 PROCEDURE NAME
PROCEDURE NAME
245 FANANN AN NN T e S ’
PROCEDURE NAME
248
124 249-250 UNUSED

*
ALL NUMBERS ARE DECIMAL RADIX

+ = ;
PROCEDURE INDICES ARFE USED IN COMMAND NODES. INDEXING IS CONSECUTIVE
ACROSS BLOCK BOUNDARIES. THIS INDEXING ASSUMES NBSBR=2

» T =

MENU Block Format

FUNCTION (GLOBAL CONTEXT) STARTING WORD LAST WORD FUNCTION (MENU CONTEXT)
OF NODE OF NODE
MENU LEADER 1 10 MENU HEADER
GLOBAL | (DISPLAYED 1 20 ENTER (COMMAND NODES)
2 21 30 EXIT !
3 31 40 PUSHBUTTON |
L 41 50 PUSHBUTTON 2
5 51 60 PUSHBUTTON 3
6 61 70 PUSHBUTTON 4
GLOBAL 7 (NON- 71 80 PUSHBUTTON 5
DISPLAYED) ’
8 81 ' 90 PUSHBUTTON 6
9 91 100 LOCAL 1
‘10 101 110 LOCAL 2
11 111 120 LOCAL 3
12 121 130 LOCAL 4
13 131 140 LOCAL 5
14 141 | 150 LOCAL 6,
15 151 160 LOCAL 7
. 16 161 170 LOCAL 8
17 171 180 LOCAL 9.
18 | 181 190 LOCAL 10
19 191 200 LOCAL 11
20 201 210 LOCAL 12
21 211 220 LOCAL 13
22 221 230 LOCAL 14
23 231 240 LOCAL 15
24 241 ; 250 LOCAL 16
GLOBAL COMMAND NODES ' _ “ALL NUMBERS ARE DECIMAL RADIX

MAY CONTINUE WITH MORE MENURBLOCKs
OF IDENTICAL FORMAT. ALL BLOCKS HAVE HEADERS.

-~ 102 -

WORD

BIT

WORD

1

4

BIT

BIT

MENU HEADER FORMAT
13 _14 15 __l6 17
ACTIVE COMMAND SOURCE . i o
WORD FOR MENUS BSI CLOCK PUSHB LTBUT KEYRBD

NUMBER (1-24) OF LAST DEFINED
COMMAND NODE IN THIS MENU BLOCK

SVMNU FLAG. 1IF ,TRUE.

AND SAVE OPTION

.TRUE., WRITE THIS MERU TO DISC

UNUSED

COMMAND NODE FCRMAT

COMMAND NAME, 5 OR 9~CHARACTER 5/7 ASCII

<ALTMODE> IN CHARACTER
IS INACTIVE, CHARACTER

NORMAL CHARACTER 1,AND CHARACTER 1 1S <ALTMODE>

6 OR 10.
19 CONTAINS

IF COMMAND

DATA AREA.

FORMAT IS IDENTICAL TO COMMAND NAME.
BOTH COMMAND NAMES AND DATA AREAS ARE DISPLAYED
FROM LIGHTRUTTON FTLES USTNG THE CHARACTER STRING

INDIRECT INSTRUCTION.
() , 1-5 6 7-17
1 COMMAND MAXIMUM 1 NO DELAY INDEX OF
ACTIVE NUMBER OF PROCEDURE TO
ARGUMENTS, @ NORMAL DELAY} BE EXECUTED
¢ COMMAND -1 MEANS BEFORE IN SNT. @
INACTIVE ANY NUMBER OF PROCEDURE |MEANS NONE.
ARGUMENTS EXECUTION
[i 717
1 EXECUTE EXIT 1 EXECUTE ENTRY MENU ELOCK
PROGCEDURE BEFORE PROCEDURE BEFORE { NUMBER OF NEW
MENU CHANGE MENU CHANGE MENU TO BE ACTIVATED
$ MEANS NO NEW MENU.
DO NOT EXECUTE ® DO NOT EXECUTE
EXIT PROCEDURE ENTRY PROCEDURE
14

- 103 -

APPENDIX F - OVERLAY DESCRIPTIONS AND LOAD MAPS
PRTE

GiAIY ACL

NAV ACT FILE

SPRTR

LIST OPT104YS & PARAMETERS

>S5 PO 0L, n 0P, VIC/PIGDSP s DI SER, FROMP, LAYDAT, COMTAR, OUTMOD/
DrFINE HFSIDFYT CODE

>0
DFLCHITF LIVKS & STRUCTURE
SLI) =4 C0mval, .

