
Central Processors

1900
se r Ie s

From9th July 1968 for any referencein
printed literatureto International Computers
and Tabulators Limited or I.C.T.
Pleaseread
International Compute,. Limited or ICL
RegisteredOffice:
ICL House,Putney, London SW15
Telep.hone01-788 7272

ICL

•

Technical Publication 4095

<9 International Computers and Tabulators Limited 1968

First Edition April 1968

Issued by Technical Publications Service
International Computers and Tabulators Limited
Head Office: t.c.t: House, Putney, London S.W.15
and printed in Great Britain by
Printing and Stationery Department
Letchworth, Hertfordshire

Preface

This manual describes the 1900Series central processors and includes both information that is of
importance to 1900users and information that is for the sake of interest only. Information in the latter
category is clearly marked as such, and no inference shouldbe drawn from it as regards any central
processor.
Chapter I of the manual provides a brief introduction to the 1900Series central processor and mentions
salient points of the 1900philosophy. The succeeding chapters presuppose a level of familiarity with
computers such as is to be expected with data processing personnel. It has been assumed that most
readers will either peruse the manual to seek a general information on the 1900Series or else will
require details of specific central processors. In the former case the reader may progress through
the manual chapter by chapter. In the latter case, the reader is recommended to turn first to one of
the Chapters 10 to 12 in whichwill be founda description of the relevant central processor. If any
facilities mentioned in this description are not familiar to the reader he should refer to Chapter 13.
This Chapter will contain either a description of the facility or a reference to the page in the manual
where the facility is described.
This manual replaces Volume1 of the System Manualand part of the 1901Processor AndPeripherals
and differs from them substantially. In particular it contains information on central processors recently
introduced into the 1900Series and on new features of the series such as the priority interrupt feature,
paging, and extended addresstng facilities. This information has not been published previously. Existing
descriptions of other aspects of the 1900Series have been expandedto take account of recent processor
developments.

4095 (4.68) iii

Contents

Preface iii

Chapter 1 Introduction to the 1900 S:eries central
processor

CENTRAL PROCESSOR CONSTITUENTS
FEATURES OF THE 1900 SERIES CENTRAL
PROCESSOR 1
Compatibility 1
Storage 1
Standard interface 1

1
1

Executive 1
The console typewriter 2
Floating-point arithmetic 2
Programming languages 2
Dual processor capabilities 2
Interprocessor buffer 4
Multiprogramming 4

Chapter 2 The core store 5
STORE SIZE 5
STORE SPEED 5
STORE ACCESS 5
Store Multi-access control 5
PRINCIPLES OF READING ANDWRITING IN STORE 7
PARITY CHECKING 9
STORE INTERLEAVING 9
Two-way interleaving 9
Four-way interleaving 9
Efficiency increase 9
Store failure 9
ALLOCATION OF STORAGE 9
LAYOUT IN STORE OF OBJECT PROGRAM 10
Accumulators - Words 0 to 7 11
Reserved store and entry parameter store - Words
8 to 29 11
Switch word - Word 30 11
Reserved words - Words 31 to 45 11
Lower data store - Words 46 up to 4,095 12
Program store 12

BRANCH MODES 12
Upper data store 12
ADDRESSING MODES 12

A 4095(6.70) v

Additional words reserved when subprogramming is
employed
AVAILABILITY OF CORE STORE

Chapter 3 The arithmetic and control units

GENERAL
CLOCKPULSES
THE CONTROLUNIT
THE ARITHMETICUNIT
LAYOUTOF THE CONTROLAND,ARITHMETICUNITS
The mill
Register A
Register B
Register P
Datum and limit registers
Register N
Registers F, X, M
HOWINSTRUCTIONSARE PERFORMED

First Instruction
Second instruction
Third instruction

Chapter 4 Representation of data
WORDFORMAT
CHARACTERFORM
PURE BINARYFORM
Counter modifiers
WORDCOUNTERMODIFIER
CHARACTERCOUNTERMODIFIER
COUNTERMODIFIERWORDSIN 22AMor EBM

Fixed-point numbers
SINGLE-LENGTHINTEGER
MULTI-LENGTH INTEGER
SINGLE-LENGTH FRACTION
MULTI-LENGTH FRACTION
MIXEDNUMBER

Floating-point numbers
SINGLE-LENGTH
DOUBLE-LENGTH
QUADRUPLE-LENGTH(EXTENDEDPRECISION)

OVERFLOWANDCARRY
Carry
Overflow

FIXED-POINT
FLOATING-POINT

FIELD DESCRIPTIONS
Defined
Indeterminate
Ignored
Reserved

vi

•

12
13

15
15
15
15
15
16
16.
16
16
16
16
16
16 --.
17 '-._...-
17
17
17

19
19
19
19
19
20
20
20
20
20
20
21
21
21
21
22
22
22
23
23
23
23
23
23
23
23
23
24

4095(5.69)

-
Chapter 5 Format of instructions 25
GENERAL FORMAT 25
Normal instructions 25
Branch instructions 25
Shift instructions 26

Floating-point instructions 26

ADDRESSINGAND BRANCHMODES 26
Concepts 26
Setting and switching of modes 26

MODE SETTING ON PROGRAM LOADING 26
MODE SWITCHINGDURING PROGRAM EXECUTION 27
MULTI-MEMBER PROGRAMS 27

22AM Considerations 27
MODIFICATION 27
COUNT INSTRUCTIONS 27
SUBROUTINE ENTRY AND EXIT 27
CONSOLE DISPLAYS 27

EBM Considerations 27
THE 023 (OBEY) AND BRANCH INSTRUCTIONS 28
SUBROUTINE LINKS 28

SUMMARYOF FUNCTION CODES 28
Definition of notation 28
DERIVATION OF DN AND BN 29

Definition of DN 29
Definition of BN 30

Definition of functions 30
GROUP 00 30
GROUP 01 31
GROUP 02 31
GROUP 03 32
GROUP 04 33
GROUP 05 33
GROUP 06 34
GROUP 07 34
GROUP 10 36
GROUP 11 36
GROUP 12 38
GROUP 13 39
GROUP 15 40
GROUP 16 40

AVAILABILITY OF INSTRUCTIONS WITH CENTRAL
PROCESSORS 43

Chapter 6 Peripheral transfers 45
THE NATURE OF INFORMATION TRANSFERRED 45
STANDARDINTERFACE 45
The purpose of standard interface 45

. Standard interface lines 45
THE Do AND Di LINES 45
THE CLINE 47

4095(5.691 vii

-
THE R LINE ANDT LINE 47
THE B LINE 47
THE L LINE 47
THE A LINE 47

HESITATIONS 47
Timesharing of the central processor for program
instructions and hesitations 47
Operations performed during a hesitation 49
Single-character hesitation 49
Burst mode hesitation 49
TRANSFERFROMTHE CORESTORETO A
PERIPHERAL 50
TRANSFER FROMA PERIPHERAL TO THE CORE
STORE 50

High-speed mode 50
Crisis times 50
METHODSOF DECREASINGHESITATIONTIME 51
Peripheral control connector 51
TRANSFERFROMA PERIPHERAL TO THE CORE
STORE 51
TRANSFERFROMTHE CORESTORETO A
PERIPHERAL 51

Store access control 52
Peripheral autonomous control 52
Store access manager 53
Peripheral processing unit 53
STANDARDINTERFACE SWITCHINGUNIT 53
Types of module 54
MODULETYPE 7204/1 (Y TYPE) 54
MODULETYPE 7204/2 (N TYPE) 55
MODULETYPE 7204/3 (X TYPE) 55

Chapter 7 Executive 57
THE NATUREOF EXECUTIVE 57
THE PURPOSESANDFUNCTIONSOF EXECUTIVE 57
THE COMPOSITIONOF EXECUTIVE 57
TYPES OF EXECUTIVE 58
ENTRYTO EXECUTIVE 59
MULTIPROGRAMMING 59
Program protection 59
Program priorities 60
Program deletion 60
Multiprogramming under GEORGE3 or GEORGE4
control 60
DUALPROGRAMMING 60
Program protection 60
Program deletion 61
SUBPROGRAMMING 61
The purposes of subprogramming 61
Members of a program 61

viii 4095(5.691

-
Information associated with each member 62
MEMORYINDICATORS 62

Information associated with the Priority Member 62
Further notes on the Priority Member 63
PRIORITY 63
TIME-OUT FEATURE 63
ORDER CODERESTRICTIONS 63

Further notes on other members 63
PRIORITIES 63
ADDRESSANDBRANCHMODES 63

Loading and dumping 63
LOADING 63
DUMPING 64

Reference to common storage area 64
PROGRAMSWITHOUTA PRIORITYMEMBER 64
PROGRAMSWITHA PRIORITYMEMBER 64 •

Subprogramming control instructions 65
THE 162 (SUSMA)INSTRUCTION 65
Restrictions 65

THE 163 (AUTO)INSTRUCTION 65
Initial activation 65
Subsequent re-activations 65

THE 164 (SUSAROR SUSIN)INSTRUCTION 65
The 164,X", 1 (SUSAR)variant 66
The 164,X", 2 (SUSIN)variant 66
The 164,X", 3 (SUSIN)variant 66

The 164,X '" 4 (SUSIN)variant 66
States of members 66
STATE TRANSITIONTABLES 66

Examples 68
EXAMPLE 1:WHYTHERE MUSTBE M INDICATORS68
EXAMPLE 2:A 163 INSTRUCTIONISSUEDWHEN

M IS SET 69
EXAMPLE 3:COMPLETE PARALYSIS 69
EXAMPLE 4: SPURIOUSRE-ACTIVATION 69
EXAMPLE 5:THE USEOF THE 162 INSTRUCTION 70

PERIPHERAL TRANSFERS 74
BINARYPROGRAMS 81
Binary program formats 81
Block types 81
Block type 1:Request block (request slip) 81
WORD0 82
WORD1 82
WORD2 82

Bits 0 and 1 82
Bits 2 to 5 82
Bits 6 to 20 82
Bits 21 to 23 82

WORD3 82
Bits 0 to 8 83

4095(5.69) ix

-
Bits 9 to 16 83
Bits 17 to 23 83 '--

WORD 5 83
WORD 6 83
WORD 7 83

Bits 0 to 11 83
Bits 12 to 17 83
Bits 18 to 23 83

WORD 8 83
WORD 9 83
WORD 10 83
WORD 11 83
WORD 12 83
WORD 13 83
WORD 14 AND 15 84

Block type 0: data block 84
WORD 0 84
WORD 1 84
WORD 2 84
WORDS3 TO 17 84
NEXT WORD 84
WORD 19 84

Block type 5: data block 84
WORD 0 84
WORD 1 84
WORD 2 84
WORD 3 84
WORD4 85

Block type 2: entry block 85
WORD 0 85
WORD 1 85
WORD 2 85
WORD 3 85

Block type 3: entry block 85
WORD 0 85
WORD 1 85
WORD 2 85
WORD 3 85

Block type 4: entry block 85
WORD 0 85
WORD 1 85
WORD 2 86
WORD 3 86

Block type 6: supplementary request block 86
WORD 0 86
WORD 1 86

Bit 21 86
Bit 23 86

WORDS2 to 6 86
WORD7 86

x 4095(5.691

-
Block type 62: pre-request block sentinel
WORD0
WORD1
WORD2
WORD3

Block counts and sequence numbers
Layout of binary program on various media
PAPER TAPE
80-COLUMNCARDS
MAGNETICTAPE
DIRECTACCESS

Executive treatment of request and supplementary
request blocks
EX1H, E1HS
EX2L
EX1T, E1TS, EX1V, E1DS, ElMS, EX2S, E3TS,
E3TS, E3TE, EX2V, E3DS, E3DE, EX2M, E4BM,
E3TM,. E3DM 88

Program loading 88
Changes during execution 88
Program dumping 89

E6BM 89

86
86
86
86
86
87
87
87
87
87
88

88
88

Dumping 89
DUMPINGOF ZEROS 89
DEVICESTHATMAYBE USEDFOR DUMPING 89
PROGRAMINITIATEDDUMPS 89
OPERATORINITIATEDDUMPS' 89

Loading 90
PROGRAMINITIATEDLOADING 90
During the running of a program 90
When a program deletes itself 90

OPERATORINITIATEDLOADING 90
LOad 90
FInd 90
Action of the FInd directive with magnetic tape
(industry compatible) and cassette tape as
primary backing storage medium 91
Action of the FInd Directive with E.D.S. or F.D.S. 91

OPERATOR/EXECUTIVECOMMUNICATION 92
Monitoring of input messages 92
Description of executive treatment of,input typewriter
message 92

Chapter 8 Paging

THE PRINCIPLES OF PAGING
Unpaged systems
Paged systems
PAGINGOPTIONS
Programming for paging
Addressing

99
99
99
99
99
99
100

409516.71) xi

-
TABLE::; 100
Program table 100
Segment table 100
Page table 101

CURRENTPAGEREGI~TERS 101
Loadingcurrent page registers 101

Actionwhen store access required 101
Programming restrtctions on paged 1904A 102

Chapter 9

This Chapter has been deleted 103

Chapter 10 The 1901 to 1907 central processors 105
GENERAL 105
Individualprocessors 105
THE 1901 105
Store sizes 105
Store cycle time 105
Number of cabinets 105
Operator communication 105
Peripheral interfaces 106
.Fixed-point operations 106
Floating-point operations 106
Other facilities 106
THE 1902 106
Store sizes 106
Store cycle time 106
Number of cabinets 106
Operator communication 106
.Peripheral interfaces 106
Fixed-point operations 106
Floating-point operations 106
Other facilities 106
THE 1903 107
Store sizes 107 ~

Store cycle time 107
Number of cabinets 1J7
Operator communication 107
Peripheral interfaces 107
Fixed-point operations 107
Floating-point operations 107
Other facilities 107
THE 1904 107
Store sizes 107
Store cycle time 107
Number of cabinets 108
Operator communication 108
Peripheral interfaces 108
Fixed-point operations 108
Floating-point operations 108
Other facilities 108__,

xii 4095(6.71)

-
THE 1905E 108
Store sizes 108
Store cycle time 108
Number of cabinets 108
Operator communication 108
Peripheral interfaces 108
Fixed-point operations 109
Floating-point operations 109
other facilities 109
THE 1906 109
Store Sizes 109
Store cycle time 109
Number of cabinets 109
Operator communication 109
Peripheral interfaces 109
Fixed-point operations 109
Floating-point Operations 109
·Other facilities 111
THE 1907 ill
Store sizes 111
Store cycle time 111
Number of cabinets 111
Operator communication 111
Peripheral interfaces 111
Fixed-point operations 111
Floating-point operations 111
other facilities 111

Chapter 11 The E and F central processors 113
GENERAL 113
Individualprocessors 113
Dual processors 113
THE 1904E 114
·Store sizes 114
·Store cycle time 114
Number of cabinets 114
Operator communcation 114
Peripheral interfaces 114
Fixed-point operations 114
Floating-point operations 114
Other facilities 114

THE 1904F 114
Store sizes 114
Store cycle time 115
Number of cabinets 115
Operator communication 115
Peripheral interfaces 115
Fixed-point operations 115
Floating-point operations 115

4095(5.69)
xiii

-
Other facilities 115
THE 1905E 115
Store sizes 115
Store cycle time 115
Number of cabinets 115
Operator communication 116
Peripheral interfaces 116
Fixed-point operations 116
Floating-point operations 116
Other facilities 116
THE 1905F 116
Store sizes 116
Store cycle time 116
Number of cabinets 116
, Operator communication 116
Peripheral interfaces 117
Fixed-point operations 117
Floating-point operations 117
Other facilities 117
THE 1906E 117
THE 1906F 117
THE 1907E 117
THE 1907F 117

Chapter 12The Acentral processors 119
GENERAL 119
Individual processors 119
THE 1901A 119
Store sizes 119
Store cycle time 119
Number of cabinets 121
Operator communication 121
Peripheral interfaces 121
Fixed-potnt.operations 121
Floating-point operations 121
Other facilities 121
THE 1902A 121
Store sizes 121
Store cycle time 121
Number of cabinets 121
Operator communication 121
Peripheral interfaces 122
Fixed-point operations 122
Floating-point operations 122
Other facilities 122
THE 1903A 122
Store sizes 122
Store cycle time 122
Number of cabinets 122
Operator communication 122 --
xiv

4095{5,691

-
Peripheral interfaces 122
Fixed-point operations 123
Floating-point operations 123
Other facilities 123
THE 1904A 123
Store sizes 123
Store cycle time 123
Number of cabinets 123 .
'Operator communication 123
Peripheral interfaces 123
Fixed-point operations 123
Floating-point operations 123
Other facilities 123
THE 1906A 124
Store sizes 124. •:Store cycle time 124
Number of cabinets 124
Operator communication 124
Peripheral interfaces 124
Fixed-point operations 124
Floating-point operations 124
Other facilities 124.1

Chapter 13 Other central processor features 125
GENERAL 125
COMMERCIALCOMPUTING"FEATURE 125
.CONSOLELOGGINGPUNCH 125
CONSOLETY,PEWRITERSWITCH 125
DUALPROGRAMMING 12.5
EXTENDEDMATHEMATICALUNIT 125
FIXED-POINT OPERATIONS 126
FLOATING-POINT OPERATIONS 126
Extended preci~ion floating-point facilities 126
FLOATING-POINT UNIT 126.4
INSTRUCTIONOPERANDCOUNTER 126.4
INTERLEAVING 126.4
MILL TIMER 127
MULTIPLY/DIVIDE UNIT 127
MULTIPROGRAMMING 127
OPERATOR COMMUNICATION 127
PAGING 127
PERIPHERAL AUTONOMOUSCONTROL 127
PERIPHERAL CONTROLCONNECTOR 127
REAL TIME CLOCK 127
REMOTE STORE UNIT 128
SCIENTIFIC COMPUTINGFEATUFE 128
SLOWHESITATIONCONTROL 128
STANDARDINTER"FACESWITCHINGUNIT 128
STOREACCESSCONTROL 128
STOREACCESSMANAGER 128
STORE EXTENRTONUNIT 128

4095(6.71) xv

STORE MULTI-ACCESS CONTROL
SUBPROGRAMMING

128
128

Index 129

xvi 4095(5.69)

- --
Chapter 1 Introduction to the 1900 Series

central processor

The 1900Series comprises a single range of compatible processors to each of whichcan be linked
various combinations of peripheral devices. Individualcentral processors are identifiedby a number
from 1901upwards and are further definedby additional numbers preceded by a solidus, or by
additional letters; e.g. 1904/2, 1904E,1904A.

CENTRAL PROCESSORCONSTITUENTS

Each central processor is madeup of basically similar units. The differences betweenprocessors
lie in any extra facilities incorporated. Thus there must always be a power supply, and there maybe
more than one, dependingon the size of the configurationand the central processor itself. There must
also be a core store, whichmay hold just over four thousandwords of storage or hundreds of thousands
of words. Similarly engineers controls, a number of interface channels with associated logic rows, and
the central processing unit, incorporating the bulk of the logic circuitry, are present in all central
processors. These constituents of the central processor are held in one or more cabinets, for instance
as illustrated in Figure 1.

•

FEATURES OF THE 1900 SERIESCENTRAL PROCESSOR

Compatibility

The compatibility referred to above is fundamentalto the philosophyof the 1900Series. It means that
users are able to extend their configuration either by changingcentral processors or by addingperi­
pherals without reprogramming andwithouthavingto change existing equipmentthat is retained.
Anyprogram written for a 1900Series central processor can be run on any other processor at the same
level or higher in the series hierarchy, or on any smaller processor that has all the facilities used by
the program.
A part of this philosophyof compatibility is the I.C.T. standard interface.

Storage

The basic unit of storage in 1900Series central processors is termed a word and consists of 25 con­
secutive binary digits (bits). One of these bits is used for parity checking, a means of ensuring that
data is intact after being transferred, so that 24bits are available to hold data or an instruction.

Standard interface .

The I.C.T. standard interface is a standard means of attaching peripheral devices to the central pro­
cessor. Most standard interface peripherals can be attached to any central processor in the1900Series
provided that the central processor's hesitation time or data handlingcapabilities are not overloaded.
Somecentral processors can also be connectedto non-standard interface peripherals.
Note: Every 1900configurationmust include a line printer, or there must be a means of producing
hard copy from paper tape or cards.

Executive

Each central processor is provided with an Executive control program compiled spectftcally to suit
the processor and peripheral combinationin the installation concerned. The Executive program includes
routines, called extracodes, that carry out certain functions in the 1900Series order code. On small
processors extracodes are used to perform some functions that are performed by hardware on larger
processors. In this wayorder code compatabilitybetween small and large central processors is
maintainedwithoutthe price of small processors being affected.

4095(6.71) 1

-
Onmedium and large central processors the Executive program can, and in some cases must be;
supplemented by one of a number of operating systems. The principal operating systems are the GEORGE
systems, details of which can be foundin the appropriate manuals.

The console typewriter

In order to allow for human intervention in the operation of the computer, there must be a means of
communicationbetween the operatorand Executive. In all but the smallest computers, this communication
is achieved by means of the console typewriter.
The console typewriter is situated on a free-standing desk and is connected directly to the central
processor. The keyboard consists of up to 50keys and a space bar by means of which the operator can
type in instructions. The typewriter is used both to inform the operator of incidents occurring within
the central processor, the peripherals and the programs, and also to permit the operator to give
instructions such as to load, activate, suspend, or delete programs. These typed instructions and
messages form a permanent record of all communications in the sequence in which they occurred.

Large processors in the 1900Series are supplied with two console typewriters, the second to act as a
spare in case of emergencies. A console typewriter switch provides the means of switching control
to the spare console typewriter. . .

On small 1900computers, a panel of lights and switches is sometimes used instead of a console type­
writer to achieve communicationbetween the operator and Executive. Messages are received by the
operator in the form of a pattern of lights, and the operator enters instructions by setting a pattern
of switches. No automatic record of such communications is kept.

Floating-point arithmetic

Facilities for performing floating-point arithmetic are available with all central processors. By allowing
numbers to be stored in the form of an argument and an exponent, floating-point arithmetic provides for
calculations involving very small or large numbers using the minimum of storage space. Floating-point
functions are performed either by hardware that forms part of the central processor or by extracode.

Programming languages

A number of programming languages, including Compact and full COBOL,PLAN,NICOL,Basic and rcu
FORTRANand Algol, can be used to write programs to be run on 1900Series central processor. PLAN
is the general purpose language devised specifically for use with the 1900Series. NICOL,devised for the
smaller 1900Series processors, is a commercially oriented language that is extremely simple to use.

Dual processor capabilities

Certain central processors can be paired with another central processor of the same type to form a
dual-processor configuration. Details of dual processor configurations are given in the descriptions of
individual processors in Chapters 10 to 12. The principles of dual processor operation are outlined below,

The dual processor systems share control of the perrpherals whichmay be connected to either processor
provided that at least one card or paper tape reader and at least one line printer or paper tape punch
is connected to each processor. Programs in either processor have access to peripherals connected to
either processor.
The processors share a commoncore store that must consist of at least twomodules. Each module has a
store multi-access control (see page 5) associated with it. Each S.M.A.C. controls access to the module
with which it is associated and ensure that only one processor has access toagivenmodule at anyonetime.

There is one commonExecutive and operating system which is shared by the two constituent processors
and stored in the common core store, but program instructions are able to run in each of the processors
simultaneously. A program is not necessarily carried out by one processor but may run at different
times in either of the processors on the system. Executive will not allow the same program to run in
more than one processor at the same time. The choice of whichprocessor is to be used at anyone time
for a particular program lies with Executive and/or the operating system.
In the event of one processor of the pair failing, the system can operate in crippled mode, whereby the
remaining processor is used on its own. If the fault is a store failure, however, it may be possible to
continuewith both processors and a reduced store. otherwise only the peripherals attached to the
remaining processor will be available unless a standard interface switching unit is used (see page 53).

2 4095(6.71 ,

-- -- -- -- - -----~-------------------------------------~-------...•
(((

...
0..,
U>

~
0. "~ cO'

e: Core store Core store..•
CD

module moduleN

»
0-
e:
~ SMAC SMAC
"C..•
0
0
CDrnrn
0...
0
0:::J-cO'
e: Central Central..• Card reader Card readerIII Processor Processor!:!".
0:::J

Line printer

Magnetic tape

Line printer

-
If peripherals are connected via a standard interface switching unit they can all be switched to the remaining
processor, provided that the system so formed is viable.

A dual processor configuration is illustrated in Figure 2.

Interprocessor buffer

The interprocessor buffer (IPB) offers an alternative method of enhancement if dual processors are not availableor
appropriate. The IPBwill connect any two neighbouring 1900 Seriesprocessors, except those running under a
handswitch Executive, enabling them to communicate with each other. The system for which this facility might be
suited would consist of two largely independent computers requiring a quick transfer of information from one to
the other and running programs that accesssome common information. For example, one processor maintaining
main files and another servicingcommunications terminals and performing other input/output transactions could
be linked by an IPB. In such a system, a low level of total down-time is important and response time is reasonably
fast. The communications equipment could be switched to the processor maintaining the files in the event of a
hardware failure.

The IPBwill be housed in a free-standing cabinet with its own power supply; it will have a one-word buffer and
data will be transferred to and from the buffer in four-character bursts. Transfers of data from one processor to
the other will operate in the half-duplex mode. The instantaneous data transfer rate across the IPBwill depend on
the basic speeds of the processor interfaces at either end, and, to some extent, on the other peripheral activity
present in each processor. The effect of the latter is likely to be small, and, if it is ignored, the resultant transfer
rate will be of the order of:

•

RS
-- Kch/second
R+S

whereRand S are the nominal maximum data rates associated with the interfaces attached to each processor. The
sustained data rate over a successionof messageswill, of course, be less than this, by an amount depending on the
length of the messages.

Only one two-way data link will be allowed at anyone time between a givenpair of processors, that is, just one
program in one processor can communicate at anyone time with just one program in the other. However, it will
be possible to attach more than one physical link to a processor so that it can communicate with more than one
additional processor. The links will be set up dynamically by each program concerned. Either processor may be
running under a manual Executive (not handswitch) or under any of the GEORGE operating systems.

MULTIPROGRAMMING

The central processor works at very high speeds, but the obvious advantages of this can be nullified by the com­
paratively slow speed of peripherals and the time taken by an operator physically to set up and take down a job.
Multiprogrammingincreases the throughput of the central processor by allowingseveralprograms to share central
processor time. Whilea program is delayed for a peripheral transfer or operator action, another program is allowed
to run.

Multiprogrammingis handled by Executive. Each program in the system has a priority number; when a program
interrupts at the beginning or end of a peripheral transfer, control passes to Executive and the highest priority
program that is able to continue is activated. Program security is guaranteed by the datum and limit registers.These
points are dealt with more fully on pages 59 and 60, but in themselvesgive an indication of the usefulness of
multiprogramming.

4 4095(6.701

Chapter 2 The core store

Note: The description of the operation of a core store given in this chapter is for the interest only of
the reader. No inference shouldbe drawn from it.

STORE SIZE

The size of core store in a central processor is given as a number of Kwords, 1Kbeing 1024words.
Thus a 16Kcore store is one that consists of 16,384words of storage. Althoughfor programming pur­
poses the core store may be regarded as a single entity it physically comprises one or more units
knownas modules. Modules vary in size, between 4Kand 64K,according to the type of central processor •
and the size of the total core store. The principal significance of modules is in interleaving (see below)
and in the incremei:J.tationin size of the core store in a central processor. Anycentral processor can
be supplied with a selection of store sizes, and additional core store can be fitted in the field up to the
maximum available with the machine. The additional storage must, however, consist of an integral
number of modules of a size available with the machine in question, although the modules of which the
store is constituted need not necessarily all be of the same size. The sizes of core store available with
particular processors are given in Chapters 10 to 12.

STORE SPEED

Information read from a core store becomes available after a certain interval of time, termed the
access time. The operation of reading destroys the information read and it must be written back; the
next read request cannot be started until a further interval has elapsed. The total time from one read
request until the next can be accepted is termed the cycle rime and is the figure most commonlyquoted
to give the speed of a core store.
A further consideration in the effective speed of the store is the store width. Thus in the 1900Series
a store in which 25 bits are read in parallel wouldbe termed one word wide.

STORE ACCESS

Information is transferred between the core store and the central processmg unit or peripherals by
means of a store access mechanism. Most 1900Series central processors have a single store access
mechanism. U an access to the store is required less than the store cycle time after a previous access,
the latter access must wait unit the cycle is complete. This restriction is irrelevant in most systems
since store accesses are rarely or never required so soon after each other. However, as processing
speed is improved, the system can become core store limited. This condition is overcome where it is
likely to occur by the provision of further store access mechanisms, possibly used in conjunctionwith
an inter leaved store.

Storemulti-accesscontrol

The store multi-access control (S.M.A.C.)is a switching device associated with each core store module
in a dual processor system. It controls the access of the central processing units to a given core
module, ensuring that only one central processing unit has access to a given core store module at any
one time.

The store multi-access control switches access to its associated module from one processor to another
as requested or, if there is a store clash, according to a system of priorities. A processor can have
access to a store module for only one store cycle without interruption and is unable to request another

4095 (4.68) 5

Address
Decoding
and Y Wire
Current
Drivers

Address Decoding and X Wire Current Drivers

Figure 3 Example of a magnetic core store matrix

•

Address Decoding
and Y Wire
Current Drivers

Address Decoding and X Wire Current Drivers

Read--Write

To
Next
Plane

Write

Read

WriteTo Next Plane

Figure 4 Section of a magnetic core store plane

6 4095 (4-68)

store cycle while that cycle is taking place. If a processor requests access to a store module that is
being accessed by the other processor, the 8.M.A.C. queues the request.

The basic rule for switching is that a store access request is granted unless there is a clash of requests,
in which case access is granted to the processor that did not have access to the module last. This rule
is qualified by the proviso that if the request for store access emanated from a peripheral channel,
then this request has priority over one originating in the central processing unit. If requests from
peripheral channels clash, then the original rule applies.

PRINCIPLES OF READING AND WRITING IN STORE

Readingandwriting information in the core store is performed by the followingoperations.
1 Read Regenerate, in which information is read from the selected core store addresses and then

written back in these addresses for further use.

2 Clear Write, in whichthe selected core store addresses are cleared (zeroized) during the read part
of the read/write cycle and newinformation is written back to these addresses during the write
part of the read/write cycle.

3 •Read-Pause-Write, in whichinformation is read from the selected core store addresses and is
then updatedby newinformation andwritten back to these addresses.

The uses of these operations are givenbelowin the short account of the principles involvedin reading
from andwriting to the core store.

I

Amagnetic core store physically consists of matrices of ferrite rings threaded withwire throughwhich
current can be passed to magnetize the rings (see Figure 3). Each core (ring) can be magnetized in
either direction in terms of two remanent states of magnetization. That is, if a current of sufficient
strength is applied to the core and then removed, the core will settle to a certain stable state of mag­
netization. If this current is reversed and then applied and removed, the core will settle to another
stable state of magnetization. These two states of remanence are knownas posttive remanence and
negative remanence. Positive remanence is used to indicate 1 and negative remanence to indicate 0,
so that each core can be used to store one bit.
A section of a plane of a core store matrix is shownin Figure 4 and it can be seen that each core is
threaded with a number ofwires: current drive, read and inhibit wires. The current drive wires are
arbitrarily called the X andYcurrent drivers and any particular core can be addressed by selecting the
twoappropriate X and Ywires. This selection is performed by the store selection electronics.

If a current equal to half the strength required to magnetize a core is applied simultaneously to the
selected X andY wires the result will be a magnetizing current of sufficient strength being applied to
the core at the intersection of the twowires. This method of applyinghalf currents to the X and Ywires
is used so that the only core affected by the full current is that which is at the intersection. Other wires
throughwhichthese half currents pass are not affected because the half current is not of sufficient
strength to change the magnetic state of the cores.
To read the state of a core, the methodused is to write a 0 to the core and note the change, if any, in the
state of the core. To enable this to be done, a third wire, called the read wire, is threaded through
every core in the plane and a current will be induced electro-magnetically in this wire only if the state
of the core changes. Thus, if the core had previously been storing a 0, no response will be given from
the wire, but if the core had been storing a 1, a response will be given indicating a change in the core's
state. At the end of this read cycle all the selected cores in the matrix will have been switched to the 0
state. Therefore, if it is necessary to retain the information in store,' the information just read must be
written back immediately. For this purpose the read cycle is followedby a regenerate cycle.
During the regenerate cycle the selected X and Ywires have a reverse current applied to them such
that the cores at the intersections have a magnetizing current that is sufficient to return them to the 1
state. To prevent this reverse current switchingcores that were read as O's, every core in the matrix
is threaded with a fourth wire called the inhibit wire. If a 0 was read, then a current is applied to the
inhibit wire coincidentwith the half currents applied to the X and Ywires. The resulting net magnetizing
current linkingwith the selected core is insufficient to switch the core from the 0 state. Whenthe
program is writing to core store, the write cycle is always preceded by the read cycle described above,
whicherases the store address's previous contentby filling it with O's. The methodused to write
information to store is similar to that of regeneration, the difference being that the currents applied to
the inhibit wires are derived fromthe information to be written insteadof from the information read from
the store during the read cycle.

