

Central Processors '

L YO

From 9th July 1968 for any reference in
printed literature to International Computers
and Tabulators Limited or I.C.T.

Please read
International C s Limited or ICL

{4

Registered Office:
ICL House, Putney, London SW15
Telephone 01-788 7272

Technical Publication 4095

© [International Computers and Tabulators Limited 1968

First Edition April 1968

Issued by Technical Publications Service
International Computers and Tabulators Limited
Head Office: I.C.T. House, Putney, London S.W.15
and printed in Great Britain by

Printing and Stationery Department

Letchworth, Hertfordshire

Preface

This manual describes the 1900 Series central processors and includes both information that is of
importance to 1900 users and information that is for the sake of interest only. Information in the latter
category is clearly marked as such, and no inference should be drawn from it as regards any central
processor.

Chapter 1 of the manual provides a brief introduction to the 1900 Series central processor and mentions
salient points of the 1900 philosophy. The succeeding chapters presuppose a level of familiarity with
computers such as is to be expected with data processing personnel. It has been assumed that most
readers will either peruse the manual to seek a general information on the 1900 Series or else will
require details of specific central processors. In the former case the reader may progress through

the manual chapter by chapter. In the latter case, the reader is recommended to turn first to one of

the Chapters 10 to 12 in which will be found a description of the relevant central processor. If any
facilities mentioned in this description are not familiar to the reader he should refer to Chapter 13.
This Chapter will contain either a description of the facility or a reference to the page in the manual
where the facility is described.

This manual replaces Volume 1 of the System Manual and part of the 1901 Processor And Peripherals
and differs from them substantially. In particular it contains information on central processors recently
introduced into the 1900 Series and on new features of the series such as the priority interrupt feature,
paging, and extended addressing facilities. This information has not been published previously. Existing
descriptions of other aspects of the 1900 Series have been expanded to take account of recent processor
developments.

4095 (4.68) iii

4095(6.70)

Contents

Preface

Chapter 1 Introduction to the 1900 Series central
processor

CENTRAL PROCESSOR CONSTITUENTS

FEATURES OF THE 1900 SERIES CENTRAL

PROCESSOR

Compatibility

Storage

Standard interface

Executive

The console typewriter

Floating-point arithmetic

Programming languages

Dual processor capabilities

Interprocessor buffer

Multiprogramming

Chapter 2 The core store
STORE SIZE
STORE SPEED
STORE ACCESS
Store Multi-access eontrol
PRINCIPLES OF READING AND WRITING IN STORE
PARITY CHECKING
STORE INTERLEAVING
Two-way interleaving
Four-way interleaving
Efficiency increase
Store failure
ALLOCATION OF STORAGE
LAYOUT IN STORE OF OBJECT PROGRAM
Accumulators — Words 0 to 7
Reserved store and entry parameter store — Words
8 to 29
Switch word — Word 30
Reserved words — Words 31 to 45
Lower data store — Words 46 up to 4,095
Program store
BRANCH MODES
Upper data store
ADDRESSING MODES

iii

ot

R N DN DN D e bk ek ek b

W O WO W W W W =-J B O O U1 On

—
- O

11
11
11
12
12
12
12
12

Additional words reserved when subprogramming is
employed
AVAILABILITY OF CORE STORE

Chapter 3 The arithmetic and control units
GENERAL

CLOCK PULSES

THE CONTROL UNIT

THE ARITHMETIC UNIT

LAYOUT OF THE CONTROL AND ARITHMETIC UNITS

The mill

Register A

Register B

Register P

Datum and limit registers

Register N

Registers F, X, M

HOW INSTRUCTIONS ARE PERFORMED
First Instruction
Second instruction
Third instruction

Chapter 4 Representation of data

WORD FORMAT

CHARACTER FORM

PURE BINARY FORM

Counter modifiers
WORD COUNTER MODIFIER
CHARACTER COUNTER MODIFIER
COUNTER MODIFIER WORDS IN 22AM or EBM

Fixed-point numbers
SINGLE-LENGTH INTEGER
MULTI-LENGTH INTEGER
SINGLE-LENGTH FRACTION
MULTI-LENGTH FRACTION
MIXED NUMBER

Floating~point numbers
SINGLE-LENGTH
DOUBLE-LENGTH
QUADRUPLE-LENGTH (EXTENDED PRECISION)

OVERFLOW AND CARRY

Carry

Overflow
FIXED-POINT
FLOATING-POINT

FIELD DESCRIPTIONS

Defined
Indeterminate
Ignored

Reserved

vi

12
13

15
15
15
15
15
16
16.
16
16
16
16
16
16
17
17
17
17

19
19
19
19
19
20
20
20
20
20
20
21
21
21
21
22
22
22
23
23
23
23
23
23
23
23
23
24

4095(5.69)

N

40965(5.69)

Chapter 5 Format of instructions
GENERAL FORMAT
Normal instructions
Branch instructions
Shift instructions
Floating-point instructions
ADDRESSING AND BRANCH MODES
Concepts
Setting and switching of modes
MODE SETTING ON PROGRAM LOADING
MODE SWITCHING DURING PROGRAM EXECUTION
MULTI-MEMBER PROGRAMS
22AM Considerations
MODIFICATION
COUNT INSTRUCTIONS
SUBROUTINE ENTRY AND EXIT
CONSOLE DISPLAYS
EBM Considerations
THE 023 (OBEY) AND BRANCH INSTRUCTIONS
SUBROUTINE LINKS
SUMMARY OF FUNCTION CODES
Definition of notation
DERIVATION OF DN AND BN
Definition of DN
Definition of BN
Definition of functions
GROUP 00
GROUP 01
GROUP 02
GROUP 03
GROUP 04
GROUP 05
GROUP 06
GROUP 07
GROUP 10
GROUP 11
GROUP 12
GROUP 13
GROUP 15
GROUP 16
AVAILABILITY OF INSTRUCTIONS WITH CENTRAL
PROCESSORS

Chapter 6 Peripheral transfers
THE NATURE OF INFORMATION TRANSFERRED
STANDARD INTERFACE
The purpose of standard interface
Standard interface lines
THE Do AND Di LINES
THE C LINE

25
25
25
25
26
26
26
26
26
26
27
27
27
27
27
27
27
27
28
28
28
28
29
29
30
30
30
31
31
32
33
33
34
34
36
36
38
39
40
40

43

45
45
45
45
45
45
47

THE R LINE AND T LINE
THE B LINE
THE L LINE
THE A LINE
HESITATIONS
Timesharing of the central processor for program
instructions and hesitations
Operations performed during a hesitation
Single-character hesitation
Burst mode hesitation
TRANSFER FROM THE CORE STORE TO A
PERIPHERAL

TRANSFER FROM A PERIPHERAL TO THE CORE

STORE
High-speed mode
Crisis times
METHODS OF DECREASING HESITATION TIME
Peripheral control connector

TRANSFER FROM A PERIPHERAL TO THE CORE

STORE
TRANSFER FROM THE CORE STORE TO A
PERIPHERAL

Store access control

Peripheral autonomous control

Store access manager

Peripheral processing unit

STANDARD INTERFACE SWITCHING UNIT

Types of module
MODULE TYPE 7204/1 (Y TYPE)
MODULE TYPE 7204/2 (N TYPE)
MODULE TYPE 7204/3 (X TYPE)

Chapter 7 Executive

THE NATURE OF EXECUTIVE

THE PURPOSES AND FUNCTIONS OF EXECUTIVE
THE COMPOSITION OF EXECUTIVE

TYPES OF EXECUTIVE

ENTRY TO EXECUTIVE

MULTIPROGRAMMING

Program protection

Program priorities

Program deletion

Multiprogramming under GEORGE 3 or GEORGE 4
control

DUALPROGRAMMING

Program protection

Program deletion

SUBPROGRAMMING

The purposes of subprogramming

Members of a program

viii

47
47
47
47
47

47
49
49
49

50

50
50
50

51

51

51
52
52
53
53
53
54
54
55
55

57
57
57
57
58
59
59
59
60
60

60
60
60
61
61
61
61

4095(5.69)

4095(5.69)

Information associated with each member
MEMORY INDICATORS
Information associated with the Priority Member
Further notes on the Priority Member
PRIORITY
TIME-OUT FEATURE
ORDER CODE RESTRICTIONS
Further notes on other members
PRIORITIES
ADDRESS AND BRANCH MODES
Loading and dumping
LOADING
DUMPING
Reference to common storage area
PROGRAMS WITHOUT A PRIORITY MEMBER
PROGRAMS WITH A PRIORITY MEMBER
Subprogramming control instructions
THE 162 (SUSMA) INSTRUCTION
Restrictions
THE 163 (AUTO) INSTRUCTION
Initial activation
Subsequent re-activations
THE 164 (SUSAR OR SUSIN) INSTRUCTION
The 164, X = 1 (SUSAR) variant
The 164, X = 2 (SUSIN) variant
The 164, X = 3 (SUSIN) variant
The 164, X = 4 (SUSIN) variant
States of members
STATE TRANSITION TABLES
Examples

EXAMPLE 1: WHY THERE MUST BE M INDICATORS
EXAMPLE 2: A 163 INSTRUCTION ISSUED WHEN

M IS SET
EXAMPLE 3: COMPLETE PARALYSIS
EXAMPLE 4: SPURIOUS RE-ACTIVATION

EXAMPLE 5: THE USE OF THE 162 INSTRUCTION

PERIPHERAL TRANSFERS
BINARY PROGRAMS
Binary program formats
Block types
Block type 1: Request block (request slip)
WORD 0
WORD 1
WORD 2
Bits 0 and 1
Bits 2to 5
Bits 6 to 20
Bits 21 to 23
WORD 3
Bits 0 to 8

62
62
62
63
63
63
63
63
63
63
63
63
64
64
64
64
65
65
65
65
65
65
65
66
66
66
66
66
66
68

69
69
69
70
74
81
81
81
81
82
82
82
82
82
82
82
82
83

Bits 9 to 16
Bits 17 to 23
WORD 5
WORD 6
WORD 17
Bits 0 to 11
Bits 12 to 17
Bits 18 to 23
WORD 8
WORD 9
WORD 10
WORD 11
WORD 12
WORD 13
WORD 14 AND 15
Block type 0: data block
WORD 0
WORD 1
WORD 2
WORDS 3 TO 17
NEXT WORD
WORD 19
Block type 5: data block
WORD 0
WORD 1
WORD 2
WORD 3
WORD 4
Block type 2: entry block
WORD 0
WORD 1
WORD 2
WORD 3
Block type 3: entry block
WORD 0
WORD 1
WORD 2
WORD 3
Block type 4: entry block
WORD 0
WORD 1
WORD 2
WORD 3
Block type 6: supplementary request block
WORD 0
WORD 1
Bit 21
Bit 23
WORDS 2 to 6
WORD 7

83
83
83
83
83
83
83
83
83
83
83
83
83
83
84
84
84
84
84
84
84
84
84
84
84
84
84
85
85
85
85
85
85
85
85
85
85
85
85
85
85
86
86
86
86
86
86
86
86
86

4095(5.69)

4095(6.71)

Block type 62: pre-request block sentinel 86

WORD 0 86
WORD 1 86
WORD 2 86
WORD 3 86
Block counts and sequence numbers 87
Layout of binary program on various media 87
PAPER TAPE 87
80-COLUMN CARDS 87
MAGNETIC TAPE 87
DIRECT ACCESS 88
Executive treatment of request and supplementary
request blocks 88
EX1H, E1HS 88
EX2L

EXIT, E1TS, EX1V, E1DS, E1IMS, EX2S, E3TS,
E3TS, E3TE, EX2V, E3DS, E3DE, EX2M, E4BM,

E3TM,. E3DM 88
Program loading 88
Changes during execution 88
Program dumping 89

E6BM 89

Dumping 89

DUMPING OF ZEROS 89

DEVICES THAT MAY BE USED FOR DUMPING 89

PROGRAM INITIATED DUMPS 89

OPERATOR INITIATED DUMPS 89

Loading 90

PROGRAM INITIATED LOADING 90
During the running of a program 90
When a program deletes itself 90

OPERATOR INITIATED LOADING 90
LOad 90
FInd 90

Action of the FInd directive with magnetic tape
(industry compatible) and cassette tape as

primary backing storage medium 91

Action of the FInd Directive with E.D.S. or F.D.S. 91
OPERATOR/EXECUTIVE COMMUNICATION 92
Monitoring of input messages 92
Description of executive treatment of input typewriter
message 92
Chapter 8 Paging 99
THE PRINCIPLES OF PAGING 99
Unpaged systems 99
Paged systems 99
PAGING OPTIONS 99
Programming for paging 99

Addressing : 100

Xi

TABLES
Program table
Segment table
Page table

CURRENT PAGE REGISTERS
Loading current page registers
Action when store access required
Programming restrictions on paged 1904A

Chapter 9

This Chapter has been deleted

Chapter 10 The 1901 to 1907 central processors

'GENERAL

Individual processors
THE 1901

Store sizes

Store cycle time

Number of cabinets
Operator communication
Peripheral interfaces
Fixed-point operations
Floating-point operations
Other facilities

THE 1902

Store sizes

Store cycle time

Number of cabinets
Operator communication
Peripheral interfaces
Fixed-point operations
Floating-point operations
Other facilities

THE 1903

Store sizes

Store cycle time

Number of cabinets
Operator communication
Peripheral interfaces
Fixed-point operations
Floating-point operations
Other facilities

THE 1904

Store sizes

Store cycle time

Number of cabinets
Operator communication
Peripheral interfaces
Fixed-point operations
Floating-point operations
Other facilities

xii

100
100
100
101
101
101
101
102

103

105
105
105
105
105
105
105
105
106
106
106
106
106
106
106
106

106 -

106
106

106 -

106
107
107
107
197
107
107
107
107
107
107

107

107
108
108
108
108
108
108

4095(6.71)

4095(5.69)

THE 1905E

Store sizes

Store cycle time

Number of cabinets
Operator communication
Peripheral interfaces
Fixed-point operations
Floating-point operations
Other facilities

THE 1906

Store Sizes

Store cycle time

Number of cabinets
Operator communication
Peripheral interfaces
Fixed-point operations
Floating-point Operations
Other facilities

THE 1907

Store sizes

Store cycle time

Number of cabinets
Operator communication
Peripheral interfaces
Fixed-point operations
Floating-point operations
Other facilities

Chapter 11 The E and F central processors
GENERAL

Individual processors

Dual processors

THE 1904E

Store sizes

- Store cycle time

Number of cabinets
Operator communcation
Peripheral interfaces
Fixed-point operations
Floating-point operations
Other facilities

THE 1904F

Store sizes

Store cycle time

Number of cabinets
Operator communication
Peripheral interfaces
Fixed-point operations
Floating-point operations

108
108
108
108
108
108
109
109
109
109
109
109
109
109
109
109
109

o 1m

111
111
111
111
111
111
111
111
111

113
113
113
113
114
114
114
114
114
114
114
114
114

114
114
115
115
115
115
115
115

xiii

Other facilities
THE 1905E
Store sizes
Store cycle time
Number of cabinets
Operator communication
Peripheral interfaces
Fixed-point operations
Floating-point operations
Other facilities
THE 1905F
Store sizes
Store cycle time
Number of cabinets

. Operator communication
Peripheral interfaces
Fixed-point operations
Floating-point operations
Other facilities
THE 1306E
THE 1906 F
THE 1907E
THE 1907F

Chapter 12 The A central processors
GENERAL ‘
Individual processors
THE 1901A

Store sizes

Store cycle time

Number of cabinets
Operator communication
Peripheral interfaces
Fixed-~point.operations
Floating-point operations
Other facilities

THE 1902A

Store sizes

Store cycle time

Number of cabinets
Operator communication
Peripheral interfaces

Fixed-point operations
Floating-point operations
Other facilities

THE 1903A

Store sizes

Store cycle time

Number of cabinets
Operator communication

xiv

115
115
115

115.

115
116
116
116
116
116
116
116
116
116
116
117
117
117
117
117
117
117
117

119
119
119
119
119
119
121
121
121
121
121
121
121
121
121
121
121
122

122
122
122
122
122
122
122
122

4095(5.69)

4095(6.71)

Peripheral interfaces
Fixed-point operations
Floating-point operations
Other facilities

THE 1904A

Store sizes

Store cycle time

‘Number of cabinets
‘Operator communication

Peripheral interfaces
Fixed-point operations
Floating-point operations
Other facilities

THE 1906A

Store sizes

' Store cycle time

Number of cabinets
Operator communication
Peripheral interfaces
Fixed-point operations
Floating-point operations
Other facilities

Chapter 13 Other central processor features
GENERAL

COMMERCIAL COMPUTING FEATURE
CONSOLE LOGGING PUNCH

CONSOLE TYPEWRITER SWITCH
DUALPROGRAMMING

EXTENDED MATHEMATICAL UNIT
FIXED-POINT OPERATIONS
FLOATING-POINT OPERATIONS
Extended precision floating-point facilities
FLOATING-POINT UNIT

INSTRUCTION OPE RAND COUNTER
INTERLEAVING

MILL TIMER

MULTIPLY/DIVIDE UNIT
MULTIPROGRAMMING

OPERATOR COMMUNICATION

PAGING

PERIPHERAL AUTONOMOUS CONTROL
PERIPHERAL CONTROL CONNECTOR
REAL TIME CLOCK

REMOTE STORE UNIT

SCIENTIFIC COMPUTING FEATURE
SLOW HESITATION CONTROL
STANDARD INTERFACE SWITCHING UNIT
STORE ACCESS CONTROL

STORE ACCESS MANAGER

STORE EXTENSION UNIT

122
123
123
123
123
123
123
123
123
123
123
123
123
124
124
124
124
124
124
124
124
1241

125
125
125
125
125
125
125
126
126
126
126.4
126.4
126.4
127
127
127
127
127
127
127
127
128
128
128
128
128
128
128

XV

STORE MULTI-ACCESS CONTROL 128 -
SUBPROGRAMMING 128

Index 129

4095(5.69)

Chapter1 Introduction to the 1900 Series
central processor

The 1900 Series comprises a single range of compatible processors to each of which can be linked
various combinations of peripheral devices. Individual central processors are identified by a number
from 1901 upwards and are further defined by additional numbers preceded by a solidus, or by
additional letters; e.g. 1904/2, 1904E, 1904A.

CENTRAL PROCESSOR CONSTITUENTS

Each central processor is made up of basically similar units. The differences between processors

lie in any extra facilities indorporated. Thus there must always be a power supply, and there may be
more than one, depending on the size of the configuration and the central processor itself. There must
also be a core store, which may hold just over four thousand words of storage or hundreds of thousands
of words. Similarly engineers controls, a number of interface channels with associated logic rows, and
the central processing unit, incorporating the bulk of the logic circuitry, are present in all central
processors. These constituents of the central processor are held in one or more cabinets, for instance
as illustrated in Figure 1.

FEATURES OF THE 1900 SERIES CENTRAL PROCESSOR
Compatibility

The compatibility referred to above is fundamental to the philosophy of the 1900 Series. It means that
users are able to extend their configuration either by changing central processors or by adding peri-
pherals without reprogramming and without having to change existing equipment that is retained.

Any program written for a 1900 Series central processor can be run on any other processor at the same
level or higher in the series hierarchy, or on any smaller processor that has all the facilities used by
the program.

A part of this philosophy of compatibility is the I.C.T. standard interface.

Storage

The basic unit of storage in 1900 Series central processors. is termed a word and consists of 25 con-
secutive binary digits (bits). One of these bits is used for parity checking, a means of ensuring that
data is intact after being transferred, so that 24 bits are available to hold data or an instruction.

Standard interface

The 1.C.T. standard interface is a standard means of attaching peripheral devices to the central pro-
cessor. Most standard interface peripherals can be attached to any central processor in the 1900 Series
provided that the central processor's hesitation time or data handling capabilities are not overloaded.
Some central processors can also be connected to non-standard interface peripherals.

Note: Every 1900 configuration must include a line printer, or there must be a means of producing
hard copy from paper tape or cards.

Executive

Each central processor is provided with an Executive control program compiled specifically to suit

the processor and peripheral combination in the installation concerned. The Executive program includes
routines, called extracodes, that carry out certain functions in the 1900 Series order code. On small
processors extracodes are used to perform some functions that are performed by hardware on larger
processors. In this way order code compatability between small and large central processors is
maintained without the price of small processors being affected.

4095(6.71) 1

On medium and large central processors the Executive program can, and in some cases must be,
supplemented by one of a number of operating systems. The principal operating systems are the GEORGE
systems, details of which can be found in the appropriate manuals.

The console typewriter

In order to allow for human intervention in the operation of the computer, there must be a means of
communication between the operator and Executive. In all but the smallest computers, this communication
is achieved by means of the console typewriter.

The console typewriter is situated on a free-standing desk and is connected directly to the central
processor. The keyboard consists of up to 50 keys and a space bar by means of which the operator can
type in instructions. The typewriter is used both to inform the operator of incidents occurring within
the central processor, the peripherals and the programs, and also to permit the operator to give
instructions such as to load, activate, suspend, or delete programs. These typed instructions and
messages form a permanent record of all communications in the sequence in which they occurred.

Large processors in the 1900 Series are supplied with two console typewriters, the second to act as a

spare in case of emergencies. A console typewriter switch provides the means of switching control
to the spare console typewriter.

On small 1900 computers, a panel of lights and switches is sometimes used instead of a console type-
writer to achieve communication between the operator and Executive. Messages are received by the
operator in the form of a pattern of lights, and the operator enters instructions by setting a pattern
of switches. No automatic record of such communications is kept.

Floating-point arithmetic

Facilities for performing floating-point arithmetic are available with all central processors. By allowing
numbers to be stored in the form of an argument and an exponent, floating-point arithmetic provides for
calculations involving very small or large numbers using the minimum of storage space. Floating-point
functions are performed either by hardware that forms part of the central processor or by extracode.

Programming languages

A number of programming languages, including Compact and full COBOL, PLAN, NICOL, Basic and full
FORTRAN and Algol, can be used to write programs to be run on 1900 Series central processor. PLAN
is the general purpose language devised specifically for use with the 1900 Series. NICOL, devised for the
smaller 1900 Series processors, is a commercially oriented language that is extremely simple to use.