SLU2=#YYSTHT, #0PMNR, #R1DMY U, #WITMNU
SLU3=4DISI T
>LKA=#P0LL,
SLUL=FarS80LU
SLK1tLK2:LXK3:LX4:LKS
>
LIN¥X TAPLE
TT585-77636 0132

RESIDFNT CODE
CLP T1502-77504 80063
PIGS2 76522=-77521 H16GOD) .
REOLIB 76471~76501 06011 A
YYFLA 76432-76470 BEO3T
CLERNRE 76323-76431 00167
NMNU2 7A135-76322 00166
JUOMPTE 76111-76134 00024
CLPid 76056~76110 00033
VINK THEA2=-76555 90174
TIVEFP 758636~75661 00854
TABLET 75530-~75605 440056
FOG 73591=-75%87 32027
VIERR2 734¢1-73550 00520
FHRMS4 73301-73460 64160
YYPHLN 73203-733060 00876
DISERR 73149-73202 53043
MESPHIS 73476~73137 0050
CVUICH 726S55-73u67 36213
JPSTAR 72/44-7C654 GD511
IBITS 72611-726¢43 0GO33
MSTR 72536=-72¢15 %0053
MUC 72406-72535 00136
LTA. L8 3 SRS Fl 1BI48;
L ePFDUM 71433-71€£34 63602
PRIV TGTT75-71(32 U236
LT0LPR T79668-70774 54112
DEFINE 660650~-67777 51130
AN TOCHL-T3662 ONB1T
« DA TU566-70643 0IN56
e 58 TONTT=TINES VEH6T
Syor Teaeb-1476 H0GH13
SPMSG TD345-70463 650117
oFLIB 70087-10344 0266
FINKS ERA47=-66547 3121
INTHAY, 65316~¢Han6 D131
FRLPAE GA217-A%315 01677
OTSE} 6259 7-¢44) 6 05215
o G TH35="1I0 %6 53322
GETZ3-04u0 G Gluby
CRAJNw L0220 R”7
6l LS7-¢c38 1 1SS
MIUDAT V0 SET-10 38 s
ALGCT 01416-61056 00041
TIGRI-THND6 GHG4
C1355-61415 0054l
: 613179-£13%4 (30045
PAEEIL 701 L=t wnang
TANNNT I8dge-5g “1d 9056
PUSHP GL3NL =130 WanGT7
HITi o AL2€0-06150) o068
CAIRG GI321-11887 &
1AHG 611 S3=GLRT
TIvp! Gl138~-n1 1
CHAus 6311 7-061130 101y
SCHAL Gl -061116 (h)56
PO 6L A= 61G2) DBab

= 1OQ5 -

LT R o=
COMUAL

LINK =--
YYSTRT
PIGFIL
COMINT
OrvMN 2
KDANUE
i U2
FNAME
RRININD
FANCOM
FILE
BINIO

LINK ==
DISINT
BUTINT
SYSbN2
PIGDVT
LAYOUZ
PROMPI
DI SERI
MIESINT
BUTDIS
CLOCK
KEYST3
KEYS
DOTINT
FOG«4

LINK --
POLL3
CBUTHT
RUTHT2
PRHIT
LPHIT
Ci.OCHYK
D5CHED
RENCINS
REYS
poTMve
GO0

LINK =~
RESLV2

GETCHZ
TAKGS2
PALC
PNUME
PSTHRNCG
RENT
TR
V2 TCH
FLAVKS
« 12D

o I

o« DI

« DY
+1C
G0i0
DOUELF

CONE, BRI

LI
C371-607173

L2
6V6TH=-CY7T73
NIOY3-u06Y
HT29 = STT77
CUNNT~GNEL2
G346~ G3a37
G- 01305
56670=-57177
61 A5~ R0257
5617-50673
55575-56167
55146-55574

e
60331-60773
€334~ 6330
STHT2=5T7717
5T455-57471
57222«57404
57148-572821
ST8 5657137
S6727~570G55
56132~-56726
5¢N75- 56131
55733=-56974
QHHTYU~ 5572,
S54T725 55553
55255= 55471

L4
CO371-60773
CHETS-619370
ST283-577711
G071 -60272
S57TH41-57262
56432-57540
56172-56431
55683~ 56171
55427-556M02
58274-554806
63043-60070

LES
€3314~63773
630825-62313
STED 3EET T T
ST SRS ERE
57421~57352
SICE4T= SYTI2E
K628 -8650¢
SAYE7M-58837
5A111-56135
G WSS SN 1D
587 Ff~-50037
HHOL2-557005
D9 Eralli=rSaiGs.l
55711 £- 655450
H55H543-55411
GLYY B B850