4095 (4,68) 7

Words Words

Hardware 0 1 2 3
Store
Addresses 4 5 6 7

8 9 10 11

12

Module 0 Module 1

Figure 5 A two-way interleaved store

•

Words Words Words Words
I

I
Hardware 0 1 2 3 4 5 6 I 7I
Store I
Addresses 8 9 10 11 12 13 14 I 15I

I
16 I

I
I
I
I
I
I
I
I
I
I

Module 0 Module 1 Module 2 Module. 3

Figure 6 A four-way interleaved store

8 ~095 (4.68)

PARITY CHECKING

Parity checking is the term given to the practice whereby the number of L-btts in a word is counted
to ensure that it is always odd. Whendata and instructions are originally entered into the computer
system, a count is made of the number of I-bits. If the number is even, bit 25 is set to 1, thus making
the total odd. Subsequently, every time the information is transferred from one location to another, a
check is made to ensure that oddparity is maintained, this being sufficient evidence of a successful
transfer.
Each central processor has a parity check unit which checks the parity of the information transferred
from the core store during a read cycle, and generates the parity bit for information transferred to
the core store during a write cycle. During a write cycle, the parity of the word, generated by the
parity check unit, is written to the word as bit 25. During a read cycle, the parity of the word read from
the core store is generated and compared with the content of the parity bit. If the comparison fails, the
central processor halts. 1902A and 1903A processors however w.illhalt if the parity error is in
Executive. In object mode an interrupt occurs and Executive can determine which location is in error.

STORE INTERLEAVING

Store interleaving is a facility that, used in conjunctionwith two or more store access mechanisms,
provides a means of avoiding core store limitation in a system, In an interleaved store each store
access mechanism is associated with one module or group of modules. The store hardware addresses
are arranged so that each successive address or pair of addresses, depending on the width of the store,
is in a different module. The 1900 Series central processors that can have interleaved stores provide
for either two- or four-way interleaving.

•

Two-way interleaving

A two-way interleaved store that is twowords wide will have its hardware store addresses arranged as
shown in Figute 5. Since each store mechanism can access two words at once, and there are two such
mechanisms, a total of four words can be accessed at one time.

Four-way interleaving

A four-way interleaved store that is twowords wide will have its hardware store addresses arranged as
shownin Figure 6. A total of eight words can therefore be accessed at one time.

Efficiency increase

The effect of store interleaving depends on the relative speeds of the central processing unit and the
store and also on the functions being performed. A program containing many floating-point instructions
is less likely to be store limited, so that interleaving will have less effect. On the other hand, a sequence
of instructions with short times will be performed with a considerable time saving if the store is inter­
leaved. Interleaving will in any case greatly reduce the percentage degradation of C.P.U. performance
caused by store access clashes resulting from corncident peripheral transfers.

Store failure

If part of the store fails it is not possible to continue work with the store interleaved in the same manner.
However, with minimal intervention by I.C.T. engineers, it is possible to isolate the defective module
and reconfigure the store so that work can be continuedwith reduced or no interleaving.

ALLOCATION OF STORAGE

The core store can be considered as being divided into two distinct areas; an Executive area, and an object
program area. The Executive area contains the Executive program which, as one of its functions,
allocates areas of core store to the object programs entered into the system. Executive is loaded into
the sto-re from Word 0 onwards and the number ofwords occupied by a specific Executive depends on
the configuration of the installation on which it is used. Object programs are stored in the areas of
core store immediately following the area reserved for Executive. The absolute starting address of an
object program area allocated by Executive is always a multiple of a number that varies according to
the central processor concerned as follows:

409516.70) 9

•
I

f

1901 128words

1902/3 256

1904/5 64

1906/7 128

1904,5jE,F 64

1906,7/E,F 64
1901A 64
1902,3/A 64
1904A 64
1906A 64

Consequently, the first word of an object program will not necessarily be the word following the last
word of the preceding program in store.

The number of words of core store required by a specific object program ,is calculated and rounded up
to a multiple of 64 by the compiler and the result is included in the requisition slip that precedes that
program. Whenthe program is loaded, this value is used by Executive to determine whether sufficient
storage is available to allow the program to be accepted. H sufficient storage is available, Executive
allocates an appropriate area to that program and records the absolute starting address and ending
address of the area; the program is then entered into the store.
The difference between the programmer's relative word address and the absolute word address is
adjusted by hardware by reference to information held by Executive. H the central processor is operating
in datum/limit mode (for details of paging mode see Chapter 8), each time a program is activated
Executive sets into a hardware register, knownas the datum register, the absolute word address cor­
responding to Word 0 (starting address) of .that program area. For example, if the first word of the
object program area were held in absolute address 2176, then Executive would set this value in the
datum register. At each store reference by the object program the datum value is added to the relative
address used within that program to obtain the absolute address.
A hardware register, knownas the limit register, is also used to determine the limit of store area that
an object program may reference. On the smaller 1900Series central processors there is no actual
limit register, but a prewrred number is permanently set to correspond to the last absolute word
address of core store. Onmultiprogramming machines, the limit value is variable and is determined by
Executive in a similar manner to the datum value. On all of the central processors a check is carried
out by hardware to ensure that no store reference is made by an object program to an address less than
datum or greater than relative address limit. Thus, in a core store containing more than one object
program and containing both a datum and limit register, each program is completely protected from any
other program.
Each time an object program is run on a multiprogramming central processor, the program will almost
certainly occupy a different area of core store from the area that it occupied on its previous run.
However, this aspect of store allocation is automatically provided for by the fact that, as previously
stated, each program area is considered to be numbered from zero relative to that program's datum.
This method of programming by relative addresses allows programs to be positioned anyw]1erein the
store without the need for the programmer to knowthe absolute store area that his program will occupy
on a specific run.
Whena program is finished and no longer required in the store it is deleted, that is, it is removed from
the Executive directory of active programs. H necessary a multiprogramming Executive will then re­
locate the programs in the store; that is, it will move up programs in higher addresses towards the
Executive area in order to fill up the area left by the deleted program. Thus, all free addresses are
then in one continuous area. The Executive datum and limit records for the programs that have been
moved are amended to the new absolute addresses.

•

LAYOUT IN STOREOF OBJECT PROGRAM

For the purposes of programming each 'area of core store can be considered as conststing of a number
of distinctive sections, as illustrated opposite.

10 4095(6,70)

• -
Limit o~object program ~

Upper Data Store

Datum of object program .----7

..
Program Store
Lower Data Store
Reserved Store
SwitchWord

Entry Parameters Store
Reserved Store
Accumulators

The relevance of the sections is briefly described below.

ACClIinulators-Words 0 to 7

These eight consecutive words constitute the program's accumulators and are used for arithmetic,
copying, testing and logical functions. Accumulators 1, 2 and 3 can also be used as modifying registers.

Reserved store and entry parameters store -Words 8 to 29

These two sections occupy an area from Word 8 to Word 29. Certain words within this area are reserved
exclusively for use by Executive. other words in this area may be used by Executive and/or, subject
. to certain restrictions, by an object program. The purpose and restrictions' on the use of tile words in
this area are as follows: .

Word 8 This word is used for control purposes by Executive and by the hardware of the
central processor; it should not be changed by the object program. It is Executive's
link word for that current object program number. (Note: Executive links are not
of the same format as object program subroutine links, and their format varies
according to the central processor used.)
This word is used by Executive to provide a reply to the object program after
certain peripheral instructions have been used. Word 9 is also used by the hard­
ware of certain central p,rocessors. An object program may access Word 9 only in
accordance with the specification of the relevant instructions.
These words are used primarily for communication between parts of the object
program written by the user, and standard ICL subroutines called in this object
program. They are not used by the operating environment.
An object program must not alter and cannot rely on the contents of these locations.
They are used by Executive to hold or dump the contents of the normal two-word
floating-potnt accumulator.
An object program must not alter and cannot rely on the contents of these locations,
if the program member makes use of extended precision floating-point facilities, or
the ownmonitorfng of illegals (and floating-point overflow or underflow, if
applicable). The locations are overwritten uponeach ownmonitoring entry to the
member, and used as a dump for the extension to the floating-point argument and
variable limit register.

Word 9

Words 10 and 11

Words 12 and 13

Words 14 and 15

Words 16 to 19
-

These words are reserved for use by the various compilation systems. An object
program may use these words only in accordance with the compiler spectficatton,
These words are used by compilers to store entry parameters; that is, instructions
referring to entry and restart points in the object program.

Words 20 to 29

Switch word - Word 30

. This word contains the setting of the 24 operator's switch bits. Switch0 is represented by the most
significant bit ofWord 30. The 'ON' state of a switch bit is represented when the appropriate bit is '1'.
An object program may examine and alter the state of any of the bits in Word 30.

B 4095(6.71)

-
Reserved words - Words 31 to 44

This word is subject to the same restrictions as Words 16 to 19; additional restrictions apply if sub­
programming is used, (see below)but in this case the additional areas reserved for subprogramming
start at Word 32.

Lower data store -Words 45 up to 4,095

The lower data store normally starts at Word 45 and the area that it occupies varies according to the
needs of a particular program with the limitation that this area may never extendbeyondWord4,095.
The lower data store consists of those areas in whichthe programmer wishes to hold information that
will be frequently and directly addressed.

The division of data storage is introduced for the reason that all program instructions, except branch
instructions, can address directly only the first 4,095words of the object program area in which they
are used. This limit is imposed by the fact that the N field of the instruction word format consists of
only twelve bits (see Chapter 5). Thus the maximumaddress that can be held in the N field of the
instruction is that for Word4,095. To refer to words beyondWord4,095, indirect addressing entailing
the use of modifier registers must be employed. The division of the two data store areas, whichis
under the programmer's control, may therefore be used to ensure that the lower store is reserved to
hold information frequently and directly accessed, while the upper store is reserved for information of
a lengthy or infrequently used nature, such as input and outputareas and tables that wouldnormally be '-..,,-
accessed by modified instructions anyway.
The programmer must specify to the compiler the areas required; the number of words of core store
specified will then be allocated by the compiler during the compilation of the object program.

Program store

The location of the program store area will vary according to the lower data store requirements of the
program, but it always immediately follows the lower data store. The program store contains the
program instructions.

BRANCH MODES

There are twobranch modes in the 1900Series order code, normal branch mode and extendedbranch
mode. If the' central processor is workingin normal branch mode, the address part of a branch instruc­
tion is limited to 15bits. This effectively limits the addressable size of store holdinginstructions to
32K.To allow for larger core stores, the central processor may alternatively work in extendedbranch
mode. in which case the effective N address of the branch instruction consists of 22bits. and the
addressable size of core store holdinginstructions is extendedto 4M,that is, 4,096K.For details of
these modes see Chapter 5.

UpP6. data store'

The upper data store immediately follows the program store and its location will vary according to the
needs of a particular program. The upper data store is used to store data of lengthy or infrequently
used nature, whichwill normally be addressed by modified instructions.

ADDRESSING MODES

There are two addressing modes in the 1900Series order code, 15-bit address mode (15AM)and 22-bit
address mode (22AM).Instructions in a program to be run in 15AMhave 12bits for the address of the
operand; by modification, the address size can be extended to 15bits so that data can be stored in an
area of 32K.To allow for larger core stores, a program can alternatively be run in 22AM,22bits
being allowedfor the operand address. Thus data can be stored in an area of 4M. For details of these
modes see Chapter 5.

Additiona Iwords reserved when subprogramming isemployed.

Whensubprogramming is employed, the datum of the object program area is commonto all members of
a subprogram group. Furthermore, all members use the same accumulator area. To eliminate the

12 4095(6.70)

-
programming difficulties this condition could cause, Executive dumps and restores Words 0 to 15
inclusive when switching from one member to another. For this purpose an additional sixteen words of
the object program area are reserved for each member; for example, if a program has Members 0, 1
and 2 the number of additional words reserved will be 3 x 16 = 48. Thus the lower data store will begin
at Word 80.

AVAILABILITY OF CORE STORE

The sizes of core store available with particular processors are given in the description of the pro­
cessors concerned in Chapters 10 to 12. If a large core store, requiring free-standing core store
cabinets, is fitted, it is usually necessary to have a store extension unit (S.E.U.) and possibly remote
store units (R.S.U.s) as well. These devices are needed to supply extra power and to control transfers
of information between cabinets. A store extension unit is fitted in the first core cabinet and a remote
store unit is fitted in each free-standing cabinet. The devices are supplied as standard for every
configuration that requires them and, since they are contained within the core cabinets, they take up
no extra space.

•

4095(5.69) 13

Chapter 3 The arithmetic and control units

GENERAL

The arithmetic and control units are the part of the central processor principally concerned with the
manipulation and flow of data throughout the computer configuration. These units are made up of gates
and registers, and associated with the control unit is at least one timing generator.

I

CLOCK PULSES

Clockpulses are produced at intervals by the timing generator or generators and are used to control
the operation of microprograms. Every instruction comprises a number of operations, collectively
known'as the microprogram, and each of these operations must be completed in the interval between
pulses, the next pulse triggering the next operation. Each instruction is therefore performed over an
integral number of pulses.
The intervals at which pulses occur vary from one central processor to another and from one operation
to another within anyone central processor. The interval is usually between 0.5 and 6 microseconds,
the long delay occurring when a store cycle is included in the operation. Amill timer, or clock pulse
counter as it is also known,may be provided to count the number of pulses occurring during a program.
If all operations within the control and arithmetic units are associated with the pulses produced by one
timing generator the central processor is termed synchronous.However, within a synchronous central
processor, certain features may have their owncontrol and timing generator, in which case they can
operate autonomously.Suchis the case, for instance, with the P.A.C. and the S.A.M. (see Chapter 6)
and some floating-point hardware. A distinction between the floating-point hardware supplied with the
1905and that whichmay be supplied with the 1901is that the former can operate autonomouslywhereas
the latter cannot.

•

THE CONTROL UNIT

The control unit provides the means of controlling the carrying out of instructions and is also used in
the control of peripheral transfers. Its principal components are:

1 A control register, in which the control address is stored. The control address is the address of
the next instruction to be obeyed, and it is normally increased by unity after each instruction has
been obeyed, so that the next instruction may be read from store when required.

2 Circuits that decode the functionpart of an instruction and set up other circuits to obey the
instruction.

3 Circuits that decode the address part of an instruction so that the required data can be read from
the appropriate store address.

THE ARITHMETIC UNIT

The arithmetic unit consists of a mill.and registers that enable calculations and logical functions to be
performed. Its principal components are:
1 Amill, or adder as it is sometimes termed.

2 One or more registers into which operands may be transferred whilst being operated upon.
3 Facilities for shifting operands right or left for such purposes as multiplication and division and

facilities for forming the inverse of a value.

~095(~.68) 15

LAYOUT OF THE CONTROL AND ARITHMETIC UNITS

The arithmetic and control units are illustrated in Figure 7. This figure represents a typical control
unit and arithmetic unit as found in many 1900Series computers. However, the smaller computers in
the range, below the 1902, have fewer registers, and the larger computers, such as the 1906and 1907,
have additional registers. The number of registers used affects the price and speed of the machine;
nevertheless the principles of operation are in all cases the same.

The mill

The mill is a 24-bit parallel adder /subtractor that can carry out logical and arithmetic operations on
the contents of the registers when these are transferred to the mill. Whenthe operation has been per­
formed, the result is transferred back to a register. On less expensive 1900processors the width of
the mill is reduced to six bits thereby eliminating a considerable amount of circuitry but also increas­
ing the times of arithmetic operations.

Register A

Register A is used as a working register in the performance of intermediate operations. It has normal
and inverse outputs, the latter being used to form the complements of numbers for binary subtraction.
This register is also used in high speed mode peripheral transfers (see page 50). •
Register B

Register B is used as a working register and also to transfer operands to and from store. Parity is
formed from the contents of B when store accesses are made.

Register P

Register P is used to hold the instruction address (Bits 9 to 23), special Executive modes (Bits 2 to 8),
the carry from multiple length operations (Bit 1) and a record of any overflow that occurs during the
execution of an instruction (Bit 0).
Whenmore complex instructions, such as multiplication, are performed, register P is required as a
working register, and its ability to shift operands left or right internally is used. WhenP is used as a
working register, its normal contents are temporarily stored in location eight of the program's
store area.

Datum and limit registers

These registers are used to store the datum and limit of the program being executed. The datum is
the first word in store of the area reserved for the program, and the limit is the last word of the pro­
gram's area. (See also Chapter 7 Multiprogramming.) Single program machines have no limit register
since the limit is constant, the last word in store, and it is impossible to violate it.

Register N

R.egister N contains various quantities as an instruction progresses. Initially it contains the instruction
address and then the operand address part of the instruction. It also has the ability to count downin
decrements of unity and is used as a counter in instructions such as multiply and shift.

Registers F.X.M

These registers are used to hold the function, accumulator address and modifier address of an instruc­
tion respectively. R.egister X has an additional outputX+l that is used to specify the second accumulator
used in double length operations.

16 4095 (4.68)

-
HOW INSTRUCTIONS ARE PERFORMED

Amethod of gathering insight into the way in which the control unit, arithmetic unit and store work
together is to run through the short program, "add x to y and place the result in the store".

Assume that:
1 Operandx is in store address 2003;
2 Operand y is in store address 2004;
3 The answer is to be placed in store address 2005;

Three instructions are required and these are:
4 Transfer the content of store address 2003 (x) to an accumulator, X I, (function000),where Xl

is also in store.
5 Addthe content of store address 2004 (y) to the content ofXl (function001).
6 Transfer the content ofXl (x + y) to store address 2005 (function010).
Assume that these instructions are located in store addresses 5000, 5001, 5002.

FIRST INSTRUCTION

1 Sends the control address (equal to 5000)from the control register to store selection.
2 Receives the content of address 5000 (first instruction) and separates the function and address

parts.
3 Decodes the function, which causes the address bits to be sent to the store selection circuits

and sets up the route for store read-out ofWord 2003to the arithmetic unit, and thence to
RegisterA.

4 Causes the content of store address 1 to be cleared and then the contents of Register A to be
copied to store address 1.

5 Unity is automatically added to the control address in order that the next instruction may be
retrieved from store.

•

SECOND INSTRUCTION

1 Sends the control address (equal to 5001)from the control register to store selection.
2 Receives the content of address 5001 (second instruction) and separates the function and address

parts.
3 Decodes the function, which causes the address bits to be sent to the store selection circuits,

sets the route for the store contents ofWord 2004to Register A, then reads.
4 Sets 1 on the store address highway.Reads the contents of address 1 to the mill and causes the

mill to add the incomingnumber to the content of Hegister A, storing the sum in Register B then
writing to Word 1.

5 Unity is automatically added to the control address in order that the next instruction may be
retrieved from store.

THIRD INSTRUCTION

1 Sends the control address (equal to 5002)from the control register to store selection.
2 Receives the contents of address 5002 (third instruction) and separates the function and address

parts.

3 Decodes the function, which causes the address bits to be sent to the store selection circuits and
sets the route to the arithmetic unit from the store. Reads Word 1 to Register A.

4 Sets 2005on the store highway,clears word 2005and causes the content of RegisterA to be trans­
ferred to store address 2005.

5 Unity is automatically added to the control address in order that the next instruction may be
retrieved from store. .

4095 (4.68) 17

FR
PE

0 0 ;~

~ .#. MILL
''III .II

SHIFT SHIFT .11.. TO
LEFT RIGHT , PERIPHERALS

, ~ A r-O---~M
,

REGISTER

RIPHERALS
~ "\._ INVERT / IV'~ ..II

J.. ~

•• B / I\-, REGISTER L...r tv~ ~ CORE, STORE
SHIFT

~ ••••
,~

II.. P I" I\-r REGISTER

.. DATUM,.
I" "\

I" ".,
RESERVATION

CHECKER
••• LIMIT r ~,

A~

COUNTDOWN

~,~

~ N, REGISTER

M

•• FXM x, REGISTERS x+l

Figure 7 The arithmetic and control units

18 4095(5.69)

-

•

-
Chapter 4 Representation of data

WORD FORMAT

As stated previously, the basic unit of storage on the 1900Series computers is called a word and con­
sists of 24 consecutive bits. For programming purposes, these 24 bits are numbered from 0 to 23
starting at the most significant (left-hand) end of the word.
Aword can hold data in various forms, the 24bits being interpreted according to the manner in which
the word is used.

•
CHARACTER FORM

Data is nearly always input in character form, t.e, in the form of decimal numbers, letters of the
alphabet, and other symbols such as commas, solidi, and asterisks. This is evidently the most con­
venient form for the user. Data may remain stored in 'this form provided that it is not involved in any
calculation other than the production of hash totals. If data is to be involved in calculations it must
first be converted into pure binary form, Le , one of the forms described below.
A character of data is stored in six successive bits, character positions being referred to for pro­
gramming purposes as no to n3 as shown in the followingdiagram.

n2

character 0 character 1 character 2 character 3

o to 5 6 to 11 12 to 17 18 to 23

Bit positions

PURE BINARY FORM

Whendata is held in character form each pattern of six bits has a unique significance but individual
bits have no significance at all. Whendata is held in pure binary form, individual bits have a defined
value and the value of any group of bits is the total of the values of individual bits in the group.
Data in pure binary form is always interpreted as having a numerical value. Apart from counter
modifier words, words holdingpure binary data generally have the most significant bit (Bit 0) reserved
to indicate whether the value contained in the rest of word is positive or negative. If Bit 0 is set to
zero the value of the word is positive, and if Bit 0 is set to one the value of the word is negative. If a
number is negative, it is expressed as a complement.
Signednumbers may be integers, fractions, mixed, fixed- or floating-point, and may be Single or
multiple length, i.e, may be held in one or more words. The interpretation of the form in which data
is held depends on the instruction operating on the data. For instance, two of the divide instructions
(044and 045)will always interpret the dividend as a double length number, and a floating-point instruc­
tion will always assume data to be held in floating-point form.

Counter modifiers

Acounter modifier, or index, word can be used in two forms: as a word counter modifier or as a
character counter modifier. A counter modifier word can be used to hold both count and modifier only
in 15AM(see Chapter 5), or if held in lower data store in 22AM.

4095 (4.68) 19

-
WORD COUNTER MODIFIER

Aword counter modifier has the following format:

9 bits

I
I I

The counter (Bit 0 to Bit 8) contains a count of the number of times an operation is to be performed.
The counter must lie in the range 0 to 511; a count of zero will be treated as a count of 512by the
appropriate instruction. The modifier (Bit 9 to Bit 23) contains the word address involved in the opera­
tion. For each repeat of the operation the counter is decreased by 1 and the modifier is increased by
either 1 or 2 according to the instruction used.

Counter

15 bits I
I
I

I
II

B81B9 B231
Modifier ,

CHARACTER COUNTER MODIFIER

A character counter modifier has the following format:
2 bits 7 bits 15 bits

C Counter I Modifier I
I ,

The character modifier C (Bit 0 and Bit 1) contains the character positions 0, 1, 2 or 3 within a word.
The counter (Bit 2 to Bit 8) contains a count of the number of characters involved in the operation. The
counter must lie in the range 0 to 127; a count of zero will be treated as a count of 128by the appro­
priate instruction.
The modifier (Bit 9 to Bit 23) contains the word address involved in the operation. Mter each operation
1 is subtracted from the counter and added to the character number (Bit 0 and Bit 1). If the resultant
character number is 4, tbe character modifier is zeroized and 1 is added to the word modifier (Bit 15
to Bit 23).

COUNTER MODIFIER WORDS IN 22 AM OR EBM

If a counter modifier word is held in lower data store it may use the above formats irrespective of the
addressing mode in which the program is running. Otherwise, in 22AMor EBMtwo words must be
used, one word to hold the count andthe other to hold the modifier. The least significant 22 bits of the
modifier word are used to hold the modifying value for the word address, the remaining two bits being
available to modify the character address. The count is held as a binary number at the less significant
end of the count word.

Fixed-point numbers

SINGLE-LENGTH INTEGER

For a single-length integer the binary point is assumed to be immediately to the right of Bit 23. Single
length integers lie in the range _223to +223 -1 inclusive.

Sign

B1 B2 (23bits) B22 B23

23 22 21 1Value -2 +2 +2 _ _ _ _ _ _ _ _ _ _ -+2 +20 Assumed Binary Point

A negative integer is stored as its complement with respect to 224, i.e. -n is stored as 224 -no

MULTI-LENGTH INTEGER

For a multi-length integer the binary point is assumed to be immediately to the right of the least
significant word. Bit 0 of all words other than the most significant must be set to zero and is irrelevant
to the value of the number. Multi-length integers lie in the range of _223n to +223n -1 where n is the
number of words in which the number can be held.

20 4095(5.69)

-
SINGLE-LENGTH FRACTION

For a fixed-point fraction the binary point is assumed to be between Bit 0 and Bit 1, i.e. immediately
to the right of the sign bit. Fixed-point fractions lie in the range :'1~0to +1.0 _z-23 inclusive, a negative
fraction being stored as its complement with respect to 29.

Sign

Bl B2 (23bits) B22 B23

2-12-2 2-222-23Value _20

Assumed
Binary Point

MULTI-LENGTH FRACTION

For a multi-length fraction the binary point is assumed to be between Bit 0 and Bit 1 of the most
significant word. Bit 0 of all words other than the most significant must be set to zero and is irrelevant •
to the value of the number. Multi-length fractions lie in the range of -1.0 to +1.0 _2-2311 where n is the
number of words in which the number can be held.

MIXED NUMBER

For a mixed number the binary point can be assumed to lie between any twobits of the one or more
words holding the number. However, the normal 1900Series convention is to use twowords to store
a mixed number: one word for the integral part and one word for the fractional part. In this case the
binary point is assumed to lie between Bit 23 of the more significant word and Bit 1 of the less signifi­
cant word. Bit 0 of the less significant word must be zero and is irrelevant to the value of the number.
The term used to refer to a number of this type is mid-point number.The range for mid-point numbers
is _223to 223 _2-23;the format is shownbelow:

IgnoredI
Vo' Bl B2___ (23bits) ___ B22B23 T

Bl B2___ (23bits) ___ B22 B23
0

Value _223+222+~1 __ _._+21 +20 2 -1+2-2 _____ 2-22 +2-23

Assumed
Binary Point

Floating-point numbers

The use of floating-point arithmetic greatly extends the numerical range of the central processor and
at the same time relieves the programmer of the responsibility of correctly positioning the binary
point during protracted mathematical operations.
Anumber n, in floating-point form, consists of an argument (or mantissa) r and an exponent e such
that n = r.2 ewhere

r is a signed fractional argument in the range 1>r ;;.~,
or -~ >r;;. -1 or, in exceptional cases, r = 0
e is a signed integral exponent in the range -256,;;e c 255.

These ranges correspond approximately to a decimal range for n of _1076< ndO76. For smaller
numbers in the range -10-77 < n < 10-77, n is considered as zero.
Before floating-point instructions can be used, the data concerned must be converted to floating-point
form. The conversion is achieved by .scaling a number to a convenient fractional size and storing the
scaling factor as the exponent. Scaling is performed by a shift operation, the number of places shifted
being the scaling factor.

4095 (4.68) 21

-
Floating-point numbers can be held in single-, double-, or quadruple-length form. The double-length
form is standard. The single-length form is used only with the 114 (NORM)instruction and the
quadruple-length form is permissible only on certain central processors or with certain languages,
e.g. FORTRAN.
Floating-point operations are carried out in a floating-point accumulator. The manner in which ex­
ponents are held in the floating-point .accumulator is different from the manner in which they are held
in store. The store representation of exponents is given in the sections below. Whena floating-point
number is loaded into the floating accumulator Bit 15 of the second word (the most significant bit of
the exponent) is inverted. By storing exponents in this way floating-point zero is made to have the
same representation as fixed-point zero and is thus detectable by the same branch-on-zero instructions.

SINGLE-LENGTH

The argument is held in the more significant word, the first bit of which is a sign bit. The exponent
is held in the least significant nine bits of the less significant word. The exponent is held in the form
e + 256; thus any value below 256 indicates a negative exponent. Bit 0 of the less significant word is used
to indicate exponent overflow; Bits 1 to 14 inclusive are left clear .

Sign I
~------------------------~

• I
.Exp. I left clear I

9 bits I
:O/fl~w I. I

"I

IBO IBl B14 I B15 B23 ,--.
SecondWord 1

exponent

23 bits

IBO IBl
First Word 1

argument

DOUBLE-LENGTH

The argument is held in the more significant word and Bits 1 to 14of the less significant word. In all
other respects the double-length form is the same as the single-length form.

37 bits (effectively) 9 bits

Sign First word I IIExp. I Secondword

iO/fldw
B231BO IBI B14B23

argument argument exponent

QUADRUPLE-LENGTH (EXTENDED PRECISION)

The first two words of an extended precision floating-point number have the same contents as a double­
length floating-point number. The third word and the fourteen most Significant bits of the fourth word
hold the least significant extension of the argument. The remainder of the fourth word is undefined.

First Word SecondWord Third Word Fourth Word

Sign Exp
O/flow

B231 IBO IBl B14 IB15 B23 I I BO IBI B231 IBO IBl
I I •~ . ~

I• I" •• ••• 14

argument exponent argument argument undefined

B14 IB15 B23
•I

~4 •••
argument

(most significant part) (least significant part)

'---
22 4095(5.69)

OVERFLOW AND CARRY

One-bit registers associated with, but stored separately from, a program are used to record the occurrence of'over­
flow and carry conditions.

Carry
Carry occurs in multi-length working when a quantity originally stored in one of the less significant words can no
longer be held in 23 bits. As a consequence, the signbit, which Willhave been set to zero originally, becomes set
equal to one. When this occurs, it is cleared and the carry register (C) is set equal to one.

The carry register can be utilized whenever carry is likely to occur: any appropriate instruction will clear the
condition, by adding one to the next more significant word, and re-setting tlte carry register to zero.

Overflow

FIXED·POINT

Overflowoccurs when a singleword working area, or the most Significantword of a multi-length working area,
becomes too small to hold a quantity. As a result, the value of the sign bit is changed and the overflow register (JI)
is set equal to one. The condition can be detected by testing the overflow register whenever overflow is likely to
occur. •

I
I
t

If overflow has been caused by a singleaddition, subtraction or multiplication (or by a factor of less than two as a
result of.a division) then the error in the answer Willbe minus two if the answer appears positive and plus two if
the answer appears negative. Recovery can therefore be programmed.

112 and 113 (SRAV) and 114 and 115 (NORM) instructions are especially useful in this respect.

FLOATING·POINT

If, during any operation in the floating-point accumulator, the exponent attempts to exceed 255, exponent overflow
is said to occur and Bit 0 of the second word is set to 1, the state of the other bits being indeterminate. If a floating­
point number with Bit 0 of the second word set to 1 is loaded into the floating-point accumulator, this bit remains
set.

The setting of overflow can be tested directly only on processors whose order code includes the 076 (BFP) instruc­
tion. However, if the exponent overflow bit is set.and the contents of the floating-point accumulator are transferred
to store (instruction 137, SFP) or converted to mid-point form and stored (instruction 131, FIX) then V will be set.
In the case of instruction 137, Bit 0 of the second word of the result will also be set to 1.

If the exponent of a floating-point number attempts to become less than - 256, the value of the floating-point
number is regarded as zero and the argument and exponent are set accordingly. This may also occur when the
exponent becomes equal to -256. Floating-point zero thus has the same representation as fixed-point zero. However,
it is important to note that if underflow occurs during a sequence of operations in which overflow has previously
occurred, exponent overflowWillcontinue to be indicated by the setting to one of the exponent overflow bit. In
this case floating-point zero will not have the same representation as fixed-point zero.

FIELD DESCRIPTIONS

There is a need to clarify words that, when applied to fields read or written by an object program, have specialised
meanings.This terminology is explained below.

Defined

Full details of every option are recorded.

Ignored

The object program may store any value in an ignored field but cannot rely on its being preserved.

Reserved

This term indicates a field set aside for future use. When reading a reserved field, the object program should ignore
the field as its contents cannot be relied upon. Whenwriting a reserved field, the object program should zeroise
the field.

_.
4095(6.70) 23

Chapter 5 Format of instructions

GENERAL FORMAT
The general word format of a program instruction as stored in the computer is represented syrn­
bolicallyas:

XFMN

where
X

N

is the accumulator field and specifies one of eight accumulators (0 to 7). These are the
first eight words of the object program area and are used to store one of the operands to
be used by the instruction.
is the operation field and specifies the function the instruction is to perform.
is the modifier field and is zero or the address of an accumulator (1, 2 or 3) whose content,
if any, is to be used to modifythe N field.
is the operand field and is the core store address containing the other operand onwhich
the instruction acts:

Certain program instructions use the accumulator and/or the operand fields for special purposes.
These special cases are explained under the applicable types of program mstructtons.