Dual processor capabilities

Certain central processors can be paired with another central processor of the same type to form a
dual-processor configuration. Details of dual processor configurations are given in the descriptions of
individual processors in Chapters 10 to 12. The principles of dual processor operation are outlined below.

The dual processor systems share control of the peripherals which may be connected to either processor
provided that at least one card or paper tape reader and at least one line printer or paper tape punch

is connected to each processor. Programs in either processor have access to peripherals connected to
either processor.

The processors share a common core store that must consist of at least two modules. Each module hasa
store multi-access control (see page 5) associated with it, Each S.M,A.C. controls access to the module
with which it isassociated and ensure that only one processor has access toa givenmodule at any one time.

There is one common Executive and operating system which is shared by the two constituent processors
and stored in the common core store, but program instructions are able to run in each of the processors
simultaneously. A program is not necessarily carried out by one processor but may run at different
times in either of the processors on the system., Executive will not allow the same program to run in
more than one processor at the same time. The choice of which processor is to be used at any one time
for a particular program lies with Executive and/or the operating system.

In the event of one processor of the pair failing, the system can operate in crippled mode, whereby the
remaining processor is used on its own. If the fault is a store failure, however, it may be possible to
continue with both processors and a reduced store. Otherwise only the peripherals attached to the
remaining processor will be available unless a standard interface switching unit is used (see page 53).

2 4095(6.71)

(89°y) seor

uone.nBijuoo sosssoosd enp v Z 84nbiy

Core store
module

Core store
module

SMAC

SMAC

Card reader

Central
Processor

Central
Processor

Card reader

Line printer

Magnetic tape

(

Line printer

If peripherals are connected via a standard interface switching unit they can all be switched to the remaining
processor, provided that the system so formed is viable.

A dual processor configuration is illustrated in Figure 2.

Interprocessor buffer

The interprocessor buffer (IPB) offers an alternative method of enhancement if dual processors are not available or
appropriate. The IPB will connect any two neighbouring 1900 Series processors, except those running under a
handswitch Executive, enabling them to communicate with each other. The system for which this facility might be
suited would consist of two largely independent computers requiring a quick transfer of information from one to
the other and running programs that access some common information. For example, one processor maintaining
main files and another servicing communications terminals and performing other input/output transactions could
be linked by an IPB. In such a system, a low level of total down-time is important and response time is reasonably
fast. The communications equipment could be switched to the processor maintaining the files in the event of a
hardware failure.

The IPB will be housed in a free-standing cabinet with its own power supply; it will have a one-word buffer and
data will be transferred to and from the buffer in four-character bursts. Transfers of data from one processor to
the other will operate in the half-duplex mode. The instantaneous data transfer rate across the IPB will depend on
the basic speeds of the processor interfaces at either end, and, to some extent, on the other peripheral activity
present in each processor. The effect of the latter is likely to be small, and, if it is ignored, the resultant transfer
rate will be of the order of:

Kch/second
R+S

where R and S are the nominal maximum data rates associated with the interfaces attached to each processor. The
sustained data rate over a succession of messages will, of course, be less than this, by an amount depending on the
length of the messages.

Only one two-way data link will be allowed at any one time between a given pair of processors, that is, just one

program in one processor can communicate at any one time with just one program in the other. However, it will
be possible to attach more than one physical link to a processor so that it can communicate with more than one
additional processor. The links will be set up dynamically by each program concerned. Either processor may be

running under a manual Executive (not handswitch) or under any of the GEORGE operating systems.

MULTIPROGRAMMING

The central processor works at very high speeds, but the obvious advantages of this can be nullified by the com-
paratively slow speed of peripherals and the time taken by an operator physically to set up and take down a job.
Multiprogramming increases the throughput of the central processor by allowing several programs to share central
processor time. While a program is delayed for a peripheral transfer or operator action, another program is allowed
to run.

Multiprogramming is handled by Executive. Each program in the system has a priority number; when a program
interrupts at the beginning or end of a peripheral transfer, control passes to Executive and the highest priority
program that is able to continue is activated. Program security is guaranteed by the datum and limit registers. These
points are dealt with more fully on pages 59 and 60, but in themselves give an indication of the usefulness of
multiprogramming.

4 4095(6.70)

Chapter 2 The core store

Note: The description of the operation of a core store given in this chapter is for the interest only of
the reader. No inference should be drawn from it.

STORE SIZE

The size of core store in a central processor is given as a number of K words, 1K being 1024 words.
Thus a 16K core store is one that consists of 16,384 words of storage. Although for programming pur-
poses the core store may be regarded as a single entity it physically comprises one or more units
known as modules. Modules vary in size, between 4K and 64K, according to the type of central processor
and the size of the total core store. The principal significance of modules is in interleaving (see below)
and in the incrementation in size of the core store in a central processor. Any central processor can
be supplied with a selection of store sizes, and additional core store can be fitted in the field up to the
maximum available with the machine. The additional storage must, however, consist of an integral
number of modules of a size available with the machine in question, although the modules of which the
store is constituted need not necessarily all be of the same size. The sizes of core store available with
particular processors are given in Chapters 10 to 12.

STORE SPEED

Information read from a core store becomes available after a certain interval of time, termed the
access time . The operation of reading destroys the information read and it must be written back; the
next read request cannot be started until a further interval has elapsed. The total time from one read
request until the next can be accepted is termed the cycle time and is the figure most commonly quoted
to give the speed of a core store.

A further consideration in the effective speed of the store is the store width. Thus in the 1900 Series
a store in which 25 bits are read in parallel would be termed one word wide.

STORE ACCESS

Information is transferred between the core store and the central processing unit or peripherals by
means of a store access mechanism. Most 1900 Series central processors have a single store access
mechanism, If an access to the store is required less than the store cycle time after a previous access,
the latter access must wait unit the cycle is complete. This restriction is irrelevant in most systems
since store accesses are rarely or never required so soon after each other. However, as processing
speed is improved, the system can become core store limited. This condition is overcome where it is
likely to occur by the provision of further store access mechanisms, possibly used in conjunction with
an interleaved store.

Store multi-access control

The store multi-access control (S.M.A.C.) is a switching device associated with each core store module
in a dual processor system. It controls the access of the central processing units to a given core
module, ensuring that only one central processing unit has access to a given core store module at any
one time.

The store multi-access control switches access to its associated module from one processor to another
as requested or, if there is a store clash, according to a system of priorities. A processor can have
access to a store module for only one store cycle without interruption and is unable to request another

4095 (4.68))

Address Decoding and X Wire Current Drivers

Address
Decoding
and Y Wire
Current
Drivers

Figure 3 Example of a magnetic core store matrix

Address Decoding and X Wire Current Drivers

Inhibit Wire

Address Decoding
and Y Wire
Current Drivers

Figure 4 Section of a magnetic core store plane

4095 (4.68)

store cycle while that cycle is taking place. If a processor requests access to a store module that is
being accessed by the other processor, the S.M.A.C, queues the request.

The basic rule for switching is that a store access request is granted unless there is a clash of requests,
in which case access is granted to the processor that did not have access to the module last. This rule

is qualified by the proviso that if the request for store access emanated from a peripheral channel,

then this request has priority over one originating in the central processing unit. If requests from
peripheral channels clash, then the original rule applies.

PRINCIPLES OF READING AND WRITING IN STORE
Reading and writing information in the core store is performed by the following operations.

1 Read Regenerate, in which information is read from the selected core store addresses and then
written back in these addresses for further use.

2 Clear Write, in which the selected core store addresses are cleared (zeroized) during the read part
of the read/write cycle and new information is written back to these addresses during the write
part of the read/write cycle.

3 Read-Pause-Write, in which information is read from the selected core store addresses and is
then updated by new information and written back to these addresses.

The uses of these operations are given below in the short account of the principles involved in reading
from and writing to the core store.

A magnetic core store physically consists of matrices of ferrite rings threaded with wire through which
current can be passed to magnetize the rings (see Figure 3). Each core (ring) can be magnetized in
either direction in terms of two remanent states of magnetization. That is, if a current of sufficient
strength is applied to the core and then removed, the core will settle to a certain stable state of mag-
netization. If this current is reversed and then applied and removed, the core will settle to another
stable state of magnetization. These two states of remanence are known as positive remanence and
negative remanence. Positive remanence is used to indicate 1 and negative remanence to indicate 0,

so that each core can be used to store one bit.

A section of a plane of a core store matrix is shown in Figure 4 and it can be seen that each core is
threaded with a number of wires: current drive, read and inhibit wires. The current drive wires are
arbitrarily called the X and Y current drivers and any particular core can be addressed by selecting the
two appropriate X and Y wires. This selection is performed by the store selection electronics.

If a current equal to half the strength required to magnetize a core is applied simultaneously to the
selected X and Y wires the result will be a magnetizing current of sufficient strength being applied to
the core at the intersection of the two wires. This method of applying half currents to the X and Y wires
is used so that the only core affected by the full current is that which is at the intersection. Other wires
through which these half currents pass are not affected because the half current is not of sufficient
strength to change the magnetic state of the cores.

To read the state of a core, the method used is to write a 0 to the core and note the change, if any, in the
state of the core. To enable this to be done, a third wire, called the read wire, is threaded through
every core in the plane and a current will be induced electro-magnetically in this wire only if the state
of the core changes. Thus, if the core had previously been storing a 0, no response will be given from
the wire, but if the core had been storing a 1, a response will be given indicating a change in the core's
state. At the end of this read cycle all the selected cores in the matrix will have been switched to the 0
state. Therefore, if it is necessary to retain the information in store, the information just read must be
written back immediately. For this purpose the read cycle is followed by a regenerate cycle.

During the regenerate cycle the selected X and Y wires have a reverse current applied to them such

that the cores at the intersections have a magnetizing current that is sufficient to return them to the 1
state. To prevent this reverse current switching cores that were read as 0's, every core in the matrix
is threaded with a fourth wire called the inhibit wire. If a 0 was read, then a current is applied to the
inhibit wire coincident with the half currents applied to the X and Y wires. The resulting net magnetizing
current linking with the selected core is insufficient to switch the core from the 0 state. When the
program is writing to core store, the write cycle is always preceded by the read cycle described above,
which erases the store address's previous content by filling it with 0's. The method used to write
information to store is similar to that of regeneration, the difference being that: the currents applied to
the inhibit wires are derived from the information to be written instead of from the information read from
the store during the read cycle.

4095 (4.68) 7

Words Words
: '.
|
Hardware 0 | 1 2 : 3
Store ! '
Addresses 4 : 5 6 : 7
i |
8 t 9 10 i il
)]
1
12 : '
| I
i i
{ [
]
' }
' |
Module 0 Module 1
Figure 5 A two-way interleaved store
Words Words Words Words
1 I T T
[}] } }
Hardware 0 : 1 21 1 3 4 : 5 6 : 7/
Store 1 : ! i
Addresses BT — 7\(o 2 e} 1208 5 L8 17 - 1
1] ! |
]]]]
16 1 ! ! 1
) I 1 1
) ! 1 |
| | 1 [}
[} }
| . : .
| : ' '
|) |
i
] 1 }
i ' ' '
Module 0 Module 1 Module 2 Module. 3

Figure 6 A four-way interleaved store

4095 (4.68)

PARITY CHECKING

Parity checking is the term given to the practice whereby the number of 1-bits in a word is counted
to ensure that it is always odd. When data and instructions are originally entered into the computer
system, a count is made of the number of 1-bits. If the number is even, bit 25 is set to 1, thus making
the total odd. Subsequently, every time the information is transferred from one location to another, a
check is made to ensure that odd parity is maintained, this being sufficient evidence of a successful
transfer.

Each central processor has a parity check unit which checks the parity of the information transferred
from the core store during a read cycle, and generates the parity bit for information transferred to

the core store during a write cycle. During a write cycle, the parity of the word, generated by the
parity check unit, is written to the word as bit 25. During a read cycle, the parity of the word read from
the core store is generated and compared with the content of the parity bit. If the comparison fails, the
central processor halts. 1902A and 1903A processors however will halt if the parity error is in
Executive. In object mode an interrupt occurs and Executive can determine which location is in error.

STORE INTERLEAVING

Store interleaving is a facility that, used in conjunction with two or more store access mechanisms,
provides a means of avoiding core store limitation in a system. In an interleaved store each store
access mechanism is associated with one module or group of modules. The store hardware addresses
are arranged so that each successive address or pair of addresses, depending on the width of the store,
is in a different module. The 1900 Series central processors that can have interleaved stores provide
for either two- or four-way interleaving.

Two-way interieaving

A two-way interleaved store that is two words wide will have its hardware store addresses arranged as

shown in Figute 5. Since each store mechanism can acecess two words at once, and there are two such
mechanisms, a total of four words can be accessed at one time.

Four-way interleaving

A four-way interleaved store that is two words wide will have its hardware store addresses arranged as
shown in Figure 6. A total of eight words can therefore be accessed at one time.

Efficiency increase

The effect of store interleaving depends on the relative speeds of the central processing unit and the
store and also on the functions being performed, A program containing many floating-point instructions
is less likely to be store limited, so that interleaving will have less effect. On the other hand, a sequence
of instructions with short times will be performed with a considerable time saving if the store is inter-
leaved. Interleaving will in any case greatly reduce the percentage degradation of C.P.U. performance
caused by store access clashes resulting from coincident peripheral transfers.

Store failure

If part of the store fails it is not possible to continue work with the store interleaved in the same manner.
However, with minimal intervention by I.C.T. engineers, it is possible to isolate the defective module
and reconfigure the store so that work can be continued with reduced or no interleaving.

ALLOCATION OF STORAGE

The core store can be considered as being divided into two distinct areas; an Executive area, and an object
program area. The Executive area contains the Executive program which, as one of its functions,

allocates areas of core store to the object programs entered into the system. Executive is loaded into

the store from Word 0 onwards and the number of words occupied by a specific Executive depends on

the configuration of the installation on which it is used. Object programs are stored in the areas of

core store immediately following the area reserved for Executive. The absolute starting address of an
object program area allocated by Executive is always a multiple of a number that varies according to

the central processor concerned as follows:

4095(6.70) 9

1901 128 words

1902/3 256
1904/5 64
1906 /7 128

1904,5/E,F 64
1906,7/E,F 64

1901A 64
1902,3/A 64
1904A 64
1906A 64

Consequently, the first word of an object program will not necessarily be the word following the last
word of the preceding program in store.

The number of words of core store required by a specific object program is calculated and rounded up
to a multiple of 64 by the compiler and the result is included in the requisition slip that precedes that
program. When the program is loaded, this value is used by Executive to determine whether sufficient
storage is available to allow the program to be accepted. If sufficient storage is available, Executive
allocates an appropriate area to that program and records the absolute starting address and ending
address of the area; the program is then entered into the store.

The difference between the programmer's relative word address and the absolute word address is
adjusted by hardware by reference to information held by Executive, If the central processor is operating
in datum /limit mode (for details of paging mode see Chapter 8), each time a program is activated
Executive sets into a hardware register, known as the datum register, the absolute word address cor-
responding to Word 0 (starting address) of that program area. For example, if the first word of the
object program area were held in absolute address 2176, then Executive would set this value in the
datum register. At each store reference by the object program the datum value is added to the relative
address used within that program to obtain the absolute address.

A hardware register, known as the limit register, is also used to determine the limit of store area that
an object program may reference. On the smaller 1900 Series central processors there is no actual
limit register, but a prewired number is permanently set to correspond to the last absolute word
address of core store. On multiprogramming machines, the limit value is variable and is determined by
Executive in a similar manner to the datum value. On all of the central processors a check is carried
out by hardware to ensure that no store reference is made by an object program to an address less than
datum or greater than relative address limit. Thus, in a core store containing more than one object
program and containing both a datum and limit register, each program is completely protected from any
other program.

Each time an object program is run on a multiprogramming central processor, the program will almost
certainly occupy a different area of core store from the area that it occupied on its previous run.
However, this aspect of store allocation is automatically provided for by the fact that, as previously
stated, each program area is considered to be numbered from zero relative to that program's datum.
This method of programming by relative addresses allows programs to be positioned anywhere in the
store without the need for the programmer to know the absolute store area that his program will occupy
on a specifi¢ run.

When a program is finished and no longer required in the store it is deleted, that is, it is removed from
the Executive directory of active programs. If necessary a multiprogramming Executive will then re-
locate the programs in the store; that is, it will move up programs in higher addresses towards the
Executive area in order to fill up the area left by the deleted program. Thus, all free addresses are
then in one continuous area. The Executive datum and limit records for the programs that have been
moved are amended to the new absolute addresses.

LAYOUT IN STORE OF OBJECT PROGRAM

For the purposes of programming each area of core store can be considered as consisting of a number
of distinctive sections, as illustrated opposite.

10

4095(6.70)

Limit of object program —m———
Upper Data Store

Progr:im Store
Lower Data Store
; Reserved Store
Switch Word
Entry Parameters Store
Reserved Store

Datum of object program 3 Accumulators

The relevance of the sections is briefly described below. ‘

Accuinulators-Words O to 7

These eight consecutive words constitute the program's accumulators and are used for arithmetic,
copying, testing and logical functions. Accumulators 1, 2 and 3 can also be used as modifying registers.

Reserved store and entry parameters store - Words 8 to 29

These two sections occupy an area from Word 8 to Word 29, Certain words within this area are reserved
exclusively for use by Executive. Other words in this area may be used by Executive and/or, subject

to certain restrictions, by an object program. The purpose and restrictions on the use of the words in
this area are as follows: ' :

Word 8 This word is used for control purposes by Executive and by the hardware of the
central processor; it should not be changed by the object program. It is Executive's
link word for that current object program number. (Note: Executive links are not
of the same format as object program subroutine links, and their format varies
according to the central processor used.)

Word 9 This word is used by Executive to provide a reply to the object program after
certain peripheral instructions have been used. Word 9 is also used by the hard-
ware of certain central processors. An object program may access Word 9 only in
accordance with the specification of the relevant instructions.

‘Words 10 and 11 These words are used f)rimarily for communication between parts of the object
program written by the user, and standard ICL subroutines called in this object
program. They are not used by the operating environment.

Words 12 and 13 An object program must not alter and cannot rely on the contents of these locations.
They are used by Executive to hold or dump the contents of the normal two-word
floating-point accumulator.

Words 14 and 15 An object program must not alter and cannot rely on the contents of these locations,
if the program member makes use of extended precision floating-point facilities, or
the own monitoring of illegals (and floating-point overflow or underflow, if
applicable). The locations are overwritten upon each own monitoring entry to the
member, and used as a dump for the extension to the floating-point argument and
variable limit register.

Words 16 to 19 These words are reserved for use by the various compilation systems. An object

» program may use these words only in accordance with the compiler specification.

Words 20 to 29 These words are used by compilers to store entry parameters; that is, instruct_ions
referring to entry and restart points in the object program.

Switch word - Word 30

. This word contains the setting of the 24 operator's switch bits. Switch 0 is represented by the most
significant bit of Word 30. The 'ON' state of a switch bit is represented when the appropriate bit is '1'.
An object program may examine and alter the state of any of the bits in Word 30.

4095(6.71) 11

Reserved words - Words 31 to 44

This word is subject to the same restrictions as Words 16 to 19; additional restrictions apply if sub-

programming is used, (see below) but in this case the additional areas reserved for subprogramming
start at Word 32.

Lower data store - Words 45 up to 4,095

The lower data store normally starts at Word 45 and the area that it occupies varies according to the
needs of a particular program with the limitation that this area may never extend beyond Word 4,095.
The lower data store consists of those areas in which the programmer wishes to hold information that
will be frequently and directly addressed.

The division of data storage is introduced for the reason that all program instructions, except branch
instructions, can address directly only the first 4,095 words of the object program area in which they
are used. This limit is imposed by the fact that the N field of the instruction word format consists of
only twelve bits (see Chapter 5). Thus the maximum address that can be held in the N field of the
instruction is that for Word 4,095. To refer to words beyond Word 4,095, indirect addressing entailing
the use of modifier registers must be employed. The division of the two data store areas, which is
under the programmer's control, may therefore be used to ensure that the lower store is reserved to
hold information frequently and directly accessed, while the upper store is reserved for information of
a lengthy or infrequently used nature, such as input and output areas and tables that would normally be
accessed by modified instructions anyway.

The programmer must specify to the compiler the areas required; the number of words of core store
specified will then be allocated by the compiler during the compilation of the object program.

Program store

The location of the program store area will vary according to the lower data store requirements of the
program, but it always immediately follows the lower data store. The program store contains the
program instructions.

BRANCH MODES

There are two branch modes in the 1900 Series order code, normal branch mode and extended branch
mode,. If the central processor is working in normal branch mode, the address part of a branch instruc-
tion is limited to 15 bits, This effectively limits the addressable size of store holding instructions to
32K. To allow for larger core stores, the central processor may alternatively work in extended branch
mode, in which case the effective N address of the branch instruction consists of 22 bits, and the
addressable size of core store holding instructions is extended to 4M, that is, 4,096K. For details of
these modes see Chapter 5.

Uppe. data store

The upper data store immediately follows the program store and its location will vary according to the
needs of a particular program. The upper data store is used to store data of lengthy or infrequently
used nature, which will normally be addressed by modified instructions.

ADDRESSING MODES

There are two addressing modes in the 1900 Series order code, 15-bit address mode (15AM) and 22-bit
address mode (22AM). Instructions in a program to be run in 15AM have 12 bits for the address of the
operand; by modification, the address size can be extended to 15 bits so that data can be stored in an
area of 32K. To allow for larger core stores, a program can alternatively be run in 22AM, 22 bits
being allowed for the operand address. Thus data can be stored in an area of 4M. For details of these
modes see Chapter 5.

Additional words reserved when subprogramming is employed .