551 18-~ 5531 4

G U

H5LILIR~-T77636

00375

BISR YO/
0055
RISEASIN]
30153
118472
U066
D394
Omi13
QR RSIOR
39373
00427

DO4s3
0opa27s
80366
JU365
@81 63
Nooeéez
00062
2u127
U575
Qo035
50145
0154
gpoea
peals

0443
310874
#4575
DO20a
0142
GIG RV N
gpeay
DI
006154
©0133
$0G26

ISR Q0]
HEORET
St A
13230
10332
252
3397
03182
D025
ou bl
w3132
WeIE 34
pi. 8 T RA i |
LSy
[RISTON4N
LA

0BRe3.

106 -~

PATH
CEAIN ACL

vavyE XCT FILE
>PATH
LIST OPTIONNE & PABAMFTIKS
>S5Z s PAR AL, X85,
“VIC/PICDSP, DISKRPROYP s LAYDA T, COMTAR, QUTMOD, BACKG, DATH, PTHDA T/
IFEINY KESIDENT CODE .
>PATH,CrATH
DESCHIRBFE LIVNS & SThUCTURE
SLK1=4#C0Mual,
SLKZ=#YY STt #OrMND, #EDMNUS #UWTYNU
SLK3=#DISINT, #CLNCK
>LK4=#P0OLL, #CLOCHK, #DSCHED
SLRH=#hESOLV
SLEISLKZ L3t LKas LS
>
LINK TARLE

T7444~77636 00113

RESIDENT CODFR
PATH T7424-77443 002D
PINIT 77415-77423 003087
STYDT2 77375-77414 50025
DATACL 77226~773174 vl aq
ELV¥DIS T7162-77225% 20344
INITD2 76735-77141 01225
PAGFCL, 76640«76734 00075
DRAVIC ~ 76374-76637 00244
hEDRAW T76223-76373 60151
CEL T6422-7T6222 €291}
RAWR 75711-76021 606111
PACKGE 75567-7571% #nl22
PLAYPA 7501 7-75566 w550
SHOW THE)L~-TH01 6
FRATE T74G13-74613
GRIDAT 7460G-F4612
SHOWI'T 74h424-74577F
LTPEN> 74020<-74423 80454
PIGS2 T3020=-T4917 vwiuud
RESLIB 7300%7-730217 04011
YYFLA 72750-73336 643337
CL¥ul2 72641~-72747 01097
AN L2 8Aa53-72CL5 (9166
JUGR T2 T2427-72452 80284
USTHEY 728802-72426 0225
USESTY 7176%-72801 60215
USHFGRI 716¢12-71704 5153
WENT T1H02~71 711 6330
SIY1.YI2 6S5633=67777 92145
PROMET 71522-71561 (0048
CL.i# M TVaeT=T1 521 630533
GIIID TN =71 466 DNGGT
VAU TRLREH="OKTT AF1 20
SKIDNL 7I245=-79457 0213
DSYFE Tl =200 (Wil al

- 107 -

criIsie
GFThe 2
GFiCH2Z
UIN
SKHFDHUL
DSXFDU
SCHYD
TIMFP
WFYS
DoTYMve
TALLET
ACTCM
pacreMm
C¥FIND
Bk
QUIT
FOG
Foca
FOG4
VTFHRR2
ErniMS4
YRR

T QL
DPISFRR

MESDIS
CVICH
JPSTAR
INBITS
TRI'TS
MSTR
MUC
LT84
«PFDUM
rPrING .
LTOIPR
DEFINE
FDCODE
AN.JL
IARS

L D-[q
ECDIO
¢SS
*CTO
S1oP
SPHMSG
+FLTB
FINOKS
INTFAE
DOURLE
hFLFAR
OTSER

ol o

oL
CHiTAR
PTHDAT
FACKG
MTE
AHGTP
TIMFR
auIMoOD
PlEDSP
MIDDAT
STl S
FriiCOv
DLSER

(5523~-650632
(5353-05582
65)04-65332
CLADN=GH043
TOONLE=-TD1OY
TN~ 730343
CLUEAE=- 61647
G431 2-64365
6L136-64311
6A00 3~ 64135
63725~64002
63542-63724
63356-63541
63i343-6335%5
63123-63D42
6301 4-63022
CU765-63013
EH6T74-6764
6BL457-60673
6043T7-60456
CH257-60436
C0161-60256
62116-62160
E0046~-60115
DY -STTT T
67035-63645
S57504-57564
57451-57563
S7.3 1657452
57240-57375
55675-57237
T0328-78621
55637-55674
55525-55636
54375-55524
541238~-54374
S541451-54117
AOUR21-6D034
S54623~-54100
5004£3-54022
LTV ~4T7T777
47663-477710
SUA30-50042
L4754 4-47662
UT256-47543
A6DS5-47255
572446054
L4ESC1-08723
QenpR2-45520
QL) 2)
QN1 70-44211
A3072~441 67
33664-37777
4o872-43071
41703=-42471
41 642-41708
THIGH-TH517
41 553-41 0641
i0376-41552
U1 3-0002y
TG-S 4
ni335-40375
L4UB2TW-400334