•F
M

There are four basic formats for instructions in the 1900 Series order code. An instruction is always
held in a single word. The baste formats are:
1 Normal instructions

• 2

3

Branch instructions
Shift instructions

4 Floating-point instructions

Normal instructions

This format covers such instructions as add, multiply, divide, subtract and store.
Field Symbol X F .M N

Number of Bits. 3 7 2 12
Bit Positions o to 2 3 to 9 10 and 11 12 to 23

Branch instructions

There are two sets of conditional branch instructions and twounconditionalbranch instructions in the
1900 Series order code. The first set of conditional instructions branch according to the contents of
the accumulator whose number is stored in the X field. The second set of conditional instructions
branch according to the state of V, C, or the floating-point accumulator. This second set of instructions
has a single function code which is modifiedby the contents of X.
The twounconditionalbranch instructions, 070and 074with X= 0, are similar except that the
former stores the link setting inX.

All branch instructions have the same basic format. There is noMfield, since they cannot be modified,
although the 023 instruction exists to give the same effect as wouldbe achieved by modifyinga branch
instruction.
Field Symbol
Number of Bits
Bit Positions

X F N
3 6 15

o to 2 3 to 8 9 to 23

4095 (4.68) 25

Shift instructions

The N field of a shift instruction is subdivided into Nt and N s' Certain groups of shift instructions have
the same function code which is modifiedby the contents ofNt.
Field Symbol X F M Nt Ns
Number of Bits 1 3 7 2 2'1 10
Bit Positions o to 2 3 to 9 10and 11 12and 13 14 to 23
Nt specifies the type of shift and is considered as part of
Ns specifies the number of places of shift.

Floating-point instructions

The value in theX field of a floating-point instruction does not represent an accumulator but qualifies
the function code. The value ofX is givenby the programmer.
Field Symbol X F },f N
Number of Bits I 3 7 2 12 •Bit Positions o to 2 3 to 9 10and 11 12 to 23
The group 16 instructions have a Similar format.

ADDRESSING AND BRANCH MODES

Concepts

There are two addressing modes and twobranch modes in the 1900Series order code. The essential
difference between the modes in both cases is the size of the address field.
The most frequently used modes are 15-bit address mode (15AM)and dire-ctbranch mode (DBM).Both these
modes allow a maximum of 15bits to hold an address, which gives a limit of addressability within any
program of 32Kwords. Thus the program and its data areas must not be larger than 32Kwords.
To allow larger areas of store to be addressed 22-bit address mode (22AM)and extended branch mode
(EBM)are provided. Facilities for extendingthe address to 22 bits allow an area up to 4Mwords of
store to be occupiedby any program and its data areas.
These modes indicate the instruction code and addressing features assumed by the program and form
part of the information stored by Executive for each program. Whena program is activated the central
processor is switched into the appropriate addressing and branch mode.

Setting and switching of modes

MODE WORD

The modeword holds the mode setting of a program in Bits 21 and 23 as follows:
Bit 21 = 0 indicates direct branch mode

= 1 indicates extendedbranch mode
Bit 23 = 0 indicates 15-bit address mode

= 1 indicates 22-bit address mode
A program may be run in any combination of these modes in a suitable environment. The remaining
bits of the modeword are undefined;Le . they shouldbe set to zero whena modeword is produced,
but should not be assumed to be zero whena modeword is examined.

MODE SETTING ON PROGRAM LOADING

The mode word is Word 1 of the supplementary request block. This block is produced by the compiling
process, or whena program is dumped, for any program not in 15AMor DBM.The decision as to
whether a program is to be run in one mode or another is therefore taken by the compiler although
this decision may be influenced by the programmer's use of compiler. directives. A supplementary
request block is acceptable only to Executives with 22AMor EBMcapabilities; an attempt to run a
program compiled in 22AMor EBMon an Executive with only 15AMand DBMcapabilities will there­
fore result in the rejection of the program. For further details of the supplementary request block,
see page 86.

26 4095 (4.68)

MODE SWITCHING DURING PROGRAM EXECUTION

The 165 (GIVE)instruction is provided for enquiring the current mode setting and for changingthe
mode setting, as follows:
165 N(M) = 8 Enquire mode setting. X contains the current modeword.

165 N(M) = 9 Changemode setting. A modeword with the required new setting must be in X. A reply
is given in X in the form of the mode setting actually achieved.

Onprocessors without 22AMor EBMcapability, the reply to these instructions will always be zero.
The action to be taken in the event of a change being unsuccessful is left to the program.

MULTI-MEMBER PROGRAMS

The members of a multi-member program are treated independentlyand may run in different operating
modes. The instruction to enquire and change mode settings (165)applies only to the member that
issues it.
The initial mode setting of Member 0 is determined by the supplementary request block. Members
other than Member 0 obtain their initial mode setting from the mode of the members that activate
them. Whena multi-member program is dumped, the mode setting of Member 0 only is recorded.
On subsequent reloading, all members will again take their initial setting from the members that
activate them.

•

22AM considerations
MODIFICATION

All modification, whether by supplementary (117,SMO)orders or using an index register quoted in
the instruction, is carried out using 22bits from the modifier word. Character modifiers in an index
register additionally use the twomost significant bits to give the character address.

COUNT INSTRUCTIONS

Because Bits 2 to 8 form part of the address in 22AMworking, the 9bit/15 bit division of a counter
modifier word cannot be used if the word is required as a modifier. The action of the count instructions
060 (BUX), 062 (BDX)and 064 (BCHX)is therefore different in 22AM.These instructions increment
the address in X and branch unconditionally to N.

Instruction 066may be used in conjunctionwith these increment only instructions, the countingbeing
carried out in a separate accumulator.

SUBROUTINEENTRYAND EXIT

The format of the link inX must allow for a 22-bit address. The setting of the zero suppression mode
is stored on entry in Bit 1, instead of in Bit 8 as in 15AM,and the remaining contents of the mode
setting are lost. On exit the zero suppression mode setting is restored from Bit 1.
It is therefore inadvisable, unless it is knownthat the zero suppression mode is not set, to enter a
subroutine in 22AMand leave it in 15AM,since the zero suppression modewill be restored incorrectly.
If entry is in 15AMand exit in 22AMthe zero suppression mode setting will be treated as part of the
link address.

CONSOLE DISPLAYS

In 15AMthe address and length of the message to be outputby means of a 160 instruction is held in a
control word having a counter modifier layout. In 22AMthe same format may be used; alternatively,
a word pair may be used, the first containing the number of characters in the message and the second
the start address.

EBM considerations

Extendedbranch mode introduces twonew forms of branching, relative and replaced. In the former,
jumps forwards or backwards of limited extent are carried out relative to the address of the branch
instruction. If the extent of the jump is beyond the scope of the relative address, the replaced form
must be used; this allows reference to a location containing the full 22-bit address of the destination.
The destination address in effect replaces the address given in the instruction. The latter technique
is sometimes knownas indirect addressing.

4095 (4.68) 27

A section of code containing only relative branches, and which does not amend itself, may be obeyed
in any part of the store. It may in fact be obeyed in different locations on different occasions. This
is possible because the branch address is relative to the location holding the branch instruction and
not an absolute address that might hold another instruction if the section of program were moved.
Relative branches are more efficient in terms of time "andspace, and are therefore produced from
source branch instructions whenever possible.
Bit 9 of the instruction is used to distinguish between relative and replaced branches as follows;
Bit 9 = 0 Bits 10 to 23 are interpreted as a signed relative address
Bit 9 = 1 The address in bits 10 to 23 is that of the location containing the destination address.

THE 023 (OBEY) AND BRANCH INSTRUCTIONS

If a 023 instruction addresses a relative branch instruction, the branch is performed relative to the
location of the 023 instruction, not that of the branch instruction. Thus a branch to a labelled location,
for example, will not be correctly performed.
It is necessary for the programmer to be aware of this fact if PLANis used, since the compilation
process cannot take account of it.

•
SUBROUTINE LINKS

In EBMworking the subroutine link format is as lor 22AMworking, and similar considerations apply
(see above).

SUMMARY OF FUNCTION CODES

A summary of the functions in the 1900Series order code is given below. Each main function is des­
cribed by a three-digit octal number. The numbering of functions is arranged so that similar functions
are grouped, each group being referenced by the two most Significant digits of the numbers in the
group. Thus functions 041 to 047, which are the multiplication and division instructions, are referred
to as group 04, and the 041 function is described as group 04, function 1.
The symbols used to describe the action of functions are defined below.

Definition of notation

Note: A prime (apostrophe) after a symbol indicates a value resulting from the relevant operation;
e.g. a I = the contents of the floating-point accumulator after the instruction has been performed.
Symbol Meaning

c

the floating point accumulator
the contents of A
the ith bit of a word
the branch address (see below)
the carry register
the contents of c (0 or 1)
the operand address (see below)
the exponent of a floating-point number
e + 256
a function
the floating-point overflow register.
a modifier (registers 1 to 3)
the contents of the modifier register (zero if M = 0)
a core store address or 12-bit number
the modified core store address or 15-bit number

A

a

Bi

BN

C

DN
e
E
F

FOVE

M
m

N

N(M)

28 4095 (4.68)

Symbol

n
n'
n:

Ne

«;
Nm

N,.

Nt

Ns
R

RI

S
V

X
X~'

X,

x:
x: I

Xa or na

Xc or nc

xd or nd

Xj or nj

xk or nk

xm or nm

-
Meaning

the contents of N, after modification if applicable
the contents of N (after modification if necessary) after an instruction has been obeyed
the double-length contents of Nand N + 1
the least significant 9 bits ofN
a 22-bit address
a 15-bit address
a 14-bit address
the most significant 2 bits of the 12-bit N address
the least significant 10 bits of the 12-bit N address
the branch-specifying bit in extended branch mode
the address of the instruction to which control is transferred
the sign bit
the overflow register
an accumulator (registers 0 to 7)
the accumulator adjacent toX. X':, = X+l except that X7':' = XO

the contents of X

the contents of X*
the contents of X after an instruction has been obeyed
the double-length contents of two consecutive accumulators
the double-length contents of two consecutive accumulators after an instruction has
been obeyed
the least significant twelve bits of X or n
the 9-bit counter at the more significant end of x or n

•

the least significant seven bits of x c or nc
the least significant nine bits of x or n. The exponent of a floating-point number
occupies this portion of the second word
the least significant 22 bits of x
anyone of xo' xl' x2' x3 the four 6-bit characters of x or n
the most significant two bits of x or n
the least significant fifteen blts of x or n

DERIVATION OF ON AND BN

Definition of ON

DN is defined according to the value ofM as follows:
WhenM= 0 then DN = (N + p)q
WhenM= 1, 2, or 3 thenDN = tN + m + p)q
Where m = the contents of the modifier register

p = the supplementary value specified by a preceding 117 (SMO)instruction (zero if none).
q = the number of bits in which the address is contained. q is dependent upon the addressing

mode in which the program is running, t.e. q is 15 in 15AMand 22 in 22AM.
Note: If the most significant bit of (m)q or (p)q is equal to 1, the effect will be as though the value were
negative. If the resultant DN is negative, then when used as an address it may cause a reservation
violation, or when the datum has been added may lie beyond the lower end of store.

4095 (4.68) 29

-
Definition of BN

The definition ofBN depends upon the current setting of the branch mode, the value of q and, in EBM,
on the value of R (Bit 9) of the instruction.

When in DBM, BN = (Nm+p)q

Where Nm = a 15-bit address

When in EBM andR = O,BN = (I+Nl'-+22+(P)Q-+22)22
WhereNr = a 14-bit address

I = the instruction address
-->22 = implies extension to 22 bits, if in 22AM,by propagating the most significant bit of the

value concerned.
Note: Extension is to ensure correct subtraction effects if P or Nl' are negative. The 14-bit value in
N l' is regarded as a signed integer.

WheninEBMandR =1, BN = (nem+(p))22
Q-->22

Where nem = the 22-bit content of address Nr

Definition of functions

GROUP 00

Functions 000 to 003 clear C but may set V on exit. Functions 004 to 007 cannot set V; the sign of the
result is always positive and C is set if appropriate.
Function
Definition
Description
Function
Definition

Description

Function
Definition
Description
Function

Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description

30

000 (LOX)
x' = n + c Anymode
Write n + c into X

001 (ADX)
x' = x + n + c Anymode

Addn+ctox

002 (NGX)
x' = -n - c Anymode
Write n + c negatively into X

003 (SBX)
x ' = x - n - c
Subtract n + c from x

004 (LDXC)
x' = n + c
Write n + c into X

Anymode

Any mode

005 (ADXC)
x ' = X + n + c Anymode
Addn+ctox

006 (NGXC)
x' = - n - c Anymode
Write n + c negatively into X

007 (SBXC)
x'=x-n-c Anymode
Subtract n + c -from x

40115(5,6111

GROUP 01

Functions 001 to 003 clear C but may set Von exit. Functions 014 to 017 cannot set V; the sign of the
result is always positive and C is set if appropriate. These instructions are similar to Group 00 but
with n and x interchanged.

Function
Definition
Description
Function
Definition
Description
Function
Definition

Description
Function
Definition
Description
Function

Definition

Description
Function
Definition
Description
Function

Definition
Description
Function
Definition
Description

010 (STO)
n I = X + c Anymode
Write x + c 'into N

011 (ADS)

n'=n+x+c Anymode
Add x + c to n

012 (NGS)
n' = -x -c Any mode

Write x + c negatively into N

013 (SBS) •
n'=n-x-c Anymode
Subtract x + c from n
014 (STOC)

n I = X + c Anymode
Write x + c into N

015 (ADSC)

n' = n + x + c Anymode
Add x + c to n
016 (NGSC)

n I = -x -c Anymode
Write x + c negatively into N

017 (SBSC)

n I = n -x -c Anymode
Subtract x + c from n

GROUP 02

Instructions 020 to 022, 024 and 025 clear C. None of this group can set V.

Function 020 (ANDX)
Definition
Description

Function
Definition
Description
Function
Definition

Description
Function
Definition
Description

4095 (4.68)

x ' = x and n Anymode

Logical and of x and n

021 (ORX)

x' =xv n

Logical inc l us i ve or of x and n
Any mode

022 (ERX)

x ' = x 'I: n
Logical exclusive or of x and n

Any mode

023 (OBEY)

(See Description) Anymode

Obey the instruction in location N + m as if it were in this instruction address.

31

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

GROUP03

024 (LDCR)
Any mode

Write into x3 the character nJ (Extract character)

025 (LDEX)
Any mode

Write into xe the least significant nine bits of xn (Extract exponent)

026 (TXU)
(See Description) Any mode
Set C if n -I x or c = 1 (Test equality); otherwise clear C

027 (TXL)
(See Description) Any mode

Set C if n + c > x ; otherwise clear C

All these instructions clear C; none can set V.

•
Function
Definition
Description

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function

Definition
Description
Function
Definition
Description

Function
Definition
Description
Function
Definition
Description

32

030 (ANDS)
n' = n and x Anymode
Logical and of n and x

031 (ORS)

n' = nv x

Logical inc l us ive or of n and x
Anymode

(ERS)032

n' = n t x
Logical exc l us ive or of n and x

Any mode

033 (STOZ)

n' = 0 Any mode
Clear n
034 (DCR)

nj = x3 Anymode
.Write x3 into character position j of N leaving the rest unchanged (Insert character)

035 (DEX)
Any mode

Write xe into the least significant nine bits of N leaving the rest unchanged
(Insert exponent)
036 (DSA)

n' = Xa a Any mode
Write xa into the least significant twelve bits of N leaving the rest unchanged
037 (DLA)

n' = Xm m
Anymode

Write xm into the least significant fifteen bits of N leaving the rest unchanged.

4095 (US)

GROUP 04

All these instructions clear C and may set v.
Function

Definition

Description
Function
Definition

040 (MPY)

x:' =: n.x
Unrounded multiplication

041 (MPR)

x:' =: n. x + 2-24

Description
Function
Definition
Description

Function

Definition
Description
Function
Definition
Description

Function
Definition

Rounded multiplication

042 (MPA)

x: ' '.'= n.x + x
Semi-cumulative multiplication

043 (CDB)

x:' = lO,x: + nj

Decimal to binary conversion
044 (DVD)
x':" = x: In,' x '= remainder

Unrounded double-length division

045 (DVR)
x':" = x:/n + 2-24,x'=remainder

Rounded double-length divisionDescription
Function
Definition

Description
Function
Definition
Description

046 (DVS)
x~" = X ':.In, x' = remainder

Single-length integral division

047 (CBD)

x: ' 1O.x : , n; = character
Binary to decimal conversion

GROUP05

All these instructions clear C; none can set V.

Function 050 (BZE)

Definition (See Description)
Description Branch to EN if x = 0
Function 052 (BNZ)

Definition (See Description)
Description Branch to EN if x f. 0
Function 054 (BPZ)
Definition (See Description)
Description Branch to EN if x ~ 0
Function 056 (BNG)

Definition (See Description)
Description Branch to EN if x < 0

04095 (4.68)

Anymode

Anymode

Anymode

Anymode

•
Anymode

Anymode

Anymode

Anymode

Anymode

Anymode

Anymode

Anymode

33

GROUP 06

All these instructions clear C; none can set V.

Function

Definition

Description
Definition
Description

Function
Definition
Description
Definition
Description

Function
Definition

Description

Definition

Description
Function
Definition

Description
Definition
Description

GROUP 07

Function
Definition
Description

060 (BUX)

x'm = xm + 1; x~ = Xc - 1 15~
Branch to BN if X I ;£ 0 (Singleword modify)c
Xl = X + l' x' = x 22AMem em 'k k

Branch unconditionally to BN

062 (BDX)

15AM
Branch to BN if x~ ;£ 0 (Doubleword modify)

x' = x + 2' x' = x 22AMem em 'k k

Branch unconditionally to BN

064 (BCHX)

The 15AMdefinition depends on the value of xk as follows:

Ifxk=0,1,or2,thenx~ =xk + 1; x~ =xmJ xJ =xd-l
If x k = 3, then x ~ = 0; x ~ = X m + 1; x J = X d - 1

Branch to BN if x~ ;£ 0 (Character modify)

The 22~ definition depends onthe value of x k as follows:

•

If xk = 0, 1, or 2, then x~ = xk + 1; x!m
If x = 3 then x I = O· X I = X + 1k' k 'em em

X em

Branch unconditionally to BN

066 (BCT)

x! = xm - 1; x~ = Xc
Branch toBN if Xl ;£ 0

m

x!m = xem - 1; x~ xk
Branch to BN if x!m ;£ 0

15~

22AM

070 (CALL)
(SeeDescription) Anymode
Store in X the address of the next instruction and branch to N. Clear V and C.
(Subroutine entry.)

Note: The contents ofX vary according to the mode setting as follows:
15AMand DBM Bit 0 contains the setting of V

15AMand EBM;
22AM

Function
Definition

34

Bit 8 contains the setting of the zero suppression mode

Bits 9 to 23 contains the address of the instruction following the 070
Bit 0

Bit 1
contains the setting of V

contains the setting of the zero suppression mode

Bits 2 to 23 contain the address of the instruction following the 070.
072 (EXIT)

(See Description) Anymode

4095 (4.6S)

-
Restore control to the instruction whose address is in X or to x + N if N is non­
zero. Clear C; if V is set leave it set, otherwise restore it; restore the zero
suppression mode. (Subroutine exit.)

Note: In 15AMand DBMthe zero suppression mode setting is stored in Bit 8 of X; otherwise it is
stored in Bit 1 of X. The address of the instruction to which control is transferred is defined according
to the addressing and branch mode setting as follows:

Description

15AMand DBM
15AMand EBM;
22AM

RI

RI

(Nm+p+xm) 15

((Nm)->22+ (17) q->2 2+X em) 22

If the combination 15AMand EBM is used, the formula is true only if the processor is capable of
operating in 22AM
Function
Definition
Descr iption

Function
Definition
Description
Function
Definition
Description
Function

Definition
Description
Function

Definition

Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description

4095(5.691

074 (BRN)
Anymode

X = 0

(See Description)
Unconditional branch to N

074 (BVS)
Anymode •X = 1

(See Description)
Branch to N if V is set and leave V unaltered
074 (BVSR)

Anymode
X = 2

(See Description)

Branch to N if V is set; clear V

074 (BVe)
Anymode

X = 3
(See Description)
Branch to N if V is clear and leave V unaltered
074 (BVeR)

Anymode
X = 4

(See Description)

Branch to N if V is clear, otherwise clear V

074 X = 5 (BeS)
Anymode(See Description)

Branch to N if C is set and clear C

074 X = 6 (BCC)

Anymode(See Description)
Branch to N if C is clear and leave C unaltered
074 (BVeI)

Anymode
X = 7

(See Description)

Branch to N if V is clear and set V; otherwise clear V

076 (BFP)X = 0

(See Description) Anymode
Branch to N if a = 0; V is set if FOVRis set; FOVRis unaltered
076 (BFP)

Anymode
X = 1

(See Description)

Branch to N if a ~ 0; V is set if FOVRis set; FOVRis unaltered
076 (BFP)

Anymode
X = 2

(See Description)
Branch to N if a ~ 0 ; V is set if FOVRis set; FOVRis unaltered

35

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

076 (BFP)

Any mode

x = 3

(See Description)
Branch toN if a < 0; V is set if FOVR is set; FOVR is unaltered

076 X = 4 (BFP)
(See Description) Any Mode

Branch to N if floating-point overflow is clear

076 X= 5 (BFP)
Any mode(See Description)

Branch toN if floating-point overflow is set

GROUP 10

Instructions 100,102 and 104 to 107 cannot set Vi instructions 100 to 104 cannot set C.

Function
Definition
Description
Function
Definition

Description
Function

Definition
Description

Function
Definition
Description

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description

100 (LDN)

X' = N(M) + c

WriteN(M) + c intox
101 (ADN)

x' = N(M) + c
Add N (M) + c to x
102 (NGN)

x ' = -N(M) -c

Write N(M) + c negatively into X
103 (SBN)

x t = X - N (M) - c
Subtract N(M) + c from x

104 (LDNC)

x, = N(M) + c

Write N(M) + c into X

105 (ADNC)

x' = x + N(M) + c

Add N (M) + c to x
106 (NGNC)

x' = - N(M) - c
WriteN(M) + c negatively into X
107 (SBNC)

x I = X - N (M) - c

Subtract N(M) + C from x

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

GROUP 11

All these instructions clear C.

Function
Definition
Description

36

110 N = 0
t

X I = x shifted left Ns places
Single-length circular shift

(SLC)

Anymode

-

4095(5.69)

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

4095 (4.68)

110 N = 1
t

X I = x shifted left NII places

Single-length logical shift

110 N = 2
t

X I = x shifted left Nil places
Single-length arithmetic shift

110 N = 3
t

x, = x shifted left N s places
Single-length special shift

111 N = 0
t

x: I x: shifted left N s places
Double-length circular shift

111 N = 1
t

x: shifted left N s placesx: f

Double-length logical shift
111 N = 2

t
x: I = x: shifted left N:r places
Double-length arithmetic shift
111 N = 3

t
x: I x: shifted left N s places
Doubla-Iength special shift
112 N = 0

t
X I = x shifted right N s places

Single-length circular shift

112 N -= 1
t

X I = x shifted right Ns places
Single-length logical shift

112 N = 2t
X I = x snifted right N s places
Single-length arithmetic shift
112 N = 3

t
X I = x shifted right N s places
Single-length special shift

113 Nt = 0
x:' = x: shifted right N s places
Double-length circular shift
113 N = 1

t
x: I = x: shifted right N s places

Double-length logical shift

113 N = 2
t

x: I = x: shifted right N: places
Double-length arithmetic shift

(SLL)

Anymode

(SLA)

Anymode

Anymode

(SLC)

Anymode

(SLL)

Anymode •

(SLA)

Anymode

Anymode

(SRC)

Anymode

(SRL)

Anymode

(SRA)

Anymode

(SRAV)

Anymode

(SRC)

Anymode

(SRL)

Anymode

(SRA)

Anymode

37

Function

Definition

Description

Function

Definition

Description

Function

Definition

Function

Definition

Description

Function

Definition

Description

113 N = 3
t

x:! = x: shifted right N s places
Double-length special shift

114 (NORM)

(SRAV)
Anymode

x r ' = x normalized with Anymode

initial exponentN(M); x:! = N;

Normalize the number whose single-length argument is held in X with respect
to N(M).

115 (NORM)
Anymode

Anymode
Transfer N(M) characters from the character address in X to the character
address in X + 1

•
117 (SMO)

Add (n) q to the N address Anymode

of the next instruction (for a definition of q, see page 29)

Supplementary modifier to next instruction

120 (ANDN)

x r ' = x: normalized with
initial exponent N (M); x:! = N;

116 (MVCH)

(See Description)

GROUP12

None of these instructions can set V or C. All apart from 123 clear C.

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description

Function
Definition

Description
Function
Definition
Description

38

x ' = x and N(M)

Logical and of x and N(M)

121 (ORN)
x' = X 11 N (M)

Logical inclusive or of x andN(M)

122 (ERN)

x' = x j. N(M)

Logical exclusive or of x andN(M)

123 (NULL)

(See Description)
Dummy instruction; no operation
124 (LDCT)

x~ = Ne; x~ = 0

Set counter

125 (MODE)
(See Description)

Anymode

Anymode

Anymode

Anymode

Anymode

126 (MOVE)
Set zero suppression mode in accordance with the state ofN(M)

Anymode

(See Description)
Transfer N words from address x to address x* (Block transfer)

Anymode

4095 (4.68)

Function

Definition

Description

127 (SUM)
(See Description)
x I = Sum ofN words from address x !I'

Anymode

GROUP 13

The result of functions 132to 135is rounded and normalized. The 137instruction will clear FOVR
if it is set and set V instead.
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition

Description
Function
Definition
Description

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description

Function
Definition

4095(6.70)

130 (FLOAT)

n:-+a Anymode
Convert n: from fixed- to floating-point and store in A

131 (FIX)

a-+n: Anymode
Convert a from floating- to fixed-point and store inN(M) andN(M) + 1

132 X = 0 or 4 (FAD) •a"l:::a+n: Anymode
Addn: to a

133 X = 0 (FSB)
Anymodea' = a - n:

Subtract n: from a
133 (FSB)

Anymode
X = 4

a'=n:-a
Subtract a from n:

134 (FMPy)

Anymode
X = 0 or 4

a' = a.n:

Multiply a and n: and store the result in A
135 (FDVD)

Anymode
X = 0

at = a/n:
Divide a by n :
135 X
a' = n:/a
Divide n: by a
136 X
a' = n:
Load n: into A
136 X

4 (FDVD)

Anymode

o (LFP)

Anymode

1 (LFPZ)

Anymodea' = 0

Clear A and FOVR
137 X = 0 (SFP)

n : ' = a Anymode
store a in N(Al) and N(Al) + 1 leaving a unchanged

137 X = 1
n:' a, a' =0

(SFPZ)
Anymode

39

Description

•

Store a in N(M) and N(M) + 1, clearA andFOVR,

GROUP 15

All these instructions clear C

Function
Definition
Description
Function
Definition
Description
Function
Definition

Description
Function
Definition
Description

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description

150 (SUSBY)
(See Description) Anymode

Suspend program if peripheral type N(M), unitX, is active

151 (REL)
(See Description)
Release peripheral type N(M), unit X

Anymode

152 (DIS)
(See Description)

Disengage peripheral type N (M) , unit X

154 (CONT)
(See Description)

Anymode

•
Anymode

Read more program from peripheral type N(M), unit X

155 (SUSDP)
(See Description) Anymode

Dumpprogram on peripheral typeN(M), unitX
156 (ALLOT)
(See Description) Anymode

Allocate peripheral type N(M), unit X, to the program

157 (PERI)
(See Description) Anymode
Initiate peripheral operation on unit X according to the control area N(M).

GROUP 16

For full details of instructions 162 to 164 see page 65.
Function 160
This function uses a control word or words the format of which depends on the addressing mode. The
15AMformat, given below, can be used in 22AMprovided that Na is in lower data store. The 22AM
format consists of a count in the least significant six bits of Word N(M) and the 22-bit start address
of a message in Word N(M) + 1.

Function
Definition

Description
Definition
Description
Function
Definition

Description
Definition
Description

40

160 (SUSTy)
15AMor 22AM

X = 0

(See Description)

Type nc characters from address na and suspend program
(See Description) 22AM
Type message defined in the control words and suspend the program

160 (DISTy)

15AMor 22AM
X = 1

(See Description)

Type nc characters from address na

(See Description) 22AM
Type message defined in the control words

4095 (4.68)

Function

Definition
Description

Definition
Description

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description

Function
Definition
Description

Function
Definition
Description
Function
Definition
Description

Function
Definition
Description

Function
Definition
Description

Function
Definition
Description
Function
Definition

4095(6.70)

160 (DELTY)
15AMor 22AM

}i = 2

(SeeDescription)
Treat nc characters from address na as aconsole directive and delete the
program
(SeeDescription) 22AM
Treat message defined in the control words as a console directive and delete
the program

161 :(SUSWT)x = 0
(SeeDescription) Anymode
Type HALTEDand Na as two characters and suspend the program

161 X = 1 (mSP)
(SeeDescription) Anymode
Type DISPLAYand Na as two characters

161 X = 2 (DEL)
(SeeDescription) Anymode
Type DELETED and Na as two characters and delete the program

162 (SUSMA)
(SeeDescription) Anymode
Conditional alteration of one word pair in common storage
If n lie = 0, set n' =x, set ti*, "f 0 and omit next instruction

•

163 (AUTO)
(SeeDescription) Anymode
Activate Member X at N(M); if N(M) = 0 reactivate Member X or set 163 indicator

164 (SUSAR)
Anymode

X = 1
(SeeDescription)
De-activate the current member unless the 163 indicator is set.

164 (SUSIN)
Anymode

X = 2
(SeeDescription)

De-activate the current member unless the 163 indicator or the flag-setting
interrupt indicator is set.
164 (SUSIN)

Anymode
X= 3

(SeeDescription)

De-activate the current member unless the 163 indicator, the flag-setting interrupt
indicator or the priority member indicator is set
164 (SUSIN)

Anymode
X= 4

(SeeDescription)
As for the 164, X = 3 instruction, but also tell Executive to remove suspension
from all members that can be re-activated currently by the Priority Member, and
to remember the occurrence of this instruction for all other members
165 N(M)= 0 (GIVE)

Anymode(See Description)
x' = the number of days from 31/12/1899 to current clay
165 N(M)= 1 (GIVE)

Anymode(SeeDescription)

41

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

Function

Definition

Description

•

I
x~,= the date in character form

165 N{M)= 2 (GIVE)
Anymode(See Description)

x:' = the time in character form

165 N(M)= 3 (GIVE)
Anymode(See Description)

x' = the core store allocated to the program

165 H(M)= 4 (GIVE)
Anymode(See Description)

x = core store required; x' = core store allocated as a result of this instruction

165 N(M)= 5 (GIVE)
Any mode(See Description)

x: ' = details of Executive and the central processor
165 N{M)= 8 (GIVE)

Anymode(See Description)
x I = current setting of mode word
165 N(M)= 9 (GIVE)

Any mode(See Description)
x = required setting of mode word; x I = new setting of mode word
166 (RRQ)

Any mode
x= 0

(See Description)
The program request slip is to be read into an object program area of 16 words
beginning at N(M)
166 X= 1 (RRQ)
(See Description) Anymode
A new program request Slip is to be taken from an object program area of 16
words beginning at N (M)

AVAi,LABILITY OF INSTRUCTIONSWITH CENTRAL PROCESSORS

In the table the following conventions are used:
H

E

*
Blank

Instruction performed by hardware
Instruction performed by extracode
Instructions 040 to 042 and 044 to 046 performed by hardware; instructions 043 and 047
performed by extracode.
Instruction not available.

The instruction set for basic processors and for those with extra facilities is given in the table. Where
a processor has more than one of the facilities listed, the appropriate instruction set can be found by
combining the relevant instruction sets and, where discrepancies occur, applying the following rules.
1 If the discrepancy is between hardware and extracode, then the instruction is performed by hard­

ware.
2 If the discrepancy is between available and not available, then the instruction is available, but

(a) A processor supplied with hardswitches instead of a console typewriter will never have the
155 and 166 instructions.

(b) The 166 instruction on a 1902/03 with EX2L Executive is null.