When subprogramming is employed, the datum of the object program area is common to all members of
a subprogram group. Furthermore, all members use the same accumulator area. To eliminate the

12 4095(6.70)

programming difficulties this condition could cause, Executive dumps and restores Words 0 to 15
inclusive when switching from one member to another. For this purpose an additional sixteen words of
the object program area are reserved for each member; for example, if a program has Members 0, 1

and 2 the number of additional words reserved will be 3 x 16 = 48, Thus the lower data store will begin
at Word 80,

AVAILABILITY OF CORE STORE

The sizes of core store available with particular processors are given in the description of the pro-
cessors concerned in Chapters 10 to 12, If a large core store, requiring free-standing core store
cabinets, is fitted, it is usually necessary to have a store extension unit (S.E,U.) and possibly remote
store units (R.S,U.s) as well. These devices are needed to supply extra power and to control transfers
of information between cabinets. A store extension unit is fitted in the first core cabinet and a remote
store unit is fitted in each free-standing cabinet. The devices are supplied as standard for every

configuration that requires them and, since they are contained within the core cabinets, they take up
no extra space.

4095(5.69) 13

Chapter 3 The arithmetic and control units

GENERAL

The arithmetic and control units are the part of the central processor principally concerned with the
manipulation and flow of data throughout the computer configuration. These units are made up of gates
and registers, and associated with the control unit is at least one timing generator.

CLOCK PULSES

Clock pulses are produced at intervals by the timing generator or generators and are used to control
the operation of microprograms. Every instruction comprises a number of operations, collectively
known as the microprogram, and each of these operations must be completed in the interval between
pulses, the next pulse triggering the next operation. Each instruction is therefore performed over an
integral number of pulses.

The intervals at which pulses occur vary from one central processor to another and from one operation
to another within any one central processor. The interval is usually between 0.5 and 6 microseconds,
the long delay occurring when a store cycle is included in the operation. A mill timer, or clock pulse
counter as it is also known, may be provided to count the number of pulses occurring during a program.

If all operations within the control and arithmetic units are associated with the pulses produced by one
timing generator the central processor is termed syachronous. However, within a synchronous central
processor, certain features may have their own control and timing generator, in which case they can
operate autonomously. Such is the case, for instance, with the P.A.C. and the S.A.M. (see Chapter 6)
and some floating-point hardware. A distinction between the floating-point hardware supplied with the

1905 and that which may be supplied with the 1901 is that the former can operate autonomously whereas
the latter cannot.

THE CONTROL UNIT

The control unit provides the means of controlling the carrying out of instructions and is also used in
the control of peripheral transfers. Its principal components are:

1 A control register, in which the control address is stored. The control address is the address of
the next instruction to be obeyed, and it is normally increased by unity after each instruction has
been obeyed, so that the next instruction may be read from store when required.

2 Circuits that decode the function part of an instruction and set up other circuits to obey the
instruction.

3 Circuits that decode the address part of an instruction so that the required data can be read from
the appropriate store address.

THE ARITHMETIC UNIT

The arithmetic unit consists of a mill and registers that enable calculations and logical functions to be
performed. Its principal components are:

1 A mil], or adder as it is sometimes termed.
2 One or more registers into which operands may be transferred whilst being operated upon.

3 Facilities for shifting operands right or left for such purposes as multiplication and division and
facilities for forming the inverse of a value.

4095 (4.68) 15

LAYOUT OF THE CONTROL AND ARITHMETIC UNITS

The arithmetic and control units are illustrated in Figure 7. This figure represents a typical control
unit and arithmetic unit as found in many 1900 Series computers. However, the smaller computers in
the range, below the 1902, have fewer registers, and the larger computers, such as the 1906 and 1907,
have additional registers. The number of registers used affects the price and speed of the machine;
nevertheless the principles of operation are in all cases the same.

The mill

The mill is a 24-bit parallel adder /subtractor that can carry out logical and arithmetic operations on
the contents of the registers when these are transferred to the mill. When the operation has been per-
formed, the result is transferred back to a register. On less expensive 1900 processors the width of
the mill is reduced to six bits thereby eliminating a considerable amount of circuitry but also increas-
ing the times of arithmetic operations.

Register A

Register A is used as a working register in the performance of intermediate operations. It has normal
and inverse outputs, the latter being used to form the complements of numbers for binary subtraction.
This register is also used in high speed mode peripheral transfers (see page 50).

Register B

Register B is used as a working register and also to transfer operands to and from store. Parity is
formed from the contents of B when store accesses are made.

Register P

Register P is used to hold the instruction address (Bits 9 to 23), special Executive modes (Bits 2 to 8),
the carry from multiple length operations (Bit 1) and a record of any overflow that occurs during the
execution of an instruction (Bit 0).

When more complex instructions, such as multiplication, are performed, register P is required as a
working register, and its ability to shift operands left or right internally is used. When P is used as a
working register, its normal contents are temporarily stored in location eight of the program's

store area.

Datum and limit registers

These registers are used to store the datum and limit of the program being executed. The datum is
the first word in store of the area reserved for the program, and the limit is the last word of the pro-
gram's area. (See also Chapter 7 Multiprogramming.) Single program machines have no limit register
since the limit is constant, the last word in store, and it is impossible to violate it.

Register N

Register N contains various quantities as an instruction progresses. Initially it contains the instruction
address and then the operand address part of the instruction. It also has the ability to count down in
decrements of unity and is used as a counter in instructions such as multiply and shift.

Registers F,X,M

These registers are used to hold the function, accumulator address and modifier address of an instruc-
tion respectively. Register X has an additional output X+1 that is used to specify the second accumulator
used in double length operations.

16 4095 (4.68)

HOW INSTRUCTIONS ARE PERFORMED

A method of gathering insight into the way in which the control unit, arithmetic unit and store work
together is to run through the short program, 'add x to y and place the résult in the store'.

Assume that:

1 Operand x is in store address 2003;

2 Operand y is in store address 2004;

3 The answer is to be placed in store address 2005;
Three instructions are required and these are:

4 Transfer the content of store address 2003 (x) to an accumulator, X1, (function 000), where X1
is also in store.

5 Add the content of store address 2004 (y) to the content of X1 (function 001),
6 Transfer the content of X1 (x+y) to store address 2005 (function 010).
Assume that these instructions are located in store addresses 5000, 5001, 5002,

FIRST INSTRUCTION
1 Sends the control address (equal to 5000) from the control register to store selection.

2 Receives the content of address 5000 (first instruction) and separates the function and address
parts.

3 Decodes the function, which causes the address bits to be sent to the store selection circuits
and sets up the route for store read-out of Word 2003 to the arithmetic unit, and thence to
Register A.

4 Causes the content of store address 1 to be cleared and then the contents of Register A to be
copied to store address 1.

5 Unity is automatically added to the control address in order that the next instruction may be
retrieved from store.

SECOND INSTRUCTION
1 Sends the control address (equal to 5001) from the control register to store selection,

2 Receives the content of address 5001 (second instruction) and separates the function and address
parts.

3 Decodes the function, which causes the address bits to be sent to the store selection circuits,
sets the route for the store contents of Word 2004 to Register A, then reads.

4 Sets 1 on the store address highway. Reads the contents of address 1 to the mill and causes the
mill to add the incoming number to the content of Register A, storing the sum in Register B then
writing to Word 1.

5 Unity is automatically added to the control address in order that the next instruction may be
retrieved from store.

THIRD INSTRUCTION
1 Sends the control address (equal to 5002) from the control register to store selection.

2 Receives the contents of address 5002 (third instruction) and separates the function and address
parts.

3 Decodes the function, which causes the address bits to be sent to the store selection circuits and
sets the route to the arithmetic unit from the store. Reads Word 1 to Register A.

4 Sets 2005 on the store highway, clears word 2005 and causes the content of Register A to be trans-
ferred to store address 2005.

5 Unity is automatically added to the control address in order that the next instruction may be
retrieved from store,

4095 (4.68) 17

_Q+

N

MILL
SHIFT SHIFT TO
LEFT RIGHT =) PERIPHERALS
A
YS - y REGISTER
FROM
PERIPHERALS
7T\ INVERT /v'\ v
<l .
B \—
’l REGISTER N/ o
STORE
SHIFT
P M
) REGISTER
’ DATUM
/T
| S
RESERVATION
CHECKER
—' LIMIT S
a
COUNTDOWN

1

N
REGISTER
M
FXM X
REGISTERS]

Figure 7 The arithmetic and control units

18

4095(5.69)

e

Chapter 4 Representation of data

WORD FORMAT

As stated previously, the basic unit of storage on the 1900 Series computers is called a word and con-
sists of 24 consecutive bits. For programming purposes, these 24 bits are numbered from 0 to 23
starting at the most significant (left-hand) end of the word.

A word can hold data in various forms, the 24 bits being interpreted according to the manner in which
the word is used.

CHARACTER FORM

Data is nearly always input in character form, i.e. in the form of decimal numbers, letters of the
alphabet, and other symbols such as commas, solidi, and asterisks. This is evidently the most con-
venient form for the user. Data may remain stored in this form provided that it is not involved in any
calculation other than the production of hash totals. If data is to be involved in calculations it must
first be converted into pure binary form, i.e. one of the forms described below.

A character of data is stored in six successive bits, character positions being referred to for pro-
gramming purposes as n, to n,as shown in the following diagram.

g 1 ng s
character 0 character 1 character 2 character 3
Otob 6 to 11 12 to 17 18 to 23

Bit positions

PURE BINARY FORM

When data is held in character form each pattern of six bits has a unique significance but individual
bits have no significance at all. When data is held in pure binary form, individual bits have a defined
value and the value of any group of bits is the total of the values of individual bits in the group.

Data in pure binary form is always interpreted as having a numerical value. Apart from counter
modifier words, words holding pure binary data generally have the most significant bit (Bit 0) reserved
to indicate whether the value contained in the rest of word is positive or negative. If Bit 0 is set to
zero the value of the word is positive, and if Bit 0 is set to one the value of the word is negative. If a
number is negative, it is expressed as a complement.

Signed numbers may be integers, fractions, mixed, fixed- or floating-point, and may be single or
multiple length, i.e. may be held in one or more words. The interpretation of the form in which data

is held depends on the instruction operating on the data. For instance, two of the divide instructions
(044 and 045) will always interpret the dividend as a double length number, and a floating-point instruc-
tion will always assume data to be held in floating-point form.

Counter modifiers

A counter modifier, or index, word can be used in two forms: as a word counter modifier or as a
character counter modifier. A counter modifier word can be used to hold both count and modifier only
in 15AM (see Chapter 5), or if held in lower data store in 22AM.

4095 (4.68) 19

WORD COUNTER MODIFIER
A word counter modifier has the following format:
9 bits 15 bits g

!
[

--1-

]
1
l BO B8|B9 B23
]
H

Counter . Modifier :

The counter (Bit 0 to Bit 8) contains a count of the number of time's an operation is to be performed.
The counter must lie in the range 0 to 511; a count of zero will be treated as a count of 512 by the
appropriate instruction. The modifier (Bit 9 to Bit 23) contains the word address involved in the opera-
tion. For each repeat of the operation the counter is decreased by 1 and the modifier is increased by
either 1 or 2 according to the instruction used.

CHARACTER COUNTER MODIFIER

A character counter modifier has the following format:
' 2pits 7 bits : 15 bits |

730 B1 | B2 B8 |B9 B23

' © : Counter ! Modifier :
The character modifier C (Bit 0 and Bit 1) contains the character positions 0, 1, 2 or 3 within a word.
The counter (Bit 2 to Bit 8) contains a count of the number of characters involved in the operation. The
counter must lie in the range 0 to 127; a count of zero will be treated as a count of 128 by the appro-

priate instruction.

The modifier (Bit 9 to Bit 23) contains the word address involved in the operation. After each operation
1 is subtracted from the counter and added to the character number (Bit 0 and Bit 1). If the resultant
character number is 4, the character modifier is zeroized and 1 is added to the word modifier (Bit 15
to Bit 23).

COUNTER MODIFIER WORDS IN 22 AM OR EBM

If a counter modifier word is held in lower data store it may use the above formats irrespective of the
addressing mode in which the program is running. Otherwise, in 22AM or EBM two words must be
used, one word to hold the count and the other to hold the modifier. The least significant 22 bits of the
modifier word are used to hold the modifying value for the word address, the remaining two bits being
available to modify the character address. The count is held as a binary number at the less significant
end of the count word.

Fixed-point numbers
SINGLE-LENGTH INTEGER

For a single-length integer the binary point is assumed to be immediately to the right of Bit 23. Single
length integers lie in the range -223 to +223 _1 inclusive.

Sign
1 Bl B2_ __ _ (23 bits) _ _ _ _B22 B23
0
923, 'y
VIS B 40~ 4R i oo = i e 42 +2° [Assumed Binary Point

A negative integer is stored as its complement with respect to 224, i.e. -n is stored as 2 2% -n,

MULTI-LENGTH INTEGER

For a multi-length integer the binary point is assumed to be immediately to the right of the least
significant word. Bit 0 of all words other than the most significant must be set to zero and is irrelevant
to the value of the number. Multi-length integers lie in the range of -22%" to +223" _1 where n is the
number of words in which the number can be held.

20 4095(5.69)

SINGLE-LENGTH FRACTION

For a fixed-point fraction the binary point is assumed to be between Bit 0 and Bit 1, i.e. immediately
to the right of the sign bit. Fixed-point fractions lie in the range-1.0 to +1.0 -2723 inclusive, a negative
fraction being stored as its complement with respect to 29,

Sign
o e (23 bits)_ _ - — - B22 B23
0
Value -2° B e B R
Assumed
Binary Point

MULTI-LENGTH FRACTION

For a multi-length fraction the binary point is assumed to be between Bit 0 and Bit 1 of the most
significant word. Bit 0 of all words other than the most significant must be set to zero and is irrelevant
to the value of the number. Multi-length fractions lie in the range of -1.0 to +1.0 -272%" where n is the
number of words in which the number can be held.

MIXED NUMBER

For a mixed number the binary point can be assumed to lie between any two bits of the one or more
words holding the number. However, the normal 1900 Series convention is to use two words to store

a mixed number: one word for the integral part and one word for the fractional part. In this case the
binary point is assumed to lie between Bit 23 of the more significant word and Bit 1 of the less signifi-
cant word. Bit 0 of the less significant word must be zero and is irrelevant to the value of the number.
The term used to refer to a number of this type ismid-point number. The range for mid-point numbers
is -223 to 223 -223; the format is shown below:

Ignored
22 v !
Bl B2__ _ (23 bits)_ _ _B=<“B=23 BISSE2EE (23 bits)#™ . B22 B23
0 0
Value -2° 1222 4281 _ 42T 339 gl =8 " 988 o2
Assumed

Binary Point

Floating-point numbers

The use of floating-point arithmetic greatly extends the numerical range of the central processor and
at the same time relieves the programmer of the responsibility of correctly positioning the binary
point during protracted mathematical operations.

A number n, in floating~-point form, consists of an argument (or mantissa) r and an exponent e such
that n = r.2€ where

r is a signed fractional argument in the range 1>1 >3,
or -3 >r> -1 or, in exceptional cases,r =0
e is a signed integral exponent in the range -256< e <255.

These ranges correspond approximately to a decimal range'for n of -10' °< n<1076. For smaller
numbers in the range -10"77< n < 10~77, nis considered as zero.

Before floating-point instructions can be used, the data concerned must be converted to floating-point
form. The conversion is achieved by scaling a number to a convenient fractional size and storing the

scaling factor as the exponent. Scaling is performed by a shift operation, the number of places shifted
being the scaling factor.

4095 (4.68) 21

Floating-point numbers can be held in single-, double-, or quadruple-length form. The double-length
form is standard. The single-length form is used only with the 114 (NORM) instruction and the
quadruple-length form is pérmissible only on certain central processors or with certain languages,
e.g. FORTRAN.

Floating-point operations are carried out in a floating-point accumulator. The manner in which ex-
ponents are held in the floating-point accumulator is different from the manner in which they are held

in store. The store representation of exponents is given inthe sections below. When a floating-point
number is loaded into the floating accumulator Bit 15 of the second word (the most significant bit of

the exponent) is inverted. By storing exponents in this way floating-point zero is made to have the

same representation as fixed-point zero and is thus detectable by the same branch-on-zero instructions.

SINGLE-LENGTH

The argument is held in the more significant word, the first bit of which is a sign bit. The exponent

is held in the least significant nine bits of the less significant word. The exponent is held in the form

e + 256; thus any value below 256 indicates a negative exponent. Bit 0 of the less significant word is used
to indicate exponent overflow; Bits 1 to 14 inclusive are left clear.

| 1
{Exp. !

; r ! I . |
Sign . 23 bits J :O /fldw left clear | 9 bits &
[Bo [B1 B23| [Bo [B1 Bl4 | B15 B23 | !
t First Word " Second Word ! !
< | be >
! argument ! exponent !

DOUBLE-LENGTH

The argument is held in the more significant word and Bits 1 to 14 of the less significant word. In all
other respects the double-length form is the same as the single-length form.

37 bits (effectively) . 9 bits 4
Sign i— First word :Exp. i Second word | 'i
'0/flow : I

B0 |B1 B23 B0 |B1 B14 | B15 B23
- i L X
argument argument | exponent |

QUADRUPLE-LENGTH (EXTENDED PRECISION)

The first two words of an extended precision floating-point number have the same contents as a double-
length floating-point number. The third word and the fourteen most significant bits of the fourth word
hold the least significant extension of the argument. The remainder of the fourth word is undefined.

First Word Second Word Third Word Fourth Word

Sign Exp
O/flow
BO (Bl B23 B0 |Bt B14 |B15 B23 B0 |B1 B23 B0 |B1 B14 |B15 B23
B L : ; 1 |
= = — e » -~ F— 1
|
argument argument exponent argument argument undefined
(most significant part) (least significant part)

22 4095(5.69)

OVERFLOW AND CARRY

One-bit registers associated with, but stored separately from, a program are used to record the occurrence of over-
flow and carry conditions.

Carry

Carry occurs in multi-length working when a quantity originally stored in one of the less significant words can no
longer be held in 23 bits. As a consequence, the sign bit, which will have been set to zero originally, becomes set
equal to one. When this occurs, it is cleared and the carry register (C) is set equal to one.

The carry register can be utilized whenever carry is likely to occur: any appropriate instruction will clear the
condition, by adding one to the next more significant word, and re-setting the carry register to zero.

Overflow
FIXED-POINT

Overflow occurs when a single word working area, or the most significant word of a multi-length working area,
becomes too smali to hold a quantity. As a result, the value of the sign bit is changed and the overflow register (V)
is set equal to one. The condition can be detected by testing the overflow register whenever overflow is likely to
occur.

If overflow has been caused by a single addition, subtraction or multiplication (or by a factor of less than two as a
result of a division) then the error in the answer will be minus two if the answer appears positive and plus two if
the answer appears negative. Recovery can therefore be programmed.

112 and 113 (SRAV) and 114 and 115 (NORM) instructions are especially useful in this respect.

FLOATING-POINT

If, during any operation in the floating-point accumulator, the exponent attempts to exceed 255, exponent overflow
is said to occur and Bit O of the second word is set to 1, the state of the other bits being indeterminate. If a floating-

point number with Bit O of the second word set to 1 is loaded into the floating-point accumulator, this bit remains
set.

The setting of overflow can be tested directly only on processors whose order code includes the 076 (BFP) instruc-
tion. However, if the exponent overflow bit is set.and the contents of the floating-point accumulator are transferred
to store {instruction 137, SFP) or converted to mid-point form and stored (instruction 131, FIX) then V will be set.
In the case of instruction 137, Bit O of the second word of the result will also be set to 1.

If the exponent of a floating-point number attempts to become less than - 256, the value of the floating-point
number is regarded as zero and the argument and exponent are set accordingly. This may also occur when the
exponent becomes equal to -256. Floating-point zero thus has the same representation as fixed-point zero. However,
it is important to note that if underflow occurs during a sequence of operations in which overflow has previously
occurred, exponent overflow will continue to be indicated by the setting to one of the exponent overflow bit. In
this case floating-point zero will not have the same representation as fixed-point zero.

FIELD DESCRIPTIONS

There is a need to clarify words that, when applied to fields read or written by an object program, have specialised
meanings. This terminology is explained below.

Defined

Full details of every option are recorded.
Ignored
The object program may store any value in an ignored field but cannot rely on its being preserved.

Reserved

This term indicates a field set aside for future use. When reading a reserved field, the object program should ignore

the field as its contents cannot be relied upon. When writing a reserved field, the object program should zeroise
the field.

4095(6.70) 23

Chapter 5 Format of instructions

GENERAL FORMAT

The general word format of a program instruction as stored in the computer is represented sym-
bolically as:

XFMN

where

X is the accumulator field and specifies one of eight accumulators (0 to 7). These are the
first eight words of the object program area and are used to store one of the operands to
be used by the instruction.

F is the operation field and specifies the function the instruction is to perform.

M is the modifier field and is zero or the address of an accumulator (1, 2 or 3) whose content,
if any, is to be used to modify the N field.

N is the operand field and is the core store address containing the other operand on which

the instruction acts:

Certain program instructions use the accumulator and/or the operand fields for special purposes.
These special cases are explained under the applicable types of program instructions.

There are four basic formats for instructions in the 1900 Series order code. An instruction is always
held in a single word. The basic formats are:

1 Normal instructions

2 Branch instructions

3 Shift instructions

4 TFloating-point instructions

Normal instructions

This format covers such instructions as add, multiply, divide, subtract and store.

Field Symbol X F M N
Number of Bits. l 3 l T 2 12 1
Bit Positions 0to2 3to9 10 and 11 12 to 23

Branch instructions

There are two sets of conditional branch instructions and two unconditional branch instructions in the
1900 Series order code. The first set of conditional instructions branch according to the contents of
the accumulator whose number is stored in the X field. The second set of conditional instructions
branch according to the state of V, C, or the floating-point accumulator. This second set of instructions
has a single function code which is modified by the contents of X.

The two unconditional branch instructions, 070 and 074 with X = 0, are similar except that the
former stores the link setting in X.

All branch instructions have the same basic format. There is no M field, since they cannot be modified,
although the 023 instruction exists to give the same effect as would be achieved by modifying a branch
instruction.