00110
(3176
GN26T
09174
(2191923}
puvae
D268
HEO54
#5154
w0133
J00Us6
00163
D164
06313
LG FELY)
DOGHT
wapaT
pO271
nnels
(18920
o160
OUM76
Po43
DOOSH
0213
512108
Bhoe6l1
PH233
BaB53
B0136
"1343
415153081
QBs36
goilae
51130
PBess
D17
BOH1 4
BOG56
@3760)
NR0e7
POR26
20613
NVLL7
00266
n12u1
P31
203
01077
MH210
“4nepee
PLO76
04114
D0A0E
NDUS6T7
Cooal
00013
U967
311515
(V31610 X5
WP SR
SIRIGR/D)
00045

108 -

o N)]
1AY N
PUSLHY.
HITRUL
Chii il
M
CHOL G
SCHAD K
PSHDRUT
£r0ve

LINT ~=
COM VAL

LINK ==
YYQTIT
\‘H I] ’
COMIQI
OeNERD
P DCAVAOES
W UL
HAYE
KRIVIO
FANCOM
FiLE
EBINIO

LINK ==
DESINT
BUTINT
SYSDV2
PIGINT
LAYOU2
PROMPT

DI SEkI

MESINT
BUTDIS
CLOCK

REYST3
LOTINT

LINY ==
POLLAR
CrUTiT
BUTHTR2
PBHI
LPHIT
CLOCHK
DSCHED
KT ING

LINK =~
RIISLVE
TALRGS2
YA NG
PUuvB
PsTiNG
RN
TFM]
N7 TCHR
BLANKS
<D

o FH

« DF
«DC

GG A= a1 0
PRS00
SIGTAR TR LA AR
N QL =-052CT
AABIU—AJLAA

431 32-m)207
‘I‘Jl 1 6‘ u)l Jl
L0 43-40115
“UOOJ-.;WIO
33617-33663

LX1
33222-33¢16

LiK2
33513-33616
33436-33512
32636/-33435
32463-35635
32371 -3L4E2
J2393-323179
31777-32302
310€4-21776
31163-31663
35€65-31157
35126-38564

W Nl e I
EY o= DD W X

PRI~ OO LU W

- e e DY
N~

@

(}'1 N =)

37-30753
5=-306756

(9%}

0=

oS
AR RN

& .'.}
i
)}

»

CJ
(5] (,.)
(SN
)
— s
L

39323 33117
32117-32322
31 755=-3a116
31346-31754
31106-31345
32517-31105

LKS5
SINIT~3B 616
32742-33136
325611 2=32741
321 69-32511
31796=32157
31377-31705
31275-31376
31256-31274
311 77=31 247
31045-31176
3pll1-31040
385 71 = 3135010
& NS =R 7
33 5IP- 30550

CONE HFQ'D

3U136-77636

RIFEIEN |
(006
UPUU7

Bl

->J\) 937

0656
6l 4
BU056
o006
(oG as

0e3178

50104
13Y55
coeng
g9l 53
GooT72
B5D366
An304
¥3113
20504
3373
20427

Ho44a3
BB2aTs
20336
BISEONGES)
Br163
npae62
Duwoee
no127
38575
POO3S5S
BO145
Ao062

20423
0574
6a575
apeua
gul14e
Boas7
BA243
130367

00460
WS
WweEe32
;11332
wna2se
DH307
(CIOR RO R
[BISI0 4]
JE8051
BR8 PCE=)
034
34101
59137
50647

7531

109 -

APPENDIX G ~ PRTE AND MENDEL COMMAND SYNTAX

The following is a BNF grammar specifying <command> as the sentence.
It does not represent the fact that the character 9 is now allowed

in an octal number. A maximum of 15 arguments, including the command
name are allowed. Examples of valid input is provided in the next
section,