42 4095(5.69)

Central Instructions
Processor

000 040 050 060 070 100 110 III 114 IZO IZ6 13Z 150 156 160. 16Z ZZAM
to to to to 066 to 076 to •• a •• d •• d 116 117 to •• d 110 III to to 155 •• d 161. to 166 •• d
037 047 056 064 074 107 IIZ II) 115 125 127 137 15. 157 165 I •• EBM

auic 1901 ...nthhand.witch H E H H H H H E H E E E E
(EXIH)

B•• te 1901 with typewrite I' H E H H H H H E H E E E E E E

1901with E.M.Uo• fixed- H · H H H H H H H H E E E E E E

point

1901with E.M.U•• fixed- H · H H H H H H H H E E E H E E E E E
and fioatinl-point

1901with noatinl -point H E H H H H H E E H E E E E E E E E E
cxtracode.

auie 190213 H E H H H H H E H E E E E E E

Limited 190Z/3 (EXZL) H E H H H H H E H E E E E E

1902/3 with dualprolram- H E H H H H H E H E E E E E E E
mini (EX2M)

1902/3 with "E.M.U•• fixed .•. H · H H H H H H H H E E E E E E
poI.t

1902/3 with E.M.U•• fixed •• H · H H H H H H H H E E E H E E E E E
and floating -point

1902/3 with floating -point H E H H H H H E E H E E E E E E E E E
extracode

e.-Ie 1904 H H H H H H H H H H H E E E E E E

1904with fioatinl-point H H H H H H H H H H H E E E £ £ £ E E £
extracode.

1905 H H H H H H H H H H H E s H E £ £ £ £ £

1906 H H H H H H H H H H H H H H E £ E E £ £ J

1906with noatinl-point H H H H H H E H H H H H H H H £ £ £ E E £ E £ £ J
.uracodes

1907 H H H H H H H H H H H H H H H H s H £ E E £ E E J

1904/6, E andF H H H H H H H H H H H H H H £ E £ £ E z J

1904/6. E and F with H H H H H H £ H H H H H H H H E E E £ £ E E E E J
ltoatins-point extracode.

1905/7, £ H H H H H H E H H H H H H H H E E H £ £ E E E E .J

1905/7, F H H H H H H H H H H H H H H H H E H E E E E E E J

Basic 1901Awith hand.wite H E H H H H H E H £ E E E
(£IHS)

Bnte 1901Awith typewriter H E H H H H H E H E E E E E £

1901Awith commerci,d H H H H H H H H H E E £ E £ E
computlnl feature

1901Awith Ih:ientific H H H H H H H H H H E E E H E E E E E
computinl feature

1901Awith floating-point H E H H H H H E E H E E E E E £ E E E
extracode.

Basic 1902/3. A H E H HI H H H H H H H H H E E E £ E

1902/3. A with multi- H E H H H H H H H H H H H E E E E £ £
proBramminB

1902/3, A with commerci~1 H H H H H H H H H H H H H E E E E £
compuUnBfeature

190Z/3. A with scientific H H H H H H H H H H H H H H H E E H E E E £ £
computinl feature

190Z/3. A with floaUna- H £ H H H H £ H H H £ H H H H E E £ E E E E E
point extracode.

1903Awith GEORGE 3 H H H H H H H H H H H H H E £ E E E E J
(£XG»)

Ba.ic 1904A H H H H H H H H H H H H H H s E E £ E E J

1904Awith floatinB"point H H H H H H H H H H H H H H H H £ H E E £ £ E E J
unit

1904Awith floating .•point H H H H H H E H H H H H H H H E E E E £ £ E E E J
extracodes

1\•• Ie 190bA H H H H H H .E H H H H H H H H E E E E E E J

1906Awith floatinl-point H H H H H H H H H H H H H H H H E H E £ E E E E J
unit

1906Awith noatins -point H H H H H H H H H H H H H H H E E E E E E E E E J
extracode.

Figure 8 Availabilitv of instructions with central processors

4095(5.69)

-

•

43

•

Chapter 6 Peripheral transfers

Note: The description of standard interface and hesitations given in this chapter is for the interest only
of the reader. No inference shouldbe drawn from it.

THE NATURE OF INFORMATION TRANSFERRED

Informationthat is transferred betweenthe central processor and a peripheral unit is of a standard
format, consisting of one or more six-bit characters that maybe transferred singly or in groups of
four. There are basically two kinds of information that can be transferred:

(a) control information, whichenables the central processor to determine the status of the peripheral
unit and to initiate desired actions.

(b) data or, in certain circumstances, program instructions that are treated as data, that form input
to or outputfrom the central processor.

The control information is not of immediate concern to the programmer, but Executiveuses this infor­
mationto control all peripheral units. This information is also used by Executiveto detect peripheral
failures; thus Executive is able to keep the operator informed of these failures either by a coded
message on the switch/light panel or by a typed message on the console typewriter.

•

STANDARD INTERFACE

The purpose of standard interface

To the user of the 1900Series, standard interface consists of a standard plug and socket by whicha
variety of peripherals can be connectedto a range of central processors; but in fact it consists of a
large amount of electronics in both the central processor and peripherals. The purpose of this complex
of electronics is to ensure a standard methodof control and transfer of information betweena central
processor and peripherals. To achieve this purpose several conditionsmust be fulfilled:
1 Sincea number of peripherals connectedto a central processor may be operating Simultaneously,

each character must be transferred to the correct peripheral.
2 Each time a transfer is requested by a peripheral, both the central processor and the peripheral

concerned must knowin whichdirection the transfer is to take place; that is, from the core store
to the peripheral or from the peripheral to the core store.

3 Whena transfer is to take place, the precise moment of transfer must be specified and this time
must be convenientto both the central processor and the peripheral.

4. The core store address involvedin a peripheral transfer must be known.

Standard interface lines

The I.C.T. Standard Interface has provision for 37pairs ofwires, each of whichis called a line and
given a uniquename by whichit is referenced. Figure 9 on page 46 is a schematic diagram of the
standard interface lines and the functions of onlythose lines that concern this description of standard
interface are givenbelow.

THE Do AND Di LINES

All the I.C.T. Standard Interface peripherals in current use transfer six bits at a time across the inter­
face. If it is required to transfer a 24-bit word, then four transfer operations are used. Each of these
six bits has an individual line and these lines are termed the data lines. The lines for transferring data

4095 (4.68) 45

•

CENTRAL PROCESSOR PERIPHERAL

2°
<:I2

21 21

22 22

23 23

Do 24 24 Do

25 25

26 ___ .• 26
I

27

28

Parity No
Timing

Parity

L Interface
y X AA •

T T

C C

G G

Ho Ho

Hi

R

B

J

F

Parity Ni

28
27

26

25
Di .24

23
22

21

2°

Parity

•••

Hi

y
Plug and socket
at central
processor
boundary

X
Plug and socket
at peripheral
boundary

'--_4- 24 Di

'---t- 23

'---t- 22

'---t- 21

'---t- 2°

Figure 9 Schematic diagram of standard interface lines

46 .•095 (".68)

from the central processor to the peripheral are called the Do (data out) lines. Similarly, the lines for
transferring data from the peripheral to the central processor are called the Di (data in) lines.

THE CLINE

In additionto being used to transfer data, these same Do lines are used to transmit control commands
from the central processor to the peripheral. To enable the peripheral to distinguishbetweena data
character and a control commandcharacter, the C (control) line is used. Whena character is trans­
ferred across the Do lines, the peripheral inspects the signal on the C line to determine whether the
character is data or a control command.If the C line contains 0, the peripheral treats the signal on
the Do lines as a data character; if it is 1 the peripheral treats the signal as a control command.

THE R LINE AND T LINE

The peripheral signals to the central processor that it is ready for a transfer by sendinga request on
the R (request) line. It is always the peripheral that requests a transfer, never the central processor.
The actual momentthat a transfer has to take place is specifiedby a timing pulse, whichthe central
processor sends onthe T (time) line. It is normally the central processor that specifies the precise
momentthe transfer has.to take place. •
THE B LINE

This line is used by the peripheral to signal to the central processor that a 'status' changehas taken
place that requires central processor action. The term 'status' is givento signals that indicate various
states or conditionsoccurring in the peripheral. A signal onthe B line is often called a B -interrupt.
The B line is also used to indicate a peripheral incident that wrllcause an interrupt to Executiveand
mayultimately require operator attention. Whensuch an interrupt occurs, Executivemust ask for
status informationfrom the peripheral to determine the reason for the interrupt, for example, transfer
completed,or error detected. The conditionscausing a B-interrupt vary from peripheral to peripheral.

THE L LINE

The L (line) Line is used by the central processor to signal to the peripheral that the transfer has
finished. It shouldbe noted, however, that some peripherals do not make use of the functionprovided
by the L line since they can be self terminating.

THE A LINE

The A (address) line is used by the central processor to address a peripheral during a data transfer or a
control transfer. Peripherals cannot receive or transmit information over their Do andDi lines until
they receive a signal ontheir A line.

HESITATIONS

Certain central processors cannotdeal with a peripheral transfer at the same time as they are executing
program instructions. Therefore, whena peripheral requests a transfer by sendinga signal onthe R
line, the central processor will hesitate, i.e. it will stop carrying out Executiveor object program
instructions at a convenientpoint and concentrate on servicing the transfer request. Whenthe transfer
of one or four characters to or from the peripheral is completed, the central processor will, providing
there are no other hesitation requests, resume the executionof the program instructions. Typical
hesitation times vary from 2 microseconds to 30microseconds dependinguponthe central processor
and type of hesitation. The control of hesitations, if there are no special peripheral connectiondevices,
is performed by circuitry containedin the control unit.

Timesharingof the central processorfor programinstructions and hesitations

Figure 10showsan exampleof howthe central processor time is shared amongthe requirements
demandedby two peripherals (t.e, initiation of the transfer and hesitations) and the runningof an
object program.

4095 (4.68) 47

Object program

Executive

Peripheral X
Peripheral Y

, I,,
I,
I, ,

II I:
:: I,,,
, ", ", "

b cde Igh j k -­timea
Key

1 up to a: The object program is running uninterrupted.

2 a to b: At point a the object program gives a PERI instruction for peripheral XaI).d is
suspended while Executive initiates the transfer for peripheral X.

3 b to C: The object program is allowed to continue.

4 c to h: At point c the object program gives a further PERI instruction this time for peripheral
. Y and is again suspended while Executive initiates this transfer; this initiation takes up
to point h.

5 d to e: Executive is interrupted by a hesitation for the first transfer for peripheral X.

6 f to g: Executive is again interrupted by a hesitation for the second transfer for peripheral X.

7 h to i: The object program continues.

8 i to j: The third hesitation for peripheral X and the first for peripheral Y takes place.

9 j to k: The object program continues.

etc.

Figure 10 Example of sharing of the central processor for program instructions and hesitations

48 4095 (4.68)

Operations performed during a hesitation

Essentially three sections of work must be performed during each hesitation.
1 The core store address to or from which information is to be transferred must be specified. This

address is contained in the peripheral control word or words held on the processor side of the
interface and associated with each channel. There may be one or two control words, dependingon
the central processor concerned. Whenthe next hesitation occurs, a further address will be .
required, consequently the control word must be updated during each hesitation. Thus, the sequence IS:

(a) read the control word
(b) note the address contained in the control word

(c) update the control word
(d) write the new control information back ready for the next hesitation.

2 The character or characters to be transferred between the peripheral and core store must be
transmitted across the interface.

3 The information must be either read from or written to the core store.
Nowthat the relevant interface lines and the operations performed during a hesitation have been •
described, the various forms of hesitations will be considered. However, before they are, it is necessary
to introduce a further componentthat is used during a hesitation.
Information stored in a central processor can be held either in the magnetic core store or in hardware
registers. The principles of storing information in the core store are described in Chapter 4. A hard­
ware register is an assembly of non-magnetic electronic components such as transistors, resistors
and capacitors. Each bit of information is stored in a hardware register by letting current flow in one
of two transistors to represent a O-bit and letting current flow in the other of these two transistors
to represent a 1-hit. Thus, a pair of transistors is required to represent the state of each bit position
so that 48 transistors are required to store a 24-bit word. Registers can usually be read more quickly
than a magnetic core store, but are more expensive. Consequently, in the 1900Series central processors
the majority of information is stored in the core store, although some hardware registers are used to
hold words or part of words frequently addressed. Examples of such registers are the A andD registers,
which are used during a high speed mode transfer.

Single-character hesitation

A peripheral requests a transfer to or from the central processor by sending a signal on the R line.
Whenthe central processor is ready to service this request, it sets the A line to 1; the R line is then
set to O.The character count and starting address contained in the control area.associated with that
peripheral are read, updated (l.e, the count is decreased and the address increased) and rewritten to
the core store. During the updating of the control word information, the core store pauses; this operation
is therefore called read-pause-write.

A second read-pause-write cycle is then initiated during whicha six-bit data character is either read
from the store during the read part of the cycle and transferred to the peripheral via the B register and
Do lines, or transferred from the peripheral via the Di lines and B register and written to the store
during the write part of the cycle.

Burst mode hesitation

To perform two read-pause-write operations for each six-bit character transferred across the inter­
face, and waiting before the processor deals with the R request, obviously makes uneconomical use of
the central processor time. Peripherals with a fast data transfer rate are therefore provided with a
word buffer so that four characters may be transferred during a hesitation. The control word need then
be updated only once for the transfer of four characters. However, since the data lines can transfer
only six bits at a time, the four characters are transferred as four sets of six hits in a burst; conse­
quently this type of transfer is called a burst mode transfer. Each character transferred required a
T pulse; therefore four T pulses are signalled during a burst mode hesitation. The operation of this
type of hesitation is as follows:

4095 (4.68) 49

TRANSFER FROM THE CORE STORE TO A PERIPHERAL

Whenthe buffer in the peripheral can accept four characters. the peripheral will signal on the R Line.
Whenthe central processor is free it will answer on the A line. The control word is read, updated, and
rewritten to the core store. The content of the word specified by the address that was contained in the
control word is then read from the core store and stored in the B register and also rewritten to the
core store. The four characters contained in the B register are then transferred, one character at a
time, across the Do lines to the peripheral.

TRANSFER FROM A PERIPHERAL TO THE CORE STORE

Whenthe peripheral buffer contains four characters to be transferred to the central processor, the
peripheral signals on the R line and the central processor responds in due course on the Aline. The
control word is read, updated, and rewritten to the core store. The core store word specified in the
address part of the control word is read, thus zeroiztng the core store word. The central processor
then sends four T pulses, one at a time, to the peripheral; on each T pulse the peripheral transfers one
character across the interface to the B register. Whenall the four characters are assembled in the
B register, the content of the B register is transferred to the core store word specified in the control
word.

Ona 1904or 1905central processor a burst modehesitation takes approximately 14microseconds,
whereas a Single-character hesitation on these central processors takes approximately 6 microseconds.
Thus, burst mode transfers reduce the central processor time used for hesitation.

•

High-speed mode

Aburst modehesitation on the 1902takes 20 microseconds. Thus, if a peripheral connectedto a 1902
requests a transfer at the rate of one word every 20 microseconds, then the central processor time will
be completely devotedto hesitations and, consequently, there will be no time available for processing.
Furthermore, if the data transfer rate exceeds one character every 5 microseconds, then the central
processor will not be able to service all the requests. The 2801and 2802ExchangeableDisc Stores
have a nominal data transfer rate of 208kchjs and are examples of peripherals that require a transfer
in excess of one character every 5 microseconds. The high-speed mode raises the maximumdata rate
that can be handledby the 1902central processor, and by smaller processors in the 1900Series.

It will be recalled that during a hesitation the core store is accessed twice, first to read, update, and
rewrite the control word and secondly to access the core store word to or from whichdata is to be
transferred. Withthe high-speed mode, the time taken by a hesitation is reduced because the control
words* are kept in the central processor's hardware registers and not in the core store.
Whenthe high-speed mode is used, in addition to the B register mentionedearlier, two further registers
in the central processor, called the A register and the D register, are used. The main use of the A
register, whenthe high-speed mode is not employed, is to retain an operand during instructions, and
the normal use of the D register is to hold the current value of datum. In the high-speed modethe
control words are held continuouslyin these two registers.
The A and D registers can hold the control words for only one peripheral at anyone time; it is evident
therefore, that there can be no true Simultaneitybetween a high-speed modetransfer and any other
transfer. It is also evident that, since the D register can no longer hold the core store datum value,
there can be no Simultaneitybetween high-speed modeand the processing of an objectprogram, However,
this restriction on simultaneity applies only during the actual transfer Le, not during the initiation stages.
Moreover, some basic peripherals need not have completed a transfer before a high-speed mode
transfer can take place. Thus abuffered line printer, for instance, may be in the middle of a transfer when
a high-speed mode transfer takes place. The printer transfer appears to continueuninterrupted, but in
fact the printer will not be granted hesitations while the high-speed mode transfer is taking place. How­
ever, no data is lost.

Crisis times

The time between the moment a peripheral requests a hesitation and the moment the peripheral requires
the hesitation to be granted, i.e. the time a peripheral can wait for a data transfer, is knownas thecrisis
time of the peripheral.. Peripherals that have a short crisis time are knownas time conscious.
':'Due to extended count, Le , block lengths in excess of 128 characters, there are two control words
associated with most peripherals.

50 4095 (4.68)

-
Withfast peripherals the crisis time is so short that the central processor may have insufficient time
to complete the instruction onwhichit is engagedbefore the crisis time elapses. This will onlybe the
case if the current instruction is one that takes a long time to execute. Accordingly,all such instructions
are so organized that they maybe temporarily halted while the central processor engages in ahasttatton.
It is essential that a peripheral be·granted a hesitation within its crisis time, otfierwtse data maybe
overwritten.
Paper tape readers (andpunches)have an infinite crisis time because the reader (or punch)mechanism
can (does) stop the tape movementto wait for the arrival of the next character or until the central
processor is ready to receive a character. Similarly, line printers that have a buffer to hold one line
of print also have an infinite crisis time since a line will not be printed until the buffer is full.
Magnetictapes, drums and disc stores have a finite crisis time because the devices cannotbe stopped
between characters owingto the high speed of movementof these devices.
Other peripherals, such as punchedcard equipment,have a mediumcrisis time. Althoughthe data
transfer rates to or from these devices is relatively slow compared to disc stores or fast magnetic
tape systems, and the punchor read mechanisms can stop card movementmomentarily, card movement
cannotbe stopped indefinitely in the waythat paper tape movementcan.

IliIETHODSOF DECREASING HESITATION TIME

There are several devices by means of whichthe time required for hesitations can be reduced. These
devices, described below, are available on certain 1900central processors (see Chapters 10 to 12).

Peripheralcontrol connector

The peripheral control connector may be specified for use on the 1904to 1907withburst modeperi­
pherals onlyand is fitted between the core store and the standard interface connectingthe peripheral
concerned to the central processor.
The main advantage of the use of peripheral control connectors is that the B register can send or
receive a word of four characters in parallel and is not held up as in normal burst modewhenfour
characters are transferred one at a time. The store may therefore be accessed again sooner. Also, a
peripheral control connector produces its ownclock pulses and can therefore operate autonomously
while assembling a word or sending characters to a peripheral.
Aperipheral control connector is basically a further buffer or buffers, each ofwhichcan containfour
six-bit characters, and is used to transfer information from or to the core store and a burst mode
peripheral. Thus, the control word is updatedonly once for every four characters transferred. The
operation of a word hesitation using a peripheral control connector is as follows:

TRANSFER FROM A PERIPHERAL TO THE CORESTORE

Whenthe peripheral buffer contains four characters to be transferred, the peripheral signals R to the
peripheral control connector. Whenthe peripheral control connector is able to service this request,
it sends four T pulses to the peripheral and on each T pulse transfers one character across the interface
to the peripheral control connector. Whenthe peripheral control connector has assembled these four
characters into a 24-bit word, it signals the central processor that it is ready to transfer a word. The
control word is then read, updated, and rewritten to the core store. The whole24-bit word contained
in the peripheral control connector is then transferred in parallel to the core store: This word hesitation
takes approximately the same time as a single-character hesitation. It is important to realize that when
a peripheral control connector is used, the hesitation takes place only after the peripheral control
connector has signalled to the central processor that it is ready to transfer a word. Thus, while the
peripheral control connector is receiving characters from a peripheral, the central processor can
continuewith other tasks such as servicing another peripheral or executingprogram instructions.

TRANSFER FROM THE CORESTORE TO A PERIPHERAL

The peripheral control connector will initially be empty.Whenthe peripheral buffer is ready to receive
a burst of four characters, the peripheral signals on the R line to the peripheral control connector,
whichthen signals the request to the central processor. Whenthe central processor is free, the word
hesitation commences; the control word is read, updated, and rewritten, and a 24-bit word is transferred
in parallel from the core store to the peripheral control connector.

4095(4.68) 51

-

The object program nowrecommences. Sofar as it is concernedthe hesitation is over; however, the
peripheral control connector still has to transfer the four characters across the interface to the peri­
pheral buffer. Onthe fourth T pulse associated with this transfer to the peripheral, provided the count
is not zero, the peripheral control connector requests a further hesitation from the central processor.
This further hesitation is requested regardless ofwhether or not the peripheral has requested a
transfer. The next word is then transferred to the peripheral control connector. However,these four
characters will not be transferred to the peripheral unit the peripheral control connector receives a
request on the R line from the peripheral. Consequently,a transfer request from a peripheral will
usually be serviced immediately as.the peripheral control connector will already contain the next
four characters.
Aburst modehesitation takes approximately 14microseconds on the 1904whereas the same hesitation
using a peripheral control connector takes only6 microseconds. Aperipheral control connector thus
considerably reduces the central processor time used for hesitation in relation to the time used for
.burst modehesitation.
In conclusionit shouldbe noted that whena peripheral control connector is fitted, the peripheral is
still connectedto the central processor via the standard interface. Furthermore, it shouldbe noted that
althougha peripheral control connector effectively alters a burst modehesitation into a word hesitation,
the transfer across the interface is still in burst mode in that four T pulses are sent to the peripheral
for. each four-character word transferred.

Store access control

The store access control is a hardware feature, available to handleburst modeperipherals onlyon the
1906and 1907,which can be specified in conjunctionwith peripheral control connectors and provides
a means of reducing the time that the central processor is occupiedby peripheral transfers. Aperipheral
control connector must be fitted for each standard interface peripheral to be connectedto the central
processor via the store access control. There are two important aspects of the store access control.
1 Whena store access control is not employed,data transferred from the central processor passes

from the core store, throughthe central processing unit, Le, the registers and arithmetic unit,
and then to the peripheral. With a core access control the flowof data is from the core store to
the peripheral withoutgoingthrough the central processing unit. Thus, a peripheral has direct
access to the core store via a store access control. The effective advantageof this is that a peri­
pheral can be writing to the core store via store access control, while at the same time an object
program can be performing, for example, an arithmetic operation in the arithmetic unit. Thus,
the central processor will hesitate onlywhencore store access requests coincidewiththose of
the store access control.

2 The store access control is providedwith one or more registers whichare used for the sole
purpose of holdingthe peripheral control word. Consequentlyit is not necessary to access the
core store in order to read the control word for each peripheral transfer. The store access control
is providedwith its ownarithmetic unit for updatingof the control words. A store access control
can be provided withup to six of these control word registers; therefore, up to six peripherals
can be handled simultaneouslyby one store access control. A store access control transfers 24
bits at a time and it is therefore necessary to have a 24-bit buffer, I.e, a peripheral control
connector, betweenthe store access control and each of the standard interface peripherals it is
to handle.

Peripheral autonomous control

The peripheral autonomouscontrol is a hardware feature available on the 1904/5/6/7E, F, 1903Aand
1904Aprocessors to handleburst modeperipherals only. It is similar to the store access control used
in conjunctionwith peripheral control connectors on the 1906/7 processors, and serves the same
purpose as both these devices together. Fast magnetic tape systems, fast drums and all disc stores
must be connectedvia a peripheral autonomouscontrol to the processors withwhichthis device is
available. Use of"the peripheral autonomouscontrol is optionalwith some other peripherals.
A peripheral autonomouscontrol contains its ownmill, buffer registers to hold control words during
peripheral transfers, andup to six data buffers, each containingone or twodata words. Oneor more
peripheral channels maybe connectedto each data buffer dependingon the space available within the
cabinet and the transfer rate of the peripherals concerned.

52 4095(6.71)

With peripheral autonomouscontrol the flow of data is between the core store and the peripheral auto­
nomous control without going through the central processor registers or arithmetic control unit. A
peripheral therefore has direct access to core store, and hesitations occur only if core store accesses
coincide, i.e. if the central processor wishes to access core store at the same time as peripheral
autonomous control wishes to access store to transfer a data word.

Store access manager

The store access manager is an autonomousdevice contained within the central processing unit of the
1902,3/A central processors. It handles all peripheral transfers. Its function is to control the priority
of access to the store so that peripherals that require access to the store urgently have it at the expense
of peripherals that can afford to wait. The store access manager allows all peripherals priority over
the central processing unit in access to the store.
In order that the fastest peripherals may not have to wait too long for access to the store, they may
use a facility knownas early warning.Onone of its earlier T pulses, prior to the peripheral requesting
a transfer to the store, early warning is set for that peripheral. This condition prevents any lower
priority peripheral gaining access to the store before the peripheral for which early warning was set.
On the 1902Athe setting of early warning prevents the central processing unit from gaining access to
the store for approximately three microseconds before the peripheral that set early warning requests •
store access. However, other peripherals may finish transfers that are currently being executed so that
normally a proportion of the three microseconds will be used. Early warning will normally be used on
peripherals with a data transfer rate of over 120Kcharacters per second.

The store access manager may handle up to 8 or 12 standard interface connections on the 1902Aand
1903Arespectively. Each connection has a data buffer capable of holding a Single character or word.
The buffers are used to hold data in transit between a peripheral and the core store. A inill within the
store access manager carries out the updating of the control word.

Peripheral processing unit

All peripheral transfers on the 1906Amust be made via an autonomousunit knownas the peripheral
processing unit. The P.P.U. is similar in pr inctple to the peripheral autonomous control but significantly
faster. It has buffers and a mill to hold and update control words.
The peripheral processing unit contains a single slow peripheral control allowing a maximum of 30
standard interface channels for single character peripherals. Seven fast controls, of which up to three
may be high speed controls, allow up to 19burst mode peripheral controls to be connected.

STANDARD INTERFACE SWITCHING UNIT

The standard interface switching unit can be used in conjunctionwith one or more central processors
to provide increased flexibility in the connection of peripherals. The principal uses of the S.LS.U. may
be summarised as follows:
1 To allow one of two similar peripherals to be connected to a single standard interface, and thus

increase the available number of peripherals beyond the limit imposed by the number of standard
interfaces provided.

2 Similarly, to decrease the on-line peripheral configuration to avert a crisis time problem.

3 To allow a peripheral to be switched between two processors and thereby redistribute peripherals
in a dual processor system during maintenance periods or in the event of a breakdown.

4 Similarly, to redistribute peripherals in a dual processor system where the processor /peripheral
requirements vary between shifts.

A standard interface switching unit consists of a cabinet containing up to four switching modules and a
control panel. Each switching module, of which there are three types, is basically a self-contained two
position switch that is operated manually. The three types of module have the numbers 7204/1, 2 or 3.
The control panel allows for local individual control of each module or remote control of selected
modules by a single master switch.

4095 (4.68) 53

Types of module

MODULE TYPE7204/1 (Y TYPE)

The followingare four uses of module type 7204/1.
1 It is possible to switch one peripheral P between two processors a and b. The twoprocessors need

not be identical.
NORMAL

: =====1~II----"P
STANDBY

: -----;1~II-----""p
This is of use whenprocessor a is used as a standby for processor b.
2 It is possible to switch one processor a between two similar peripherals P and Q. The Similarity

of peripherals in this context depends on the type of central processor and the interface channels
fitted. For details in particular configurations reference should be made to the I.C.T. sales
representative or other appropriate I.C.T. source.

•

a -t

NORMAL

I~I Q
p

STANDBY

1/01
Q
pG-----t

This is of use when it is required to have, say, seven peripherals with a processor which has only
six standard interface sockets and where it is knownthat twoparticular peripherals must never
be used together for reasons of crisis time.

3 Where a means of connecting two processors via standard interface exists, it is possible to switch
one of the two identical processors a and b to a third processor c.

NORMAL

:-----;1~I t--- c

STANDBY

b --------II ~ 1---1 c

a

4

(a)

It is possible to connect not more than twomodules in series so that more than two similar peri­
pherals may be made available to one interface.

NORMAL NORMAL

a ----+-<1~=-I _P---I
(b) STANDBY

I~I R
Q

NORMAL

I~I P

Q

4095 (4.68)

a I~~I _P---l

54

(c) STANDBY STANDBY

MODULE TYPE 7204/2 (N TYPE)

It is possible to switch a peripheral P from one processor a to a processor b, switching out at the same
time a peripheral Q already connected to processor b. As far as processor b is concerned, peripherals
P and Q must be similar.

NORMAL

b -+<I~I p

Q

STANDBY

1%1 •P
Q

a -+

a.----t-'

b---+--

MODULE TYPE 7204/3 (X TYPE)

It is possible to achieve interchangeability between two processors a and b and two peripherals P and Q.
Peripherals P and Q must be similar to both the processors.

a -+-
NORMAL

I~I P

Q

STANDBY

Ixl P

Q

b -+<

a -+-
b +--

4095 (4.68) 55

-
Chapter 7 Executive

THE NATURE OF EXECUTIVE
Executive is a supervisory program which, for all practical purposes, may be considered part of the
hardware. It uses a mode of processor operation containing functions not available to object programs.
These functions are not range-compatible but they always include the ability to send control signals to
activate peripherals or obtain information about their status and to access any part of store unimpeded
by datum and checks. Executive consists of a number of modules that can be assembled in variable
packages to meet the requirements of a particular 1900configuration. All computers in the 1900Series
use an Executive program which is always present in a protected area of store. The size of Executive
varies from one installation to another depending upon the type and number of modules of which the
particular Executive is composed. •

THE PURPOSEAND FUNCTIONS OF EXECUTIVE

The general purpose of Executive is to take over from both programmer and operator the execution
of a number of routine tasks and to organize the running of each program in the most efficient manner
possible.
Executive's principal functions are:
1 Control of multiprogramming, dualprogramming, and subprogramming on the processors that have

these facilities.
2 Control of peripheral devices and execution of peripheral transfer requests.
3 Loading and dumping of programs.
4 Provision of extracode facilities.
5 Communication with the operator and execution of operator directives.

. '---

THE COMPOSITION OF EXECUTIVE

The composition of the Executive used with any given configuration depends both on the central pro­
cessor and the overall configuration. There are a number of different types of Executive, as listed in
the section below, one or more of which is available with each central processor. Each type of
Executive is available in a number of different versions according to the configuration with which it is
to be used. This modularity can be further explained by reference to the functions of Executive listed
above.

Not all Executives include multiprogramming facilities but all versions of a given type of Executive
will be constant in this respect. That is, all versions of E4BM include multiprogramming facilities,
no version of EX1Hdoes. All Executives that include multiprogramming facilities also include sub­
programming facilities.

All versions of an Executives will have routines for the control of peripheral activity, since all con­
figurations have peripherals. However, the particular routines incorporated will depend on the peri­
pherals used and may vary from one type of Executive to another and from one version to another.
All types of Executive and all versions include routines to control the loading of programs; routines to
control dumping are included if there is a dump peripheral in the configuration. The routines may vary
from one version of Executive to another depending on the peripherals that may be concerned in loading
and dumping.

All types of Executive and all versions include some extracodes, since some instructions are always
carried out by extracode. The number of extracodes incorporated depends upon the central processor

4095(5.69) 57

and any optional feature that it has. For example the 165 (GIVE) instruction will always be carried out
by extracode; a 1901 without an E.M.U. will have an Executive that includes an extracode to perform
the 042 (MPA) instruction, but the Executive of a 1901 with an E.M.U. will not include this extracode.

All versions of any type of Executive will include some routines for operator communication. The
precise nature of these routines depends on the type of Executive concerned. All versions of one type
of Executive will have the same routines.

TYPES OF EXECUTIVE

The following table gives a list of the types of Executive, a brief description of each and details of
availability .

Executive Central Descriptionof Executive Configurationrestrictions
type processorts)
code
EXlH 1901 Single program, handswitch controlled. Limited range of peripherals

allowed.

EXIT 1901 Single program, typewriter con- Minimum8Kstore, console
trolled; Automatic Operator feature typewriter.
optional.

EX1V 1901 Single program, typewriter con- Minimum8Kstore, console
trolled, partially stored on E.D.S.; typewriter, 2 E.D.S. drives.

I Automatic Operator feature standard.
E1HS 1901A Single program, handswitch con- Limited range of peripherals

trolled. allowed.
E1TS 1901A Single program, typewriter con- Minimum8Kstore, console

trolled; Automatic Operator feature typewriter.
optional.

E1DS 1901A Single program, typewriter con- Minimum8Kstore, console
trolled, partially stored on E.D.S.; typewriter, 2 E.D.S. drives.
Automatic Operator feature standard.

ElMS 1901A Single program, typewriter con- Minimum8Kstore, console
trolled, partially stored on T.E.D.S.; typewriter, 2 T.E.D.S. drives.
Automatic Operator feature standard.

EX2L 1902 Single program, simplified facilities. Only4K stores, basic peri-
pherals.