Field Symbol X F N
Number of Bits 3 6 15 |
Bit Positions 0to 2 3to8 9 to 23

4095 (4.68) 25

Shift instructions

The N field of a shift instruction is subdivided into N, and N,. Certain groups of shift instructions have
the same function code which is modified by the contents of Nt.

Field Symbol X F M Nt Ns
Number of Bits | 3 | 7] 2 2 [10
Bit Positions 0to2 3to9 10and 11l 12and13 14 to 23

Nt specifies the type of shift and is considered as part of

Ns specifies the number of places of shift.

Floating-point instructions

The value in the X field of a floating-point instruction does not represent an accumulator but qualifies
the function code. The value of X is given by the programmer.

Field Symbol X F M N
Numberof Bits | 3 | 7 [2 12
Bit Positions 0to2 3to9 10 and 11 12 to 23

The group 16 instructions have a similar format.

ADDRESSING AND BRANCH MODES
Concepts

There are two addressing modes and two branch modes in the 1900 Series order code. The essential
difference between the modes in both cases is the size of the address field.

The most frequently used modes are /5-bit address mode (15AM) and direct branch mode (DBM). Both these
modes allow a maximum of 15 bits to hold an address, which gives a limit of addressability within any
program of 32K words. Thus the program and its data areas must not be larger than 32K words.

To allow larger areas of store to be addressed 22-bit address mode (22AM) and extended branch mode
(EBM) are provided. Facilities for extending the address to 22 bits allow an area up to 4M words of
store to be occupied by any program and its data areas.

These modes indicate the instruction code and addressing features assumed by the program and form
part of the information stored by Executive for each program. When a program is activated the central
processor is switched into the appropriate addressing and branch mode.

Setting and switching of modes
MODE WORD
The mode word holds the mode setting of a program in Bits 21 and 23 as follows:
Bit 21 = 0 indicates direct branch mode
=1 indicates extended branch mode
Bit 23 = 0 indicates 15-bit address mode
=1 indicates 22-bit address mode

A program may be run in any combination of these modes in a suitable environment. The remaining
bits of the mode word are undefined; i.e. they should be set to zero when a mode word is produced,
"~ but should not be assumed to be zero when a mode word is examined.

MODE SETTING ON PROGRAM LOADING

The mode word is Word 1 of the supplementary request block. This block is produced by the compiling
process, or when a program is dumped, for any program not in 15AM or DBM. The decision as to
whether a program is to be run in one mode or another is therefore taken by the compiler although
this decision may be influenced by the programmer's use of compiler directives. A supplementary
request block is acceptable only to Executives with 22AM or EBM capabilities; an attempt to run a
program compiled in 22AM or EBM on an Executive with only 15AM and DBM capabilities will there-
fore result in the rejection of the program. For further details of the supplementary request block,
see page 86.

26 4095 (4.68)

MODE SWITCHING DURING PROGRAM EXECUTION

The 165 (GIVE) instruction is provided for enquiring the current mode setting and for changing the
mode setting, as follows:

165 N(M)

8 Enquire mode setting. X contains the current mode word.

n

165 N(M) = 9 Change mode setting. A mode word with the required new setting must be in X. A reply

is given in X in the form of the mode setting actually achieved.

On processors without 22AM or EBM capability, the reply to these instructions will always be zero.
The action to be taken in the event of a change being unsuccessful is left to the program.

MULTI-MEMBER PROGRAMS

The members of a multi-member program are treated independently and may run in different operating
modes. The instruction to enquire and change mode settings (165) applies only to the member that
issues it.

The initial mode setting of Member 0 is determined by the supplementary request block. Members
other than Member 0 obtain their initial mode setting from the mode of the members that activate
them. When a multi-member program is dumped, the mode setting of Member 0 only is recorded.
On subsequent reloading, all members will again take their initial setting from the members that
activate them.

22AM considerations
MODIFICATION

All modification, whether by supplementary (117, SMO) orders or using an index register quoted in
the instruction, is carried out using 22 bits from the modifier word. Character modifiers in an index
register additionally use the two most significant bits to give the character address.

COUNT INSTRUCTIONS

Because Bits 2 to 8 form part of the address in 22AM working, the 9 bit /15 bit division of a counter
modifier word cannot be used if the word is required as a modifier. The action of the count instructions
060 (BUX), 062 (BDX) and 064 (BCHX) is therefore different in 22AM. These instructions increment

the address in X and branch unconditionally to N.

Instruction 066 may be used in conjunction with these increment only instructions, the counting being
carried out in a separate accumulator.

SUBROUTINE ENTRY AND EXIT

The format of the link in X must allow for a 22-bit address. The setting of the zero suppression mode
is stored on entry in Bit 1, instead of in Bit 8 as in 15AM, and the remaining contents of the mode
setting are lost. On exit the zero suppression mode setting is restored from Bit 1.

It is therefore inadvisable, unless it is known that the zero suppression mode is not set, to enter a
subroutine in 22AM and leave it in 15AM, since the zero suppression mode will be restored incorrectly.
If entry is in 15AM and exit in 22AM the zero suppression mode setting will be treated as part of the
link address.

CONSOLE DISPLAYS

In 15AM the address and length of the message to be output by means of a 160 instruction is held in a
control word having a counter modifier layout. In 22AM the same format may be used; alternatively,
a word pair may be used, the first containing the number of characters in the message and the second
the start address.

EBM considerations

Extended branch mode introduces two new forms of branching, relative and replaced. In the former,
jumps forwards or backwards of limited extent are carried out relative to the address of the branch
instruction. If the extent of the jump is beyond the scope of the relative address, the replaced form
must be used; this allows reference to a location containing the full 22-bit address of the destination.
The destination address in effect replaces the address given in the instruction. The latter technique
is sometimes known as indirect addressing.

4095 (4.68) 27

A section of code containing only relative branches, and which does not amend itself, may be obeyed
in any part of the store. It may in fact be obeyed in different locations on different occasions. This
is possible because the branch address is relative to the location holding the branch instruction and
not an absolute address that might hold another instruction if the section of program were moved.
Relative branches are more efficient in terms of time and space, and are therefore produced from
source branch instructions whenever possible.

Bit 9 of the instruction is used to distinguish between relative and replaced branches as follows;
Bit 9 =0 Bits 10 to 23 are interpreted as a signed relative address
Bit 9 =1 The address in bits 10 to 23 is that of the location containing the destination address.

THE 023 (OBEY) AND BRANCH INSTRUCTIONS

If a 023 instruction addresses a relative branch instruction, the branch is performed relative to the
location of the 023 instruction, not that of the branch instruction. Thus a branch to a labelled location,
for example, will not be correctly performed.

It is necessary for the programmer to be aware of this fact if PLAN is used, since the compilation
process cannot take account of it.

SUBROUTINELINKS

In EBM working the subroutine link format is as for 22AM working, and similar considerations apply
(see above).

SUMMARY OF FUNCTION CODES

A summary of the functions in the 1900 Series order code is given below. Each main function is des-
cribed by a three-digit octal number. The numbering of functions is arranged so that similar functions
are grouped, each group being referenced by the two most significant digits of the numbers in the
group. Thus functions 041 to 047, which are the multiplication and division instructions, are referred
to as group 04, and the 041 function is described as group 04, function 1.

The symbols used to describe the action of functions are defined below.

Definition of notation

Note: A prime (apostrophe) after a symbol indicates a value resulting from the relevant operation;
e.g. a' =the contents of the floating-point accumulator after the instruction has been performed.

Symbol Meaning
A the floating point accumulator
a the contents of A
Bi the ith bit of a word
BN the branch address (see below)
G the carry register
the contents of ¢ (0 or 1)
DN the operand address (see below)
e the exponent of a floating-point number
e + 256
F a function
FOVR the floating-point overflow register.
M a modifier (registers 1 to 3)
m the contents of the modifier register (zero if ¥ = 0)
N a core store address or 12-bit number
N(M) the modified core store address or 15-bit number

28 4095 (4.68)

Symbol Meaning

n the contents of N, after modification if applicable

n' the contents of N (after modification if necessary) after an instruction has been obeyed

n: the double-length contents of Nand N + 1

N the least significant 9 bits of N

W a 22-bit address

NE a 15-bit address

N, a 14-bit address

N, the most significant 2 bits of the 12-bit N address

N, the least significant 10 bits of the 12-bit N address

R the branch-specifying bit in extended branch mode

RI the address of the instruction to which control is transferred

S the sign bit

Vv the overflow register

X an accumulator (registers 0 to 7)

X the accumulator adjacent toX. X* = X+1 except that X7* = X0

x the contents of X

x* the contents of X*

x the contents of X after an instruction has been obeyed

X: the double-length contents of two consecutive accumulators

S the double-length contents of two consecutive accumulators after an instruction has
been obeyed

x,0rn, the least significant twelve bits of x or n

X, orn, the 9-bit counter at the more significant end of x or n 3

X4 Oor n, the least significant seven bits of x , or n,

x, orn, the least significant nine bits of x or n. The exponent of a floating-point number
occupies this portion of the second word

Xom the least significant 22 bits of x

Xy or n, any one of x., X, X,, x5 the four 6-bit characters of x orn

X, or n, the most significant two bits of x or n

x,orn, the least significant fifteen bits of x or n

DERIVATION OF DN AND BN
Definition of DN
DN is defined according to the value of i as follows:
WhenM =0 then DN = (N + p)g
WhenM =1,2,0r3 thenDN= (N + m + p)q
Where m = the contents of the modifier register
p = the supplementary value specified by a preceding 117 (SMO) instruction (zero if none).

q = the number of bits in which the address is contained. g is dependent upon the addressing
mode in which the program is running, i.e. g is 15 in 15AM and 22 in 22AM.

Note: If the most significant bit of (m)q or (p)q is equal to 1, the effect will be as though the value were
negative. If the resultant DN is negative, then when used as an address it may cause a reservation
violation, or when the datum has been added may lie beyond the lower end of store.

4095 (4.68) 29

Definition of BN

The definition of BN depends upon the current setting of the branch mode, the value of ¢ and, in EBM,
on the value of R (Bit 9) of the instruction.

When in DBM, BN = (N,+p)q
Where Nm = a 15-bit address
When in EBM andR = 0,BN = (I+N__,,+(P) _,,)22
WhereNr = a 14-bit address
I = the instruction address

-22 = implies extension to 22 bits, if in 22AM, by propagating the most significant bit of the
value concerned.

Note: Extension is to ensure correct subtraction effects if p or N, are negative. The 14-bit value in
N_is regarded as a signed integer.
When in EBM and® =1, BN = (n,,+(p) 122

q—22
Where n,. = the 22-bit content of address Nr

Definition of functions
GROUP 00

Functions 000 to 003 clear C but may set V on exit. Functions 004 to 007 cannot set V; the sign of the
result is always positive and C is set if appropriate.

Function 000 (LDX)

Definition x'=n+c¢ Any mode
Description Write n + ¢ into X

Function 001 (ADX)

Definition %" =% + RF-@ Any mode
Description Add n + c tox

Function 002 (NGX)

Definition x'=-n-c Any mode
Description Write n + ¢ negatively into X

Function 003 (SBX)

Definition x'=x-n-c¢ Any mode
Description Subtract n + ¢ from x

Function 004 (LDXC)

Definition x'=n+c¢ Any mode
Description Write n + ¢ into X

Function 005 (ADXC)

Definition x'=x+n+e¢ Any mode
Description Addn + ctox

Function 006 (NGXC)

Definition x'=-n-c¢ Any mode
Description Write n + ¢ negatively into X

Function 007 (SBXC)

Definition x*=x-n-c Any mode
Description Subtract n + ¢ from x

30

4095(6.69)

GROUP 01

Functions 001 to 003 clear C but may set V on exit. Functions 014 to 017 cannot set V; the sign of the
result is always positive and C is set if appropriate. These instructions are similar to Group 00 but
with n and x interchanged.

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition

Description

GROUP 02

Instructions 020 to 022, 024 and 025 clear C. None of this group can set V.
020 (ANDX)

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition

Description

4095 (4.68)

010 (STO)

n'* =x + ¢

Write x + c'into N
011 (ADS)

n'=n+x +c¢
Add x + cton

012 (NGS)

n' = -x -c

Write x + cnegatively into N
013 (SBS)

nt=n-x -c¢

Subtract x + ¢ from n
014 (sTOC)

n' =x +c¢

Writex + c into N
015 (ADSC)

n' =n+x +c¢
Addx + cton

016 (NGSC)

n' = -x ~c

Write x + c¢ negatively into N
017 (SBSC)

n' = n -x —c

Subtract x + ¢ fromn

x' = xand n

Logical end of x and n
021 (ORX)

1 o
X =X, n

Logical inclusiveor of x and n

022 (ERX)

x'=x Zn

Logical exclusive or of x and n
023 (OBEY)

(See Description)

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Obey the instruction in location N + m as if it were in this instruction address.

31

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition

Description

GROUP 03

024 (LDCH)

boAlir=an 1 Any mode
Write into x; the character n; (Extract character)
025 (LDEX)

%Y = Any mode

Write ire1to x, the least significant nine bits of x,, (Extract exponent)
026 (TXU)
(See Description) Any mode

SetC if n # x orc =1 (Test equality); otherwise clear C
027 (TXL)
(See Description) Any mode

SetCifn + ¢ > x ; otherwise clear C

All these instructions clear C; none can setV.

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition

Description

Function
Definition
Description
Function
Definition

Description

32

030 ' (ANDS)

n' = n and x Any mode
Logical and of n and x

031 (ORS)

n' =n, x Any mode
Logicalinclusive or of n and x

032 (ERS)

n' =n Zx Any mode
Logical exclusive or ofn and x

033 (STOZ)

n'=0 Any mode
Clear n

034 (DCH)

n} = Xg Any mode
Write x, into character position j of N leaving the rest unchanged (Insert character)
035 (DEX)

n) = x, Any mode

Write x, into the least significant nine bits of N leaving the rest unchanged
(Insert exponent)

036 (DSA)
n! =x Any mode

a
Write x, into the least significant twelve bits of N leaving the rest unchanged
037 (DLA)
n' =x Any mode
m m
Write x into the least significant fifteen bits of N leaving the rest unchanged.

4095 (4.68)

GROUP 04

All these instructions clear ¢ and may set V.

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition

Description

GROUP 05

040 (MPY)
Y = N

Unrounded multiplication
041 (MPR)
x:' = n.x + 2724
Rounded multiplication
042 (MPA)
xt' =nx + x*

Semi-cumulative multiplication

043 (CDB)

o 3O o ({9 c oS n,

Decimal to binary conversion
044 (DVD)

x*' = x:/n!x'= remainder

Unrounded double-length division

045 (DVR)

x*' = x:/n + 2724 x!'= remainder
Rounded double-length division

046 (DVS)

e
€3

x“" = x*/n,x" = remainder
Single-length integral division
047 (CBD)

W = 10.x:,nJ', = character

Binary to decimal conversion

All these instructions clear C; none can set V.

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition

Description

4095 (4.68)

050 (BZE)
(See Description)
Branch toBN if x = 0
052 (BNZ)
(See Description)
Branchto BN if x # 0
054 (BPZ)
(See Description)
BranchtoBN if x > 0
056 (BNG)
(See Description)
BranchtoBNifx < 0

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

33

GROUP 06

All these instructions clear C; none can set V.

Function
Definition
Description
Definition
Description
Function
Definition
Description
Definition
Description
Function

Definition

Description

Definition

Description
Function
Definition
Description
Definition

Description

GROUP 07
Function
Definition

Description

060 (BUX)
x’m:xm+1;x;=xc—1 15AM
Branch to BN if x} # 0 (Single word modify)
xo= x4+ 13 X =X, 22AM
Branch unconditionally to BN

062 (BDX)

C e N | 15AM
Branch to BN if x; # 0 (Double word modify)

xe'm =x, + 23 xlz =X, 22AM
Branch unconditionally to BN

064 (BCHX)

The 15AM definition depends on the value of x, as follows:
Ex,=0,1,0r2 thenx; =x, + 1; x! =x,; xj =x;5 -1

=t

ms
Kx, =3,thenx; =0; x) =x_ +1; x] =x

Branch to BN if x} # 0 (Character modify)
The 22AM definition depends on'the value of x, as follows:

d

Kx.=010r2thenx! =x, +1; x!

Ex, =3, thenx] =0; x! =x_ +1

X
em

1l

Branch unconditionally to BN

066 (BCT)

1 =k, =1y xl wx, 15AM
Branch toBN if x} # 0

Xim = Xop =13 xp = X, 22AM
Branch toBN if x! # 0

070 (CALL)
(See Description) Any mode

Store in X the address of the next instruction and branch to N. Clear V and C.
(Subroutine entry.)

Note: The contents of X vary according to the mode setting as follows:

15AM and DBM

15AM and EBM;

22AM

Function

Definition

34

Bit 0 contains the setting of V

Bit 8 contains the setting of the zero suppression mode

Bits 9 to 23 contains the address of the instruction following the 070
Bit 0 contains the setting of V

Bit 1 contains the setting of the zero suppression mode

Bits 2 to 23 contain the address of the instruction following the 070.
072 (EXIT)

(See Description) Any mode

4095 (4.68)

Restore control to the instruction whose address is in X or tox + N if N is non-
zero. Clear C; if V is set leave it set, otherwise restore it; restore the zero
suppression mode. (Subroutine exit.)

Description

Note: In 15AM and DBM the zero suppression mode setting is stored in Bit 8 of X; otherwise it is
stored in Bit 1 of X. The address of the instruction to which control is transferred is defined according
to the addressing and branch mode setting as follows:

15AM and DBM RI (N, +p+%;) 15

15AM and EBM; RI
22AM

1

((Nm)_)22+(‘D)q-v>22+xem)22

If the combination 15AM and EBM is used, the formula is true only if the processor is capable of
operating in 22AM

Function 074 X= 0 (BRN)
Definition (See Description) Any mode
Description Unconditional branch to N

Function 074 =) L8 (BVS)
Definition (See Description) Any mode
Description Branch to N if V is set and leave V unaltered
Function 074 Xx= 2 (BVSR)
Definition (See Description) Any mode
Description Branch to N if V is set; clear V

Function 074 Xe=1 8 (BVC)
Definition (See Description) Any mode
Description Branch to N if V is clear and leave V unaltered
Function 074 X=4 (BVCR)
Definition (See Description) Any mode
Description Branch to N if V is clear, otherwise clear V

Function 074 =5 (BCS)
Definition (See Description) Any mode
Description Branch to N if C is set and clearC

Function 074 X3=046 (BCC)
Definition (See Description) Any mode
Description Branch to N if C is clear and leave C unaltered
Function 074 XS (BVCI)
Definition (See Description) Any mode
Description Branch to N if V is clear and set V; otherwise clear v
Function 076 Xe 0 (BFP)
Definition (See Description) Any mode
Description Branchto Nif ¢ = 0; V is set if FOVR is set; FOVR is unaltered
Function 076 X= (BFP)
Definition (See Description) Any mode
Description BranchtoNifa # 0.V is set if FOVR is set; FOVR is unaltered
Function 076 X= 2 (BFP)
Definition (See Description) Any mode
Description BranchtoNif a >0,V is set if FOVR is set; FOVR is unaltered
4095(5.69)

35

Function 076 X =3 (BFP)
Definition (See Description) Any mode
Description Branch toN if a < 0; V is set if FOVR is set; FOVR is unaltered
Function 076 X=4 (BFP)
Definition (See Description) Any Mode
Description Branch to N if floating-point overflow is clear
Function 076 X= 05 (BFP)
Definition (See Description) Any mode
Description Branch toN if floating-point overflow is set

GROUP 10

Instructions 100,102 and 104 to 107 cannot set V; instructions 100 to 104 cannot set C.
Function 100 (LDN)

Definition x* = NM) + ¢ Any mode
Description Write N(M) + c¢ intox

Function 101 (ADN)

Definition x' = NM) + ¢ Any mode
Description Add N(M) + c to x

Function 102 (NGN)

Definition x' = -N(M) ~-c Any mode
Description Write N(M) + c negatively into X

Function 103 (SBN)

Definition x!'=x -NM) - ¢ Any mode
Description Subtract N(M) + ¢ from x

Function 104 (LDNC)

Definition x' =N) + ¢ Any mode
Description Write N(M) + ¢ intoX

Function 105 (ADNC)

Definition x' =x + NM) + ¢ Any mode
Description AddN(M) + c to x

Function 106 (NGNC)

Definition x' = - NM) -c¢ Any mode
Description Write N(M) + c negatively into X

Function 107 (SBNC)

Definition x!'=x~-NM) - ¢ Any mode
Description Subtract N(M) + c¢ from x

GROUP 11

All these instructions clear C.

Function 110 N: =0 (SLC)
Definition x' = x shifted left N places Any mode
Description Single-length circular shift

36

4095(5.69)

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition

Description

4095 (4.68)

110 § = 1

x' = x shifted left N places
Single~length logical shift

110 N o= 2

x' = x shifted left N_ places
Single-length arithmetic shift
110 Nt= 3

x' = x shifted left N places
Single-length special shift

111 N=0

x:' = x: shifted left N places
Double-length circular shift
111 Nt= 1

x:' = x: shifted left N_ places
Double-length logical shift

111 N =2
et = X shiftedtleft N, places
Double-length arithmetic shift
111 Nig="%3

x:' = x: shifted tleft N places
Double-length special shift
112 N=0

x' = x shifted right N places
Single-length circular shift
112 Nt= il

x' = x shifted right N places
Single-length logical shift

112 Nt: 2

x' = x snifted right N places
Single-length arithmetic shift
112 N:= 3

x' = x shifted right N places

Single-length special shift

113 N, » 0

x:' = x: ghifted right N places
Double-length circular shift

113 N=1

t
x:' = x: shifted right N places

Double-length logical shift

113 N . 2

x:' = x: shifted right N places
Double-length arithmetic shift

(SLL)
Any mode

(SLA)
Any mode

Any mode

(SLC)
Any mode

(SLL)
Any mode

(SLA)
Any mode

Any mode

(SRC)
Any mode

(SRL)
Any mode

(SRA)
Any mode

(SRAV)
Any mode

(SRC)
Any mode

(SRL)
Any mode

(SRA)
Any mode

37

Function
Definition
Description
Function

Definition

Description

Function

Definition

Function
Definition

Description

Function

Definition

Description

GROUP 12

113 .= 3

x:' = x: shifted right N places
Double-length special shift

114 (NORM)

x:' = x normalized with

initial exponent N(M); x’;’ = N:

(SRAV)
Any mode

Any mode

Normalize the number whose single-length argument is held in X with respect

to N(M).