<DIGIT>e=0/1/2/374/5/6/1/8/9

<ALPHA>s=A/B/C/D/se e /X/Y/Z

<CHAR>s =<ANY ASCII CHARACTER>

<BLANKS>2=BLANK/BLANK<BLANKS>

<NONTERM>¢=<ANY ASCII CHARACTER EXCEPT BLANK OR , OR CR
OR ALTMODE=

<NTAIL>s=<NONTERM>/<NONTERM><«<NTAIL>

<CSTRING>s=<ALPHA>/<ALPHA ><NTAIL>

STAIL>g=<CHAR>/<CHAR><STAIL>

<STRING>2=<CSTRING>/ * <STAIL> ' / ® <STAIL> *

<INTP>3sc<BLANKS»><DIGIT>/<BLANKS><DIGI T><INTP>

<FRACTION>e= o / o <INTP>

<U~MANTISSA>3z<INTP>/<INTP><FRACTION>/<FRACTION>

<MANTISSA>g=z + <U=~MANTISSA>/ - <U«MANTISSA>/<U-MANTISSA>

S=INTP>g2<INTP>/ + <INTP>/ « <INTP>
<EXPONENT>3z * BLANKS><S-~INTP>
<DNUMBER > =<MARTISSA»/<MNANTISSA><EXP ONENT >

<NUMBER>g <DNUMBER>/ # <BLANKS><DNUMBER>
<OMIT>g=<BLANKS>,/,

<LEAVE>3$z<BLANKS> % <BLANKS»>
<ARG>3=z<OMIT>/<LEAVE>/<STRING>/<NUMBER>

<ARGSTRING>g=z , <BLANKS><ARG>/<BLANKS><ARG>ZARGSTRING>
<ENDCOM>¢= CR / ALTMODE :
<COMMAND>sc<BLANKS><STRING><BLANKS><ARGSTRING><ENDCONM>

Ll 6

APPENDIX H - RESERVED PRTE SYMBOLS

In addition to the FOG subroutined names, certain global symbols are
reserved by PRTE and should not be duplicated by the GAP as:

(1) Entry point, procedure, block data, or common block names
(2) External link components

(3) Link names

(4) Filenames

An alphabetical 1list of reserved PRTE symbols follows:

AROHT | ' IRITE . PRCOMT
ACTC4 INRITS PRINT
ADTCHH JPSTAR : Pho-.\’_.rf
NG JUMP D PROMPI
FLANIS HITBUT BRowpT
BUIDIS KCLOSE ESEBUT
BH LI KLY IN ESTRMG
SUTIN SRS PUSHB
E:ié]r %Eéf# PUTCH
CHUTHT WhHEan PU TDyI
CHAWS LAYDAT PUTED?
Gt R LASTEUT PU?FSI
CLOCHK LCLOSE ‘ PUTSR
cLnc LINIT S-JUI 1
CLy 1Y L¥1 ' f*.D?-N 8]
CrFIND L2 HESL1B
COBFIN LK EE%OEY
COAINg LKA Eghéh‘h
COATAR LKS .(NI:Y‘L
covvual, LYHIT ;n .D-,
CYUICH LHFAD i;(_&DUL
DACTCM LTA. ;i.LI
DARG ADLTUY iiY{fm
DISEFR MNL VA b b_bw i
DI SFRR MISBDIS iAHGS
DSV MESINT ‘:'C_.S.:O?E
DeTINT ENUDAY .'1-.:-;}/;. _;\)
Lo tMve 85 Th }Iﬁyﬁ
DSCHYD MUC : Alﬂhr
DSHED MU i{ﬁll
DSKEDU NXICHE iﬁgé?
FARCON SIS RBE] 9??95{
CRID OUT0OD il
Gl BAT ’ PAGMNY Q§§§{Y
o PARG VIEER
FILMES PERIT] E?f}
AN EFA :?)f
CEICH FIGDNT yﬁqg
GETDI FTGDSE i{lbﬁ
CETDP FIGFIL ImIn
GFIFIL PIGs j'.(:x:().‘:
GRILDE PINT iipgl\
GELST FAUME ..igbn
GETsW RO) Y] l,.A'
21D) YYrsLy
o ‘ YYSTRT