EX2M 1902/3 Dualprogram, trusted program fea- Minimum16Kstore.
ture optional.

EX2S 1902/3 Single program; Automatic Operator Minimum8Kstore.
feature optional.

EX2V 1902/3 Single program, partially stored on Minimum8Kstore; at least
E.D.S.; Automatic Operator feature 2 E.D.S. drives or 1 drive and
standard. industry compatible magnetic

tape.
E3TS 1902A Single program; Automatic Operator Minimum8Kstore, 4 tape decks.

feature standard.

E3TE 1902A/3A Single program, trusted program Minimum16Kstore, 4 tape
feature standard. decks.

E3TM 1902A/3A Multiprogram, trusted program Minimum16Kstore, 6 tape
feature standard. decks, C.C.F.

58 4096(6.69)

Executive Central Description of Executive Configuration restrictions
type processor(s)
code

E3DS 1902A/3A Single program, partially stored on Minimum 8K store.
E.D.S.; Automatic Operator feature
standard, trusted program feature incl-
udedamongst overlays stored onE.D.S.

E3DM 1902A/3A Multiprogram, trusted program fea- Minimum 16K store, C.C.F . ,
ture standard. disc systems.

E3DG 1903A For use with GEORGE 3. As determined by GEORGE 3.

E4BM 1904/5 Multiprogram, manually operated.

E4G3 1904/5 For use with GEORGE 3. As determined by GEORGE 3.

E6BM 1904E/F Multiprogram, manually operated.
1905E/F
1906/7 .
1904A

EDG3 1906E/F For use with GEORGE3D. As determined by GEORGE3D.

1907E/F
E6G3 1904E/F For use with GEORGE3. As determined by GEORGE3.

1905E/F

1906/7
1904A
1906A

E6G4 1906A For use with GEORGE4. As determined by GEORGE4.

ENTRYTO EXECUTIVE

Anevent which causes an object program to be left and Executive entered is termed an entry or
interrupt, of which there are two principal types, voluntary and involuntary. A voluntary entry is one
which occurs at a set predictable point in the program; an example is a program instruction that is
actually executed by an extracode. An involuntary entry is one which is caused by an occurrence that
cannot be readily predicted by the programmer; an involuntary entry may be caused by, for instance,
operator action or the end of a peripheral transfer.

MULTIPROGRAMMING
Multiprogramming is the term given to the concurrent processing of more than one program that is
made posstble,bY' facilities provided with some Executives. Whena program being run under the control
of a multiprogramming Executive causes an interrupt, for instance to request a peripheral transfer,
Executive activates the program with the highest priority that is waiting to use the central processing
unit. Executive does this each time it is interrupted, leaving all other programs in the central pro­
cessor in a state of temporary suspension.

Program protection

Executive holds datum and limit values for each program held in store. Before each store access is
made a check to ensure that Datum ~ Location Addressed < Limit is effected dynamically by hardware.
Thus complete protection of each program is guaranteed.

409515.69)

-

•

59

-
Program priorities

Each program is loaded with a priority in the range 01 to 99*, 01 being the lowest priority. Executive
tries to enter the highest priority program whenever possible; if two programs have the same priority
the choice depends on the circumstances in which the program were set up.
It is usual to allot higher priorities to programs that are peripheral limited. Suchprograms will con­
tinually interrupt Executive and thus allow other programs use of the central processing unit ', If a ~ro­
cessor limited program is given a high priority it may monopolise use of the central processmg unit
to the exclusion of other programs held in store. The programs would then be run consecutively rather
than concurrently.
The indiscriminate use of program priorities 50 to 99 may, with certain Executives, lead to inessential
programs taking precedence over some of the slower Executive and operating system actions, with a
consequent loss in efficiency. In a real time system, it is essential that priority 99 is not used by any
program or program member loaded except the real time member of the on-line program.
Program priorities are disregarded when Executive has formed a queue of instructions waiting to be
given to a multi-unit channel such as a magnetic tape cluster. The operations are initiated in the
sequence in which the instructions are received.

Two console messages are relevant to program priorities. The REvise message allows alteration of
program priorities while programs are running on the machine. The PRint message allows information
on the priorities of programs already loaded to be typed out on the console typewriter.

Programdeletion

Whena program is deleted, either by the operator or by program instruction, the peripherals become
available for another program. In order to ensure that all the spare core store is available as one
continuous area when a program is deleted, Executive moves all programs in higher locations down
to fill the gap, and changes the values for datum and limit accordingly. Before moving the programs,
Executive completes any transfers that are in progress. This process can take several seconds.

Multiprogramming under GEORGE3 or GEORGE4 control

The above information applies to manually operated Executives, i.e. all except those used with the
GEORGE3 and GEORGE4 operating systems. For details of the concurrent running .ofprograms in
GEORGE3 and GEORGE4 environments reference should be made to the relevant GEORGEmanuals.

DUALPROGRAMMING

Dualprogramming is the term given to the limited multiprogramming facilities available on 1902/3
central processors under the control of the EX2MExecutive. Twoprograms may be run concurrently
under EX2M;subprogramming facilities are also provided. Dualprogramming is similar to multi­
programming except in the respects described below.

Programprotection

Executive stores a datum value for each program but no limit value. The limit, common to both pro­
grams, is the last word in store. Before each store access is made a check to·ensure that Datum ~
Location Addressed < Common Limit is effected dynamically by hardware. In normal circumstances
adequate protection is thus provided. However, since it is possible for the first program loaded to
access locations in the other program's area, it wouldbe unwise to load an unproved program first.
Whentwo programs are in store, one of these being unproved, the unproved program should always
occupy the higher numbered locations to prevent the possibility of its interfering with the other program.
Complete protection is provided for store accesses resulting from a peripheral transfer however.
Before initiating a peripheral operation, Executive will ensure that the transfer lies within the area
of store allocated to the program initiating the transfer.

*Some programs have been issued with a priority higher than 99. These programs are not range-com­
patible and may be run only in the environment specified.

60 4095 (US)

Program deletion

There is no program relocation either as a result of deleting the lower program in store or as a result
of the 165 N(M)= 4 (GIVE)instruction. Aprogram may be loaded into the vacant area of store between
Executive'and the higher program whenthe lower program has been deleted provided that the newpro­
gram is as small as or smaller than the program in the lower part of store whent~e program in the
higher part was loaded. If the higher program is deleted, a program can be loaded into the area of
store between the last word of the lower program and the store limit. However, it shouldbe ?ote.dthat
if the combined size of Executive and the first program loaded is greater than 16,128words It WIllbe
impossible to load a second program: as 16K is the maximumvalue that the datum register in 1902
and 1903processor can hold.
Whena program is deleted. Executive will not disengage any slow peripheral. Suchperipherals must
be disengagedby a 152 (DIS)order in the program. Nor will Executive rewind any tapes; this must be
doneby UnloadTape or Close Tape orders issued by the program.
Console typing of the outputmessages arising from 160,X = 1 (DISTY)and 161,X = 1 (DISP)will not
be timeshared with the initiating program. The other program will not be held up.

•SUB PROGRAMMING

Subprogrammingis the term given to the facility whereby parts of a program, called members, can
time-share with each other. In manyways subprogramming is similar to multiprogramming, except
that whereas programs occupydiscrete areas of store protected by hardware lock-outs (but see Dual­
programming) subprogramming allows order numbers to be given to members of the program which
share the program's store but followtheir ownsequence of instructions. The subprogramming facility
is available with all Executives that have multiprogramming or dualprogramming facilities.

The purpose of subprogramming

The purpose of subprogramming, in general terms, is to enable programs to run more efficiently. One
of the more obvioususes is to allow calculation to be time shared with input/output in a fairly straight­
forward commercial type of program where the degree of time-sharing provided by the use of double­
buffering techniques andby the basic autonomyof peripheral transfers on the 1900Series is not
adequate. In such cases the use of subprogramming allows input/output routines of a more complex
nature to be written. This particular use is usually relevant only in fairly modest operating environments,
as the problem of obtainingthe best performance from such a program is usually overcome by the off­
lining of peripherals by systems such as GEORGE.
Anextension of the example is the use of subprogramming in connectionwith real-time equipmentwhere
it is essential to answer a request for acceptance of incomingdata promptly to avoid possible loss of
data. Subprogrammingprovides the means by whichone part of the program can get incomingdata
safely into the processor whilst another part of the program is processing previously received data.
Were it not for subprogramming, the processing routine wouldhave to look at the real-time devices
very frequently and, even if it did so, the access time to service a request wouldbe much greater than
with subprogramming. Anexample of a program whichmakes use of subprogramming for such reasons
is the Multiplexer HousekeepingPackage.

Members of a program

A program may normally consist of a maximumof three or four members, dependingon the environ­
ment concerned; however, if the priority interrupt feature (see Chapter 9) is available, there will be a
member, called the Priority Member, that may be additional to this maximum.
Each member has its ownpriority and operates autonomouslywith respect to other members except
in the cases of loading or dumping. In these cases Member 0 acts as a master member. At all other
times any member may issue control instructions with respect to itself or any other member; i.e. any
member may de-activate itself and activate any other member.
It is necessary to distinguish between two forms of suspension that may occur. Amember may suspend
itself by means of the appropriate subprogram control instruction or it may be suspended for some
reason that is not relevant to subprogram control e.g. while awaiting the termination of a peripheral
transfer. The former case is described hereafter as de-activation to avoid confusionwith the latter
case, which is the generally accepted meaning of the term suspension in programming 1900Series
central processors.

4095 (4.68) 61

Information associated with each member

Note: The following information does not apply to the Priority Member.
Each member of a program has certain information that is permanently associated with it and that is
stored each time the member is suspended. This information includes the contents of the floating point
accumulator and its overflow indicator (FOVR),the normal overflow indicator (V),the carry indicator
(C), the address of the next instruction to be obeyed, the object program mo~es that are under the
control of a program, Le. addressing mode, branch mode and zero suppressron mode, and the accumu­
lators. This information is stored in the first 16words of the member's area.

The 16words referred to above contain for each member the same information as is normally held
for a program in the first sixteen words of store (see page 11). The first 16words of each member's
area are distinct and reserved for use by that member. These words are stored consecutively for each
member from location 32 onwards of the program area. Thus:
Words 32 to 47 Words 0 to 15 of Member 0

Words 48 to 63 Words 0 to 15 of Member 1
Words 64 to 79 Words 0 to 15 of Member 2
Words 80 to 95 Words 0 to 15 of Member 3
It should be noted that the directive GOAT renders the contents ofWords 0 to 15 indeterminate for aU
members. The rest of the program area is available to all members, so that each member'S area con­
sists of its ownfirst 16words plus the rest of the program area minus the other members' first 16
words and any other reserved areas.

•

MEMORY INDICATORS

Each member other than the Priority Member has associated with it two memory indicators, Mand P,
and where a Priority Member exists, a further indicator E. The Priority Member has only a P indicator.
These indicators are used to remember attempts to activate a member while it is already active. The
indicators each consist of a single bit that is set if an attempted activation is to be remembered; sub­
sequent attempts to activate the member before the memory indicator has been cleared will be for­
gotten.

M is the indicator set by a 163,N(M)= 0 (AUTO)instruction issued in respect of a member that
is active. It must be remembered that a member may be active but suspended. The M indicator
remains set until cleared by a 164 (SUSARor SUSIN)instruction.

P is the indicator set when an event occurs, while the member is active, on a direct response
device that the member controls. An event is said to occur on a flag-setting direct response
device if the reply word for the device changes from "transfer in progress" to "transfer com­
pleted" or if a condition requiring object program action occurs. An event is said to occur on
a suspension device operating in direct response mode if the former condition above occurs
or if a device that was disengaged becomes engaged. Amember is said to control a device if
it is the member from which the most recent non-discrete instruction was accepted for that
device. A non-discrete instruction is one that cannot be assumed to have been completed at
the time that execution of the followinginstruction begins. If there was no such instruction,
the controlling member is the one that established the device's flag area or caused the device
to be switched to direct response mode.
The P indicator remains set until cleared by a 164,X:: 2 or 3 (SUSIN)instruction.

E is the indicator set for all members that are active whenthe Priority Member issues a 164,
X = 4 (SUSIN)instruction. The E indicator remains set until cleared by a 164,X = 3 (SUSIN)
instruction.

Information associated with the Priority Member

Executive stores none of the information mentioned above for the Priority Member apart from the P
memory indicator.

The Priority Member always operates in 15AMand DBMso there is no need to store its address and
branch mode setting. The Priority Member may use the 125 (MODE)instruction but on initial activation
and after a 164 (SUSIN)instruction the state of its zero suppression mode is undefineduntil it has issued
a 125 instruction or suitable 047 (CBD)instruction.

62 4095 (Ha)

In no circumstances may the Priority Member use Words 8 to 15. It may use the accumulators pro­
vided that the contents of those used are preserved before use and restored after use: i.e. effectively,
preserved immediately after the first activation and every 164 instruction and restored immediately
before each 164 instruction.
Violation of this rule may cause corruption of other members of the program but not of another pro­
gram or Executive.

Further notes on the Priority Member

PRIORITY

The Priority Member, which must always be Member 5 of a program, has absolute priority; i.e.
higher even than Executive. The program request block must showMember 5 as having a priority of
octal 7777, i.e. Word 12 of the request block must contain octal 77777705.

TIME-OUT FEATURE

Because of the absolute priority of the Priority.Member there is a danger that this member might
monopolise use of the central processor. To avoid this danger, a time-out feature is used. The time-out
feature causes the Priority Member to be regarded as illegal if it is continuously active for longer than
a certain period of time, the exact period varying from one central processor to another.

•

ORDER CODE RESTRICTIONS

Certain order code restrictions apply to the Priority Member. The following instructions may be used
in accordance with their range-compatible defintions (see Chapter 5): 000 to 037, 050 to 064, 070 to
074, 100, 110, 112, 120 to 125. The following instructions may be used in accordance with their range­
compatible definitions provided they are available to other members in the environment concerned and
provided they are performed by hardware and not by extracode: 040 to 047, 066, 111, 113, 116, 126,
127. The only other instructions available to the Priority Member are certain subprogram control
instructions defined in the relevant section below, and its peripheral control instructions whichwill be
peculiar to the processor and/or peripheral device.
Note: Onlyone Priority Member may be present in the central processor at anyone time.

Further notes on other members

PRIORITIES

The priority assigned to each member is that supplied in the request block; the number of each member
in no way affects the member's priority. It should be noted that the priorities of members of a program
can be changed by means external to the program without the program being aware of the change;
accordingly, a program must not be logically dependent upon the.priorities of its members.

ADDRESS AND BRANCH MODES

I
The initial mode setting of Member 0 is determined by the supplementary request block. Members other
than Member 0 obtain their initial mode setting from the mode of the member that first activates them.
Whena multi-member program is dumped, the mode setting of Member 0 only is recorded. On sub­
sequent reloading, all members will again take their initial setting from the member that activates then
initially.

Loading and dumping

LOADING

Whena program is first loaded Member 0 will be active and suspended awaiting operator action. All
other members will be inactive awaiting activation by a 163, N(M)4 0 (AUTO)instruction.
If a Priority Member exists, before any servicing of priority devices can take place the Priority Member
must be activated by one of the other members of the program by means of a 163, N(M)"I (AUTO)
instruction. This initial activation causes interrupts from priority devices to be significant and they
will continue to be so until either the program is deleted or the Priority Member times out. On the first
activation the Priority Member should perform any appropriate initialization procedures and then
suspend itself awaiting an interrupt from a priority device or re-activation by another member.

4095 (4.68) 63

Member should perform any appropriate initialization procedures and then suspend itself awaiting an
interrupt from a priority device or re-activation by another member.

DUMPING
Orders 154 (CaNT) and 155 (SUSDP)are illegal if issued by any.membe~ oth~r th~n Mem~er O. All
members of a program are suspended while either of these two mstr~cbon~ IS b~mg carrl~d out so
that Words 0 to 15 of all members other than the Priority Member will be m their respective storage
areas and thus will be dumped correctly for subsequent reload.
In the case of an operator initiated dump, it is the responsibility of the operator to ensure that all
members are suspended before the dump is initiated. The members may be suspended by the use of a
SUspend directive in respect of each member.

Reference to common storage areas

PROGRAMS WITHOUT A PRIORITYMEMBER
•As stated earlier, Words 0 to 15 of each member are protected from corruption; the rest of the pro-

gram area is common to all members and it is therefore possible for one member to corrupt another.
This means that where an area of store is to be used by more than one member the program must
include appropriate lock-out routines. In simple cases lock-out can be performed by using 163 and 164
instructions; in more complex cases it has to be performed by means of indicators that record the
state of the common areas. In the latter cases no assumption can be made as to the relative priorities
of members, since these are not under members' control. It is always possible that another member's
instructions may be obeyed between the obeying of any pair of successive instructions in a member's
routine, so that the programmer must ensure that data being processed by one member is always pro-
tected from interference by other subprograms. .
A consequence of this last point is that the alteration of an indicator that is also altered by another
member, and whose altered value is in some way dependent upon its original value, must be carried
out by a single instruction that alters the quantity directly in its commonly accessed location. If more
than one instruction is used to alter an indicator, it is possible for two members to be altering the
same indicator at the same time, with indeterminate results. The 162 (SUSMA)instruction is provided
to help overcome this problem, since SUSMAcauses Executive to be entered, so that no other member
can interrupt.
Two further important consequences are as follows:
1 If, under certain conditions, an indicator is set by a member and is nowhere re-set by that mem­

ber, then, if another member determines that the indicator is set, it can assume that the setting
conditions existed in the first member. However, if it detects that the indicator is not set, it can­
not assume that the setting conditions did not exist.

2 Only when a routine in a program is pure may it be obeyed by more than one member of the pro­
gram; this applies particularly to subroutines. In this context, a routine is deemed to be pure if
the only words of the program area that it attempts to change lie in the range 0 to 15 inclusive or
are reserved for that member and are accessed by use of a modifier. The area used for dumping
Words 0 to 15 of the member's area must not be used by a pure routine.

PROGRAMS WITH A PRIORITYMEMBER

The above information applies equally to programs with a Priority Member except where contradicted
below.
Non-priority members passing information such as data addresses that may be used as modifiers to
the Priority Member must remember that the Priority Member always operates in 15AMand DBM
and must ensure that such data is compatible with this restriction. Provided that correct use is made
of the 162 (SUSMA)instruction for the manipulation of flags between non-priority members, there is
no restriction on the number of the non-priority members that may share one area with the Priority
Member.
Despite the fact that a 162 instruction issued by a non-priority member can be interrupted by the
activation of the Priority Member, the 162 instruction may still be used by a non-priority member to
manipulate flags between itself and the Priority Member. The Priority Member does not need, and
indeed cannot use, the 162 instruction. Because of the absolute priority of the Priority Member, it can
safely alter a flag or common area, without any risk of interference, by means of a sequence of several
instructions provided that the sequence does not include any 164 (SUSIN)instructions.

64 4095 (4.68)

Subprogramming control instructions

The instructions provided for the control of communication between members of a program are the
162 (SUSMA),163 (AUTO)and 164 (SUSARor SUSIN)instructions. The effect of each is define.dbelow
and the use of these instructions is described in a later section. The states of members mentioned
below may be clarified by reference to the States of members in the next section.

THE 162 (SUSMA) INSTRUCTION
The action of this instruction depends on the contents of Word N(M)+l, as follows:

If the contents of Word N(M)+1are non-zero, the program continues at the instruction in the word
following that which contains the 162 instruction.
If the contents of Word N(M)+1are zero, they are made non-zero and the contents of X are copied into
Word N(M). The program then continues at the instruction contained in the second word after that which
contains the 162 instruction.

Restrictions

1 N(M)must not be in a reserved area of store.

2 This instruction cannot be used by the Priority Member.
•

THE 163 (AUTO) INSTRUCTION

This instruction takes two forms. The first, in which N(M) is non-zero, is provided for the initial
activation of a member after the program is loaded; the second, in which N(M) is zero, is provided
for subsequent reactivation of a member.

Initial activation

X contains the number of the member to be activated, the first instruction to be obeyed being that in
word N(M). Activation will cause Member X to assume the same address and branch modes are are
applicable to the member that issues the 163 instruction at the time that the instruction is issued. The
state of the zero suppression mode in Member X will be indeterminate.
Restrictions applicable to this form of the instruction are:

1 N(M)must not be in a reserved area of store
2 The instruction may be obeyed only when Member X is inactive in state SL: I.e. in the state

assumed by members other than Member 0 as a result of initial loading or the GOVATdirective.
3 Member X can never be Member 0 or the member that issues the 163 instruction.

Subsequent re-activations

X contains the number of the member to be re-activated and word N(M) is always zero. If Member X is
currently inactive due to a 164 instructions, it is re-activated at the instruction following that 164, with
the state of address, branch and zero suppression modes the same as when the 164 instruction was
issued. If Member X is currently active, the memory indicator M of Member X will be set and will
remain 'so until Member X issues a 164 instruction which will then clear the M indicator but not de­
activate Member X.
Restrictions applicable to this form of the instruction are:
1 Word N(M)must be zero.
2 The instruction must not refer to a member that is inactive in state SL.

THE 164 (SUSAR OR SUSIN) INSTRUCTION

This instruction provides the means by which a member can de-activate itself until a specified type of
event occurs provided that no such event has occurred since the previous equivalent instruction was
issued by the member. It will be noted that this instruction has variants dependant upon the value of X
(N(M)is always zero), and that successive variants include all preceding variants. The definition of all

4095 (4.6B) 65

variants is such that spurious re-activation, i.e. re-activation of a member that should not be re­
activated may occur; all programs must be coded to allow for spurious re-activation.

The 164, X=1 (SUSAR) variant
Unless the M indicator of the member issuing this instruction is set, the member is de-activated until
either a 163'instruction referring to this member is issued. If the M indicator is set, it is cleared and
the member proceeds at the next instruction.
This variant is not available to the Priority Member.

The 164, X=2 (SUSIN)variant

Unless the Mor P indicators of the member issuing this instruction are set, the member is de­
activated until either a 163 instruction referring to this member or an event on a direct response
device controlled by this member occurs. If either or both of the M and P indicators are set, they
are then cleared and the member proceeds at the next instruction.
This variant is not available to the Priority Member.

The 164, X=3 (SUSIN)variant

This variant is available only to a program that includes a Priority Member.
Unless the M, P, or E indicators of the 'member issuing this instruction are set, the member is de­
activated until one of the followingoccurrences:
1 A 163 instruction referring to this member is issued.

2 Anevent on II direct response device controlled by this member occurs.
3 A 164, X = 4 instruction is issued.
If any or all of the indicators are set, they are then cleared and the member proceeds at the next
instruction.

The 164, X=4 (SUSIN)variant

This variant is available only to the Priority Member. If there have been no interrupts from priority
devices since the Pr icr ityMember was last activated, the Priority Member is de-activated until either
such an interrupt occurs or a 163 instruction referring to the Priority Member is issued. If an interrupt
from a priority· device has occurred, the Priority Member proceeds at the next instruction.
Regardless of whether the Priority Member de-activates itself, all other members that are inactive in
such a state that they can be re-activated by the Priority Member are re-activated, and the E memory
indicator of any other members is set.

States of members

Whena program is loaded Member 0 is deemed to be active, although it will probably be suspended
awaiting some operator message, e.g. GO.Member 0 may then activate some other member and de­
activate itself. It is important to realise that a member may be active, i.e. have current use of the
central processor as far as that program is concerned, and yet be suspended awaiting operator action or an
event such as the terminator of a peripheral transfer.
Aprogram may be in anyone of a number of inactive states. These inactive states are considered below.

STATE TRANSITION TABLES

The two diagrams below summarize the effect of various events under all possible valid conditions.
The explanatory notes that follow should be read in conjunctionwith the diagrams.
1 The word "invalid" indicates that a restriction has been violated.

2 At any time a member is in one of the followingstates.
NS Active, but may be suspended

66 ~09S (04.68)

Instruction or Applying Member being in state

event to member SL NS SM SMP SMPE

163, N(M)I 0 y Y becomes Invalid Invalid Invalid Invalid

active

163, N(M)= 0 Y Invalid M indicator Y becomes Y becomes Y becomes

of Y set active active active

Direct Response Y or all Invalid P indicator P indicator Y becomes Y becomes
Peripheral members of Y set of Y set active activeEvent

164, X = 4 All Invalid E indicator E indicator E indicator Ybecomes

members of Y set of Y set of Y set active
•

Figure11 The effect of the 163 instruction,direct response peripheralevents and the 164, X=4 instructionon
members' states

Memoryindicators of Effect of member Y issuing a 164 instruction

Y that are set 164, X=1 164, X=2 164, X=3

None Yassumes state SM Y assumes state SMP Y assumes state SMPE

E only Y assumes state SM Y assumes state SMP E Cleared, Y remains

in state NS

P only Y assumes state SM P cleared, Y remains P cleared, Y remains

'in state NS in state NS

E and P' only Y assumes state SM P cleared, Y remains E and P cleared, Y

in state NS remains in state NS

M only M cleared, Y remains M cleared, Yremains M cleared, Y remains

in state NS in state NS in state NS

E and M only M cleared, Y remains M cleared, Y remains E and M cleared,

in state NS in state NS Y remains in state NS

M and P only. M cleared, Y remains .Mand P cleared, Y M and P cleared,' Y

in state NS remains in state NS remains in state NS

E, M,and P M cleared, Y remains M and P cleared, Y E, M and P cleared, Y

in state NS remains in state NS remains in state NS

Figure12 The effect of the 164 instructionon memoryindicators

4095 (4.68) 67

SL In an inactive state because it has not had an initial activation since the program was loaded
or since a GOAT directive.

SM Inactive because it has issued a 164, X = 1 instruction

SMP Inactive because it has issued a 164, X = 2 instruction
SMPE Inactive because it has issued a 164, X = 3 instruction

3 All references to memory indicator E and associated conditions apply only to a program that
includes a Priority Member.

Examples

The followingexamples are provided to clarify some of the points made in the preceding description
of the subprogramming system and to show the use of the subprogramming control instructions. In the
examples it is assumed that subprogramming is being employed to gain efficient time-sharing of pro­
cessing with input/output functions. One member is therefore engaged in processing normal records
and in stacking exception records that have to be printed. Another member takes exception records
from the stack and prints them. The former .member will de-activate itself only when the area holding
records to be printed is full; the latter member will de-activate itself when there is no record to be
printed.
The notation used in the examples is as follows:
p Acyclic pointer to the area of the buffer into which to read the next record; p is local to the

member reading and processing normal records
q Acyclic pointer to the area of the buffer from which to print the next record; q is local to the

member printing exception records
r The number of exception records outstanding to be printed; r is common to both members.

t The capacity of the stacking buffer
The reason for interrupts occurring is not specified in the examples as they are not important. It
should be noted that the sequence in which members run bears no relation to any possible priority
they may have. It is likely that this apparent disregard of member's priorities wouldoccur in an
environment including GEORGEor where direct response devices are being serviced. It is for this
reason that it has been stressed that a program must not be logically dependent on member's priorities.

•

EXAMPLE 1: WHY THEREMUST BE M INDICATORS

It might be thought that a program woulduse 163 and 164 instructions only where necessary and that
therefore there is no need for an 11 indicator for the 163 instruction to set and the 164 instructions to
test. The following example shows why the M indicator is necessary.

Member

1

Sequence of actions

Reads a record, sets r = 1, issues 163 1 o. An interrupt occurs
Prints the record previously read by Member 0, sets r = 0, tests r and finds r = O. An
interrupt occurs before a 164 instruction can be issued.
Reads next record, sets r = 1, issues 163 1 O. Member 1 is still active, so its M indicator
is set. An interrupt occurs.
Issues a 164 instruction. The M indicator is set, so this member carries on.

o
1

o

The 163 instruction really means that if the member referred to is active its M indicator must be set;
otherwise Executive must be informed that the next time there is an interrupt the member that was the
subject of the 163 instruction must be considered for running. If the 163 instruction did not set an indi­
cator and the 164 instruction did not test it,IMember 1 in the example above wouldbe de-activated and
Member 0 would carryon and de-activate itself on filling the stacking area. This example illustrates
the constant problem of subprogramming of howto make a test and act on the result without being
interrupted, or if an interrupt occurs, for it not to matter. A similar condition could arise if Member 0
were interrupted just before issuing a 164 instruction. In both cases the lack of an M indicator could
result in complete paralysis, each member being inactive awaiting activation by the other. (See also
Example 3.)

68 4095 (4.68)

EXAMPLE 2: A 163 INSTRUCTION ISSUED WHEN M IS SET

It might seem that the definition of the 163 instruction should allow for finding the M indicator set, or
that this condition should never be allowed to arise. The following example illustrates not only that the
tests do not prevent this happening but that the condition is irrelevant.

Member

o
1

o

1

Sequence of actions

Reads a record, sets r = 1, issues 163 1 O.An interrupt occurs.

Prints the record previously read by member 0, sets r = O.An interrupt occurs before
the member can test r ,
Reads next record, sets r = 1, issues 163 1 O.Member 1 is still active so its M indicator
is set. An interrupt occurs.
Tests r and finds r = 1, prints record previously read by Member 0, sets r = O.An
interrupt occurs before the member can test r . -o Reads next record, sets r = 1, issues 163 1 O.Member 1 is still active so its M indicator
is set again.

Thus the tests have permitted a spurious 163 instruction because they could not detect that Member 1 •
was active. The first example illustrated activating a member that was virtually inactive since it had
tested r and was about to de-activate itself. This example illustrates activating a truly active member,
but no error arises provided that spurious re-activation is not caused.

EXAMPLE 3: COMPLETEPARALYSIS

Example 1 showed that complete paralysis could occur if M indicators were not provided. However,
even with the provision of these indicators, complete paralysis can still occur if care is not taken.
Programmers using subprogramming for the first time tend to think that since M indicators cannot be
tested explicitly to see if a member is active, switches should be defined corresponding to the M
indicator of each member. In the example below Member 0 has a switch S and Member 1 a switchT,
these switches being set when the members are active and unset before the members de-activate
themselves, Each member tests the other's switch and issues a 163 instruction only if the other mem­
ber's switch is set, i.e. only if the other member is inactive. In this way unnecessary 163 instructions
can supposedly be avoided.

Member

o
1

o

1

Sequence of actions

Reads a record, sets' r = 1, tests T and finds it set, issues 163 1 O.An interrupt occurs
Sets T, prints the record previously read by Member 0, sets r= 0, tests r and finds
r = O.An interrupt occurs before the member can unset T

Reads next record, sets r = 1, reads another record, sets r = 2 and so on until r = t .
Unsets S and issues 164 1 o.
Unsets T, and issues 164 1 o.

Both members are now inactive awaiting re-activation by the other. This example again illustrates
the problem of how to make a test and act on it without being interrupted, or if an interrupt occurs,
for it not to matter. The complete paralysis obtained above could be avoided if Sand Twere unset
by their respective members before instead of after testing r. Sand T are in fact superfluous and can
be replaced by further tests on r ,

EXAMPLE 4: SPURIOUS RE-ACTIVATION

Spurious re-activation, it will be remembered, occurs where a member is re-activated when it should
not be (as against need not be). This condition is illustrated below.

Member

o
1

-4095 (-4.68)

Sequence of actions

Reads a record, sets r = 1, issues 163 1 o. An interrupt occurs
Prints the record previously read by Member 0, sets r = O.An interrupt occurs before r
can be tested.

69

Member Sequence actions
o Reads next record, sets r = 1, issues 163 1 O. Member 1 is active so its M indicator is set.

An interrupt occurs
1 Since r = 1, prints the record previously read by Member 0, sets r = 0, issues 164 1 O.

M is set, so the member carries on.
Since r = 0 Member 1 should not carryon. To avoid such cases of spurious re-activation it is necessary
to loop back and test r again after the 164 instruction before going on to read or print the next record.