115 (NORM)

x:' = x: normalized with
initial exponent N(¥); x':' =N}
116 (MVCH)

(See Description)

Any mode

Any mode

Transfer N(M) characters from the character address in X to the character

address in X + 1
117 (SMO)
Add (n)q to the N address

Any mode

of the next instruction (for a definition of ¢, see page 29)

Supplementary modifier to next instruction

None of these instructions can set V or C. All apart from 123 clear C.

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition

Description

38

120 (ANDN)

x' = x and N(M)

Logical and of x and N(M)

151 (ORN)

x' =x, N()

Logical inclusive or of x and N(¥M)
122 {ERN)

x' =x ZNW)

Logical exclusive or of x and N(¥)
123 (NULL)

(See Description)

Dummy instruction; no operation
124 (LDCT)

¥ = NEnEhe 0

Set counter

125 (MODE)

(See Description)

Any mode

Any mode

Any mode

Any mode

Any mode

Any mode

Set zero suppression mode in accordance with the state of N(M)

126 (MOVE)

(See Description)

Any mode

Transfer N words from address x to address x™ (Block transfer)

4095 (4.68)

Function
Definition

Description

GROUP 13

The result of functions 132 to 135 is rounded and normalized. The 137 instruction will clear FOVE

127 (SUM)
(See Description) Any mode
x' = Sum of N words from address x*

if it is set and set V instead.

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function

Definition

4095(6.70)

130 (FLOAT)

n:-a Any mode
Convert n: from fixed- to floating-point and store in A
131 (FIX)

a-n: Any mode

Convert a from floating- to fixed-point and store inN(¥) andN(M) + 1

132 X=20or4 (FAD)
a¢':=a + n Any mode
Add n: toa

133 X=20 (FSB)

a' =a ~n: Any mode

Subtract n: from a

133 X=4 (FSB)
d¥ = mgl -1 Any mode
Subtract a from n:

134 X=10or4 (FMPY)
el = da.n3 Any mode

Multiply ¢ and n: and store the result in A

135 X=0 (FDVD)
a' = a/n: Any mode
Divide a by n:

135 X=14 (FDVD)
a' = n:/a Any mode
Dividen: by a

136 X=0 (LFP)

at = ne Any mode
Load n: into A

136 X=1 (LFPZ)

a' =0 Any mode
Clear A and FOVR

137 X=0 (SFP)
n' =4 Any mode
Store a in N(M) and N(¥) + 1 leaving a unchanged
137 Xee= 1 (SFPZ)
" =ap @ =0 Any mode

39

Description Store ¢ in N(M) and N(¥) + 1, clear A and FOVR,)
GROUP 15

All these instructions clear C

Function 150 (SUSBY)

Definition {(See Description) Any mode

Description Suspend program if peripheral type N(M), unitX, is active

Function 151 (REL) '

Definition (See Description) Any mode

Description Release peripheral type N(¥), unit X

Function 152 (DIS)

Definition (See Description) Any mode

Description Disengage peripheral type N(M), unit X

Function 154 (CONT)

Definition (See Description) Any mode

Description Read more program from peripheral type N(¥),unit X

Function 155 (SUSDP)

Definition (See Description) Any mode

Description Dump program on peripheral type N(¥), unitX

Function 156 (ALLOT)

Definition (See Description) Any mode

Description Allocate peripheral type N(¥), unit X, to the program

Function 157 (PER))

Definition (See Description) Any mode

Description Initiate peripheral operation on unit X according to the control area N(M).
GROUP 16

For full details of instructions 162 to 164 see page 65.

Function 160

This function uses a control word or words the format of which depends on the addressing mode. The =

15AM format, given below, can be used in 22AM provided that N, is in lower data store. The 22AM

format consists of a count in the least significant six bits of Word N(¥) and the 22-bit start address
of a message in Word N(M) + 1.

Function
Definition
Description
Definition
Description
Function
Definition
Description
Definition

Description

40

160 X=10 (SUSTY)

(See Description) 15AM or 22AM

Type n. characters from address n, and suspend program

(See Description) 22AM

Type message defined in the control words and suspend the program
160 X=1 (DISTY)

(See Description) 15AM or 22AM

Type n, characters from address n,

(See Description) 22AM

Type message defined in the control words

4095 (4.68)

Function
Definition

Description

Definition

Description

Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition

Description

Function
Definition
Description
Function
Definition
Description
Function
Definition

Description

Function
Definition

Description

Function
Definition

Description

Function
Definition
Description
Function

Definition

4095(6.70)

160 X=2 (DELTY)
15AM or 22AM

Treat n, characters from address n, as a console directive and delete the
program
(See Description) 22AM

Treat message defined in the control words as a console directive and delete
the program

(See Description)

161 X=0 (SUSWT)

(See Description) Any mode

Type HALTED and N, as two characters and suspend the program
161 X = 1 (DISP)

(See Description) Any mode

Type DISPLAY and N, as two characters

161 X= 2 (DEL)

(See Description) Any mode

Type DELETED and N, as two characters and delete the program
162 (SUSMA)

(See Description) Any mode

Conditional alteration of one word pair in common storage

¥n* =0, set n'=x, set n*' # 0 and omit next instruction

163 (AUTO)

(See Description) Any mode

Activate Member X at N(M); if N(M)= 0 reactivate Member X or set 163 indicator
164 X= 1 (SUSAR)

(See Description) Any mode

De-activate the current member unless the 163 indicator is set.

164 X= 2 (SUSIN)

(See Description) Any mode

De-activate the current member unless the 163 indicator or the flag-setting
interrupt indicator is set.

164 X= 3 (SUSIN)
(See Description) Any mode

De-activate the current member unless the 163 indicator, the flag-setting interrupt
indicator or the priority member indicator is set

164 X= 4 (SUSIN)
(See Description) Any mode

As for the 164, X = 3 instruction, but also tell Executive to remove suspension
from all members that can be re-activated currently by the Priority Member, and
to remember the occurrence of this instruction for all other members

165 N)= 0 (GIVE)

(See Description) Any mode

X' = the number of days from 31 /12 /1899 to current day
165 NM)= 1 (GIVE)

(See Description) Any mode

41

Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition
Description
Function
Definition

Description

Function
Definition

Description

x¢! = the date in character form
165 NM)= 2

(See Description)

x:' = the time in character form
165 NM)= 3

(See Description)

(GIVE)
Any mode

(GIVE)
Any mode

x' = the core store allocated to the program

165 NM)= 4
(See Description)

(GIVE)
Any mode

x = core store required; x' = core store allocated as a result of this instruction

165 NM)=5
(See Description)

(GIVE)
Any mode

x:'= details of Executive and the central processor

165 NM)= 8

(See Description)

x' = current setting of mode word

165 NM)= 9

(See Description)

(GIVE)
Any mode

(GIVE)

Any mode

x = required setting of mode word; x' = new setting of mode word

166 Xi= 10

(See Description)

(RRQ)
Any mode

The program request slip is to be read into an object program area of 16 words

beginning at N(3)
166 o G|

(See Description)

(RRQ)
Any mode

A new program request slip is to be taken from an object program area of 16

words beginning at N(¥)

AVAILABILITY OF INSTRUCTIONS WITH CENTRAL PROCESSORS

In the table
H

E
*

Blank

the following conventions are used:
Instruction performed by hardware
Instruction performed by extracode

Instructions 040 to 042 and 044 to 046 performed by hardware; instructions 043 and 047

performed by extracode.
Instruction not available.

The instruction set for basic processors and for those with extra facilities is given in the table. Where
a processor has more than one of the facilities listed, the appropriate instruction set can be found by
combining the relevant instruction sets and, where discrepancies occur, applying the following rules.

1 ¥ the discrepancy is between hardware and extracode, then the instruction is performed by hard-

ware.

2 K the discrepancy is between available and not available, then the instruction is available, but

(a) A processor supplied with hardswitches instead of a console typewriter will never have the
155 and 166 instructions.

(o) The 166 instruction on a 1902 /03 with EX2L Executive is null.

42

4095(5.69)

Central Instructions
Processor
000 | 040 | 050 | 060 070 100 | 110 | 111 tle 120 | 126 132 | 150 156 { 160, 162 22AM
to to to to | 066 | to] 076 to |and | and | and | 116} 117 to | and | 130 | 131 te to 155 | and | 161,} to 166] and
037 | 047 | 056 | 064 074 107 | 112 113 | 115 125 | 127 137 | 154 157 | 165 | 164 EBM
Basic 1901 with handswitch | # | E | H | H H H| H|E H|E E E | E
(EX1H)
Basic 1901 with typewriter H E H H H H H E H E E E E E E
1901 with E.M.U,, fixed- H = H H H H H H H H E E E E E E
point
1901 with E,M,U,, fixed- H i H H H H H H H H E E E H E E E E E
and floating ~point
1901 with floating~-point H E H H H H H E E H E E E E E E E E E
extracodes
Basic 1902/3 H E H H H H H E H E E E E E E
Limited 1902/3 (EX2L) H | E H| H H HI H|E H | E E E E £
1902/3 with dualprogram- H E H H H H H E H E E E E E E E
ming (EX2M)
1902/3 with E.M,U., fixed~ H * H H H H H H H H E E E E E E
point
1902/3 with E,M,U,, fixed- H . B H H H H H H H E E E H E E E E E
and floating -point
1902/3 with floating-point H E H H H H H E E H E E E E E E E E E
extracode
Basic 1904 H H H H H H H H H H H E E E E E E
1904 with floating -point H H H H H H H H H H H E E E E E E E E E
extracodes
1905 H H H H H H H H H H H E E H E E E E E E
1906 H H H H H H H H H H H H H H E E E E E E J
1906 with floating-point H H H H H H E H H H H H H H H E)7} E E E E E E E J
extracodes
1907 H H H H H H H H H H H H H H H H E H E E E E E E J
1904/6, E and F H H H H H H H H H H H H H H E E E E E =lfd
1904/6, E and F with H H H H H H E H H H H H H H H E E E E E B E E E J
floating -point extracodes
1905/7, £ H H H H H H E H H H H H H H H E E H E E E E E E|J
1905/7, F H H H H H H H H H H H H H H H H E H E E E E E E v
Basic 1901A with handswitchl H E H H H H H E H E E E E
(EHS)
Baeic 1901A with typewriter| H E H H H H H E H E E 3 E E E
1901A with commercial H H H H H H H H H E E E E E E
computing feature
1901A with scientific H H H H H H H H H H E E E H E E E E E
computing feature
1901A with floating-point H E H H H H H E E H E E E E E E E E E
extracodes
Basic 190213, A H E H HY{ H H H H H H H H H E E E E E
1902/3, A with multi- . H E H H H H H H H H H H H E E E E E E
programming
1902/3, A with commercial H H H H H H H H H H H H H E E E E E
computing feature
1902/3, A with sciéntific H H H H H H H H H H H H H H H E E H E E E E E
computing feature =
1902/3, A with floating- H E H H H H E H H H E H H H H E E E E E E E E
point extracodes
1903A with GEORGE 3 H H H H H H H H H H H H H E E E E E E v
(EXG3)
Basic 1904A H H H H H H H H H H H H H H E E E E E E J
1904A with floating ~point H H H H H H H H H H H H H H H H E H E E E E E E J
unit
1904A with floating -point H H H H H H E H H H H H H H H E E E E E E E E E J
extracodes
Basic 1906A H H H H H H -E H H H H H H H H E E E E E E J
1906A with floating-point H H H H H H H H H H H H H H H H E H E E E E E E J
unit
1906A with floating -point H H H H H H H H H H H H H H H E E E E E E E E E J
extracodes

Figure 8 Availability of instructions with central processors

4095(5.69)

43

Chapter 6 Peripheral transfers

Note: The description of standard interface and hesitations given in this chapter is for the interest only
of the reader. No inference should be drawn from it.

THE NATURE OF INFORMATION TRANSFERRED

Information that is transferred between the central processor and a peripheral unit is of a standard
format, con51st1ng of one or more six-bit characters that may be transferred singly or in groups of
four. There are basically two kinds of information that can be transferred:

(a) control information, which enables the central processor to determine the status of the peripheral
unit and to initiate desired actions.

(b) data or, in certain circumstances, program instructions that are treated as data, that form input
to or output from the central processor.

The control information is not of immediate concern to the programmer, but Executive uses this infor-
mation to control all peripheral units. This information is also used by Executive to detect peripheral
failures; thus Executive is able to keep the operator informed of these failures either by a coded
message on the switch /light panel or by a typed message on the console typewriter.

STANDARD INTERFACE

The purpose of standard interface

To the user of the 1900 Series, standard interface consists of a standard plug and socket by which a
variety of peripherals can be connected to a range of central processors; but in fact it consists of a
large amount of electronics in both the central processor and peripherals. The purpose of this complex
of electronics is to ensure a standard method of control and transfer of information between a central
processor and peripherals. To achieve this purpose several conditions must be fulfilled:

1 Since a number of peripherals connected to a central processor may be operating simultaneously,
each character must be transferred to the correct peripheral.

2 Each time a transfer is requested by a peripheral, both the central processor and the peripheral
concerned must know in which direction the transfer is to take place; that is, from the core store
to the peripheral or from the peripheral to the core store.

3 When a transfer is to take place, the precise moment of transfer must be specified and this time
must be convenient to both the central processor and the peripheral. :

4 The core store address involved in a peripheral transfer must be known.

Standard interface lines

The I.C.T. Standard Interface has provision for 37 pairs of wires, each of which is called a line and
given a unique name by which it is referenced. Figure 9 on page 46 is a schematic diagram of the
standard interface lines and the functions of only those lines that concern this description of standard
interface are given below.

THE Do AND Di LINES

All the I.C.T. Standard Interface peripherals in current use transfer six bits at a time across the inter-
face. If it is required to transfer a 24-bit word, then four transfer operations are used. Each of these
six bits has an individual line and these lines are termed the data lines. The lines for transferring data

4095 (4.68) 45

CENTRAL PROCESSOR

f20_>_

21

B e _,/,/

Figure 9 Schematic diagram of standard interface lines

PERIPHERA
s 99
— a1

22 2°
2 3
Do <
2 8
~--» 28
7
£ e Ll i
/ 8
,// i P 2
. N N //’ /
Parity No L9t \\ - / /] —=-» No
Timing //// /
L Interface 4
»'4
A . >
]
T I
]
c)
G |
'
]
Ho !
|
]
]
Hi
R
B
J
F
r : Plug and socket Plug and socket
Parity er ' at central at peripheral
S8 ae Bty £ processor boundary
s boundary

24> Do

L

Parity

Parity

46

4095 (4.68)

from the central processor to the peripheral are called the Do (data out) lines. Similarly, the lines for
transferring data from the peripheral to the central processor are called the Di (data in) lines.

THE C LINE

In addition to being used to transfer data, these same Do lines are used to transmit control commands
from the central processor to the peripheral. To enable the peripheral to distinguish between a data
character and a control command character, the C (control) line is used. When a character is trans-
ferred across the Do lines, the peripheral inspects the signal on the C line to determine whether the
character is data or a control command, If the C line contains 0, the peripheral treats the signal on
the Do lines as a data character; if it is 1 the peripheral treats the signal as a control command.

THE R LINE AND T LINE

The peripheral signals to the central processor that it is ready for a transfer by sending a request on
the R (request) line. It is always the peripheral that requests a transfer, never the central processor.
The actual moment that a transfer has to take place is specified by a timing pulse, which the central
processor sends on the T (time) line. It is normally the central processor that specifies the precise
moment the transfer has to take place.

THE B LINE

This line is used by the peripheral to signal to the central processor that a 'status’' change has taken
place that requires central processor action. The term 'status’' is given to signals that indicate various
states or conditions occurring in the peripheral. A signal on the B line is often called a B -interrupt.
The B line is also used to indicate a peripheral incident that will cause an interrupt to Executive and
may ultimately require operator attention. When such an interrupt occurs, Executive must ask for
status information from the peripheral to determine the reason for the interrupt, for example, transfer
completed, or error detected. The conditions causing a B-interrupt vary from peripheral to peripheral.

THE L LINE

The L (line) Line is used by the central processor to signal to the peripheral that the transfer has
finished. It should be noted, however, that some peripherals do not make use of the function provided
by the L line since they can be self terminating.

THE A LINE

The A (address) line is used by the central processor to address a peripheral during a data transfer or a
control transfer. Peripherals cannot receive or transmit information over their Doand Di lines until
they receive a signal on their A line.

HESITATIONS

Certain central processors cannot deal with a peripheral transfer at the same time as they are executing
program instructions. Therefore, when a peripheral requests a transfer by sending a signal on the B
line, the central processor will hesitate, i.e. it will stop carrying out Executive or object program
instructions at a convenient point and concentrate on servicing the transfer request. When the transfer

of one or four characters to or from the peripheral is completed, the central processor will, providing
there are no other hesitation requests, resume the execution of the program instructions. Typical
hesitation times vary from 2 microseconds to 30 microseconds depending upon the central processor

and type of hesitation. The control of hesitations, if there are no special peripheral connection devices,
is performed by circuitry contained in the control unit.

Timesharing of the central processor for program instructions and hesitations

Figure 10 shows an example of how the central processor time is shared among the requirements
demanded by two peripherals (i.e. initiation of the transfer and hesitations) and the running of an
object program.

4095 (4.68) 47

Object program

Executive

Peripheral X
Peripheral Y

ot-—-------
(2]

n‘ =

(4}
\-——_—_—_
o

3|1 e et crees
o e
CI)| WL SRS

oy | e ——

e e = i

a time

Key

1 up to @: The object program is running uninterrupted.

2atob: Atpointa the object program gives a PERI instruction for peripheral X and is
suspended while Executive initigtes the transfer for peripheral X,

3bto C: The object program is allowed to continue.

4 ¢ to h: At point ¢ the object program gives a further PERI instruction this time for peripheral

'Y and is again suspended while Executive initiates this transfer; this initiation takes up

to point A,

5d to e: Executive is interrupted by a hesitation for the first transfer for peripheral X.

6 f to g: Executive is again interrupted by a hesitation for the second transfer for peripheral X.

7 h to i: The object program continues,

8 i to j: The third hesitation for peripheral X and the first for peripheral Y takes place,

9 j to k: The object program continues,

etc.

Figure 10 Example of sharing of the central processor for program instructions and hesitations

48 4095 (4.68)

Operations performed during a hesitation
Essentially three sections of work must be performed during each hesitation.

1 The core store address to or from which information is to be transferred must be specified. This
address is contained in the peripheral control word or words held on the processor side of the
interface and associated with each channel. There may be one or two control words, depending on
the central processor concerned. When the next hesitation occurs, a further address will be :
required, consequently the control word must be updated during each hesitation. Thus, the sequence is:

(@) read the control word

(b) note the address contained in the control word

{c) update the control word

(d) write the new contral information back ready for the next hesitation.

2 The character or characters to be transferred between the peripheral and core store must be
transmitted across the interface.

3 The information must be either read from or written to the core store.

Now that the relevant interface lines and the operations performed during a hesitation have been
described, the various forms of hesitations will be considered. However, before they are, it is necessary
to introduce a further component that is used during a hesitation.

Information stored in a central processor can be held either in the magnetic core store or in hardware
registers. The principles of storing information in the core store are described in Chapter 4. A hard-
ware register is an assembly of non-magnetic electronic components such as transistors, resistors

and capacitors. Each bit of information is stored in a hardware register by letting current flow in one

of two transistors to represent a 0-bit and letting current flow in the other of these two transistors

to represent a 1-bit. Thus, a pair of transistors is required to represent the state of each bit position

so that 48 transistors are required to store a 24-bit word. Registers can usually be read more quickly
than a magnetic core store, but are more expensive. Consequently, in the 1900 Series central processors
the majority of information is stored in the core store, although some hardware registers are used to
hold words or part of words frequently addressed. Examples of such registers are the A and D registers,
which are used during a high speed mode transfer.

Single-character hesitation

A peripheral requests a transfer to or from the central processor by sending a signal on the R line.
When the central processor is ready to service this request, it sets the A line to 1; the B line is then

set to 0. The character count and starting address contained in the control area associated with that
peripheral are read, updated (i.e. the count is decreased and the address increased) and rewritten to

the core store. During the updating of the control word information, the core store pauses; this operation
is therefore called read-pause-write.

A second read-pause-write cycle is then initiated during which a six-bit data character is either read
from the store during the read part of the cycle and transferred to the peripheral via the B register and
Do lines, or transferred from the peripheral via the Di lines and B register and written to the store
during the write part of the cycle.

Burst mode hesitation

To perform two read-pause-write operations for each six-bit character transferred across the inter-
face, and waiting before the processor deals with the B request, obviously makes uneconomical use of
the central processor time. Peripherals with a fast data transfer rate are therefore provided with a
word buffer so that four characters may be transferred during a hesitation. The control word need then
be updated only once for the transfer of four characters. However, since the data lines can transfer
only six bits at a time, the four characters are transferred as four sets of six bits in a burst; conse-
quently this type of transfer is called a burst mode transfer. Each character transferred required a

T pulse; therefore four T pulses are signalled during a burst mode hesitation. The operation of this
type of hesitation is as follows:

4095 (4.68) 49

TRANSFER FROM THE CORE STORE TO A PERIPHERAL

When the buffer in the peripheral can accept four characters. the peripheral will signal on the E Line.
When the central processor is free it will answer on the A line. The control word is read, updated, and
rewritten to the core store. The content of the word specified by the address that was contained in the
control word is then read from the core store and stored in the B register and also rewritten to the
core store. The four characters contained in the B register are then transferred, one character at a
time, across the Do lines to the peripheral.