- 113 -

= 7T

APPENDIX I

MENDEL COMMAND LIST

WE ARGS CONTEXT cupis ppg FUNCTION SUBROVTINE
CREAT | ANAME, NMENUS, NSUBBRS, NGLOBLS | + 1 SETS MODE AND MNB FILL SIZE YYCRE
EDIT | ANAME + 1 SETS MODE AND RENAMES APPLICATION YYEDI
BIGBT 1 X USE LARGE LIGHTBUTTONS, ABBREVIATE MODE YYBIG
ASREV | ALOGICT 1 X X | ABBREVIATE COMMAND NAMES TO 5 CHARACTERS YYABR
XEYB_ | AKEYBD ,AECHO™ 1 X X | DEFINE ACTIVE KEYBOARD DEVICE AND ECHO ON TTA YYKEY
STYLS | AsTYLS 1 X X | DEFINE ACTIVE STYLUS DEVICE YYSTY
DELAY | NMILSEC 1 X X | SET DELAY IN MILLISECONDS AFTER COMMAND SELECTION YYDLA
sawe_ | avocic” 1 3 X | WRITE MENU TO DISC ON MENU CHANGE YYSAVE
INDEC | AMENU, AMENU... + 3 0 X | DECLARE MENU NAMES YYMID
SEDEC | ASUBER, ASUBBR... + 3 % X | DECLARE APPLICATION SUBRGUTINE NAMES YYSED
GLOBL + 4 X X | BEGINS DEFINITION OF GLOBAL COMMANDS TYGLO
ARGET +5 % X | NOT DMPLEMENTED, BUT MUST BE PRESENT IN CREATE MODE |YYARG
MENY | AMENU + 6 X X | BEGINS DEFINITION OF NAMED MENU YYMEN
DSABL | ADEZV", ADEV" 6 X X | DEFINES ACTIVE DEVICES FOR MENU. NAMED ARE DISABLED |YYDSAB
SVINU | ALOGICT 25 % X | CURRENT MENU TO BE WRITTEN TO DISC ON MENU CHANGE YYSUMN
ZINTER - 35 X X | POSITIONS COMMAND CURSOR AT ENTRY COMMAND YYENT
EXIT | 7l ss | x| x| POSITIONS COMMAND CURSOR AT EXIT COMMAND T |YYEXIT
BUSHB | NBUTTON | zs5 | x| x| POSITIONS COMMAND CURSOR AT PUSHBUTTON NUMBER YYPUSH
LOCAL | NLOCAL e BS X | X | POSITIONS COMMAND CURSOR AT LOCAL NUMBER YYLOCL
coM ANAME, NARGS, ADOCODE, ASUBER, 3 4 g X | DEFINES A COMMAND AT CURRENT CURSOR POSITION YycoM
AMNUCODE”, AMENU, ADATA AND STEPS TO NEXT COMMAND
©D | AMENy - + 9 ‘X | X | TERMINATES MENU DEFINITION. DEFINES STARTING MENU YYEND
POS NRELATIVE OR 34 X | DISPLACES THE COMMAND CURSOR RELATIVE TO CURRENT YYPOS
ACOMNAME POSITIONS CURSOR AT COMMAND NAME vyPOS
0D - > 4 X | POSITIONS COMMAND CURSOR AT FIRST GLOBAL OR MENUCOMMUAND| YYTOP
30T > 4 X | POSITIONS COMMAND CURSOR AT LAST GLOBAL OR MENUCOMMAND | YYBOT
R ANAME, NARGS, ADOCODE , ASUBBR 3 4 X | REPLACES COMMAND AT CURRENT POSITION CURSOR UNCEANGED |YYREP
AMNUCODE , AMENU, ADATA
EL 4 DELETES COMMAND AT CURRENT POSITION. CURSOR UNCHANGED | YYDEL
FIN ‘ ANY X | TERMINATES AN EDIT i

NOTES

)| Arguments

(a) Underlined arguments must be specified.
All other arguments assume default values given in Chapter 2.

(b) Arguments beginning with the letter 'A' are strings, with the
letter 'N' are numbers,

(c) Arguments succeeded by ... may be repeated indefinitely.
(d) Square brackets enclosing arguments means a choice.

(e) Arguments succeeded by an asterisk must be one of a set of special
strings: .

Argument Permissible strings

ALOGIC TRUE
FALSE

AKEYBD TTA
LTA

AECHO ECHO
ONLY

ASTYLS VWA
LPN

ADEV KEYB
LTBUT
PUSHB
CLOCK

ADOCODE Do
DONOW
DONT
DTNOW

AMNUCODE MENU
ENTER
EXIT
GO

Pte Context

Context numbers preceded by '+' indicate that the command terminates the
numerically preceding context and begins the context specified. +f
terminates context 6 and enters no context.