EXAMPLE 5: THE USE OF THE 162 INSTRUCTION

The previous examples have used only 163and 164 instructions. It is necessary to use the 162 instruc­
tion only:
1 When it is required to guard against all future machine contingencies
2 To update a parameter in a way that cannot be achieved in one interruptable instruction
3 In a program in which two or more members are updating a parameter to prime another member

that both call.
The example below illustrates the last case.
In this example it is assumed that two files have to be processed and that in each case exception records
have to be printed out. It is further assumed that the printed records will be dealt with individually and
can therefore be printed in no particular sequence, records from one file being intermingled with those
from the other. In the illustration, Members 0 and 2 are reading into buffer areas Rl and R2 respect­
ively and s tacking exception records to be printed by a third member, Member 1. The symbols used
are as previously defined.
Having two stacking members considerably alters the programming method adopted. To obtain the most
efficient utilization of the store the stacking area should be shared by Members 0 and 2; p therefore
becomes a common parameter and a little thought will show that it is not viable to simply read into p
and set p = p + 1 in both members.
There is the possibility of one member reading into p and then being interrupted, whereupon the other
stacking member might also read into p. To avoid this possibility p must be updated by means of the
162 instruction. It wouldbe possible to use the 162 instruction to lock out the stack whilst any given
member was accessing it. However, this procedure wouldgive rise to unnecessary 163 and 164 instruc­
tions. By using the 162 instruction as in the example given, it is possible to increment p before reading
into the stack and thus safely reserve an area and then use it.
Although r is a common parameter in the examples previously given, problems arise when there is
more than one member incrementing r; in previous examples Onemember incremented r and the other
reduced it. Unlikep, r can be updated in one interruptable instruction, the 011 (ADS)instruction. The
problem is howto test whether the stack is full and whether Member 1, the printing member, might
need a 163 instruction. Considering the former half of the problem, if a test for r = t is made and both
members update r virtually in parallel the stack could overflow. The test must therefore be for
r = t or t = 1; if the result is positive, the testing member must de-activate itself. Unnecessary de­
activation could result but this is the price to be paid for ensuring against the overflow condition arising.
It is not possible to avoid all unnecessary 163 and 164 instructions, although every effort should be
made to reduce their occurrence because of the time taken to perform extracodes. The general rule is
that whenever a situation requiring a 163or 164 instruction may occur, then one must obey the instruc­
tion as it is never possible to determine whether or not the instruction is really necessary. With even
more members sharing r , correspondingly more tests wouldhave to be made: if a third member
shared r , the test wouldbe for r = t or t - 1 or t - 2.
The second half of the problem, to determine whether the printing member might need a 163 instruction,
is resolved by testing for r = 1 or 2. To appreciate why it is necessary to test for r = 2, suppose that
one stacking member reads a record into the stack, sets r = 1 and is then interrupted before testing r.
The other stacking member could then also read a record into the stack and set r= 2. If the test on r
was simply for r = 1 the printing member wouldnever be activated; the stacking members would con­
tinue until the stack was full and then de-activate themselves, thus leading to complete paralysis.
The spurious re-activation condition mentioned in previous examples is combatted by following any 164
instruction by a loop back to the test that gave rise to the 164 instruction.

•

70 4095 (4.68)

•

•

MEMBER 0

4095 (4.68)

SET P = t

BRN *-1

BRN *-2

•

71

Setq=O

•

MEMBER 1

72 4095 (4.68)

II

MEMBER 2

4095 (4.68)

LDX 1 P

BRN *-1

No

•

73

A point of interest is that the printing member, Member 1, has only to test for r = 0 to determine
whether to de-activate itself but must test for r = t - 1 or t - 2 to determine whether the stacking
members require a 163 instruction. Member 1 also has to issue 163 instructions for both stacking
members since it has no way of ascertaining whether one or both stacking members require activation.
One detail that is omitted from the example is howthe job is terminated. Clearly, the job must be
rounded off by the printing member althougha terminating DELTYwoul.d.h~veto come from Membe.r
O. Onemethod of terminating is to have two switches, X and Y, that are irntially set to zero. On closing
File 1 Member 0 wouldset X = 1; similarly Member 2 wouldset Y= 1 on closing File 2. Member 1
wouldtest X and Y before issuing each 164 instruction and, on findingboth switches non-zero, would
close the print file.

PERIPHERAL TRANSFERS
General information on peripheral transfers is given in Chapter 6 of this manual. This section gives
a description, illustrated by flowcharts, of howExecutive deals with a peripheral transfer instruction.
The instruction concerned is the 157 (PERI) instruction referring to a card reader; the actions des­
cribed refer to a single program Executive on a machine at the lower end of the 1900Series.

THE PURPbSE OF THISDESCRIPTIONISTOGIVETHEREADERANIDEAOF
HOWEXECUTIVEDEALSWITHPERIPHERALTRANSFERINSTRUCTIONS;
HOWEVER,NOINFERENCESHOULDBE DRAWNASTOTHERELEVANCEOF

THISDESCRIPTIONTO SPECIFICEXECUTIVESORSPECIFICPERIPHERAL

DEVICES.

FLOWCHART 1

Whena program issues a 157 (PERI) instruction, Executive is entered. Executive allows interrupts,
and proceeds to make various checks as to the legality of the instruction. Executive also determines
the form of the 157 instruction i.e. whether X is theunit number, or the number of an accumulator
containing the unit number. If any of the legality conditions is violated, Executive types out an ILLEGAL
message and suspends the program.

FLOWCHART 2

Havingestablished the legality of the 157 instruction, Executive deals with the matter of hesttattons;
these are fully described in Chapter 6. At this point it can just be noted that Executive checks that
carrying out the 157 instruction will not cause hesitation overload. Hesitation overload wouldoccur
if the number of peripherals active at any time exceeded the hardware capacity to deal with all the
transfer of data. In order to avoid this, Executive has a hesitation constant, and each peripheral
device has a related value. Whenactivating a peripheral, Executive subtracts the value associated
with that peripheral from the hesitation constant. The hesitation constant is such that the sum of the
values associated with any combination of active peripherals that wouldcause hesitation overload
exceeds the hesitation constant. Thus, by checking to ensure that the hesitation constant is never .
exceeded, Executive ensures that hesitation overload never occurs.
Further downthe flowchart interrupts are inhibited and an indicator is set to showthat an instruction
is in progress. The state of this indicator is tested at the third step in the flowchart, and if it is found
to be set, the instruction that caused the indicator to be tested will loopuntil the indicator is unset.
In a multiprogramming context a loopwould, of course, be impossible; Executive wouldactivate
another program.

The final step in this flowchart is to ascertain the state of the peripheral device, by sending a 'command'
to it to perform the required transfer. The reply, sent back immediately from the peripheral device,
may be "Accepted", "Rejected", or ''Inoperable''.

74 4095 (4.68)

FLOWCHART 3

H the command is "Accepted", Executive sets the reply word negative, subtracts the value of the
peripheral from the hesitation constant, and then tests to see if this transfer is a repeat of a previous
transfer. H this is the case, a branch is made to E; otherwise, Executive returns control to the object
program.
H the command is not accepted, nor a repeat, a test is made to determine whether it.iS ~ejected or
inoperable. H it is rejected, Executive will allow interrupts, and loopba~k to the .mal? Iine of flow at
B in Flowchart 2. H the command reply is "Inoperable", a FIX message IS typed if thls has not already
been done, and a loop made as with the rejected command. Until a peripheral or typewriter interrupt
occurs, the command is repeated indefinitely (once every 150microseconds on a 1902).

FLOWCHART4

H the 157 instruction is a repeat, a branch is made from the main line of flow (in Flowchart 3) to E.
A test is made to see if the command has been accepted. H this is the case, Executive transfers control
back to the object program. otherwise, an error message is typed and the program that issued the
157 instruction is suspended.

•FLOWCHART 5
H a peripheral transfer is stopped for any reason once it has been set in progress, Executive is
entered (top of Flowchart 5). In this case no interrupts are accepted in the course of the routine.
Executive establishes the reason for the interrupt. H the transfer is terminated, either correctly or
in error, an end-of-transfer routine is entered; otherwise a branch is made (F) leading to the com­
pletion or repeat of the transfer. The end-of-transfer routine begins by testing to see if the transfer
was terminated in error. If this is the case, an error message is typed and a warning simulated.
(Awarning is said to have occurred if the HOLDbutton is pressed.) In the case of a card reader, the
repeat process involves the operator in repositioning the card or a replacement, and then pressing
the ALLOCATEbutton.

I FLOWCHART 6

The end-of-transfer routine continues by testing for the warning; if this is detected, the card reader
is disconnected, the reply word, hesitation constant, and the 'instruction in progress' indicators are
adjusted, and the program that originally issued the 157 instruction causing the interrupt is suspended.
If no warning is detected, the transfer is woundup in the same way, except that the card reader is
not disconnected, and control is transferred to the object program which issued the original 157
instruction.

FLOWCHART7

H the transfer is not terminated, either the ALLOCATEor the HOLDbutton may have been pressed.
These conditions are tested for. In the former case, if the program which issued the original 157
instruction is suspended awaiting reallocation of the card reader, the suspension is lifted and a branch
made to the initiation of transfer at C (see Flowchart 2) so that a transfer can be effected. otherwise,
a test is made for the warning. If this is detected, and an instruction is in progress, a branch is made
straight back to the object program so that instruction can be completed before termination occurs in
the normal way. If no instruction is in progress, the card reader is disconnected and control trans­
ferred to the object program.

4095 (4.68) 75

157 (PERI)
Instruction

Allow
Interrupts

Is Control
1.••••••I-__NO__ ...;:~rea EntiC/eh

"'" Within
Store

Replace X if
256Bit is Set

Search for
Card Reader

Suspend
Program

Flowchart1

76

Form Hesitation
ControlWords

Would~
Yes /Transfer ..'>

I.••••••I-----~Cause Hesitation
'Overload~

[s an lnlrucuon
••••Yes CuAlready i~•...••...----< ~rogress oy

this Card Reader

Preserve Hesitation
ControlWords in
Hesitation
Registers

Inhibit
Interrupts

Set 'Instruction
in Progress'
Indicator

Place Hesitation
ControlWords in
Hesitation
Registers

SendAppropriate
Commandto Card
Reader and Obtain
Direct Response

Flowchart 2

•

4095 (4.68)

No

Yes

Unset 'Instruction
in Progress'
Indicator

Set Reply
Word Negative

No Direct
Response Adjust Hesitation

Inopefle,
Loading

Yes Has 'Fix'
Message> Yes

Been Typed

I Type 'Fix'
Message

Exit to
Object Program

Allow
Interrupts

Flowchart3

No

Suspend Program
Waiting for Card Reader
to be Reallocated

Exit to Instruction
Beyond Point at which
Interrupt Occurred

Flowchart4

.•095 (".68) 77

Program Interrupt
from Card
Reader

Inhibit
Interrupts

Terminated?

o
Flowchart 5

Flowchart 6

78

Yes

Type "Err'
Message

Simulate
Warning

No

No

Set ReplyWord
Positive with
State of Peripheral
and CountRemainder

Reduce Hesitation
Loading

Unset 'Instruction
in Progress'
Indicator

/Was
_-----N-O-----< Routine Entered<,

from End of /'
'Err' Message

Exit to Instruction
Beyond Point at which
Interrupt Occurred

Suspend Program
AwaitingReallocation
of Card Reader

4095 (4.68)

Yes <Allocate>

f Button
Pressed

Is Program
~ended Awaiting No

eallocation of •
Card Reader

No

Remove
Suspension

Yes

• ObtainHesitation
Control Words
from Card Reader
List

Disconnect
Card Reader

Set 'Repeat'
Indicator

Exit to Instruction
BeyondPoint at which
Interrupt Occurred

Flowchart 7

~095 (4.68) 79

"Caco...•
III
3

Cassette
tape only

ce
o ::!!

co
r::...•
CD....•
w

;~ r---------,3 I PRE- I

~ : REQUEST:
o I BLOCK I
;- I SENTINEL :L ...J[- I
-<

REQUEST
BLOCK

r--------,
I SUPPLE- I
I MENTARY II I
I REQUEST I

. I
: BLOCK I
'- .1

I

DATA
BLOCKS

ENTRY
BLOCK

~------~-------------~--------~

22AM or
EBM only

LAYOUT OF PROGRAM

r--------l r--------,
: I : I
I DATA I I ENTRY :
I BLOCKS: : BLOCK I
I I I IL ! L ..•

Overlay
programs
only

NUMBER OF
OCTAL 73 WORDS IN RESERVED BLOCK TYPE

BLOCK

Character 0 Character I Character 2 Character 3

LAYOUT OF WORD 0 OF EACH BLOCK

(((

-
BINARY PROGRAMS
Althoughprograms are normally written in a convenient language e.g. PLAN, FORTRAN,COBOL,the
central processor and Executive can handle programs only in machine code. This form is knownas
binary program: It is a function of the compilers and associated routines, such as the General Purpose
Loader, to convert the source language program into binary program.
Some compilation processes convert the source program into binary program and output it on a suitable
medium for preservation and loading into store. Others leave the binary program in the processor
store, ready for use. In the latter case it is possible to make Executive output the binary program onto
a suitable medium, such a process being knownas dumping.
This part of the manual describes the formats used on various media for binary programs and the
means by which loading and dumping can be carried out.

Binary program formats

All binary programs input or output by Executive have the following standard format:

1 A request block indicating to Executive such information as the program's size, peripheral require­
ments and program/subprogram priorities where appropriate. This may be followedby a supple­
mentary request block.

2 The binary program data blocks.
3 Anentry block that indicates to Executive where to enter a program and the required action on the

program, Le. GO,SUspend,or COntinuewith next program instruction.

•

Block types

All blocks consist of an integral number of 24-bit words, the first of which indicates the block type and
size. The types and their numbers are as follows:
Type 1
Type 0 or 5
Type 2,3 or 4
Type 6
Type 62

Request block, also knownas request Slip

Data blocks
Entry blocks
Supplementary request block

Pre-request block sentinel
The first word of each block contains the following information:
Char: 0
Char: 1

Char: 2
Char: 3

Octal 73
Number of words in block (except pre-request block sentinel)
Reserved
Block type

A supplementary request block is present only if the program is to be run in 22AMor EBMand, if
present, follows the request block. The pre-request block sentinel applies only to programs stored
on cassette tape and, if present, immediately precedes the request block. In overlay programs there
is an entry block for every overlay in addition to the normal one for the initial entry.
The above information is illustrated in Figure 13.

Block type 1: request block (request slip)

Arequest block has the followingformat:
Word 0: Block specifying word
Word 1: Program name

Word 2: Peripheral request and trusted program status word
Word 3: Core store request word
Words 4 and 6: Reserved

4095(5.69) 81

Word 5:
Word 6:
Word 7:
Words 8 to 12:
Word 13:
Words 14, 15:

Overlay directory word
Self-monitoring address
Priority of Member 0, which must exist
Priorities of other members, which need not exist

Negative check sum
Optional characters

The contents of each word are further defined below.

WORD 0

As standard, with character three set equal to one.

WORD 1
Four character program name composed of letters and digits of which the first character must be a
letter. The name EXECis reserved. The four characters are used to identify the program within the
system and in Executive/operator communication. Optionally up to 8 further program name characters
may be placed in Words 14 and 15 for use as an accounting code, see page 84.

•
WORD 2

Bits 0 and 1

If either Bit 0 or Bit 1 is set to 1, the peripheral from which the program is loadedwill be assigned
to the program as unit 0 of its type. If one or more peripherals of the same type are requested in
Bits 6 to 8 or Bits 15 to 17, the setting of Bit 0 or Bit 1 will not result in an additional unit being
assigned; it will, however, ensure that the load peripheral is the one retained as unit O.
The distinction between Bit 0 and Bit 1 is that when the program is dumpedBit 0 is always zero, but
Bit 1 is in the same state as on loading.
Bit 0 is used with programs in G.P.L. form to ensure that the loader reads the semi-compiled pro­
gram from unit O. It is set automatically by compilers and consolidators.

Bits 2 to 5

The table below gives the significance of each of these bits if set.

Bit Status

2 Q

3 R

4 S

5 T

Bits 6 to 20

Significance

Writes to direct access system/directory files
trusted program facilities used
trusted program facilities used; always set to zero on program dumping
Requires use of GEORGE3 Executive

These bits specify the number of basic peripherals required by the program as follows:

Bits 6 to 8 Number of paper tape readers

Bits 9 to 11
Bits 12 to 14
Bits 15 to 17
Bits 18 to 20

Bits 21 to 23

Reserved

Number of paper tape punches
Number of line printers
Number of card readers
Number of card punches

WORD 3

This word specifies the core store requirement of the program as shownbelow.

82 4095(5.69)

-
Bits 0 to 8

The number of units of 64words, held as a binary number.

Bits 9 to 16

Must be zero.

Bits 17to 23
The number of additional units of 32,768words, held as a binary number.

WORD 5

If this word is zero, the bootstrap will take no action. If the word is non-zero, Bits 0 and 1 are re­
served and the remaining bits give the address of the first word of the overlay directory. In this case
the program's subfile description is scanned and a directory giving the layout of the program's over­
lay and permanent units is built up starting at the word indicated by the value of Bits 2 to 23.

•WORD 6

Address for self-monitoring of illegal orders or floating-point overflow; Zero if no self-monitoring.

WORD 7

Bits 0 to 11

The priority of Member 0 held as two characters.

Bits12 to 17

Octal 77.

Bits 18 to 23

The number of the member, in this case O.

WORD 8

TQepriority of Member 3 held in the same format as Word 7. If this or other members below do not
exist, their priority word must be set to zero.

WORD 9

The priority of Member 1 held in the same format as word 7.

WORD 10

Must be set to zero but must not subsequently be assumed to contain zero.

WORD 11

The priority of Member 2 held in the same format as Word 7.

WORD 12

The priority of Member 5 held in the same format as Word 7.

WORD 13

This word holds the check sum. The number of words in the request record is given in Character 1 of
Word O. The value of the check sum word is such that if the words in the record (starting with Word 0)
are summed using the 127order the result is zero.

4095(5.69) 83

-
WORDS 14 and 15

Optional program name extension, comprising up to 8 letters or digits, left-justified. These words are
used by the Log Analysis program in accordance with its specification. They are included in the check
sum word count character of Word 0 and are output on dumping.

Block type 0: data block

This block contains between 1 and 16words of program plus 3 or 4 further words as described below.
This type of data block is usually used with media other than magnetic tape or direct access media
since considerable economies result from the use of type 5 data blocks with these media.

WORD 0

As standard with character three set equal·to zero. The word count is always the number of program
words plus three.

WORD 1

The destination address, relative to the datum, of the first word of program in the block I.e, Word 2.

WORD 2

The first word of program data in the block.

WORDS 3 to 17

These words are optional on paper tape but always present on punched cards and magnetic or cassette
tape. If present, they contain further words of program or zero.

NEXT WORD

Negative check sum.

WORD 19

Optional block sequence number. If present, this word is ignored by Executive and is not included in the
word count in Word O. This word applies to cards only.

Block type 5: data block

This is a data block pair and consists of a five-word specifying block and a further block that consists
entirely of words of program and has a maximum length of 512words. The block pair is regarded as
a single block for the purpose of block counts. The format of the specifying block is given below.

WORD 0

As standard, with character three set equal to five.

WORD 1

The destination address, relative to the datum, of the first word of the followingdata block.

WORD 2

The length of the data block (maximum 512words).

WORD 3

Negative check sum of data block.

84 4095(5.69)

. WORD 4

Negative check sum of the specifying block.

Block type 2: entry block
This is a three or four-word block (see Block Counts) that instructs Executive to GOat the specified
starting address of the program.

WORD 0

As standard, with character three set equal to two.

WORD 1
The address at which the program is to be entered.

WORD 2

Negative check sum or block count.

WORD 3
Negative check sum if there is a block count in Word 2.

Blocktype 3: entry block
This is a three or four-word block (see Block Counts) that instructs Executive to SUSPENDthe pro­
gram after loading and await operator action. If the operator types GOwithout specifying an address
the program is entered at the address specified in Word 1of this block.

• WORD 0

As standard, with character three set equal to three.

WORD 1

The address at which the program is to be entered if the operator types GO.

WORD 2

Negative check sum or block count.

WORD 3

Negative check sum if there is a block count in Word 2.

Blocktype 4: entry block

This is a three- or four-word block (see Block Counts) normally used in conjunction with the 154
(CONT)order to instruct Executive to read in more program. A program using this type of block will
be overlaid. This type of block is used to terminate the overlay and the program will be re-entered
at the instruction following the 154 instruction.

WORD 0

As standard, with character three set equal to four.

WORD 1

Zero

4095 (4.68) 85

WORD 2

Negative check sum or block count.

WORD 3

Negative check sum if there is a block count in Word 2.

Block type 6: supplementary request block

The supplementary request block is used with programs to be run in 22AMor EBM. If present, it
normally follows immediately after the standard request block. If the presence of a supplementary
request block is detected by an Executive without 22AMor EBMfacilities, then the program will be
rejected, even if Words 0 to 6 of the supplementary request block are zero .

. WORD 0

As standard, with character three set equal to six.

WORD 1

This word contains the mode setting of the program in Bits 21 and 23. The remaining bits should be
set to zero but must not be assumed to be zero when the mode word is tested.

Bit 21

o indicates DBM
1 indicates EBM

Bit 23

o indicates 15AM
1 indicates 22AM

WORDS 2 to 6

Reserved.

WORD 7

Negative check sum of block.

Block type 62: pre-requestblock sentinel

This block is used only with cassette tape and, if present, immediately precedes the request block.

WORD 0

Octal 73000076

WORD 1

Zero

WORD 2

Reserved

WORD 3

The program name

86 4095 (4.68)
_.

Block counts and sequence numbers

WhenExecutive dumps a program it produces a four-word entry block, putting in Word 2 the total
number of blocks dumped, and using Word 3 for the negative check sum. Three word entry blocks,
produced by some compilers, are acceptable as input and have the check sum in Word 2 and no block
count. Executive also, on some media (e.g. punched cards), extends type 0 blocks to 20 words, using
Word 19 to provide a block sequence number; but it does not amend the block specifying word, which
always excludes Word 19 from the count.
On loading, Executive will, if the entry block is four words long, check that the total number of blocks
read is correct. No check is performed on the sequence word of a type Dblock which is intended for
external purposes only (e.g. for identifying a card).
Whenthe program read in does not have a request block (I.e, in connection with a handswitch Executive
or program read as a result of a 154 instruction) the block count in the entry block must be one greater
than the actual number of blocks. The request block may be removed from the result of a dump, so
that the latter can be overlaid.

Layout of binary program on various media

PAPER TAPE

Blocks are punched in eight-track tape in graphic set mode with even parity, each block being termi­
nated with a Newline character and followed by a gap of at least three blank tape characters. No block
sequence word is permitted.

•

SO-COLUMN CARDS

Blocks are stored one per card, each column representing a six-bit pattern. The maximum number
of columns required to hold a block will thus be 76 (in the case of a 19-word data block type 0). The
last four columns of each card are therefore available and are used to contain a card count which
allows card sequence checks to be made. The card count is not included as a word to be sum-checked
and thus does not affect the previously detailed block check sum procedure. It should be noted that this
sequence number is not punched in decimal form, but consists of the card code characters produced
by the binary value of the sequence number.

MAGNETIC TAPE

Blocks of 20-word minimum length are written on magnetic tape in odd parity mode. Nothingmay be
assumed about data (whichwill be redundant to Executive) beyond the block length specified in Word O.
The format of a program tape that is requested by means of the FInd message containing one name is
as follows:
1 A header label with the file name PROGRAMVNameOOOO, where Name is the four character stored

in Word 1 of the request block and 0000 is the reel sequence number.
2 Tape mark.
3 Blocks as described at the beginning of this section.

Whena program is loaded from magnetic tape either by the LOadmessage or the 154(CONT)order,
the tape must be positioned immediately before the first block to be read; Le. the request block if
LOad is used, the first data block if the 154 (CONT)is used. Following a LOadmessage, the tape will
not remain allocated to the program unless Bit 0 or Bit 1 in Word 2 of the request block called for the
load peripheral to be retained.

The DUmpdirective finds a scratch tape on an unallocated deck and constructs a tape with the format
shown in items 1 to 3 above. The tape is then rewound and disengaged t.e. removed from Executive's
list until re-engaged. Onmost processors, the data blocks dumped onto magnetic tape are of type 5,
but 1901to 1903and 1901Ato 1903AExecutives always dump type 0 blocks.
A dumping action by means of the 155 (SUSDP)order produces a request block, data blocks and an
entry block type 3, no end of file marks being written.

~09S(~,68) 87

DIRECT ACCESS

The format of binary programs stored on direct access devices will be published later.

Executive treatment of request and supplementary request blocks

EX1H, E1HS

With this Executive all store and peripherals are regarded as being permanently assigned to the object
program. Request blocks are ignored on program loading, though if one is present its check sum
must be correct.
A supplementary request block is signalled as an error, and the RRQ (166)order is null.
There is no storage of request block details, and a program dump has no request block. Sucha dump
on re-Ioading is acceptable to EX1Hand E1HS,but not to an Executive for a processor with a console
typewriter unless a request block is added.

EX2L

As with EX1H, there is no assignment of peripherals, and all the store is made available to the pro­
gram. The request block must sum check correctly and the name must agree with the name on the
console LOadmessage. A check is then made that the core store requirement stated on the request
block does not exceed the available storage. The request block is stored with Bit 0 of Word 2 zero.

A supplementary request block is signalled as an error. The RRQ (166)instruction is null and the
stored request block therefore remains unchangedduring the running of the program.
A dump by Executive of the object program is preceded by a copy of the stored request block.

EX1T, E1TS,EX1V, E1DS, E1MS, EX2S, E3TS, E3TE, EX2V, E3DS, E3DE, EX2M, E4BM, E3TM, E3DM

The first eleven of these are single program Executives in which peripherals are assigned to the pro­
gram's unit numbers on demand. All available storage outside Executive is regarded as being available
to the object program.
The remainder are dualprogramming and multiprogramming Executives in which core store and
peripherals are assigned and released on demand.

Program loading

These Executives sum check all binary program records on reading them. The followingchecks and
actions are then carried out on the request block:

1 Check that this is the first record of the program.

2 Check that the program name in the request block agrees with the name on the console LOad
message.

3 Check that the core store requirement (from the request block unless overridden by the LOad
message) is available.

4 Assign load;peripheral if Bit 0 or 1 ofWord 2 is set.
5 Check that the peripherals called for in the request block are available; these units are then

assigned to the program.
In addition, dualprogramming and multiprogramming Executives establish the priorities of members;
E4BM,E3TMand E3DMalso monitor the program name extension. The request block is stored with
Bit 0 ofWord 2 zero.

The appearance of a supplementary request block during input of the program is signalled as an error.

Changes during execution

No alterations are made to the stored request block as a result of such events as asstgning or releasing
peripherals, or variations in core store used. Changes can arise as the result of 166, X = 1 instructions,
which completely replace the old request block by a new one.

88 4095 (4.68)

Program dumping

Adump by Executive of the object program is preceded by a copy of the latest stored version of the
request slip. .

E6BM
This Executive handles the request block in the same way as E4BM.The.supplementary request block
is recognized, and causes 22AMand/or EBMto be set as indicated in the mode word. If the program
switches these modes during execution, the new setting is used in any program dumping operation.
Ondumping, a supplementary request block is produced immediately following the standard request
block unless the contents of the supplementary request block wouldhave been zero.

Dumping

The dumpingof a program can be initiated by the operator, or by the program itself by means of a
155 (SUSDP)order. It should be noted that, when Executive is instructed to dump a program, it does
so without checking the state of any peripheral devices other than the one to be used for the dump.
As a result, should the program concerned have any peripheral active at dump time, the result of the
dump may be indeterminate.
In all cases the request block output will be a copy of the original except that bit 0 of word 2 will always
be zero and the check sum adjusted accordingly. The core -store figure will always be the original
value, which may differ from the actual current size of the program due to a 165, N(M)= 4 (GIVE)
order, or because the operator specified the amount of store to be used at load time. The entry block
produced will always be of type 3.

•

DUMPING OF ZEROS

Adump that is in the form of type 0 data blocks (i.e. all except a magnetic tape dump on 1904and
above) will omit any blocks in which all program words are zero as, on loading, the store is initially
zeroized.

I
DEVICESTHAT MAY BE USED FOR DUMPING

These are paper tape punches, card punches, and magnetic tape.

PROGRAMINITIATEDDUMPS

The 155 (SUSDP)instruction, causes the program to be suspended and then dumps the complete pro­
gram area. Such a dump is written to the specified device without any prior repositioning of the output
medium. On completion of the dumping the program continues with the instruction following the 155
(SUSDP)instruction, without operator intervention.

OPERATORINITIATEDDUMPS

Usually the program concerned will already be suspended when the operator calls for a dump. Should
this not be the case, it will be suspended immediately, and, on completion of the dumping, operator
action will be required to restart it.
If a particular device is specified by the operator the device specified may be only a paper tape or
card punch, and it must be either a device currently assigned to the program to be dumped or a device
that is not assigned to any program. If no device is specified by the operator, Executive will dump on
magnetic, but not cassette, tape. Executive locates, on any tape deck that is not currently assigned to
any program, a tape that is available for use as an output tape (i,e. retention period exceeded). It labels
this tape PROGRAMVname, giving it reel sequence and generation numbers of zero. In order to give
reasonable protection to the dump a retention period of seven days is given. ShouldExecutive not be
able to locate a suitable tape, the operator will be·notified. If there is no magnetic tape, or only cass­
ette tape, connected to the processor, then a dump message that does not specify a device is unaccep­
table.
On completion of the dump, the tape is closed but the operator is not notified which tape was used; any
retrieval procedure must use either the FInd directive or a program 'that opens the dump by name.

4095 (4.68) 89

Loading

In general, the loadingof a program is operator initiated, but under certain circumstances it may be
program initiated. On loading, the store is initially zeroized.
Devices that may be used for program loading are paper tape readers, card readers and magnetic and
cassette tape.

PROGRAM INITIATED LOADING

During the running of a program

The 154 (CONT)instruction provides the programmer with a simple type of overlay facility. It causes
the program to be suspended immediately. Executive then reads binary program, whichmust not have
a request block, into the program's area, the locations overwritten being determined by the data blocks
read. The area read into is not zeroized before loading, hence care must be taken in respect of areas
whichwere zero whenthe binary program was created. Oncompletionof the loading, the action taken
will dependon the type of entry block read. Usually, this will be of type 4, whichwill cause the pro­
gram to continuewith the instruction in the location followingthat whichcontained the 154 (CONT)
instruction. (Either or both of these locations may have been overwritten by the program just read in.)
The input mediummust be correctly positioned, immediately before the first data block, at the time
that the 154instruction is given.
Note:Whena 154instruction is initiated Executive starts the loadingprocess withoutchecking the
state of any peripheral device, other than the one to be used in the loadingprocess. As a result, should
the program which issues the 154instruction have any peripheral active at the time, the results of the
loadingmay be indeterminate.

•

When a program deletes itself

If a program deletes itself by means of a 160 (DELTY)instruction, Executive obeys the message output
by the program as if it has been typed by the operator. This enables one program to initiate the loading
of another. The effect of such an instruction in no waydiffers from the effect of the operator typing the
same message. (Seebelowfor further details.) However, if the outputmessage is LOadspecifying mag­
netic or cassette tape, the tape specified will not be rewoundwhenthe program issuing the 160instruc­
tion deletes itself.

OPERATOR INITIATED LOADING

There are two operator directives whichcan initiate program loading.

LOad

This directive causes Executive to read binary program from the specified device, which is normally
a paper tape reader or card reader. Sucha program must be in the standard form commencingwith a
request block. The program bearing mediummust be correctly positioned in the reading device, so
that the first block read is the request block.
The LOaddirective will be used in respect of magnetic or cassette tape only as a result of a
160X = 2 (DELTY)order.

'--

Find

The FInd message is used to load a program from backing storage. In some cases Executive calls in
a search program which locates and loads the actual program required. The information given below
about the actions of search programs describes conventionsand not rules; for details see the specifi­
cations of search programs.

The backing storage mediumprimarily used is specified whenan Executive is compiled, and the action
of the FInd message depends on the medium specified.

The FInd message on processors with console typewriters has two main forms, specifying either one or
twoprogram names. In either case there may followa decimal integer, equal to 64 or more, that
specifies a core store reservation that is to be used instead of that specified in the request block. On
1904processors and upwards decimal integers less than 64may followthat represent the absolute

90 4095 (4.68)

-
number of peripherals that are to be allocated to the program to be loaded, each as unit 0 of its type.
Hence there must be not more than one of any type allocated by this method. Not more than three
integers in total may be specified in a FInd directive.
Direct access peripherals cannot be allocated in this way.

Action of the Find directive with magnetic tape (industry compatible) and cassette tape as
primary backing storage medium

In response to FI #Name where #Name represents any legal program name, Executive searches all the
currently unassigned tape decks or cassette stations for a tape with the file name PROGRAMVName
and reel sequence number zero (as if opening it in mode #100 as unit 0). If it finds one it loads the
binary program from that tape and further action is determined by the program loaded. In the case
of cassette tape, Executive searches for a block with the block sequence word negative (this should
be a pre-request block) before loading the program.
If the name #Name is that of a search program, the latter on entry will conventionally halt and output
the message HALTEDSL. The operator should then type a GOAT directive to indicate whether a
steering line to specify the program actually required is provided on cards or paper tape.
If Executive does not find a file called PROGRAMVName it will instruct the operator to load one.
Formerly, under these circumstances, after a 160, X = 2 (DELTy) instruction, Executive would search
for a magnetic tape called PROGRAMVTAPEand use #TAPE as a search program to locate the load
PROGRAMVName. This can still be achieved, if, after the LDT PROGRAMVName console message, the
operator types FI #Name #TAPE followed.by the integers of the original FInd directive.
Onprocessors without console typewriters the FInd process (handswitch setting 20/0) reads from the
cassette station currently allocated as the program's unit 0 until it finds a block with block sequence
word negative, which should be a pre-request block, and then loads the program.
In response to FI #Nam #Nam2, where #Naml and #Nam2 represent any legal program names, Exe­
cutive will search all the currently unassigned decks or cassette stations for a tape with file name
PROGRAMVNam2. If no such tape is found the message LDTPROGRAMVNam2willresult. If the tape
is foundExecutive will load the first program on it, which must be called #Nam2 and is conventionally
a search program, and will pass to it the name #Naml, any core requests and the additional information
in the FInd message as follows:
Word 10 Name of program required (in this example #Naml)

Words 11 to 13
Bits 2 to 23
Bits 0 and 1

Integers specified in the FInd message
Indeterminate

If less than three integers are specified, Bits 2 to 23 of the remainder of Words 11 to 13 may be set
to zero or left as loaded (conventionally zero in any case).
Conventionally, the search program will locate the program specified, position the tape before the
request block and obey a 160, X = 2 (DELTY)instruction which implements the message LO#Naml
followedby the geographical address of the tape deck and any integers in the FInd directive.