TRANSFER FROM A PERIPHERAL TO THE CORE STORE

When the peripheral buffer contains four characters to be transferred to the central processor, the
peripheral signals on the R line and the central processor responds in due course on the A line. The
control word is read, updated, and rewritten to the core store. The core store word specified in the
address part of the control word is read, thus zeroizing the core store word. The central processor
then sends four T pulses, one at a time, to the peripheral; on each T pulse the peripheral transfers one
character across the interface to the B register. When all the four characters are assembled in the

B register, the content of the B register is transferred to the core store word specified in the control
word.

On a 1904 or 1905 central processor a burst mode hesitation takes approximately 14 microseconds,
whereas a single-character hesitation on these central processors takes approximately 6 microseconds.
Thus, burst mode transfers reduce the central processor time used for hesitation.

High-speed mode

A burst mode hesitation on the 1902 takes 20 microseconds. Thus, if a peripheral connected to a 1902
requests a transfer at the rate of one word every 20 microseconds, then the central processor time will
be completely devoted to hesitations and, consequently, there will be no time available for processing.
Furthermore, if the data transfer rate exceeds one character every 5 microseconds, then the central
processor will not be able to service all the requests. The 2801 and 2802 Exchangeable Disc Stores
have a nominal data transfer rate of 208 kch /s and are examples of peripherals that require a transfer
in excess of one character every 5 microseconds. The high-speed mode raises the maximum data rate
that can be handled by the 1902 central processor, and by smaller processors in the 1900 Series.

It will be recalled that during a hesitation the core store is accessed twice, first to read, update, and
rewrite the control word and secondly to access the core store word to or from which data is to be
transferred. With the high-speed mode, the time taken by a hesitation is reduced because the control
words* are kept in the central processor's hardware registers and not in the core store.

When the high-speed mode is used, in addition to the B register mentioned earlier, two further registers
in the central processor, called the A register and the D register, are used. The main use of the A
register, when the high-speed mode is not employed, is fo retain an operand during instructions, and

the normal use of the D register is to hold the current value of datum. In the high-speed mode the
control words are held continuously in these two registers.

The A and D registers can hold the control words for only one peripheral at any one time; it is evident
therefore, that there can be no true simultaneity between a high-speed mode transfer and any other
transfer. It is also evident that, since the D register can no longer hold the core store datum value,

there can be no simultaneity between high-speed mode and the processing of an object program. However,
this restriction on simultaneity applies only during the actual transfer i.e. not during the initiation stages.
Moreover, some basic peripherals need not have completed a transfer before a high-speed mode

transfer can take place. Thus abuffered line printer,for instance,may be in the middle of a transfer when
a high-speed mode transfer takes place. The printer transfer appears to continue uninterrupted, but in
fact the printer will not be granted hesitations while the high-speed mode transfer is taking place. How-
ever, no data is lost.

Crisis times

The time between the moment a peripheral requests a hesitation and the moment the peripheral requires
the hesitation to be granted, i.e. the time a peripheral can wait for a data transfer, is known as thecrisis
time of the peripheral. Peripherals that have a short crisis time are known as time conscious.

*Due to extended count, i.e, block lengths in excess of 128 characters, there are two control words
associated with most peripherals.

50 4095 (4.68)

With fast peripherals the crisis time is so short that the central processor may have insufficient time

to complete the instruction on which it is engaged before the crisis time elapses. This will only be the
case if the current instruction is one that takes a long time to execute. Accordingly, all such instructions
are so organized that they may be temporarily halted while the central processor engages in a hesitation.
It is essential that a peripheral be granted a hesitation within its crisis time, othierwise data may be
overwritten.

Paper tape readers (and punches) have an infinite crisis time because the reader (or punch) mechanism
can (does) stop the tape movement to wait for the arrival of the next character or until the central
processor is ready to receive a character. Similarly, line printers that have a buffer to hold one line
of print also have an infinite crisis time since a line will not be printed until the buffer is full.

Magnetic tapes, drums and disc stores have a finite crisis time because the devices cannot be stopped
between characters owing to the high speed of movement of these devices.

Other peripherals, such as punched card equipment, have a medium crisis time. Although the data
transfer rates to or from these devices is relatively slow compared to disc stores or fast magnetic
tape systems, and the punch or read mechanisms can stop card movement momentarily, card movement
cannot be stopped indefinitely in the way that paper tape movement can.

METHODS OF DECREASING HESITATION TIME

There are several devices by means of which the time required for hesitations can be reduced. These
devices, described below, are available on certain 1900 central processors (see Chapters 10 to 12).

Peripheral control connector

The peripheral control connector may be specified for use on the 1904 to 1907 with burst mode peri-
pherals only and is fitted between the core store and the standard interface connecting the peripheral
concerned to the central processor.

The main advantage of the use of peripheral control connectors is that the B register can send or
receive a word of four characters in parallel and is not held up as in normal burst mode when four
characters are transferred one at a time. The store may therefore be accessed again sooner. Also, a
peripheral control connector produces its own clock pulses and can therefore operate autonomously
while assembling a word or sending characters to a peripheral.

A peripheral control connector is basically a further buffer or buffers, each of which can contain four
six-bit characters, and is used to transfer information from or to the core store and a burst mode
peripheral. Thus, the control word is updated only once for every four characters transferred. The
operation of a word hesitation using a peripheral control connector is as follows:

TRANSFER FROM A PERIPHERAL TO THE CORE STORE

When the peripheral buffer contains four characters to be transferred, the peripheral signals R to the
peripheral control connector. When the peripheral control connector is able to service this request,

it sends four T pulses to the peripheral and on each T pulse transfers one character across the interface
to the peripheral control connector. When the peripheral control connector has assembled these four
characters into a 24-bit word, it signals the central processor that it is ready to transfer a word. The
control word is then read, updated, and rewritten to the core store. The whole 24-bit word contained

in the peripheral control connector is then transferred in parallel to the core store: This word hesitation
takes approximately the same time as a single-character hesitation. It is important to realize that when
a peripheral control connector is used, the hesitation takes place only after the peripheral control
connector has signalled to the central processor that it is ready to transfer a word. Thus, while the
peripheral control connector is receiving characters from a peripheral, the central processor can
continue with other tasks such as servicing another peripheral or executing program instructions.

TRANSFER FROM THE CORE STORE TO A PERIPHERAL

The peripheral control connector will initially be empty. When the peripheral buffer is ready to receive
a burst of four characters, the peripheral signals on the R line to the peripheral control connector,
which then signals the request to the central processor. When the central processor is free, the word
hesitation commences; the control word is read, updated, and rewritten, and a 24-bit word is transferred
in parallel from the core store to the peripheral control connector.

4095(4.68) 51

The object program now recommences. So far as it is concerned the hesitation is over; however, the
peripheral control connector still has to transfer the four characters across the interface to the peri-
pheral buffer. On the fourth T pulse associated with this transfer to the peripheral, provided the count
is not zero, the peripheral control connector requests a further hesitation from the central processor.
This further hesitation is requested regardless of whether or not the peripheral has requested a
transfer. The next word is then transferred to the peripheral control connector. However, these four
characters will not be transferred to the peripheral unit the peripheral control connector receives a
request on the R line from the peripheral. Consequently, a transfer request from a peripheral will
usually be serviced immediately as the peripheral control connector will already contain the next

four characters.

A burst mode hesitation takes approximately 14 microseconds on the 1904 whereas the same hesitation
using a peripheral control connector takes only 6 microseconds. A peripheral control connector thus
considerably reduces the central processor time used for hesitation in relation to the time used for
burst mode hesitation.

In conclusion it should be noted that when a peripheral control connector is fitted, the peripheral is

still connected to the central processor via the standard interface. Furthermore, it should be noted that
although a peripheral control connector effectively alters a burst mode hesitation into a word hesitation,
the transfer across the interface is still in burst mode in that four T pulses are sent to the peripheral
for each four-character word transferred.

Store access control

The store access control is a hardware feature, available to handle burst mode peripherals only on the
1906 and 1907, which can be specified in conjunction with peripheral control connectors and provides

a means of reducing the time that the central processor is occupied by peripheral transfers. A peripheral
control connector must be fitted for each standard interface peripheral to be connected to the central
processor via the store access control. There are two important aspects of the store access control.

1 When a store access control is not employed, data transferred from the central processor passes
from the core store, through the central processing unit, i.e. the registers and arithmetic unit,
and then to the peripheral. With a core access control the flow of data is from the core store to
the peripheral without going through the central processing unit. Thus, a peripheral has direct
access to the core store via a store access control. The effective advantage of this is that a peri-
pheral can be writing to the core store via store access control, while at the same time an object
program can be performing, for example, an arithmetic operation in the arithmetic unit. Thus,
the central processor will hesitate only when core store access requests coincide with those of
the store access control.

2 The store access control is provided with one or more registers which are used for the sole
purpose of holding the peripheral control word. Consequently it is not necessary to access the
core store in order to read the control word for each peripheral transfer. The store access control
is provided with its own arithmetic unit for updating of the control words. A store access control
can be provided with up to six of these control word registers; therefore, up to six peripherals
can be handled simultaneously by one store access control. A store access control transfers 24
bits at a time and it is therefore necessary to have a 24-bit buffer, i.e. a peripheral control
connector, between the store access control and each of the standard interface peripherals it is
to handle.

Peripheral autonomous control

The peripheral autonomous control is a hardware feature available on the 1904 /5 /6 /7E, F, 1903A and
1904A processors to handle burst mode peripherals only. It is similar to the store access control used
in conjunction with peripheral control connectors on the 1906 /7 processors, and serves the same
purpose as both these devices together. Fast magnetic tape systems, fast drums and all disc stores
must be connected via a peripheral autonomous control to the processors with which this device is
available. Use of the peripheral autonomous control is optional with some other peripherals.

A peripheral autonomous control contains its own mill, buffer registers to hold control words during
peripheral transfers, and up to six data buffers, each containing one or two data words. One or more
peripheral channels may be connected to each data buffer depending on the space available within the
cabinet and the transfer rate of the peripherals concerned.

52

4095(6.71)

With peripheral autonomous control the flow of data is between the core store and the peripheral auto-
nomous control without going through the central processor registers or arithmetic control unit. A
peripheral therefore has direct access to core store, and hesitations occur only if core store accesses
coincide, i.e. if the central processor wishes to access core store at the same time as peripheral
autonomous control wishes to access store to transfer a data word.

Store access manager

The store access manager is an autonomous device contained within the central processing unit of the
1902,3 /A central processors. It handles all peripheral transfers. Its function is to control the priority
of access to the store so that peripherals that require access to the store urgently have it at the expense
of peripherals that can afford to wait. The store access manager allows all peripherals priority over
the central processing unit in access to the store.

In order that the fastest peripherals may not have to wait too long for access to the store, they may

use a facility known as early warning. On one of its earlier T pulses, prior to the peripheral requesting

a transfer to the store, early warning is set for that peripheral. This condition prevents any lower
priority peripheral gaining access to the store before the peripheral for which early warning was set.
On the 1902A the setting of early warning prevents the central processing unit from gaining access to
the store for approximately three microseconds before the peripheral that set early warning requests
store access. However, other peripherals may finish transfers that are currently being executed so that
normally a proportion of the three microseconds will be used. Early warning will normally be used on
peripherals with a data transfer rate of over 120K characters per second.

The store access manager may handle up to 8 or 12 standard interface connections on the 1902A and
1903 A respectively. Each connection has a data buffer capable of holding a single character or word.
The buffers are used to hold data in transit between a peripheral and the core store. A mill within the
store access manager carries out the updating of the control word. ’

Peripheral processing unit

All peripheral transfers on the 1906 A must be made via an autonomous unit known as the peripheral
processing unit. The P.P.U. is similar in principle to the peripheral autonomous control but significantly
faster. It has buffers and a mill to hold and update control words.

The peripheral processing unit contains a single slow peripheral control allowing a maximum of 30
standard interface channels for single character peripherals. Seven fast controls, of which up to three
may be high speed controls, allow up to 19 burst mode peripheral controls to be connected.

STANDARD INTERFACE SWITCHING UNIT

The standard interface switching unit can be used in conjunction with one or more central processors
to provide increased flexibility in the connection of peripherals. The principal uses of the S.1.S.U. may
be summarised as follows:

1 To allow one of two similar peripherals to be connected to a single standard interface, and thus
increase the available number of peripherals beyond the limit imposed by the number of standard
interfaces provided.

2 Similarly, to decrease the on-line peripheral configuration to avert a crisis time problem.

3 To allow a peripheral to be switched between two processors and thereby redistribute peripherals
in a dual processor system during maintenance periods or in the event of a breakdown.

4 Similarly, to redistribute peripherals in a dual processor system where the processor /peripheral
requirements vary between shifts.

A standard interface switching unit consists of a cabinet containing up to four switching modules and a
control panel. Each switching module, of which there are three types, is basically a self-contained two
position switch that is operated manually. The three types of module have the numbers 7204 /1, 2 or 3.
The control panel allows for local individual control of each module or remote control of selected
modules by a single master switch.

4095 (4.68) 53

Types of module
MODULE TYPE 7204/1 (Y TYPE)

The following are four uses of module type 7204/1.

1

It is possible to switch one peripheral P between two processors a and b. The two processors need
not be identical.

NORMAL

~ O

Bt~ Ot @ o P
STANDBY

(/T | |
b_—_g\o P

This is of use when processor «¢ is used as a standby for processor b.

2

(@)

(b)

54

It is possible to switch one processor a between two similar peripherals P and Q. The similarity
of peripherals in this context depends on the type of central processor and the interface channels
fitted. For details in particular configurations reference should be made to the I.C.T. sales
representative or other appropriate I.C,T. source.

NORMAL

O ——¢

a O ‘ O P
STANDBY

S
a__.o/(; Leer k2

This is of use when it is required to have, say, seven peripherals with a processor which has only
six standard interface sockets and where it is known that two particular peripherals must never
be used together for reasons of crisis time.

Where a means of connecting two processors via standard interface exists, it is possible to switch
one of the two identical processors a and b to a third processor c.

NORMAL
P e
b ® 'e) c
STANDBY

[E——
T

It is possible to connect not more than two modules in series so that more than two similar peri-
pherals may be made available to one interface.

NORMAL NORMAL
¢ — 1 o—O+—-P O+—F&F
O o—oO+———¢

STANDBY NORMAL

a .__0\8____P Bt
i €

O

4095 (4.68)

(c) STANDBY STANDBY
| O____..._P e R
Es | Emn

MODULE TYPE 7204/2 (N TYPE)

It is possible to switch a peripheral P from one processor ¢ to a processor b, switching out at the same

time a peripheral already connected to processor b, As far as processor b is concerned, peripherals
P and @ must be similar.

NORMAL

a O O 12)
Y4

b Q
STANDBY

a

b Gl

MODULE TYPE 7204/3 (X TYPE)

It is possible to achieve interchangeability between two processors e and b and two peripherals P and Q.
Peripherals P and @ must be similar to both the processors.

NORMAL

4095 (4.68) 55

Chapter 7 Executive

THE NATURE OF EXECUTIVE

Executive is a supervisory program which, for all practical purposes, may be considered part of the
hardware. It uses a mode of processor operation containing functions not available to object programs.
These functions are not range-compatible but they always include the ability to send control signals to
activate peripherals or obtain information about their status and to access any part of store unimpeded
by datum and checks. Executive consists of a number of modules that can be assembled in variable
packages to meet the requirements of a particular 1900 configuration., All computers in the 1900 Series
use an Executive program which is always present in a protected area of store. The size of Executive
varies from one installation to another depending upon the type and number of modules of which the
particular Executive is composed.

THE PURPOSE AND FUNCTIONS OF EXECUTIVE

The general purpose of Executive is to take over from both programmer and operator the execution
of 2 number of routine tasks and to organize the running of each program in the most efficient manner
possible.

Executive's principal functions are:

1 Control of multiprogramming, dualprogramming, and subprogramming on the processors that have
these facilities.

Control of peripheral devices and execution of peripheral transfer requests.
Loading and dumping of programs.

Provision of extracode facilities.

[3) B V- -

Communication with the operator and execution of operator directives.

THE COMPOSITION OF EXECUTIVE

The composition of the Executive used with any given configuration depends both on the central pro-
cessor and the overall configuration. There are a number of different types of Executive, as listed in
the section below, one or more of which is available with each central processor. Each type of
Executive is available in a number of different versions according to the configuration with which it is

to be used. This modularity can be further explained by reference to the functions of Executive listed
above.

Not all Executives include multiprogramming facilities but all versions of a given type of Executive
will be constant in this respect. That is, all versions of E4BM include multiprogramming facilities,

no version of EX1H does. All Executives that include multiprogramming facilities also include sub-
programming facilities.

All versions of an Executives will have routines for the control of peripheral activity, since all con-
figurations have peripherals. However, the particular routines incorporated will depend on the peri-
pherals used and may vary from one type of Executive to another and from one version to another.

All types of Executive and all versions include routines to control the loading of programs; routines to
control dumping are included if there is a dump peripheral in the configuration. The routines may vary

from one version of Executive to another depending on the peripherals that may be concerned in loading
and dumping.

All types of Executive and all versions include some extracodes, since some instructions are always
carried out by extracode. The number of extracodes incorporated depends upon the central processor

4095(5.69) 57

and any optional feature that it has. For example the 165 (GIVE) instruction will always be carried out
by extracode; a 1901 without an E.M.U. will have an Executive that includes an extracode to perform
the 042 (MPA) instruction, but the Executive of a 1901 with an E.M.U. will not include this extracode.

All versions of any type of Executive will include some routines for operator communication. The
precise nature of these routines depends on the type of Executive concerned. All versions of one type
of Executive will have the same routines.

TYPES OF EXECUTIVE
The following table gives a list of the types of Executive, a brief description of each and details of

availability.

Executive Central Description of Executive Configuration restrictions

type processor(s)

code

EX1H 1901 Single program, handswitch controlled.| Limited range of peripherals

allowed.

EX1T 1901 Single program, typewriter con- Minimum 8K store, console
trolled; Automatic Operator feature typewriter,
optional.

EX1V 1901 Single program, typewriter con- Minimum 8K store, console
trolled, partially stored on E.D.S.; typewriter, 2 E.D.S. drives.
Automatic Operator feature standard.

E1HS 1901A Single program, handswitch con- Limited range of peripherals
trolled. allowed.

E1TS 1901A Single program, typewriter con- Minimum 8K store, console
trolled; Automatic Operator feature typewriter.
optional.

E1DS 1901A Single program, typewriter con- Minimum 8K store, console
trolled, partially stored on E.D.S.; typewriter, 2 E.D.S. drives.
Automatic Operator feature standard.

E1MS 1901A Single program, typewriter con- Minimum 8K store, console
trolled, partially stored on T.E.D.S.; |typewriter, 2 T.E.D.S. drives.
Automatic Operator feature standard.

EX2L 1902 Single program, simplified facilities. |Only 4K stores, basic peri-

pherals.

EX2M 1902 /3 Dualprogram, trusted program fea- Minimum 16K store.
ture optional.

EX2S 1902 /3 Single program; Automatic Operator Minimum 8K store.
feature optional.

EX2V 1902 /3 Single program, partially stored on Minimum 8K store; at least
E.D.S.; Automatic Operator feature 2 E.D.S. drives or 1 drive and
standard. industry compatible magnetic

tape.

E3TS 1902A Single program; Automatic Operator |Minimum 8K store, 4 tape decks.
feature standard.

E3TE 1902A /3A Single program, trusted program Minimum 16K store, 4 tape
feature standard. decks.

E3TM 1902A /3A Multiprogram, trusted program Minimum 16K store, 6 tape

feature standard.

decks, C.C.F.

58

4095(5.69)

Executive Central Description of Executive Configuration restrictions
type processor(s)
code
E3DS 1902A /3A Single program, partially stored on Minimum 8K store.
E.D.S.; Automatic Operator feature
standard,trusted program feature incl-
udedamongst overlays stored on E.D.S.
E3DM 1902A /3A Multiprogram, trusted program fea- Minimum 16K store, C.C.F.,
ture standard. disc systems.
E3DG 1903A For use with GEORGE 3. As determined by GEORGE 3.
E4BM 1904 /5 Multiprogram, manually operated.
E4G3 1904 /5 For use with GEORGE 3. As determined by GEORGE 3.
E6BM 1904E/F Multiprogram, manually operated.
1905E/F
1906 /7
1904A
EDG3 1906E /F For use with GEORGE 3D. As determined by GEORGE 3D.
1907E /F
E6G3 1904E /F For use with GEORGE 3. As determined by GEORGE 3.
1905E /F
1906 /7
1904A
1906A
E6G4 1906A For use with GEORGE 4. As determined by GEORGE 4.

ENTRY TO EXECUTIVE

An event which causes an object program to be left and Executive entered is termed an entry or
interrupt, of which there are two principal types, voluntary and involuntary. A voluntary entry is one
which occurs at a set predictable point in the program; an example is a program instruction that is
actually executed by an extracode. An involuntary entry is one which is caused by an occurrence that
cannot be readily predicted by the programmer; an involuntary entry may be caused by, for instance,
operator action or the end of a peripheral transfer.

MULTIPROGRAMMING

Multiprogramming is the term given to the concurrent processing of more than one program that is
made possible: by facilities provided with some Executives. When a program being run under the control
of a multiprogramming Executive causes an interrupt, for instance to request a peripheral transfer,
Executive activates the program with the highest priority that is waiting to use the central processing
unit. Executive does this each time it is interrupted, leaving all other programs in the central pro-
cessor in a state of temporary suspension.

Program protection

Executive holds datum and limit values for each program held in store. Before each store access is
made a check to ensure that Datum < Location Addressed < Limit is effected dynamically by hardware.
Thus complete protection of each program is guaranteed.

4095(5.69)

59

Program priorities

Each program is loaded with a priority in the range 01 to 99*, 01 being the lowest priority. Executive
tries to enter the highest priority program whenever possible; if two programs have the same priority
the choice depends on the circumstances in which the program were set up.