= s ~

= lile =

APPENDIX J - MENDEL SUBROUTINES

These routines are contained in UPDATE file CMENDL BIN ON DECtape 16

NAME DESCRIPTION
CHARS Block data for cormon block CHARS
DFHEAD Sets up default MNB header block values
ERRMES Issues error message numbers. Contains entry point ABORT. Filename is ERRMS3
~_ _GETFIL Retrieves filename from argument common. Same as in .LIBRP
__GETLOG Retrieves filename
__Isip Computes the least integer greater than
MDLRAM Jump Table for YYMDLA. Contains addresses of all MENDEL application procedures
MENDEL Editor-assembler main program. Parses option string and executes options
[PAGMNU Block data for common block PAGMNU
PROMPT Dummy PROMPT routine for MENDEL. Filename is PRPDUM
STRAD Converts a 5/7 ASCII string into radix 5@ loader format
YYABR Interprets ABREV command
YYADCD Adds a loader code and data item to the relocateable binary output buffer
__YYARG Interprets the ARGET command
YYBIG Interprets the BIGBT command
_YYBOT _Interprets the BOT command
YYCARG Compares a 5/7 ASCII string against a list of strings
YYCERR Issues an error on illegal context
YYCL Fills the Command Table with null commands
| YYCLOS Closes all disc files
Y&COM Interprets the COM ccmmand
YYCOMS Produces a loader code to declare a common block size
~ YYCONS Produces a loader code to define a constant
YYCRE Interprets the CREAT command

Cont'd

= &L =

APPENDIX J - MENDEL SUBROUTINES

NAME DESCRIPTION
YYDEL Interprets the DEL command
YYDLA Interprets the DELAY command
YYDPMN Writes the 5/7 ASCII Dump File to disc
YYDSAB Interprets the DSABL command
YYEDI Interprets the EDIT command
YYEND Interprets the END command
YYENT Interprets the ENTER command
YYEPG Produces a loader code to end program definition and flushes the output buffer
YYEXIT Interprets the EXIT command
YYFLSH Writes the relocateable binary output buffer to disc and clears the buffer
YYGLO Interprets the GLOBL command
YYGTB Maps command cursor index into global menu block needed and inputs the block
YYHOUT Writes out MNB file header block if in EDIT mode
YYIGLB Produces a loader code to declare an internally defined global
YYIN Inputs a 250 word disc block ‘
YYINTP Initialises the relocateable binary output buffer
YYISYM Produces a loader code to declare an internal symbol
YYJMPI Produces a relocateable binary Jump Table from the SNT and writes it to slot 13
YYKEY Interprets the KEYB command
YYLGB Searches menu blocks for a global or local command name
YYLCM Searches a single menu block for a command name
YYLMN Searches the MAT for a menu name and returns its block number
- YYLOCL Interprets the LOCAL command
YYLOG Interprets command LOG (not implemented)
YYLSB Searches the SNT for an application procedure name and returns its index

Cont'd

- 611 -

APPENDIX J - MENDEL SUBROUTINES

NAME DESCRIPTION

YYMDLA Reads, parses, and interprets MENDEL program and produces an MNB file
YYMEN Interprets the MENU command

YYMND Interprets the MNDEC command

YYMNUL Outputs a listing of the MAT on slot 13

YYNCH Determines the number of non-blank characters in a 5/7 ASCII symbol
YYNCX Issues error message 19 if wrong MENDEL context

YYNED Issues an error message if not in edit mode

YYOPEN Opens an MNB file and reads the header block into core

YYQOUT Writes a menu block to disc

YYPLOD Produces a loader code to set the program load address

YYPNAM Produces a loader code to name a program

YYPOS Interprets the POS command

YYPRSZ Produces a loader code to define program core size

YYPUSH Interprets the PUSHB command

YYRELI Produces a loader code to define arelocateable instruction

YYREP Interprets the REP command >

YYRVEC Produces a loader code to define a relocateable tramsfer vector
YYSAVE Interprets the SAVE command

YYSBD Interprets the SBDEC command

YYSBRL Outputs a listing of the SNT on slot 13

YYSHC Outputs the decoded command node at the command cursor position

YYSPC Creates a free command node by moving other nodes in a menu block
YYSRCH Searches a 5/7 ASCII string for a particular character and returns its index
YYSTY Interprets the STYLS command

YYSVMN Interprets the SVMNU command

YYSYMB Produces a loader code to declare a 5/7 ASCII string as a radix 50 symbol
YYTOR Interprets the TOP command

YYWIB Writes a binary 250-word record to disc on slot 13

YYXGLB Produces a loader code to reference an externally defined global symbol
YYYABO Interprets the ABORT command (not used)

YYYINT

Dummy initialisation routine (not used)