Action of the Find directive with E.D.S. or F.D.S

In response to any FInd directive, e.g, FI #Nam1#Nam2, where #Naml and #Nam2 represent any legal
program names, Executive loads a special search program from the reserved area on the disc into
the store, assigns it the first name in the FInd directive, and hands over the information in the FInd
directive.

If the message is of the form FI #Naml. the search program will conventionally try to open a file with
name PORGRAMVNam1 as unit 0 and load the program from it, taking the usual action on the integers.
If the message is of the form FI #Naml#Nam2, the search program will conventionally try to open a
file with name PROGRAMVNam2 as unit 0, and load the program from its subfile named PROGRAMvNaml,
taking the usual action on the integers.

In both cases, the search program changes its request block in order to convert itself into the program
#Nam1 and some low numbered locations may be corrupted in the loading process. These locations will
be detailed in the spectncattons of the relevant search programs.

4095 (4.68) 91

-
The action taken if either the file or the subfile is not foundwill depend on the search program; for
example, some search programs will proceed to repeat the attempt on another medium e.g. magnetic
tape. For details see the specification of the search program used.

OPERATOR/EXECUTIVECOMMUNICATION
A comprehensive description of the use of the console typewriter for communication between the
operator and Executive is given in the appropriate console operating manual. This account therefore
confines itself to a general description of the way in which an input message is dealt with by Executive.

Monitoring of input messages

There is an important difference in the treatment of typewriter messages between Executives in the
range 1903and below, and Executives higher in the 1900Series. In the former case, the striking of
each character key causes an interrupt to Executive, which then causes the corresponding character
to be typed out on the log. Every character after the first is monitored individually for error con­
ditions which, if encountered, will instantly be brought to the operator's notice. Thus, when an error
message is typed out, the operator knows that either
(a) the error message refers to the first or second characters typed in, or both, or
(b) the error message refers to the last character typed.
In these circumstances, few error messages are needed since the source of error is precisely defined.
Executives in the range 1904 and upwards operate differently. The striking of each key on the console
typewriter causes the corresponding character to be transferred into store by hesitations as with other
peripherals, but an interrupt causing Executive to be entered occurs only when the ACCEPT key is
pressed. Executive then monitors the whole message, an error condition at any point in the input
message causing an error message to be output. Since the operator cannot knowprecisely at what point
the error occurred, the error message must contain this information, and there must therefore be a
larger number of error messages.

The typing of input and output messages on the 1902and 1903 is timeshared with the running of the
program, except in the case of messages from the program (SUSTY,DISTY,DELTY, SUSWT,DISP,
and DEL). The 1901processor, however, stays in Executive mode during the time that a message
is input or output, so that the object program may be suspended for several consecutive seconds.

•

Description of executive treatment of input typewriter message

BELOWIS GIVENADESCRIPTIONPROVIDEDFOR INTERESTONLY, OF THE
WAYINWInCHANEXECUTIVEONONEOF THE SMALLERPROCESSORSIN THE
1900RANGEDEALSWITHTHE GOMESSAGEWHENIT IS INPUT. NOASSUMPTION
SHOULDBE MADEASTO THE RELEVANCEOF THISDESCRIPTIONTO ANY

PARTICULAREXECUTIVE.

The description is illustrated by a number of flowcharts.

FLOWCHART 1

Whena console interrupt occurs, if the typewriter is not in the output state, Executive sets an indicator
to show that a message is being interpreted. If the input character is 'Accept', a branch is made to
avoid a subsequent test that would treat this character as illegal. A test is then made that the character
was not input in error, and if this test is satisfied, the character is typed on the console log. 'Control A'
is a facilitY that allows messages to Executive to be input from a card or paper tape reader instead

92 4095(5.69)

of from the console typewriter. The printable set of characters in those that are in the code range
00 to 63; if an input character is not one of this set, or the Accept character, an indeterminate charac­
ter will be output, and an error message typed out. This is the only error that is monitored for the
first input character.

FLOWCHART 2
Executive then tests a switch to ascertain whether the input character is the first, second, or a subse­
quent character of the message. If the switch indicates that the input character is the first of the
message, any character other than' Accept' is allowed; the character is stored, the switch adjusted,
and an exit made so that subsequent characters can be input. The second character of a message will
follow the same path as the first as far as A, provided that the character is legal. The switch will
then be found set to indicate the second character of the message. The second character is then com­
bined with the first, and compared to a list of legal messages. If the input two characters are not to be
foundon this list, an error message is typed out and the switch is adjusted. If the input two characters
form a legal message, they are stored and the switch is adjusted so that subsequent characters can be
read.

FLOWCHART 3

Anyletter after the second of a message, when input, causes a branch from the switch (top of Flow­
chart 2) to B. Executive then carries out tests to detect parameters; if one is detected, a branch is
made to further analyze the parameter. If the input character is not part of a parameter or the
character Accept, the switch is adjusted and an exit made from Executive so that a further character
may be input. If the input character is Accept, it is tested for legality; if this test is satisfied, Exe­
cutive causes the message O.K. to be typed out on the console typewriter. Abranch is then made
according to the message detected; only GOand SUspendare considered here ..In the former case,
any suspension standing is removed; in the latter case, a suspension is. imposed.

•

•
FLOWCHART4

The end-of-message routine is entered to ascertain to what point a return must be made. If the pro­
gram was involved in some action concerning binary program, for example dump or reload, the
address of the next Executive instruction is stored so that this action can be completed before any
other instruction is obeyed. If a suspension is standing, a suspension loop is entered, interrupts being
allowed so that the loop can be broken. The test at the top of the flowchart is to see if Executive was
in this loop when the interrupt was allowed. If no suspension is standing, a test is made to ascertain
whether the binary flag word is set. If this word is set, one of the actions-LOAD,DUMP,FIND, or
OUTPUTwas being performed when the typewriter message interrupted. In this case, a branch is
made to the Executive instruction stored previously so that the interrupted action can be completed.
If the binary word is clear, control is transferred back to the object program.

4095 (4.68) 93

Initiate Typing
Out of 'Cancel'
Message

Routine to Read
in Message
from Paper Tape
on Card Reader

Type Out
'Error MO'

Exit from
Executive

Flowchart 1

94

Console Typewriter
Interrupt

Yes
/Is«~::.pewriter~1 Output :>- ..J

State

Set Flag Word
to Indicate
Message Being
Interpreted

Read the
Keyboard

Yes

Yes

Output the
Character

Yes

No

Routme for
Outputting
One
Character

•

4095 (4.68)

1st Letter

_.. Yes .•••

:cTest for

Store
Character

Set Switch
to 2nd Letter

•
Exit from
Executive

Flowchart2

4095 (4068)

Type Out
'Error MO'

Combine
with 1st Letter

Compare with
List of Messages
to find Message
Specification

Next Item

Yes

Type Out
'Error M1'

Set Switch
to 1st Letter

Exit from
Executive

Store Specification
Address

Set Swtich
to Next Item

Exit from
Executive

95

Exit from
Executive

Flowchart 3

96

Yes

Yes

Yes Further Routines>-----~----~~;r_-----------..•~for Analyzing
Messages with
Parameters

Yes

No

Type Out
'Error MO'

Start Typing 'OK'
and Reset State
of Message Switch

Exit from
Executive

Su

Go
Set Operator
Suspension
Indicator Remove all

Suspensions

4095 (4.68)

Flowchart 4

~09S(H8)

Was Executive
Y.Already in es

Suspension
Loop

Store Address
of Next
Executive
Instruction

~

Allow
Interrupts

~
Inhibit
Interrupts

Is there a Yes
~uspen.sion

Standing

Return to Address
of Executive
Instruction Stored
Above

No

•

97

-
ChapterS Paging

THE PRINCIPLES OF PAGING

Unpaged systems

Onmost 1900Series central processors a program being run must either be held in its entirety in
core store or else be divided into discrete parts that can be overlayed. In either case, the programmer
must keep the addresses that he references within the limits of the core store locations available.
Protection between object program areas is achieved by storing the datum and limit of each area and
making illegal any attempt by a program to reference an address outside its area. This scheme has
the virtue of simplicity, but lacks the flexibility desirable in very large computer systems. •
Paged systems

In a paged system the whole store, core store plus backing store, is theoretically available to the pro­
grammer. The addressable area is limited only by the number of bits available to hold an address,
which in 22AMis 22, giving an addressable area of over four million words.
The,physical store is divided into areas, each of the same size, knownas pages Each page may hold a
block of program, whichmay be either a whole program or any part of one program. The division of
, a program into blocks and the allocation of program blocks to pages is under the control of the opera­
ting system, which compiles a directory of the page address of each block. The directory also contains
, permission 'bits, associated with each page, which indicate whether a page can be written to, read from,
or both, or whether the contents are to be executed as program.
The flexibility derived from a paging system lies in the ability to distribute blocks of program or data
over the total storage area in a manner most likely to ensure efficient use of facilities. The programmer
therefore has the entire internal and backing storage facilities at his disposal. There is no longer any
need to be concerned with the size of core store available; instead the programmer think in terms of
4Mwords. Ablock of program must be resident in core store while it is being executed, but is normally
held on backing store and is brought in to core storewhen required. The program blocks need not
therefore be discrete parts of a program since any reference to a block not currently in core store
will cause the operating system to retrieve the block from backing store.
Moreover, program areas need not be mutually exclusive. By means of the permission bits, any block
of program or data may be made only conditionally exclusive, so that a single program may be opera­
ting on a number of sets of data at the same time.

PAGING OPTIONS

Paging is an optional feature, available with the 1904Aand the 1906A,which may be specified initially
or added in the field. Whenit is fitted, it can be switched off by the ICL engineer to enable the central
processor to be run in datum-limit mode.
The size of a page is 1024 (lK) words. The numberof pages in the core store will therefore be the
same as the K size of the store, but some of the pages will be used by Executive and the operating
system.

Programming for paging

Note: The word segment, as used in the rest of this chapter, has a spectfic Significance in paging that
is defined below.

Programs that are to make use of paging facilities must be written in 22AM.(This restriction applies
only to pagingmode',not to the central processor itself.)

4'095(6,71) 99

-
For programming purposes, the total store, core store and backing store, is considered as being
divided into segments, blocks, andwords. Ablock consists of up to 1024words of program or data,
and a segment is up to 64blocks.
Each block is stored on a separate page. A segment has no hardware representation, but merely pro­
vides a convenientmeans of groupingblocks for addressing purposes.

Addressing

Addressing is achievedby means of current page registers (see below) and a number of tables that
are normally held in core store within the operating system.

TABLES

For each program there is a segment table, and for each segment used by the program there is a
page table. The starting addresses of the segment tables of all programs stored in the machine are
held in a program table. The program currently running has the starting address of its segment table
copied into a special register to give a faster store access time.
The tables hold a number of addresses each of which is stored in one word. The twomost significant
bits of each word are used as control bits whose significance is described for each table below.
Oneuse of the control bits is to indicate the replacement facility. Whenthis setting is detected, the
contents of the rest of the wordwill be interpreted as holdingnot the information required, but the
address of the word where the required information is to be found.This·facility is provided so that'
where sections of program or data are shared, tables associated with one program can reference
tables associated with other programs. Tables within the set for anyone program can also reference
one another by means of this facility.

All the tables are set up and maintained by Executive and the operating system but are consulted
dur-ing a store access entirely by hardware. Interrupts and software intervention will occur only if
the informationrequired is not in core or if a violation is' discovered. .

•

Program table

The program table contains an entry for each active program stored in the machine. The sequence of
entries in the table is the sequence in whichthe programs were loaded. Bits 2 to 23 of each entry con­
tain the address, m, of the first word of the chapter table associated with the program concerned. The
control bits, 0 and 1, are interpreted as follows:

00Replace the address m by the contents of address m

01 Segmenttable is 16words long

10 Segmenttable is 32words long
11Segmenttable is 64words long

Segment table

The segment table contains an entry for each chapter used by the program. The table length is then
roundedup to 16, 32, or 64words, the contents of any unused words being zero. Entries are in segment
number sequence, so that the first entry is for Segment0 and the nth entry for segment n-l. Each entry
consists of an IS-bit address, m, in Bits 2 to 19, pointing to the first word of the page table associated
with the segment, or a 22-bit replacement address in Bits 2 to 23. Bits 0 and 1 are interpreted as
follows:

00Replace the address m by the contents of address m

01 Page table is 16words long
10 Page table is 32words long
11 Page table is 64words long

In the last three cases, Bit 23 is set equal to one if the page table concerned has been removed to
backing store.

100 4095(4.68)

-
Page table

There is a page table for each segment used by the program. Entries in the page table are in block
number sequence similarly to the entries in the segment table, and the size of the table is similarly
roundedup to 16, 32, or 64words. Each entry has a 12-bit page address, m, in Bits 2 to 13, or a
22-bit replacement address in Bits 2 to 23. Bits 0 and 1 are interpreted as follows:

00Replace the address m by the contents of address m

01Block not in core
10Block in core and available
11Block in core but not available.

Unless the replacement code is set Le, Bits 0 and 1 are set to 00, any or all of the Bits 14 to 16may
be set equal to one with the followingsignificance:

Bit 14 Blockmay be obeyed
Bit 15 Blockmay be read
Bit 16 Page may be written to.

These bits are knownas the permission bits. •
CURRENT PAGE REGISTERS

The current page registers, of whichthere are 16 on the 1906A,are used to store the page addresses
ofthe blocks most frequently used. The contents of each C.P.R. is illustrated below.

Bits 0,1 2 - 13 14 - 16 17 - 20 21-23 24 25 26 - 37

Availability Page address Permission Use Lock-in Segmentandblocknumber

Bits 0 to 16 correspond to those in the page table, and are copiedwhenthe C.P.R. is loaded.
The use bits are set equal to one to indicate any of the followingoccurrences:

Bit 21 Block has been obeyed
Bit 22 Block has been read
Bit 23 Page has been written to.

These bits are interpreted to decide whether, at any given time, the contents of the C.P.R. shouldbe
allowedto stand or whether they shouldbe overwritten.

Loading current page registers

C.P.R.'s are loaded cyclically, so that at any time they generally contain the addresses of the last 16
different blocks referred to. The next C.P.R. to be loaded is determined by a four-bit counter which
is stepped on cyclically; it is stepped past any C.P.R. whose Lock-in bit is set. This bit is set if:
1 The last operand store access was from that page;
2 The last instruction call was from that page;
3 The page contains the source or destination of a multi-operand (e.g. MOVE)order whichis in

progress;
4 It contains Program Block O.

Action when store access required

All the C.P.R.'s are examined simultaneously to see if the required segment andblock address are to
be foundin Bits 26 to 37. If so, the corresponding page address from Bits 2 to 13 is used to access
the core address required. The appropriate use bit is then set.
If the required segment and block address is not foundin the C.P.R., the segment table address for the
program is retrieved from the special register in which it is held. The segment and page tables are
then searched until the required address is found.The table entries are then copied into a C.P.R.

4095(4.68) 101

-
All these operations are carried out by hardware, accessing core store as required to read entries in
the tables. At each stage checks are performed to see that the entry lies within the table. If any of these
fail, 9r if the page table entry shows that the block is not available, or if the appropriate permission
bit is not set, there is an interrupt and Executive is entered.
Further tables are kept to show the position of blocks on backing store. These tables are consulted
by the operating system, not by hardware. There is also a store use table with a half-word entry for
every page; when a C.P.R. is unloaded, its use bits are or-ed into the corresponding entry for the
information of the operating system. .
If the block required is found in a C.P.R., the whole process takes no longer than the datum-Hmtt
checks. otherwise, three extra core cycles are required, to read the segment and page tables and to
write away the use bits from the C.P.R. which is unloaded. Each replacement requires an additional
store access.
If the block required is not in core, an interrupt occurs and the operating system is entered to fetch
it from backing store. It will be necessary to clear a page in core in order to accept it, and the opera­
ting system'spage turningroutine will be entered to decide which page should be given up. Its choice
will be based on records of store usage which it compiles with the help of the store use table. The
contents of the page selected are written away to backing store, unless the use bits show that it has
not been written to, in which case the existing copy on backing store is still valid and the page can
.simply be overwritten .

. Programming restrictions on paged 1904A

The FORTRANcompilers for the paged.1906A optionally use the extended precision floating-point
feature. The same compilers may be used for the 1904A, but the extended precision floating-point
feature is not available. Extended precision floating-point may be performed by system-provided
subroutines.

102 4095(6.71)

I
-

Chapter 9

Chapter 9 of this manual has been deleted.

c 1034095(6.71)

Chapter 10 The 1901 to 1907 central processors

GENERAL

The 1901 to 1907 computers were the first in the 1900 Series to be announced.The machines range in
size from the small but powerful 1901 to the large 1907.
The 1901, 1902, 1903, 1904 and 1906 are successively more powerful central processors. The 1905 is
fundamentally similar to the 1904but incorporates an autonomousfloating-point unit. The 1907bears
the same relationship to the 1906.

Individual processors

Characteristics of individualprocessors are described below. The headings Store sizes, Store cycle
time, Number of cabinets, Operator communication,Peripheral interfaces, Fixed-point operations and
Floating-point operations apply to all processors. Further characteristics are described in alphabetical
order under the headingOther facilities. The facilities given under this headingare the following:

Console LoggingPunch
Mill Timer

Multiprogramming and Subprogramming
Peripheral Control Connector
Real Time Clock

Standard Interface SwitchingUnit
Store Access Control

If any of these headings does not appear under the description of an individual processor then the facility
is not available with that processor.

•

THE 1901

The 1901may have anyone of three type numbers, 1901/1, 1901/2, 1901/3, according to the size of core
store used.

Store sizes

4K, 8K or 16Kwords of core store maybe fitted.

Store cycle time

In all cases the cycle time is 6 microseconds.

Number of cabinets

A single cabinet, 57 x 25t x 49 inches, is required in all cases.

Operator communication

The 1901 is supplied as standard with a control panel of handswitches and lights for operator /Executive
communication.A console typewriter can be used instead of the control panel provided that at least
8K of core store is fitted. However, the control panel must still be used to load Executive. Ona disc
system and certain magnetic tape systems a console typewriter is mandatory.

4095 (4.68) 105

Peripheral interfaces

3 standard interface channels are provided with the basic processor; a maximum of 3 more can be
fitted individually.

Fixed-point operations

Performed by hardware supplied as standard apart from multiplication, division, double-length shifts
and binary to decimal/ decimal to binary conversion, which are performed by extracode. Hardware to
perform these operations, apart from conversion, is available as an optional feature.

Floating-point operations

These are optionally available in either extracode or hardware form.

Other facilities

STANDARDINTERFACESWITCHINGUNIT Optionally available

•
THE 1902

The 1902 has only one type number, 1902/1.

Store sizes

4K, 8K, 16Kor 32Kwords of core store may be fitted.

Store cycle time

In all cases the cycle time is 6 microseconds.

Number of cabinets

1 cabinet, 69 x 25i x 49 inches, is required, unless a 32K store is fitted, in which case a further cabinet,
22 x 25! x 49 inches, is necessary.

Operator communication

A console typewriter is supplied as standard.

Peripheral interfaces

8 standard interface channels are fitted as standard; this is the maximum number allowed.

Fixed-point operations

Performed by hardware supplied as standard apart from multiplication, division, double-length shifts
and binary to decimal/ decimal to binary conversion, which are performed by extracode. Hardware to
perform these operations, apart from conversion, is available as an optional feature.

Floating-point operations

These are optionally available in either extracode or hardware form.

Other facilities

MULTIPROGRAMMINGANDSUBPROGRAMMING
Limited facilities are available with a minimum 16K core store and EX2MExecutive. The limited version
of multiprogramming, knownas dualprogramming, allows two programs to be run concurrently. For a
full description, see page 60. The subprogramming factlrty allows a program to be divided into a maxi­
mum of three members.
STANDARDINTERFACESWITCHINGUNIT Optionally available

106 4095 (4.68)

THE 1903

The 1903has only one type number, 1903/1.

Store sizes

8K, 16Kor 32Kwords of core store may be fitted.

Store cycle time

1.8 microseconds for 8Kand 16Kstores and 2 microseconds for 32Kstores.

Number of cabinets

1 cabinet, 69 x 25~ x 49 inches, is required, unless a 32Kstore is fitted in which case a further cabinet,
22 x 25~ x 49 inches, is required.

Operator communication

A console typewriter is supplied as standard. •
Peripheral interfaces

8 standard interface channels are fitted as standard; this is the maximum-number allowed.

Fixed-point operations

Performed by hardware supplied as standard apart from multiplication, division, double-length shifts
and binary to decimal/ decimal to binary conversion, which are performed by extracode. Hardware to
perform these operations, apart from conversion, is available as an optional feature.

Floating-point operations

These are optionally available in either extracode or hardware form.

Other facilities

MULTIPROGRAMMINGANDSUBPROGRAMMING
Limited facilities are available with a minimum 16Kcore store and EX2MExecutive. The limited version
of multiprogramming, knownas dualprogramming, allows twoprograms to be run concurrently. For a
full description, see page 60. The subprogramming facility allows a program to be divided into a maxi­
mum of three members.

STANDARDINTERFACESWITCHINGUNIT Optionally available

THE 1904

The 1904may have any of the type numbers 1904/1 to 1904/4 according to the store size and number
of cabinets used.

Store sizes

16Kor 32Kwords of core store may be fitted.

Store cycle time

2 microseconds in both cases.

4095 (Ma) 107

Number of cabinets

Between 2 and 4 cabinets are required. The depth and height is in all cases the same, 34 x 60~ inches;
the length is 97t, 145t or 193t inches dependingon whether there are 2, 3, or 4 cabinets.

Operator communication

A console typewriter is supplied as standard.

Peripheral interfaces

The number of standard interface channels supplied depends upon the peripheral configuration. In ideal
circumstances an absolute maximum of 23 standard interface channels may be fitted, of which 5 may be
connected via P.C.C.s.

Fixed-point operations

Performed by hardware supplied as standard.

Floating -point operations

Floating-point extracodes are optionally available.

Other facilities

CONSOLELOGGINGPUNCH
MILL TIMER

MULTIPROGRAMMINGANDSUBPROGRAMMING
PERIPHERALCONTROLCONNECTOR
REAL TIMECLOCK
STANDARDINTERFACESWITCHINGUNIT

Optionally available
Optionally available
Suppliedas standard (up to 4 programs/members)
Optionallyavailable
Suppliedas standard
Optionally available

THE 1905

The 1905may have any of the type numbers 1905/1 to 1905/3 according to the store size and number
of cabinets used.

16Kor 32Kwords of core store may be fitted.
Store sizes

Store cycle time

2 microseconds in both cases.

Peripheral interfaces

The number of standard interface channels supplied depends upon the peripheral configuration. In ideal
circumstances an absolute maximum of 23 standard interface channels may be fitted, of which 5 may be
connected via P.C.C.s.

Number of cabinets

Between 3 and 5 cabinets are required. The depth and height is in all cases the same, 34 x 60~ inches;
the length is 145L 193~or 24H inches dependingon whether there are 3, 4 or 5 cabinets.

Operation communication

A console typewriter is supplied as standard.

108 4095 (4.68)

Fixed-point operations

Performed by hardware supplied as standard.

Floating-point operations

Performed by hardware supplied as standard.

Other facilities

CONSOLELOGGINGPUNCH
MILL TIMER
MULTIPROGRAMMINGAND8UBPROGRAMMING
PERIPHERALCONTROLCONNECTOR
REAL TIMECLOCK

STANDARDINTERFACESWITCillNGUNIT

Optionally available
Optionally available

Suppliedas standard (up to 4 programs/members)
Optionally available
Supplied as standard

Optionally available

•
THE 1906

The 1906may have either of the type numbers 1906/2 or 1906/3 according to the number of cabinets
used.

A feature of the 1906 is the provision of 8 high speed registers which are used as accumulators, thereby
increasing the speed of processing.

Store size

Between 32Kand 256Kwords of core store may be fitted in modules of 32K.

Store cycle time

1.1 and 2.1 microseconds. The distance of core store cabinets from the central processing unit will
influence cycle time.

Number of cabinets

4 or 6 power and logic cabinets are required, the dimensions being 193~x 34 x 60~inches in the former
case and 289~x 34 x 60~inches in the latter case. Additionally, a core store cabinet, 49 x 34 x 60~
inches, is required for every 32Kof store.

Operator communication

A console typewriter is supplied as standard.

Peripheral interfaces

The number of standard interface channels provided depends on the peripheral configuration. A maxi­
mum of sixteen may be fitted, of which some may be connected via P.C.C.s. Additionally, one or two
S.A.C.s, each capable of handling 2, 4 or 6 fast peripheral controls, may be fitted as an optional
feature.

Fixed-point operations

Performed by hardware supplied as standard.

Floating-point operations

Floating-point extracodes are optionally available.

~09S (4.68) 109

Card
punch

Paper
tape
reader

(Courtesy Ministry of Social Security)

Central

Power
distribution
unit

Magnetic
tape decks

Multiplexer
core store

Console

1906 central processor system

110 4095 (4.68)

Other facilities

CONSOLELOGGINGPUNCH

MILL TIMER
MULTIPROGRAMMINGANDSUBPROGRAMMING

PERIPHERALCONTROLCONNECTOR
REAL TIME CLOCK
STANDARDINTERFACESWITCHINGUNIT

STOREACCESSCONTROL

SUppliedas standard
Supplied as standard
SUppliedas standard (up to 16 pr ograms Zd members)
Optionally available

Supplied as standard

Optionally available

Optionally available

THE 1907

The 1907may have either of the type numbers 1907/1 or 190712 according to the number of cabinets
used.

A feature of the 1907 is the provision of 8 high speed registers which are used as accumulators, thereby •
increasing the speed of processing.

Store size

Between 32Kand 256Kwords of core store may be fitted in modules of 32K.

Store cycle time

1.1 and 2.1 microseconds. The distance of core store cabinets from the central processing unit will
influence cycle time.

Number of cabinets

4 orf power and logic cabinets are required, the dimensions being 193i x 34 x 60i inches in the former
case and 289~ x 34 x 60~ inches in the latter case. Additionally, a core store cabinet, 49 x 34 x 60~
inches, is required for every 32K of store.

Operator communication

A console typewriter is supplied as standard.

Peripheral interfaces

The number of standard interface channels provided depends on the peripheral configuration. A maxi­
mum of sixteen may be fitted, of which some may be connected via P.C.C.s. Additionally, one or two
S.A.C.s, each capable of handling 2, 4 or 6 fast peripheral controls, may be fitted as an optional feature.

Fixed-point operations

Performed by hardware supplied as standard.

Floating-point operations

Performed by hardware supplied as standard.

Other facilities

CONSOLELOGGINGPUNCH
MILL TIMER

MULTIPROGRAMMINGANDSUBPROGRAMMING
PERIPHERAL CONTROLCONNECTOR

4095 (4.68)

SUppliedas standard
Supplied as standard
SUppliedas standard (up to 16 programs Z-t members)
Optionally available

111

•

REAL TIME CLOCK
STANDARDINTERFACE SWITCHINGUNIT

STORE ACCESS CONTROL

Supplied as standard

Optionally available

Optionally available

112 4095 ('4.68)

-

Chapter 11 The Eand F central processors

GENERAL

The E and F central processors were introduced into the 1900Series to provide machines intermediate
between the 1904and 1907. There are thus the 1904E, 1904F, 1905Eand 1905F. Each of these central
processors can be paired with another of its kind when it becomes knownas 1906E, 1906F, 1907Eand
1907F respectively. These latter processors provide 'similar computing power to the 1906and 1907
and incorporate the added safety factor in the dual processor concept. All of these processors are,
of course, compatible with previously announcedprocessors of the 1900Series.
The principal difference between E and F processors with the same series number is the core store
cycle time, the F processor being the faster. The 1905F and 1907F also have faster floating-point
hardware than the 1905Eor 1907E. The relationship between the series numbers is the same as for
the 1904to 1907processors; that is to say, a 1905Eor F is basically the same as a 1904Eor F, but
incorporates a floating-point unit, and similarly the 1907Eor F differs fundamentally from the 1906E
or F only in this respect.

•

Individual processors

The characteristics of individual central processors are described below under the headings store
Size, store cycle time, Number of cabinets, Operator communication, Peripheral interfaces, Fixed-point
operations, Ploating-potnt operations and other facilities. The items that may appear under the heading
other facilities are', in alphabetical sequence.

Console LoggingPunch
Hardware Accumulators
Mill Timer
Multiprogramming and Subprogramming
Peripheral AutonomousControl
Real Time Clock
standard Interface SwitchingUnit

If any of the items does not appear in the description of a particular processor then it is not available
with that processor.

Dual processors

The principles of dual processor operation can be found on page 3.
The store cycle time and store sizes available are the same as for the individual processors except
that a minimum 64Kof core store must be fitted. The fixed- and floating-point operation facilities are
available in each of the processors (e.g. a 1907Eor F has two floating-point units) and two console
typewriters are provided for operator communication. Double the number of peripheral interfaces are
available and double the number of cabinets are required. The features listed under other factltttes
are available with each of the processors in the dual processor configuration. However, hardware
accumulators, optionally available for 1904Eand 1905Eprocessors, are supplied as standard for 1906E
and 1907Emachines.
The appropriate number of store multi-access controls will be provided as standard with each con­
figuration. The GEORGE3 operating system must be used with dual processor configurations.

4095(6.11) 113

THE 1904E

Store size

32K, 48K, 64K, 80K, 96K, 128K, 160K,192Kor 256Kwords of core store may be fitted.

Store cycle time

1.8 microseconds; this will be slightly increased if a store extension unit (see below) is used.

Number of cabinets

1 or 2 power cabinets, "1 or 2 logic cabinets, and 1 core store cabinet for every 64Kwords of store
are required. The dimensions of each cabinet are 49 x 34 x 60~inches. If more than one core store
cabinet is required the remainder of the store is connected by means of a store extension unit, and
a remote store unit is required for each extra cabinet. These devices facilitate the use of large core
stores and are supplied as standard for each configuration that requires them. They require no extra
space.

Operator communication

Aconsole typewriter is supplied as standard.

Peripheral interfaces

6 standard interface channels are supplied as standard and up to 2 further groups of 6 are optionally'
available. Between 2 and 12 further channels may be provided as options via a P.A.C.

Fixed-point operations

Performed by hardware supplied as standard.

Floating-point operations

Floating-point extracodes are optionally available.

Other facilities'

CONSOLELOGGINGPUNCH
HARDWAREACCUMULATORS
MILLTIMER
MULTIPR06RAMMINGANDSUBPROGRAMMING

PERIPHERALAUTONOMOUSCONTROL

REAL TIMECLOCK
STANDARDINTERFACESWITCHllfGUNIT

THE 1904F

Store size

Optionally available
Optionally available
Supplied as standard
Supplied as standard (upto 8 programs/4
members; up to 16 programs optionally
available)
Supplied as standard (if peripheral channels
are ordered)

Supplied as standard
Optionally available

Between 32Kand 256Kwords of core store may be fitted in modules of 32K,but no 224Kstore is
available.

114 4095(6.711

Store cycle time

750nanoseconds; this will be slightly increased if a store extension unit (see below) is used.

Numberof cabinets

1 or 2 power cabinets, 1 or 2 logic cabinets and 1 core store cabinet for every 64Kwords of store ~e
required. The dimensions of each cabinet are 49 x 34 x 60~ inches. If more than one core store cabinet
is required the remainder of the store is connected by means of a store extension unit, and a remote
store unit is required for each extra cabinet. These devices facilitate the use 2! large core stores
and are supplied as standard for each configuration that requires them. They require noextra space.

Operator communication

A console typewriter is supplied as standard.

Peripheralinterfaces

6 standard interface channels are supplied as standard and up to 2 further groups of 6 are optionally
available. Between 2 and 12 further channels may be provided as options via a P.A:C.

Fix~·point operations

Performed by hardware supplied as standard.

Floating-pointoperations

Floating-point extracodes are optionally available.