It is usual to allot higher priorities to programs that are peripheral limited. Such programs will con-
tinually interrupt Executive and thus allow other programs use of the central processing unit. If a pro-
cessor limited program is given a high priority it may monopolise use of the central processing unit
to the exclusion of other programs held in store. The programs would then be run consecutively rather
than concurrently.

The indiscriminate use of program priorities 50 to 99 may, with certain Executives, lead to inessential
programs taking precedence over some of the slower Executive and operating system actions, with a
consequent loss in efficiency. In a real time system, it is essential that priority 99 is not used by any
program or program member loaded except the real time member of the on-line program.

Program priorities are disregarded when Executive has formed a queue of instructions waiting to be
given to a multi-unit channel such as a magnetic tape cluster. The operations are initiated in the
sequence in which the instructions are received.

Two console messages are relevant to program priorities. The REvise message allows alteration of
program priorities while programs are running on the machine. The PRint message allows information
on the priorities of programs already loaded to be typed out on the console typewriter.

Program deletion

When a program is deleted, either by the operator or by program instruction, the peripherals become
available for another program. In order to ensure that all the spare core store is available as one
continuous area when a program is deleted, Executive moves all programs in higher locations down
to fill the gap, and changes the values for datum and limit accordingly. Before moving the programs,
Executive completes any transfers that are in progress. This process can take several seconds.

Multiprogramming under GEORGE 3 or GEORGE 4 control

The above information applies to manually operated Executives, i.e. all except those used with the
GEORGE 3 and GEORGE 4 operating systems. For details of the concurrent running of programs in
GEORGE 3 and GEORGE 4 environments reference should be made to the relevant GEORGE manuals.

DUALPROGRAMMING

Dualprogramming is the term given to the limited multiprogramming facilities available on 1902 /3
central processors under the control of the EX2M Executive. Two programs may be run concurrently
under EX2M; subprogramming facilities are also provided. Dualprogramming is similar to multi-
programming except in the respects described below.

Program protection

Executive stores a datum value for each program but no limit value. The limit, common to both pro-
grams, is the last word in store. Before each store access is made a check to ensure that Datum <
Location Addressed < Common Limit is effected dynamically by hardware. In normal circumstances
adequate protection is thus provided. However, since it is possible for the first program loaded to
access locations in the other program's area, it would be unwise to load an unproved program first.
When two programs are in store, one of these being unproved, the unproved program should always
occupy the higher numbered locations to prevent the possibility of its interfering with the other program.

Complete protection is provided for store accesses resulting from a peripheral transfer however.
Before initiating a peripheral operation, Executive will ensure that the transfer lies within the area
of store allocated to the program initiating the transfer.

*Some programs have been issued with a priority higher than 99. These programs are not range-com-
patible and may be run only in the environment specified,

60 4095 (4.68)

Program deletion

There is no program relocation either as a result of deleting the lower program in store or as a result
of the 165, N(M) = 4 (GIVE) instruction. A program may be loaded into the vacant area of store between
Executive and the higher program when the lower program has been deleted provided that the new pro-
gram is as small as or smaller than the program in the lower part of store when tr.xe program in the
higher part was loaded. I the higher program is deleted, a program can be loadgd into the area of
store between the last word of the lower program and the store limit. However, it should be noted that
if the combined size of Executive and the first program loaded is greater than 16,128 words it will be
impossible to load a second program: as 16K is the maximum value that the datum register in 1902

and 1903 processor can hold.

When a program is deleted. Executive will not disengage any slow peripheral. Such peripherals must
be disengaged by a 152 (DIS) order in the program. Nor will Executive rewind any tapes; this must be
done by Unload Tape or Close Tape orders issued by the program.

Console typing of the output messages arising from 160, X = 1 (DISTY) and 161, X = 1 (DISP) will not
be timeshared with the initiating program. The other program will not be held up.

SUBPROGRAMMING

Subprogramming is the term given to the facility whereby parts of a program, called members, can
time-share with each other. In many ways subprogramming is similar to multiprogramming, except
that whereas programs occupy discrete areas of store protected by hardware lock-outs (but see Dual-
programming) subprogramming allows order numbers to be given to members of the program which
share the program's store but follow their own sequence of instructions. The subprogramming facility
is available with all Executives that have multiprogramming or dualprogramming facilities.

The purpose of subprogramming

The purpose of subprogramming, in general terms, is to enable programs to run more efficiently. One

of the more obvious uses is to allow calculation to be time shared with input /output in a fairly straight-
forward commercial type of program where the degree of time-sharing provided by the use of double-
buffering techniques and by the basic autonomy of peripheral transfers on the 1900 Series is not

adequate. In such cases the use of subprogramming allows input /output routines of a more complex
nature to be written. This particular use is usually relevant only in fairly modest operating environments,
as the problem of obtaining the best performance from such a program is usually overcome by the off-
lining of peripherals by systems such as GEORGE.

An extension of the example is the use of subprogramming in connection with real-time equipment where
it is essential to answer a request for acceptance of incoming data promptly to avoid possible loss of
data. Subprogramming provides the means by which one part of the program can get incoming data
safely into the processor whilst another part of the program is processing previously received data.
Were it not for subprogramming, the processing routine would have to look at the real-time devices
very frequently and, even if it did so, the access time to service a request would be much greater than
with subprogramming. An example of a program which makes use of subprogramming for such reasons
is the Multiplexer Housekeeping Package.

Members of a program

A program may normally consist of a maximum of three or four members, depending on the environ-
ment concerned; however, if the priority interrupt feature (see Chapter 9) is available, there will be a
member, called the Priority Member, that may be additional to this maximum.

Each member has its own priority and operates autonomously with respect to other members except
in the cases of loading or dumping. In these cases Member 0 acts as a master member. At all other
times any member may issue control instructions with respect to itself or any other member; i.e. any
member may de-activate itself and activate any other member.

It is necessary to distinguish between two forms of suspension that may occur. A member may suspend
itself by means of the appropriate subprogram control instruction or it may be suspended for some
reason that is not relevant to subprogram control e.g. while awaiting the termination of a peripheral
transfer. The former case is described hereafter as de-activation to avoid confusion with the latter
case, which is the generally accepted meaning of the term suspension in programming 1900 Series
central processors.

4095 (4.68) 61

Information associated with each member
Note: The following information does not apply to the Priority Member.

Each member of a program has certain information that is permanently associated with it and that is
stored each time the member is suspended. This information includes the contents of the floating point
accumulator and its overflow indicator (FOVR), the normal overflow indicator (V), the carry indicator
(C), the address of the next instruction to be obeyed, the object program moqes that are under the
control of a program, i.e. addressing mode, branch mode and zero suppression mode, and the accumu-
lators. This information is stored in the first 16 words of the member's area.

The 16 words referred to above contain for each member the same information as is normally held
for a program in the first sixteen words of store (see page 11). The first 16 words of each member's
area are distinct and reserved for use by that member. These words are stored consecutively for each
member from location 32 onwards of the program area. Thus:

Words 32 to 47 Words 0 to 15 of Member 0
Words 48 to 63 Words 0 to 15 of Member 1
Words 64 to 79 Words 0 to 15 of Member 2
Words 80 to 95 Words 0 to 15 of Member 3

It should be noted that the directive GO AT renders the contents of Words 0 to 15 indeterminate for all
members. The rest of the program area is available to all members, so that each member's area con-
sists of its own first 16 words plus the rest of the program area minus the other members' first 16
words and any other reserved areas.

MEMORY INDICATORS

Each member other than the Priority Member has associated with it two memory indicators, M and P,
and where a Priority Member exists, a further indicator E. The Priority Member has only a P indicator.
These indicators are used to remember attempts to activate a member while it is already active. The
indicators each consist of a single bit that is set if an attempted activation is to be remembered; sub-
sequent attempts to activate the member before the memory indicator has been cleared will be for-
gotten.

M is the indicator set by a 163, N(M) = 0 (AUTO) instruction issued in respect of a member that
is active. It must be remembered that a member may be active but suspended. The M indicator
remains set until cleared by a 164 (SUSAR or SUSIN) instruction.

1% is the indicator set when an event occurs, while the member is active, on a direct response
device that the member controls. An event is said to occur on a flag-setting direct response
device if the reply word for the device changes from "transfer in progress' to '"transfer com-
pleted" or if a condition requiring object program action occurs. An event is said to occur on
a suspension device operating in direct response mode if the former condition above occurs
or if a device that was disengaged becomes engaged. A member is said to control a device if
it is the member from which the most recent non-discrete instruction was accepted for that
device. A non-discrete instruction is one that cannot be assumed to have been completed at
the time that execution of the following instruction begins. If there was no such instruction,
the controlling member is the one that established the device's flag area or caused the device
to be switched to direct response mode.

The P indicator remains set until cleared by a 164, X = 2 or 3 (SUSIN) instruction.

E is the indicator set for all members that are active when the Priority Member issues a 164,
X = 4 (SUSIN) instruction. The E indicator remains set until cleared by a 164, X = 3 (SUSIN)
instruction.

Information associated with the Priority Member

Executive stores none of the information mentioned above for the Priority Member apart from the P
memory indicator.

The Priority Member always operates in 15AM and DBM so there is no need to store its address and
branch mode setting. The Priority Member may use the 125 (MODE) instruction but on initial activation
and after a 164 (SUSIN) instruction the state of its zero suppression mode is undefined until it has issued
a 125 instruction or suitable 047 (CBD) instruction.

62 4095 (4.68)

In no circumstances may the Priority Member use Words 8 to 15. It may use the accumulators pro-
vided that the contents of those used are preserved before use and restored after use: i.e. effectively,
preserved immediately after the first activation and every 164 instruction and restored immediately
before each 164 instruction.

Violation of this rule may cause corruption of other members of the program but not of another pro-
gram or Executive.

Further notes on the Priority Member
PRIORITY

The Priority Member, which must always be Member 5 of a program, has absolute priority; i.e.
higher even than Executive. The program request block must show Member 5 as having a priority of
octal 77717, i.e. Word 12 of the request block must contain octal 77777705.

TIME-OUT FEATURE

Because of the absolute priority of the Priority Member there is a danger that this member might
monopolise use of the central processor. To avoid this danger, a time-out feature is used. The time-out
feature causes the Priority Member to be regarded as illegal if it is continuously active for longer than
a certain period of time, the exact period varying from one central processor to another.

ORDER CODE RESTRICTIONS

Certain order code restrictions apply to the Priority Member. The following instructions may be used
in accordance with their range-compatible defintions (see Chapter 5): 000 to 037, 050 to 064, 070 to
074, 100, 110, 112, 120 to 125. The following instructions may be used in accordance with their range-
compatible definitions provided they are available to other members in the environment concerned and
provided they are performed by hardware and not by extracode: 040 to 047, 066, 111, 113, 116, 126,
127. The only other instructions available to the Priority Member are certain subprogram control
instructions defined in the relevant section below, and its peripheral control instructions which will be
peculiar to the processor and/or peripheral device.

Note: Only one Priority Member may be present in the central processor at any one time.

Further notes on other members
PRIORITIES

The priority assigned to each member is that supplied in the request block; the number of each member
in no way affects the member's priority. It should be noted that the priorities of members of a program
can be changed by means external to the program without the program being aware of the change;
accordingly, a program must not be logically dependent upon the priorities of its members.

ADDRESS AND BRANCH MODES

The initial mode setting of Member 0 is determined by the supplementary request block. Members other
than Member 0 obtain their initial mode setting from the mode of the member that first activates them.
When a multi-member program is dumped, the mode setting of Member 0 only is recorded. On sub-

sequent reloading, all members will again take their initial setting from the member that activates then
initially.

Loading and dumping
LOADING

When a program is first loaded Member 0 will be active and suspended awaiting operator action. All
other members will be inactive awaiting activation by a 163, N(M) # 0 (AUTO) instruction.

If a Priority Member exists, before any servicing of priority devices can take place the Priority Member
must be activated by one of the other members of the program by means of a 163, N(M) # (AUTO)
instruction. This initial activation causes interrupts from priority devices to be significant and they

will continue to be so until either the program is deleted or the Priority Member times out, On the first
activation the Priority Member should perform any appropriate initialization procedures and then
suspend itself awaiting an interrupt from a priority device or re-activation by another member,

4095 (4.68) 63

Member should perform any appropriate initialization procedures and then suspend itself awaiting an
interrupt from a priority device or re-activation by another member.

DUMPING

Orders 154 (CONT) and 155 (SUSDP) are illegal if issued by any member oth':er th?,n Memtfer 0. All
members of a program are suspended while either of these two instructions is being carngd out so
that Words 0 to 15 of all members other than the Priority Member will be in their respective storage
areas and thus will be dumped correctly for subsequent reload.

In the case of an operator initiated dump, it is the responsibility of the operator to ensure that all
members are suspended before the dump is initiated. The members may be suspended by the use of a
SUspend directive in respect of each member.

Reference to common storage areas
PROGRAMS WITHOUT A PRIORITY MEMBER

As stated earlier, Words 0 to 15 of each member are protected from corruption; the rest of the pro-
gram area is common to all members and it is therefore possible for one member to corrupt another.
This means that where an area of store is to be used by more than one member the program must
include appropriate lock-out routines. In simple cases lock-out can be performed by using 163 and 164
instructions; in more complex cases it has to be performed by means of indicators that record the
state of the common areas. In the latter cases no assumption can be made as to the relative priorities
of members, since these are not under members' control. It is always possible that another member's
instructions may be obeyed between the obeying of any pair of successive instructions in 2 member's
routine, so that the programmer must ensure that data being processed by one member is always pro-
tected from interference by other subprograms. '

A consequence of this last point is that the alteration of an indicator that is also altered by another
member, and whose altered value is in some way dependent upon its original value, must be carried
out by a single instruction that alters the quantity directly in its commonly accessed location. ¥ more
than one instruction is used to alter an indicator, it is possible for two members to be altering the
same indicator at the same time, with indeterminate results. The 162 (SUSMA) instruction is provided
to help overcome this problem, since SUSMA causes Executive to be entered, so that no other member
can interrupt.

Two further important consequences are as follows:

1 I, under certain conditions, an indicator is set by a member and is nowhere re-set by that mem-
ber, then, if another member determines that the indicator is set, it can assume that the setting
conditions existed in the first member. However, if it detects that the indicator is not set, it can-
not assume that the setting conditions did not exist.

2 Only when a routine in a program is pure may it be obeyed by more than one member of the pro-
gram; this applies particularly to subroutines. In this context, a routine is deemed to be pure if
the only words of the program area that it attempts to change lie in the range 0 to 15 inclusive or
are reserved for that member and are accessed by use of a modifier. The area used for dumping
Words 0 to 15 of the member's area must not be used by a pure routine.

PROGRAMS WITH A PRIORITY MEMBER

The above information applies equally to programs with a Priority Member except where contradicted
below.

Non-priority members passing information such as data addresses that may be used as modifiers to
the Priority Member must remember that the Priority Member always operates in 15AM and DBM
and must ensure that such data is compatible with this restriction. Provided that correct use is made
of the 162 (SUSMA) instruction for the manipulation of flags between non-priority members, there is
no restriction on the number of the non-priority members that may share one area with the Priority
Member.

Despite the fact that a 162 instruction issued by a non-priority member can be interrupted by the
activation of the Priority Member, the 162 instruction may still be used by a non-priority member to
manipulate flags between itself and the Priority Member. The Priority Member does not need, and
indeed cannot use, the 162 instruction. Because of the absolute priority of the Priority Member, it can
safely alter a flag or common area, without any risk of interference, by means of a sequence of several
instructions provided that the sequence does not include any 164 (SUSIN) instructions.

64 4095 (4.68)

Subprogramming control instructions

The instructions provided for the control of communication between members of a program are the
162 (SUSMA), 163 (AUTO) and 164 (SUSAR or SUSIN) instructions. The effect of each is defined below
and the use of these instructions is described in a later section. The states of members mentioned
below may be clarified by reference to the States of members in the next section.

THE 162 (SUSMA) INSTRUCTION
The action of this instruction depends on the contents of Word N(M)+1, as follows:

If the contents of Word N(M)+1 are non-zero, the program continues at the instruction in the word
following that which contains the 162 instruction.

If the contents of Word N(M)+1 are zero, they are made non-zero and the contents of X are copied into
Word N(M). The program then continues at the instruction contained in the second word after that which
contains the 162 instruction.

Restrictions
1 N(M) must not be in a reserved area of store.

2 This instruction cannot be used by the Priority Member.

THE 163 (AUTO) INSTRUCTION

This instruction takes two forms. The first, in which N(M) is non-zero, is provided for the initial
activation of a member after the program is loaded; the second, in which N(M) is zero, is provided
for subsequent reactivation of a member.

initial activation

X contains the number of the member to be activated, the first instruction to be obeyed being that in
word N(M). Activation will cause Member X to assume the same address and branch modes are are
applicable to the member that issues the 163 instruction at the time that the instruction is issued. The
state of the zero suppression mode in Member X will be indeter minate.

Restrictions applicable to this form of the instruction are:
1 N(M) must not be in a reserved area of store

2 The instruction may be obeyed only when Member X is inactive in state SL: i.e. in the state
assumed by members other than Member 0 as a result of initial loading or the GOyAT directive.

3 Member X can never be Member 0 or the member that issues the 163 instruction.

Subsequent re-activations

X contains the number of the member to be re-activated and word N(M) is always zero. If Member X is
currently inactive due to a 164 instructions, it is re-activated at the instruction following that 164, with
the state of address, branch and zero suppression modes the same as when the 164 instruction was
issued. If Member X is currently active, the memory indicator M of Member X will be set and will
remain so until Member X issues a 164 instruction which will then clear the M indicator but not de-
activate Member X.

Restrictions applicable to this form of the instruction are:
1 Word N(M) must be zero.

2 The instruction must not refer to a member that is inactive in state SL.

THE 164 (SUSAR OR SUSIN) INSTRUCTION

This instruction provides the means by which a member can de-activate itself until a specified type of
event occurs provided that no such event has occurred since the previous equivalent instruction was
issued by the member. It will be noted that this instruction has variants dependant upon the value of X
(N(M) is always zero), and that successive variants include all preceding variants. The definition of all

4095 (4.68) 65

variants is such that spurious re-activation, i.e. re-activation of a member that should not be re-
activated may occur; all programs must be coded to allow for spurious re-activation.

The 164, X=1 (SUSAR) variant

Unless the M indicator of the member issuing this instruction is set, the member is df:-:}ctivated until
either a 163 instruction referring to this member is issued. If the M indicator is set, it is cleared and
the member proceeds at the next instruction.

This variant is not available to the Priority Member.

The 164, X=2 (SUSIN) variant

Unless the M or P indicators of the member issuing this instruction are set, the member is de-
activated until either a 163 instruction referring to this member or an event on a direct response
device controlled by this member occurs. I either or both of the M and P indicators are set, they
are then cleared and the member proceeds at the next instruction.

This variant is not available to the Priority Member.

The 164, X=3 (SUSIN) variant
This variant is available only to a program that includes a Priority Member.

Unless the M, P, or E indicators of the -member issuing this instruction are set, the member is de-
activated until one of the following occurrences:

1 A 163 instruction referring to this member is issued.
2 An event on 2 direct response device controlled by this member occurs.
3 A 164, X = 4 instruction is issued.

If any or all of the indicators are set, they are then cleared and the member proceeds at the next
instruction.

The 164, X=4 (SUSIN) variant

This variant is available only to the Priority Member. If there have been no interrupts from priority
devices since the Priority- Member was last activated, the Priority Member is de-activated until either
such an interrupt occurs or a 163 instruction referring to the Priority Member is issued. If an interrupt
from a priority device has occurred, the Priority Member proceeds at the next instruction.

Regardless of whether the Priority Member de-activates itself, all other members that are inactive in
such a state that they can be re-activated by the Priority Member are re-activated, and the E memory
indicator of any other members is set.

States of members

When a program is loaded Member 0 is deemed to be active, although it will probably be suspended
awaiting some operator message, e.g. GO. Member 0 may then activate some other member and de-
activate itself. It is important to realise that a member may be active, i.e. have current use of the
central processor as far as that program is concerned , and yet be suspended awaiting operator action or an
event such as the terminator of a peripheral transfer.

A program may be in any one of a number of inactive states. These inactive states are considered below.

STATE TRANSITION TABLES

The two diagrams below summarize the effect of various events under all possible valid conditions.
The explanatory notes that follow should be read in conjunction with the diagrams.

1 The word "invalid' indicates that a restriction has been violated.
2 At any time a member is in one of the following states.
NS Active, but may be suspended

66 4095 (4.68)

Instruction or Applying Member being in state

event to member sL NS SM SMP SMPE

163, N(M) # 0 Y Y becomes [Invalid Invalid Invalid Invalid

active
163, N(M) = 0 Y Invalid M indicator|Y becomes |Y becomes |Y becomes
of Y set active active active

Direct Response Yorall Invalid P indicator | P indicator |Y becomes |Y becomes

Peripheral 2 1

Byént members of Y set of Y set active active

164, X =4 All Invalid E indicator |E indicator |E indicator |Y becomes
members of Y set of Y set of Y set active

Figure 11 The effect of the 163 instruction, direct response peripheral events and the 164, X=4 instruction on

members’ states

Memory indicators of

Y that are set

Effect of member Y issuing a 164 instruction

164, X=1

164, X=2

164, X=3

None

Y assumes state SM

Y assumes state SMP

Y assumes state SMPE

E only

Y assumes state SM

Y assumes state SMP

E cleared, Y remains

in state NS

P only

Y assumes state SM

P cleared, Y remains

‘in state NS

P cleared, Y remains
in state NS

E and P only

Y assumes state SM

P cleared, Y remains
in state NS

E and P cleared, Y

remains in state NS

M only

M cleared, Y remains
in state NS

M cleared, Y remains
in state NS

M cleared, Y remains
in state NS

E and M only

M cleared, Y remains

in state NS

M cleared, Y remains
in state NS

E and M cleared,

Y remains in state NS

M and P only.

M cleared, Y remains
in state NS

M and P cleared, Y

remains in state NS

M and P cleared, Y

remains in state NS

E, M,and P

M cleared, Y remains
in state NS

M and P cleared, Y

remains in state NS

E, M and P cleared, Y

remains in state NS

Figure 12 The effect of the 164 instruction on memory indicators

4095 (4.68)

67

SL In an inactive state because it has not had an initial activation since the program was loaded
or since a GO AT directive.