121

APPENDIX K - PIGS ERROR MESSAGES

ERROR PRTE OR
NUMBER DESCRIPTION ACTION TAKEN MENDEL SOURCE
ROUTINE
1 Keyboard input buffer overflow. Too many characters typed § Command ignored KEYIN
2 Format error in command string Command ignored - TARGS
3 Index of argument to be retrieved is .LT. @ or .GT. 14 Default argument returned | GETIDP,GETCH
4 Number argument to be retrieved, but string argument input Default argument returned ! GETDP,
5 Number argument to be retrieved would overflow integer variable | Default argument returned | GETSI
6 Command index in Command Table out of range Command ignored PIGS
7 Menu block number out of range New menu not actuated PIGS
8 Command name not recognized Command ignored PIGS
9 Scring argument to be retrieved, but number argument input Command ignored GETCH
10 Index of argument to be put is .LT. § or .GT. 14 Argument is type omitted PUTDP,PUTCH
111 A necessary argument to this command was omitted Command ignored YYCRE, YYDSAB
, YYEDI,YYMEN
YYMND, YYSBD
12 String argument would overflow buffer if retrieved Default argument returned | GETICH
13 All menu blocks allocated are full Command ignored YYOUT
14 Reference to an undeclared application procedure name Command ignored YYCOM
15 Reference to an undeclared menu name Command ignored YYCOM,YYEND,
YYMEN

Cont'd

= Gl

APPENDIX K -~ PIGS ERROR MESSAGES

ERRCR PRTE OR
NUMBER DESCRIPTION ACTION TAKEN MENDEL
‘ SOURCE
16 Unrecognized or illegal axgument for this command Command ignored YYCOM, YYDSAB,
YXKEY s YRS T
17 Argument value out of range Command ignored YYLOCL,YYPUSH
18 Menu block full, command not entered Command ignored YYCOM
19 Illegal command for this MENDEL context Command ignored YYCERR, YYNCX
20 Command name not found, command cursor unchanged Comnand ignored YYPOS
21 Would position cursor off last menu block. Cursor unchanged Command ignored YYGTB,YYPOS
22 Command illegal in MENDEL edit mode Command ignored YYBIG
23 Command illegal in MENDEL create mode Command ignored YYNED
24 End of block reached by DEL command, cursor unchanged Command ignored YYDEL
25 File not found MENDEL - Retype option YYMDLA, OPMNB
' string
PRTE~ Ignore read request
26 File read error MENDEL - Abort assembly or | YYIN,YYMDLA
edit RDMNU
PRTE ~ Ignore read request
27 Unexpected EOF on input file MENDEL - Abort assembly or

edit

PRTE - Ignore read request

YYIN,RDMNU

Cont'd

- €¢1

APPENDIX K - PIGS ERROR MESSAGES

ERROR ' PRTE OR
NUMBER DESCRIPTION ACTION TAKEN MENDEL
» .SOURCE
28 File write error MENDEL - Abort assembly YYOUT, WIMNU
PRTE ~ Ignore write request
29 MNB file size error Ignore file request OPMNB
30 Clock schedule full or time interval too large Command not scheduled SCHEDL

)

=)

APPENDIX K - ©PIGS ERROR MESSAGES

Error Numbers between 101 and 199 are FOG Errors

because of missing or faulty SCHOOS or SINIT

ERROR FOG SUBROUTINE
KUMBER DESCRIPTION ACTION TAKEN SOURCE
101 Wrong number of arguments Request ignored ALL
102 Badly formed file: DJIMP#* order not where it should be. Request ignored ALL
Possible bad file length
103 Length of file (first array element value) .LTI. ¢ Display file undefined DCHOO0S
104 Length of text string .LT. @ No code generated TEXT, ITEXT
105 Illegal save-restore code Save and restore DRAW,RDRAW, IDRAW
106 Array index value out of range Display file undefined DCHOOS
107 Instructions to be inserted would overflow 8K bank . No code generated CODE PRODUCING
boundary or array dimension ROUTINES
110 Illegal display class code No code replaced 'I' prefixed
' routines
111 No current display file address, probably because No code generated Code producing
of missing or faulty DCHOOS . routines
W2 FOG save register number out of range Request ignored SCHOOS, SINIT
RCHOOS,RINIT
113 FOG save register referenced is undefined, probably Request ignored RCHOOS,RINIT

Error numbers greater than 199 are GAP errors.

I0PS and OTS ERRORS are explained in the DOS and FORTRAN manuals, respectively

ACKNOWLEDGEMENT

The author wishes to thank F R A Hopgood and J R Gallop for their

valuable advice in the design and programming of PIGS.

The manual was prepared with great patience by:

J B Chamberlain Organisation
G M Miles Typing
K M Gascoigne Photocopying

= 125 =

END

i