Other facilities

CONSOLELOGGINGPUNCH

HARDWAREACCUMULATORS
MILLTIMER
MULTIPROGRAMMINGANDSUBPROGRAMMING

PERIPHERALAUTONOMOUSCONTROL

Optionally available
Suppliedas standard
Suppliedas standard
Suppliedas standard (upto 8 programs/4
members; up to 16programs optionally
available)
Suppliedas standard (if peripheral channels
are ordered)
Suppliedas standard
Optionally available

REALTIMECLOCK
STANDARDINTERFACESWITCHINGUNIT

THE 1905E

Store size

32K, 48K, 64K, 80K, 96K, 128K,160K, 192Kor 256Kwords of core store may be fitted.

Store cycle time

1.8 microseconds; this will be slightly increased if a store extension unit (see below) is used.

Numberof cabinets
1 or 2 power cabinets, 1 or 2 logic cabinets, and 1 core store cabinet for every 64Kwords of store
are required. The dimensions of each cabinet are 49 x 34 x 60~inches. If more than one core store

4095(6.71) 115

-
cabinet is required all the store is connected by means of a store extension unit, and a remote store
unit is required for each extra cabinet. These devices facilitate the use of large core stores and are
supplied as standard for each configuration that requires them. They take up no extra space.

Operator communication

A console typewriter is supplied as standard.

Peripheral interfaces

6 standard interface channels are supplied as standard and up to 2 further groups of 6 are optionally
available. Between 2 and 12 further channels may be provided as options via a P.A.C.

Fixed·point operations

Performed by hardware supplied as standard.

Floatinq-point operations

Performed by hardware supplied as standard.

Other facilities

CONSOLE LOGGINGPUNCH

HARDWAREACCUMULATORS

MILL TIMER

MULTIPROGRAMMINGANDSUBPROGRAMMING

PERIPHERAL AUTONOMOUSCONTROL

Optionally available

Optionally available

Supplied as standard

Supplied as standard (up to 8 pr-ograms Zd
members; up to 16 programs optionally
available)

Supplied as standard (if peripheral channels
are ordered)

Supplied as standard

Optionally available

REAL TIME CLOCK

STANDARDINTERFACE SWITCHINGUNIT

THE 1905F

Store size

Between 32K and 256K words of core store may be fitted in modules of 32K, but no 224K store is
available.

Store cycle time

750 nanoseconds; this will be slightly increased if a store extension unit (see below) is used.

Number of cabinets

1or 2 power cabinets, 1or 2 logic cabinets, and 1core store cabinet for every 64 K words of store.
The dimensions of each cabinet are 49 x 34 x 60~-inches. If more than one core store cabinet is
required the remainder of the store is connected by means of a store extension unit, and a remote
unit is required for each extra cabinet. These devices facilitate the use of large core stores and are
supplied as 'standard for each configuration that requires them. They take up no extra space.

Operator communication

A console typewriter is supplied as standard.

116 409!l(6.71)

Peripheral interfaces

6 standard interface channels are supplied as standard and up to 2 further groups of 6 are optionally
available. Between 2 and 12 further channels may be provided as options via a P.A.C.

Fixed·point operations

Performed by hardware supplied as standard.

Floating·point operations

Performed by hardware supplied as standard.

Other facilities

CONSOLE LOGGINGPUNCH

HARDWAREACCUMULATORS

MILL TIMER

MULTIPROGRAMMING ANDSUBPROGRAMMING

PERIPHERAL AUTONOMOUSCONTROL

REAL TIME CLOCK

STAND,ARDINTERFACE SWITCHINGUNIT

THE 1906E

See pages 113 and 114.

THE 1906F

See pages 113 and 114.

THE 1907E

See pages 113 and 115.

THE 1907F

See pages 113 and 116.

4095(6.71)

Optionally available

Supplied as standard

Supplied as standard

Supplied as standard (up to 8 programsj4
members; up to 16 programs optionally
available)

Supplied as standard (if peripheral channels
are ordered)

Supplied as standard

Optionally available

•

117

Magnetic
Tape
Decks

Central Graph
Processor Twin Disc

Card Plotter
incorporating Store

ReaderLine Printer -I J~1 1---- ~
~ r-,r-t~1---1.-- ~

-1- j....___...
I) '\ \

~~
r> [)
~ "V

u 1
~~ Console

and Desk

1901Acentral processor~tem

118

-

4095 (4.68)

•
-

Chapter 12 The A central processors

GENERAL

The Acentral processors are the latest to be added to the 1900Series. These processors incorporate
recent developments in technology, such as integrated microcircuits, and thus provide faster function
times and more computingpower withouta corresponding increase in the size or cost of the machines.
However, compatibility with other central processors in the 1900Series has been maintained.

Individual processors

Characteristics of individualprocessors are described below. The headings store Size, Store cycle
time, Number of cabinets, Operator communication,Peripheral interfaces, Fixed-point operations
apply to all processors. Further characteristics are described under the headingother facilities. The
factltttes givenunder this headingare in alphabetical sequence, the following:

Hardware Accumulators
Mill Timer
Multiprogrammingand Subprogramming
Paging
Peripheral AutonomousControl
Peripheral Processing Unit
Real Time Clock

standard Interface SwitchingUnit
store Access Manager

If any of the items does not appear in the description of a particular processor then it is not available
with that processor..

THE 1901A

The 1901Acentral processor has a number of peripheral devices designed specifically for "it.These
are the twin exchangeabledisc store (T.E.D.S.), the 2105/1 and 2106/1 card readers and the 2404and
2405line printers. The twin exchangeabledisc store is similar in principle to other I.C.T. exchangeable
disc stores, but uses two disc surfaces per cartridge. The 2404and 2405line printers are physically
attached to the central processor. All of these peripherals are for use exclusively with the 1901A.

Store size

6K, 8K, 12Kor 16Kwords of core store may be fitted.

Store cycle time

4 microseconds in all cases.

o 4095(6.71) 119

Magnetic Tape Decks Card
Reader Line

Printer
Central
Processor

E.D.S.

Console
and Desk

1902A central processor system

120

-

•

4095 (4.68)

Number of cabinets

A single cabinet is required. If a 2404or 2405line printer is incorporated, the cabinet is L-shaped,
the long sides of th&~Lbeing 62 inches and 67t inc.heslong. _Thell;ligllti~ 45 inches. Ifr.o 24~_or 2~05
line printer is incorporated, the cabinet is approximately 62x 25"2x 45 Inches, one 25"2Inch aide bemg
extended slightly where the line printer wouldotherwise be attached.

Operator communication

Acontrol panel of handswitches and lights is supplied as standard. Aconsole typewriter can be used
for operator /Executive communication;however, the control panel must still be used to load Executive.
A console typewriter option is available and is 'mandatorywithmagnetic tape and disc systems.

Peripheral interfaces

3 interface channels are provided for the attachment of peripherals specifically designed for the 1901A.
That is, one channel for a card reader, one for a line printer, and one for up to 4 twin exchangeable
disc stores. A single standard interface channel is providedwith the basic processor, andup to 3 more
standard interface channels may be added singly as optional features.

Fixed-point operations

Performed by hardware supplied as standard apart from multiplication, division, double-lengthshifts
andbinary to decimal/decimal to binary conversion. Hardware to perform these operations is avail­
able as an optional feature.

Floating-point operations

Optionallyavailable in extracode or hardware form.

Other facilities

STANDARDINTERFACESWITCHINGUNIT Optionallyavailable

The 1902A

The.190~ is basically similar to the 1903A.The store capacity can be extendedand the processor tip
graded to a 1903Ain the field. There are twoversions of the 1902A.The 1902A(2020)can be further
enhancedby an AdvancedSystems Feature (ASF).The 1902A(2015)is suppliedwith an Integrated Disc
Control (IDC)as standard.

Store size

8K, 16K,32Kor 48Kwords of core store may be fitted to the 1902A(2020).
12K,16K,24Kand 32Kwords of core store may be fitted to the 1902A(2015).

Store cycle time

6 microseconds for 190M.(2015),3 microseconds for 1902A(2020).

Number of cabinets

One cabinet, 73 X 25t X 49 inches, is required up to 32Kcore stores: an additional cabinet is required
for core stores of 48K.

A console typewriter is suppliedas standard.

4095(6,71) 121

•

Peripheral interface

For the 1902A(2020),4 standard interface channels are provided as standard and up to a further 4 may
be fitted singly as options.
For the 1902A(2015),4 standard interface channels are provided and up to a further 3 may be fitted
singly as options.

Where TwinE.D.S. is specified, this will be connected via the IDC. The Integrated TwinE.n.S. Control
will provide an interface in place of one of the 4 standard interfaces provided as standard.

Fixed point operations

For the 1902A(2020),performed by hardware supplied as standard apart .from multiplication, division
and binary to decimal/ decimal to binary conversion. Hardware to perform these operations is optionally
available with single programming Executives and mandatory with multiprogramming Executives.

For the 1902A(2015),performed by hardware supplied as standard.

Floating point operations

Optionally available in extracode or hardware form.

Other facilities

REALTIMECLOCK
STANDARDINTERFACESWITCHINGUNIT
STOREACCESSMANAGER
MILLTIMER

Optionally available
Optionally available
Suppliedas standard
Optionally available

THE 1903A

Store size

16K, 32K, 48K, 64K, 96Kor 128Kwords of core store may be fitted. If more than 32Kof store is fitted
the GEORGE3 operating system may be used in which case a mill timer and real time clock are mandatory.

. . .
Store cycle time

1.5"microseconds

Number of cabinets

1 to 5, dependent on the size of the store. The basic cabinet dimensions are 73 x 27t x 49t inches, and
each additional cabinet is 31 x 27t x 49t. One additional cabinet is required for 48Kor 64Kcore stores,
two for 96Kand three for 128K.The maximum processor size is, therefore, 197 x 27t x 49t inches.
Where P.A.C. is fitted to current processors, P.A.C. will be sited in an extension cabinet.

Operator communication

A console typewriter is supplied as standard.

Peripheral interface

4 standard interface channels are supplied as standard and up to 8 more may be provided singly as an
optional feature. A P.A.C. incorporating 6 fast standard interface channels is optionally available, thus
giving a maximum of 18 interfaces.

122 4095(6.71)

Fixed-point operations

Performed by hardware supplied as standard.

Floatinsrpoint operations

Optionally available in extracode or hardware form.

Other facilities

MILL TIMER

MULTIPROGRAMMINGANDSUBPROGRAMMING

PERIPHERALAUTONOMOUSCONTROL
REAL TIME CLOCK

STANDARDINTERFACE SWITCHINGUNIT
STOREACCESSMANAGER

THE 1904A

Store size

-

Optionally available (see store size)

Available with E3TM, E3DM (up to 4 programay S
members) and E300 Executives.

Optionally available
Optionally available (see store size)

Optionally available
Supplied as standard •

32K, 64K, 96K, 128K, 192K, or 256Kwords of core store may be fitted.

Store cycle time

750 nanoseconds in all cases.

Number of cabinets

2 cabinets plus an extra cabinet for each 64Kof store. The 2 basic cabinets together are loH x 24 x 54
inches and each core cabinet is li6 x 24 x 54 inches.

Operator communication '

A console typewriter is supplied as standard.

Peripheral 'interfaces

6 standard interface channels are supplied as standard and up to 2 further groups of 6 interfaces are
optionally available, A P.A.C. incorporating 4 fast standard interface channels is supplied as standard.
Additionally a high speed standard interface channel, and between 1 and 8 further fast channels are
optionally available.

Fixed-point operations 1

Performed by hardware supplied as standard.

Floating-point operations

Optionally available in extracode or hardware form.

Other facilities

HARDWAREACCUMULATORS

MILL TIMER

409516.711

Supplied as standard
Supplied as standard

123

-
PAGING

PERIPHERALAUTONOMOUSCONTROL

'-._...­Suppliedas standard (upto 8 programs y-l members;
up to 16programs optionally available)

Optionallyavailable

Suppliedas standard (with4 peripheral channels)

MULTIPROGRAMMINGANDSUBPROGRAMMING

REALTIMECLOCK Suppliedas standard

STANDARDINTERFACESWITCHINGUNIT Optionallyavailable

THE 1906A

The 1906Adiffers radically from less powerful processors in the 1900Series, although compatibility
is maintained, in that it has an interleaved store (see page 9) and allows instruction overlap. Moreover,
all peripheral transfers are carried out autonomously,by means of a peripheral processing unit. All
these facilities are 'supplied as standard.
Either the GEORGE3 or GEORGE4 operating system must be used with this processor.

Store size

64K,128K,192K,256K,384Kor 512Kwords of core store may be fitted. The 64Kand 128Kstores are
two-way interleaved; the 192Kstore is four-way interleaved up to 128Kand thereafter two-way
interleaved; the 384Kstore is four-way interleaved up to 256Kand thereafter two-way interleaved; the
256Kand 512Kstores are four-way interleaved.
Stores larger than 512Kmay be fitted by special arrangement with ICL.

Store cycle time

750nanoseconds in all cases.

Number of cabinets

10 cabinets plus one extra for every 128Kor less of core store. The 10 cabinets are split into two
blocks each measuring 27 feet 4t inches x 44 inches x 76 inches. Each core cabinet is 74 x 44 x 76
inches; a COOlingbay 54 x 44 x 76 inches must be used with 1 or 2 store cabinets and a further cooling
bay.with 3 or 4 store cabinets.

Operator communication

A console typewriter is supplied as standard.

Peripheral interfaces

The basic processor is provided with 10 slow standard interface channels and 4 fast channels. The
slow channels can be incremented to 16,24 or 30 channels. The fast channels can be incremented to
8, 12 or 14; further, any or all of the blocks of high speed channels may be used for fast peripherals
provided that 14 fast channels 'ire already fitted. High speed channels can be supplied in 2 blocks of
2 and 1 single channel, so that there may be.between 2 and 5 high speed channels.

Fixed-point operations

Performed by hardware supplied as standard.

Floating-point operations

Floating-point extracodes are optionally available. Hardware to perform extended precision floating­
point operations, see page 126, is also available.

124 4095{6.71)

Other facilities

HARDWARE ACCUMULATORS

INSTRUCTION OPERAND COUNTER

MULTIPROGRAMMING AND SUBPROGRAMMING

PAGING

PERIPHERAL PROCESSING UNIT

REAL TIME CLOCK

STANDARD INTERFACE SWITCHING UNIT

4095(6.711

Supplied as standard

Supplied as standard

Not applicable as a GEORGE operating system
must be used

Optionally available

Supplied as standard

Optionally available

Optionally available.

•

124.1

Chapter 13 Other central processor features

GENERAL

This chapter provides either a description of the features mentioned in the three previous chapters or, where a
feature has already been described in this manual, a reference to the relevant pages.The features are listed in
alphabetical sequence.

COMMERCIAL COMPUTING FEATURE

See Fixed-point Operations below.

CONSOLE LOGGING PUNCH

The console loggingpunch consists of a small punch housed in the right-hand cupboard of the console table and
attached to the cupboard door. The punch is connected to the console typewriter and will punch into paper tape
every data or control character sent to the typewriter from the central processor or from the keyboard. Punching is
in eight tracks, the last of which provides even parity.

The punch is invisibleto the operator while the cupboard is shut, but the operator will be informed of the only
condition he needs to rectify, paper low, by a flashinglight on the console typewriter.

The punch can be fitted in the field. In most cases this will involvemerely the removal of the right-hand cupboard
door of the console table and its substitution by another door with the punch attached. Some early 1904/5 central
processors,however, may have odd parity typewriters and insufficient electronics to drive the punch. In these cases
a new typewriter and supplementary electronics will have to be installed.

CONSOLE TYPEWRITER SWITCH

Largeprocessors in the 1900 Series are supplied with two console typewriters, the second to act as a spare in case
of typewriter failure. The console typewriter switch facility, availableon these processors, provides a means of
switchingcontrol to the spare console typewriter when the on-line typewriter fails, and also provides for easier
replacement of a faulty typewriter.

The hardware for this facility will fit into the right- or left-hand cabinet under the console desk, and will include the
necessarycablingand sockets for connecting both typewriters. A rotary switch, availableto the operator, will
transfer control from one typewriter to the other.

If a console messageis being output by the processorwhen the switch is operated, one or severalcharacters may be
lost. However, the switch is intended for emergency use only and, in such circumstances; it is likely that characters
will have been lost or messagesgarbled already. In any event, operation of the switch will not affect in any way the
operation of Executive, operating system or user program, provided no attempt is being made to use either
typewriter as an input devicewhen the switch is used.

DUALPROGRAMMING

See page 60.

EXTENDED MATHEMATICAL UNIT

See Fixed- and Floating-point Operations below.

4095(6.71) 125

-
FIXED-POINT OPERATIONS

Fixed-point multiplication and division, shift and conversion functions may be carried out in one of three ways on
1900 Series:

1 By extracode functions on the smallerbasic processors.

2 By hardware circuits built in to the larger processors.

3 By additional hardware circuits as an optional extra on the smaller processors.

On the 1901/2/3, the optional extra is called the extended mathematical unit and the fixed-point version provides
hardware circuits for fixed-point multiplication and division, and double length shifts. The commercial power of
the processor is improved by 20%.On the 1901A it is called the commercial computing feature and provides
hardware circuits for fixed-point multiply and divide, double length shifts and binary to decimal/decimal to binary
conversion.

On 1902A/3A it is called the commercial computing feature and provides hardware circuits for fixed-point multiply,
divide and binary to decimal/decimal to binary conversion..

The commercial computing feature when used on 1901A, 1902A or 1903A improves commercial performance by
80%.

Whena floating-point feature is fitted to any of the processorsnot possessinghardware fixed point multiply/divide
functions as standard, the fixed-point functions are automatically incorporated.

FLOATING-POINT OPERATIONS

Floating-point operations are normally carried out by extracodes unless:

The processor is a scientific processor, e.g. 1905, 1905E, 1905F, 1907, 1907E, 1907F.

2 The processor has a special floating-point feature fitted.

In the case of 1 above, .theseprocessors are simply their basic equivalents, i.e. 1904, 1904E/F, 1906, 1906E/F
incorporating a floating-point unit.

(a) The 1905 floating-point unit is used on the 1905, 1905E and 1907E. It consists of an extra 11 rows of
circuit boards which perform floating-point arithmetic autonomously while the processor may be carrying
out fixed-point operations.

(b) The 1907 floating-point unit is autonomous and is similar to the 1905 unit and is used on the 1907, 1905F
and 1907F. It has more overlap between floating-point instructions and is about twice as fast in operation as
the 1905 unit.

In the case of 2 above, the floating-point unit consists of additional hardware circuits which carry out floating-point
operations at a much higher speed than do extracodes.
The floating-point units fitted to various processors differ both in the speed and mode of operation and are as
follows:

(a) An E.M.V.or extended mathematical unit may be fitted to the 1901/2/3 and is a separate unit incorporating
hardware circuits for fixed-point multiply and divide, shift, normalize and floating-point arithmetic.

(b) The 1902A/3A scientific computing feature consists of additional hardware circuits providing fixed-point
multiply and divide and binary to decimal/decimal to binary conversion, and floating-point arithmetic
functions.

(c) The 1904A floating-point unit consists of additional hardware circuitry and is similar in performance to the
1907 unit.

(d) The 1906A extended precision floating-point unit includes circuitry to perform both singlelength and
extended precision operations and is about three times as fast as the 1907 unit.

Extended precision floating-point facilities

This section describes the operation of the 076 and 130 to 137 instructions in an extended precision floating-point
environment. At present, extended precision floating-point facilities are available for the 1906A only.

For the format of an extended precision floating-point number in store, see page 22.

126 4095(6.71)

-
NOTATION

The following notation is used in this section in addition to the notation defined on page 28.

Symbol

a
a*

a:

arg:

e

FOV

FOVR

FUN

FUNR

n24

VL

VLR

ACCURACY

Meaning

The contents of the 48-bit standard precision floating-point accumulator.

The contents of theaccumulator extension for extended precision floating-point. The accumulator
extension is 37 bits in length and corresponds to Bits 49 to 71 and Bits 73 to 86 of an extended
precision floating-point number in store. The extended precision floating-point unit ignores Bits
48,72 and 87 to 9S on input and sets them equal to zero on output.

The combination of a 'and a",

The contents of the signed extended precision floating-point argument. Its 75 bits correspond to
Bits 0 to 23, Bits 25 to 38, Bits 40 to 71 and Bits 73 to 86 of an extended precision floating­
point number in store.

The exponent of the value held in A after rounding and/or normalising if applicable. If FOV is
set then e is always considered to be positive.

A binary condition introduced for the purpose of explanation. It is set equal to 1 if and only if
floating-point overflow occurs during the current instruction. Otherwise it equals zero.

The contents of the floating-point overflow register.

A binary condition introduced for the purpose of explanation. It is set equal to I if and only if
floating-point underflow occurs during the current instruction. Otherwise it equals zero. The
variable limit register controls the point at which underflow occurs.

The contents of the floating-point underflow register.

The contents of Bit 24 of the operand addressed by the current instruction.

The content oflocationsDNtoDN+3.

The value of the variable limit.

The contents of the variable limit register.

In general, to attain maximum accuracy of arithmetic floating-point operations, the initial operands must be
normalised or be floating-point zero.

1 ROUNDED RESULT ANT OPERAND The machine result of an arithmetic operation producing a rounded
resultant operand is the normalised machine floating-point number nearest the true result of the operation.
Where there are two such numbers, the larger is taken.

2 UNROUNDED RESULT ANT OPERAND The machine result of an arithmetic operation producing an
unrounded resultant operand is the greatest normalised machine floating-point number not greater than the
true result of the operation.

The end sequence of operations for instructions requiring rounding always follows the pattern: normalise, round,
renormalise. For addition, subtraction, division and multiplication, the length of the argument used in the first
normalise sequence equals the nominal argument length plus two bits.

When un-normalised operands are used, the accuracy will be that implied above. In the case where an un-normalised
divisor is used in division and

Idividend argument I> Idivisor argument I
or

dividend argument = divisor argument

FOVR is set and the arithmetic result is indeterminate.

OPERATIONS SUMMARY

The table on page }26.2 defines the 076 and 130 to 137 instructions for extended precision floating-point. For
overflow and underflow see the table on page 126.3.

4095(6.71) 126.1

Function extension (that is, X field of instruction)
Function

X=O X= 1 X=2 X= 3 X=4 X=5 X=6 X=7

076 Branch if arg:= 0 Branch if arg: *0 Branch if arg:;;;;.0 Branch if arg:<0 Branch if FOVR Branch if FOVR Branch if FUNR Branch if FUNR
clear. set. clear. set.

130 i a' = jloat(n:) VLR' = Bits 40 to Undefined Undefined Undefined Undefined Undefined Undefined
N(a:),AU 47 of n:
a*'=O UB

I

131 n:' = fix (a) Undefined Undefined IUndefined Undefined Undefined Undefined Undefined

I

j

132
(* denotes +)

133
a'=a*n: a:'=a:*n: a:'=a:*n:: a:'=a:*n:: a'=n:*a a'=n:*a: a:'=n::*a: a:'=n::*a:
N(a:), R(a:), N(a:), R:(a:), N(a:), R:(a:), N(a:),AU, UB N(a:), R(a:), N(a:), R:(a:), N(a:), R:(a:), N(a:),AU, UB(* denotes -) N(a:),AU N(a:),AU, U_B N(a:),AU, UB N(a:),AU N(a:),AU, UB N(a:),AU, UB

134 a*'=0 a*' = 0

(*denotes X) (As X = 0 but with (As X = 1but with (As X = 2but with (As X = 3 but with
operands separated operands separated operands separated operands separated

135 by * interchanged) by * interchanged) by * interchanged) by * interchanged)

(* denotes +)

136 a' =n: a:' = 0 a:' = n:: a*' = 0 a'=a: Undefined Undefined Undefined
AU AU,UB N(a:), R(a:),
a*' = 0 N(a:),AU

a*' = 0

137 n:' =a n:' =a n:' =0* n:' =0* N(a:) a:' = 0 Undefined Undefined
a' = 0 a*' = 0 a:' = -;il: n:' = 0

N(a:), A U, UB
n:' =0'

(((i

The symbols used in the table indicate the actions that occur when an instruction is obeyed. A key is given below.
The order of these symbols corresponds to the order in which an action occurs. For example, the effect of
performing a 137/4 instruction is as follows, in the specified order:

The contents of a: are normalised.

2 a:' = -a:
3 The contents of a: are normalised.

4 The action on underflow occurs.

5 The use bit is set.
6 n:'=a'

Mnemonic

Key to operation mnemonics

AU
fix(a)

float(n:)

N(a:)

R(a:)

UB

Meaning

Action takes place on underflow, see Variablelimit register .section below.

Convert the floating-point number inA to mid point form.

Convert the mid-point number in locations DN andDN + 1 to floating-point form.

The contents of a: are normalised.

The contents of a: are rounded as a normal precision quantity, that is, 38 bit argument.

The use bit in the extended precision floating-point unit is set. Once the program member has
used any instruction that sets the use bit, its Words 14 and 15 are used by the operating
environment as a dump for a* and VLR, and can no longer be used directly by the program
member.

•

OVERFLOW Af'lD UNDERFLOW CONDITIONS SUMMARY

The following table defines the state of V, FOVR, n24 and FUNR after an 076 or 130 to 137 instruction has been
obeyed. A hyphen denotes that an entry is not applicable. The signU denotes an 'iticlusivelogical or' operation.
For example, the state of V after an 076 instruction is givenby V' = VU FOVR. Thus, if V= 1 and FOVR = 0
before the instruction has been obeyed, V' = 1U 0 = 1.

Instruction V'= FOVR'= n24'= FUNR'=

Function ,ValidX Mnemonic

076 o to 3 BFP VUFOVR FOVR - FUNR
4 to 7 BFP V FOVR - FUNR

130 0 FLOAT V n24 n24 FUN
1 V FOVR n24 FUNR

131 0 FIX VUFOVRUFOV FOVR 0 FUN

132 FAD
133 o to 7 FSB V FOVR Un24UFOV n24 FUN134 FMPY
135 FDVD

136 0 LFP V n24 n24 FUN
1 LFPZ V 0 0
2 V n24 n24 FUN
3 V FOVR - FUN
4 V FOVRUFOV - FUN

137 0 SFP FUFOVR FOVR FOVR FUN
1 SFPZ VUFOVR 0 FOVR 0
2 V FOVR 0 FUN
3 V FOVR 0 FUN
4 VUFOVRUFOV FOVRUFOV FOVR UFOV FUN
5 V 0 0 0

4095(6.71) 126.3

VARIABLE LIMIT REGISTER

The variable limit register is an eight bit register in the extended precision floating-point unit which can be used
to control the limiting value of the exponent for which underflow occurs. It also controls the action subsequently
taken if underflow occurs.

The VLR register is set by means of 130/1 instruction and its content corresponds to Bits 40 to 47 of n: for the
instruction; Bit 45 is reserved.The remainder of n: is ignored. The effective value of the variable limit, denoted
by VL,has a range of 0 to 248 in steps of 8; this value corresponds to Bits 40 to 44 of n:, each bit having a value
of 247• b where b is the bit number. The limiting value for which the underflow register is set also depends on the
state of Bits 46 and 47 of n:, see the table below.

The initial state of the VLR register at completion of a program load is equivalent to that produced by obeying a
130/1 instruction with n: = O.

The setting of the VLR register can affect the actions of instructions 130,X = 0 and X = 1; 132 to 135; 136,X=
O,X= 1 andX= 2; 137,X= 1 andX= 5, only.

The following table defines the limiting values for which underflow occurs.

n: of last 130/1 instruction Set FUN if Set a:' = 0 (except FOVR)

Bit 46 Bit 47 e +256< if e + 256 <
o or 1 0 0 0
0 1 VL 0

1 1 VL VL

FLOATING-POINT UNIT

See Floating-point Operations above.

INSTRUCTION OPERAND COUNTER

The instruction operand counter replaces the mill timer in the 1906A processors. Therefore instruction operands,
and not clock pulses, are counted.

INTERLEAVING

See page9.

126.4 4095(6.71)

MILL TIMER (PROGRAM TIMER)

This device provides clock pulse counting facilities. It consists of a hardware register that is in:
cremented by one for every central processor clock pulse (see page 15) while the central processor
is in object program mode.
Clock pulses occurring during hesttattons or while the central processor is in Executive mode are
not included.
At the beginning of every interrupt, Executive increments a word in the Executive area by the contents
of the hardware register, which is then reset to zero. Executive maintains counters for each program
in the machine.
The mill time printed on the console typewriter is the number of millions of clock pulses (not millions
of microseconds) counted for the particular program.

MULTIPL Y/DIVIDE UNIT

See Fixed-point Operations above. •
MULTIPROGRAMMING

See page 59.

OPERATOR COMMUNICATION

See page 2.

PAGING

See Chapter 8.

PERIPHERAL AUTONOMOUS CONTROL

See page 52.

PERIPHERAL CONTROL CONNECTOR

See page 51.

REAL TIME CLOCK

Thts device causes the computer time to be typed out on the console log at"intervals of approximately
one minute. The time should theoretically always be printed at intervals of exactly one minute on the
minute, but two kinds of delay may occur. If certain operations are being performed when the minute
expires the interrupt will not be attended to immediately. Furtherrnore , when the message is generated
it joins a queue of messages waiting to be output; the queue will delay the appearance of the time
message. The first kind of delay is catered for in the message, the time printed being the computer
time to the nearest second at the moment that the message was generated. Thus a console log may show

12/07/00

409516.71) 127

other messages
12/08/03

The real time clock also provides the time-in response to a'165 N(M) = 2 instruction. The correct
time must be loaded into Executivebefore the real time clock can be used.

REIVIOTESTORE UNIT

See page 13.

SCIENTIFIC COMPUTING FEATURE

See Floating-point Operations (page126).

SLOWHESITATION CONTROL

See page 47.
•

STANDARD INTERFACE SWITCHING UNiT

See page 53..

-6TOREACCESSCONTROL

See page 52.

STOREACCESSMANAGER

.Seepage 53.

STORE EXTENSION UNIT

Seepage 13

STORE MULTI-ACCESSCONTROL

Seepage 5.

SUBPROGRAMMING

See page 61.

128 4095(6.71}

Index,

,15AM
22AM
1901
1901A
1902
1902A
1903
1903A
1904
1904A
1904E
1904F
1905
1905E
1905F
1906
•1906A
, 1906E
,1906F
1907
1907E
1907F

26
26
105
119
106
121
107
122
107
123
114
114
108
115
116
109
124 '
117
117
111
117
117

Access time of store
Accumulators
Address modes
Allocationof store
Arithmetic unit
Availability

5
11
26
9
15

see individualprocessor
description

Binary programs
Branch modes

81
26

Carry 23
C.C.F. see commercial computingfeature
Character counter modifier 20
Characters, storage of 19
Clockpulse counter see mill timer
Clockpulses 15
Clock, real time 127
Commercial computingfeature 125
Console loggingpunch 125
Consoletypewriter 2
Console typewrite'r switch 125
Control panel; operator's 2
Control unit 15
Core store 5
Counter modifier words, character 20

word 20
C.P.R. see current page register
Current page registers 101
C~~time~~~e 5

4095(6,70)

-

Data, representation of
DBM
Dual'processor configurations
Dualprogramming

19
26

2,113
60

EBM 26
E.M.U. see extendedmathematical unit
Extendedmathematical unit 125,126
Extendedprecision floating-point 126

Fixed-point numbers
Floating-point numbers
Floating-point instructions
Floating-point unit
Hesitations
Interleaving of store
Interprocessor buffer

20
21
26
126
47

9
4

Members of a program
Mill, the
Mill timer
Multiply/divideunit see extendedmathematical

unit (fixed-point)

see subprogramming
16
127

Multiprogramming

Numbers, storage of
4,59
20,21

Operator's control panel
Overflow

2
23

P.A.C. see peripheral autonomouscontrol
Paging 99
Parity, bit 1

checking 9
P.C.C. see peripheral control connector
Peripheral autonomouscontrol 52
Peripheral control connector 51
Peripheral processing unit 53
P.P.U. see peripheral processing unit
Program timer see mill timer

Real time clock
Registers, A

127
16
16
101
16
16
16
16
16
16

B
current page
datum and limit
F
M
N
P
X

129

Regular interrupt feature
Remote store unit
Request block
Request slip

see real time clock
13
81

see request block

S.A.C. see store access control
S.A.M. see store access manager
Scientific computingfeature 128
S.I.S.U. see standard interface switchingunit
S.M.A.C. see store multi-access control
Standard interface 45
Standard interface switchingunit 53
Store access, control 52

manager 53
mechanism 5
time 5

Store cycle time 5
Store extension unit 13
&~~rl~~ 9
Store, layout of object program in 10

entry parameters 11
lower data 12
program 12
reserved 11,12
upper data 12

Store multi-access control 5
store sizes see individualprocessor

description
Store speed
Subprogramming

5
61

Word, character
counter modifier
definitionof
pure binary

19
19
1

19

130 4095 (4.68)