SM Inactive because it has issued a 164, X = 1 instruction
SMP Inactive because it has issued a 164, X = 2 instruction
SMPE Mactive because it has issued a 164, X = 3 instruction

3 All references to memory indicator E and associated conditions apply only to a program that
includes a Priority Member.

Examples

The following examples are provided to clarify some of the points made in the preceding description
of the subprogramming system and to show the use of the subprogramming control instructions. In the
examples it is assumed that subprogramming is being employed to gain efficient time-sharing of pro-
cessing with input /output functions. One member is therefore engaged in processing normal records
and in stacking exception records that have to be printed. Another member takes exception records
from the stack and prints them. The former member will de-activate itself only when the area holding
records to be printed is full; the latter member will de-activate itself when there is no record to be
printed.

The notation used in the examples is as follows:

p A cyclic pointer to the area of the buffer into which to read the next record; p is local to the
member reading and processing normal records

q A cyclic pointer to the area of the buffer from which to print the next record; ¢ is local to the
member printing exception records

r The number of exception records outstanding to be printed; r is common to both members.
t The capacity of the stacking buffer

The reason for interrupts occurring is not specified in the examples as they are not important. It
should be noted that the sequence in which members run bears no relation to any possible priority

they may have. It is likely that this apparent disregard of member's priorities would occur in an
environment including GEORGE or where direct response devices are being serviced. It is for this
reason that it has been stressed that a program must not be logically dependent on member's priorities.

EXAMPLE 1: WHY THERE MUST BE M INDICATORS

It might be thought that a program would use 163 and 164 instructions only where necessary and that
therefore there is no need for an ¥ indicator for the 163 instruction to set and the 164 instructions to
test. The following example shows why the M indicator is necessary.

Member Sequence of actions
0 Reads a record, sets r = 1, issues 163 1 0. An interrupt occurs
1 Prints the record previously read by Member 0, sets r = 0, tests r and finds r= 0. An

interrupt occurs before a 164 instruction can be issued.

0 Reads next record, sets r = 1, issues 163 1 0. Member 1 is still active, so its M indicator
is set. An interrupt occurs.

1 Issues a 164 instruction. The M indicator is set, so this member carries on.

The 163 instruction really means that if the member referred to is active its M indicator must be set;
otherwise Executive must be informed that the next time there is an interrupt the member that was the
subject of the 163 instruction must be considered for running. If the 163 instruction did not set an indi-
cator and the 164 instruction did not test it,(Member 1 in the example above would be de-activated and
Member 0 would carry on and de-activate itself on filling the stacking area. This example illustrates
the constant problem of subprogramming of how to make a test and act on the result without being
interrupted, or if an interrupt occurs, for it not to matter. A similar condition could arise if Member 0
were interrupted just before issuing a 164 instruction. In both cases the lack of an M indicator could
result in complete paralysis, each member being inactive awaiting activation by the other. (See also
Example 3.)

68 4095 (4.68)

EXAMPLE 2: A 163 INSTRUCTION ISSUED WHEN M IS SET

It might seem that the definition of the 163 instruction should allow for finding the M indicator set, or
that this condition should never be allowed to arise. The following example illustrates not only that the
tests do not prevent this happening but that the condition is irrelevant.

Member Sequence of actions
0 Reads a record, sets r =1, issues 163 1 0. An interrupt occurs.
3 Prints the record previously read by member 0, sets r = 0. An interrupt occurs before

the member can test r.

0 Reads next record, sets r = 1, issues 163 1 0. Member 1 is still active so its M indicator
is set. An interrupt occurs.

3 Tests r and finds r = 1, prints record previously read by Member 0, sets r = 0. An
interrupt occurs before the member can testr.

0 Reads next record, sets r = 1, issues 163 1 0. Member 1 is still active so its M indicator
is set again.

Thus the tests have permitted a spurious 163 instruction because they could not detect that Member 1
was active. The first example illustrated activating a member that was virtually inactive since it had
tested r and was about to de-activate itself. This example illustrates activating a truly active member,
but no error arises provided that spurious re-~activation is not caused.

EXAMPLE 3: COMPLETE PARALYSIS

Example 1 showed that complete paralysis could occur if M indicators were not provided. However,
even with the provision of these indicators, complete paralysis can still occur if care is not taken.

Programmers using subprogramming for the first time tend to think that since M indicators cannot be
tested explicitly to see if a member is active, switches should be defined corresponding to the M
indicator of each member. In the example below Member 0 has a switch S and Member 1 a switchT,
these switches being set when the members are active and unset before the members de-activate
themselves. Each member tests the other’s switch and issues a 163 instruction only if the other mem-
ber's switch is set, i.e. only if the other member is inactive. In this way unnecessary 163 instructions
can supposedly be avoided.

Member Sequence of actions
0 Reads a record, sets r =1, tests T and finds it set, issues 163 1 0. An interrupt occurs
1 Sets T, prints the record previously read by Member 0, sets r= 0, tests r and finds
r = 0. An interrupt occurs before the member can unset T
0 Reads next record, sets r = 1, reads another record, sets r = 2 and so on until r = ¢.
Unsets S and issues 164 1 0.
1 Unsets T, and issues 164 1 0.

Both members are now inactive awaiting re-activation by the other. This example again illustrates

the problem of how to make a test and act on it without being interrupted, or if an interrupt occurs,
for it not to matter. The complete paralysis obtained above could be avoided if S and T were unset

by their respective members before instead of after testingr. S and T are in fact superfluous and can
be replaced by further tests on r.

EXAMPLE 4: SPURIOUS RE-ACTIVATION

Spurious re-activation, it will be remembered, occurs where a member is re-activated when it should
not be (as against need not be). This condition is illustrated below.

Member Sequence of actions
0 Reads a record, sets r=1, issues 163 1 0. An interrupt occurs
1 Prints the record previously read by Member 0, sets r= 0. An interrupt occurs before r

can be tested.

4095 (4.68) 69

Member Sequence actions

0 Reads next record, sets r=1, issues 163 1 0. Member 1 is active so its M indicator is set.
An interrupt occurs

)4 Since r = 1, prints the record previously read by Member 0, sets r = 0, issues 164 1 0.
M is set, so the member carries on.

Since r = 0, Member 1 should not carry on. To avoid such cases of spurious re-activation it is necessary
to loop back and test r again after the 164 instruction before going on to read or print the next record.

EXAMPLE 5: THE USE OF THE 162 INSTRUCTION

The previous examples have used only 163 and 164 instructions. It is necessary to use the 162 instruc-
tion only:

1 When it is required to guard against all future machine contingencies
2 To update a parameter in a way that cannot be achieved in one interruptable instruction

3 In a program in which two or more members are updating a parameter to prime another member
that both call.

The example below illustrates the last case.

In this example it is assumed that two files have to be processed and that in each case exception records
have to be printed out. It is further assumed that the printed records will be dealt with individually and
can therefore be printed in no particular sequence, records from one file being intermingled with those
from the other. In the illustration, Members 0 and 2 are reading into buffer areas R1 and R2 respect-
ively and stacking exception records to be printed by a third member, Member 1. The symbols used

are as previously defined.

Having two stacking members considerably alters the programming method adopted. To obtain the most
efficient utilization of the store the stacking area should be shared by Members 0 and 2; p therefore
becomes a common parameter and a little thought will show that it is not viable to simply read into p
and set p= p + 1 in both members.

There is the possibility of one member reading into p and then being interrupted, whereupon the other
stacking member might also read into p. To avoid this possibility p must be updated by means of the
162 instruction. It would be possible to use the 162 instruction to lock out the stack whilst any given
member was accessing it. However, this procedure would give rise to unnecessary 163 and 164 instruc-
tions. By using the 162 instruction as in the example given, it is possible to increment p before reading
into the stack and thus safely reserve an area and then use it.

Although r is a common parameter in the examples previously given, problems arise when there is
more than one member incrementing r; in previous examples one member incremented r and the other
reduced it. Unlike p, r can be updated in one interruptable instruction, the 011 (ADS) instruction. The
problem is how to test whether the stack is full and whether Member 1, the printing member, might
need a 163 instruction. Considering the former half of the problem, if a test for r =t is made and both
members update r virtually in parallel the stack could overflow. The test must therefore be for

r=t or t=1; if the result is positive, the testing member must de-activate itself. Unnecessary de-
activation could result but this is the price to be paid for ensuring against the overflow condition arising.
1t is not possible to avoid all unnecessary 163 and 164 instructions, although every effort should be
made to reduce their occurrence because of the time taken to perform extracodes. The general rule is
that whenever a situation requiring a 163 or 164 instruction may occur, then one must obey the instruc-
tion as it is never possible to determine whether or not the instruction is really necessary. With even
more members sharing r, correspondingly more tests would have to be made: if a third member
shared r, the test would be for r =t or t-1or ¢t - 2.

The second half of the problem, to determine whether the printing member might need a 163 instruction,
is resolved by testing for r = 1 or 2. To appreciate why it is necessary to test for r = 2, suppose that
one stacking member reads a record into the stack, sets r = 1 and is then interrupted before testing r.
The other stacking member could then also read a record into the stack and set r= 2. If the teston r
was simply for r = 1 the printing member would never be activated; the stacking members would con-
tinue until the stack was full and then de-activate themselves, thus leading to complete paralysis.

The spurious re-activation condition mentioned in previous examples is combatted by following any 164
instruction by a loop back to the test that gave rise to the 164 instruction.

70 4095 (4.68)

MEMBER 0

4095 (4.68)

AUTO 1 A

SET r=0

SET P=t

AUTO 2 B

Open file 1

_.I

Read into R1

No

Yes

Close file 1

il |

SUSAR

L

BRN *-1

No

SUSAR

BRN *-2

it

STOZ p+1

LDX 1 P

LDX 7 P

ADN 7 1

If contents of X7>¢
subtract t

SUSMA 17 p

— BRN,

Stack contents of
R1 in X1

AUTO 1 0

BRN

71

MEMBER 1

72

Set ¢q=0

l

Open print file

Print contents of g

Setq=q+1,
If g +1>t subtract ¢

Setr =r-1

AUTO 0 O

l

AUTO 2 0

BRN

4095 (4.68)

Open file 2

L

Read into B2

Close file 2

SUSAR

BRN *-1

No

SUSAR

BRN

STOZ P+1

LDX 1 P

LDX 7 P

ADN 7 1

If contents of X7>t
subtract t

SUSMA 7

BRN

Stack contents of ‘
R2 in X1

|

LDN 7 1

ADS) T 2

AUTO 1 0

BRN

MEMBER 2

4095 (4.68)

A point of interest is that the printing member, Member 1, has only to test for r = 0 to determine
whether to de-activate itself but must test for r = t - 1 or t- 2 to determine whether the stacking
members require a 163 instruction. Member 1 also has to issue 163 instructions for both stacking
members since it has no way of ascertaining whether one or both stacking members require activation.

One detail that is omitted from the example is how the job is terminated. Clearly, the job must be
rounded off by the printing member although a terminating DELTY would have to come from Membe?
0. One method of terminating is to have two switches, X and Y, that are initially set to zero. On closing
File 1 Member 0 would set X= 1; similarly Member 2 would set Y= 1 on closing File 2. Member 1
would test X and Y before issuing each 164 instruction and, on finding both switches non-zero, would
close the print file.

PERIPHERAL TRANSFERS

General information on peripheral transfers is given in Chapter 6 of this manual. This section gives
a description, illustrated by flowcharts, of how Executive deals with a peripheral transfer instruction.
The instruction concerned is the 157 (PERI) instruction referring to a card reader; the actions des-
cribed refer to a single program Executive on a machine at the lower end of the 1900 Series.

THE PURPOSE OF THIS DESCRIPTION IS TO GIVE THE READER AN IDEA OF
HOW EXECUTIVE DEALS WITH PERIPHERAL TRANSFER INSTRUCTIONS;
HOWEVER, NO INFERENCE SHOULD BE DRAWNA AS TO THE RELEVANCE OF
THIS DESCRIPTION TO SPECIFIC EXECUTIVES OR SPECIFIC PERIPHERAL
DEVICES.

FLOWCHART 1

When a program issues a 157 (PERI) instruction, Executive is entered. Executive allows interrupts,
and proceeds to make various checks as to the legality of the instruction. Executive also determines
the form of the 157 instruction i.e. whether X is theunit number, or the number of an accumulator
containing the unit number. If any of the legality conditions is violated, Executive types out an ILLEGAL
message and suspends the program.

FLOWCHART 2

Having established the legality of the 157 instruction, Executive deals with the matter of hesitations;
these are fully described in Chapter 6. At this point it can just be noted that Executive checks that
carrying out the 157 instruction will not cause hesitation overload. Hesitation overload would occur
if the number of peripherals active at any time exceeded the hardware capacity to deal with all the
transfer of data. In order to avoid this, Executive has a hesitation constant, and each peripheral
device has a related value. When activating a peripheral, Executive subtracts the value associated
with that peripheral from the hesitation constant. The hesitation constant is such that the sum of the
values associated with any combination of active peripherals that would cause hesitation overload
exceeds the hesitation constant. Thus, by checking to ensure that the hesitation constant is never
exceeded, Executive ensures that hesitation overload never occurs.

Further down the flowchart interrupts are inhibited and an indicator is set to show that an instruction
is in progress. The state of this indicator is tested at the third step in the flowchart, and if it is found
to be set, the instruction that caused the indicator to be tested will loop until the indicator is unset.

In a multiprogramming context a loop would, of course, be impossible; Executive would activate
another program.

The final step in this flowchart is to ascertain the state of the peripheral device, by sending a 'command’
to it to perform the required transfer. The reply, sent back immediately from the peripheral device,
may be ""Accepted', "Rejected", or '"Inoperable’.

74 4095 (4.68)

FLOWCHART 3

If the command is "Accepted", Executive sets the reply word negative, subtracts the value of the
peripheral from the hesitation constant, and then tests to see if this transfer is a repeat of a previous
transfer. If this is the case, a branch is made to E; otherwise, Executive returns control to the object
program.

¥ the command is not accepted, nor a repeat, a test is made to determine whether it is ?ejected or
inoperable. I it is rejected, Executive will allow interrupts, and loop back to the main line of flow at
B in Flowchart 2. If the command reply is "Inoperable”, a FIX message is typed if this has not already
been done, and a loop made as with the rejected command. Until a peripheral or typewriter interrupt
occurs, the command is repeated indefinitely (once every 150 microseconds on a 1902).

FLOWCHART 4

If the 157 instruction is a repeat, a branch is made from the main line of flow (in Flowchart 3) to E.

A test is made to see if the command has been accepted. If this is the case, Executive transfers control
back to the object program. Otherwise, an error message is typed and the program that issued the

157 instruction is suspended.

FLOWCHART 5

If a peripheral transfer is stopped for any reason once it has been set in progress, Executive is
entered (top of Flowchart 5). In this case no interrupts are accepted in the course of the routine.
Executive establishes the reason for the interrupt. If the transfer is terminated, either correctly or
in error, an end-of-transfer routine is entered; otherwise a branch is made (F) leading to the com~
pletion or repeat of the transfer. The end-of-transfer routine begins by testing to see if the transfer
was terminated in error. K this is the case, an error message is typed and a warning simulated.

(A warning is said to have occurred if the HOLD button is pressed.) In the c ase of a card reader, the
repeat process involves the operator in repositioning the card or a replacement, and then pressing
the ALLOCATE button.

FLOWCHART 6

The end-of-transfer routine continues by testing for the warning; if this is detected, the card reader
is disconnected, the reply word, hesitation constant, and the 'instruction in progress' indicators are
adjusted, and the program that originally issued the 157 instruction causing the interrupt is suspended.
If no warning is detected, the transfer is wound up in the same way, except that the card reader is

not disconnected, and control is transferred to the object program which issued the original 157
instruction.

FLOWCHART 7

If the transfer is not terminated, either the ALLOCATE or the HOLD button may have been pressed.
These conditions are tested for. In the former case, if the program which issued the original 157
instruction is suspended awaiting reallocation of the card reader, the suspension is lifted and a branch
made to the initiation of transfer at C (see Flowchart 2) so that a transfer can be effected. Otherwise,
a test is made for the warning. If this is detected, and an instruction is in progress, a branch is made
straight back to the object program so that instruction can be completed before termination occurs in
the normal way. If no instruction is in progress, the card reader is disconnected and control trans-
ferred to the object program.

4095 (4.68) 75

157 (PERI)
Instruction

Allow
Interrupts

A
Is Control

No Area Entirely
! . Within/

Store

Form Hesitation
Control Words

Replace X if
256 Bit is Set

Would
Yes Transfer
Cau§e Hesita}ion
Overload

Is an Instruction

Search for
Card Reader

NS
Is Card

No Reader in
Device
List

' No <Card Reader

Agsigned tg

Entirely
Within. Store

Is
Transfer
Length

Type 'lllegal’ °

Message

Suspend
Program

Flowchart 1

76

@ >

Yes ./Already in
Progress on

this Card Redder

Preserve Hesitation
Control Words in
Hesitation
Registers

Inhibit
Interrupts

Set 'Instruction
in Progress'
Indicator

Place Hesitation
Control Words in
Hesitation
Registers

Send Appropriate
Command to Card
Reader and Obtain
Direct Response

Fiowchart 2

4095 (4.68)

Is this a Yes
Repeat
Unset 'Instruction Set Reply
in Progress' Word Negative
Indicator
- No Rgsi:;ﬁ;e Adjust Hesitation
=N i g
Inoperable ? oaias
Yes Has 'Fix’
Bad <. Message Yes
Been Typed
Type 'Fix'
adage Exit to
> Object Program
Allow
Interrupts
Flowchart 3 e
ommand No Type 'Err'
Accepted 2 Message
Exit to Instruction i;‘s,‘;?“d fp r°grag‘R 4
Beyond Point at which h a; 1r;{g ‘;f atr d e
Interrupt Occurred it o o
Flowchart 4
4095 (4.68)

7

Program Interrupt
from Card
Reader

Inhibit
Interrupts

nsfe Yes No
AMNL

Terminated ?

Flowchart 5

Flowchart 6

78

Type 'Err’'
Message

Simulate
Warning

No

{rning ?

Disconnect
Card Reader

>

Set Reply Word
Positive with

State of Peripheral
and Count Remainder

Reduce Hesitation
Loading

Unset 'Instruction
in Progress’
Indicator

> WJaN

__ Routine Entered

1

Exit to Instruction
Beyond Point at which
Interrupt Occurred

"\ from End of
'Err' Message

Suspend Program
Awaiting Reallocation
of Card Reader

4095 (4.68)

Yes

Is Program\
Sus/pended Awaitihg

No

'Allocate’
< Button >

Pressed

xgeallocation of/

Card Reader

Remove
Suspension

Obtain Hesitation
Control Words
from Card Reader
List

Set 'Repeat’
Indicator

Flowchart 7

4095 (4.68)

No

Warning ?

(Is an Yes
Instruction P

in Progress
=z

Disconnect
Card Reader

Exit to Instruction

Beyond Point at which

Interrupt Occurred

79

08

(89'%) S60¥

wesboud Aseuiq e jo 1ewsoq g} ainbiy

(e =
i PRE- [
| REQUEST |
{ BLOCK |
t
i

L SENTINEL

————— - —-—-d

Cassette
tape only

REQUEST
BLOCK

e S 1 [~ 'I liatet 35 il
| SUPPLE~] ! : |
: MENTARY : DATA ENTRY : DATA 1 1+ ENTRY :
¢ REQUEST : BLOCKS BLOCK : BLOCKS | ! BLOCK |
| BLOCK i N ']
e e d T e I o e = (I = e e LT 4
N v J
22AM or Overlay
EBM only programs
only
LAYOUT OF PROGRAM
NUMBER OF
OCTAL 73 WORDS IN RESERVED BLOCK TYPE
BLOCK

Character 0

Character 1

Character 2

Character 3

LAYOUT OF WORD 0 OF EACH BLOCK

BINARY PROGRAMS

Although programs are normally written in a convenient language e.g. PLAN, FORTRAN, COBOL, the
central processor and Executive can handle programs only in machine code. This form is known as
binary program: 1t is a function of the compilers and associated routines, such as the General Purpose
Loader, to convert the source language program into binary program.

Some compilation processes convert the source program into binary program and putput it on a suitable
medium for preservation and loading into store. Others leave the binary program in the processor
store, ready for use. In the latter case it is possible to make Executive output the binary program onto
a suitable medium, such a process being known as dumping.

This part of the manual describes the formats used on various media for binary programs and the
means by which loading and dumping can be carried out.

Binary program formats
All binary programs input or output by Executive have the following standard format:

1 A request block indicating to Executive such information as the program's size, peripheral require-
ments and program /subprogram priorities where appropriate. This may be followed by a supple-
mentary request block.

2 The binary program data blocks.

3 An entry block that indicates to Executive where to enter a program and the required action on the
program, i.e. GO, SUspend, or COntinue with next program instruction.

Block types

All blocks consist of an integral number of 24-bit words, the first of which indicates the block type and
size. The types and their numbers are as follows:

Type 1 Request block, also known as request slip

Type 0 or 5 Data blocks

Type 2, 3or 4 Entry blocks

Type 6 Supplementary request block

Type 62 Pre-request block sentinel

The first word of each block contains the following information:

Char: 0 Octal 73

Char: 1 Number of words in block (except pre-request block sentinel)
Char: 2 Reserved

Char: 3 Block type

A supplementary request block is present only if the program is to be run in 22AM or EBM and, if
present, follows the request block. The pre-request block sentinel applies only to programs stored
on cassette tape and, if present, immediately precedes the request block. In overlay programs there
is an entry block for every overlay in addition to the normal one for the initial entry.

The above information is illustrated in Figure 13.

Block type 1. request block (request slip)
A request block has the following format:

Word 0: Block specifying word

Word 1: Program name

Word 2: Peripheral request and trusted program status word
Word 3: Core store request word

Words 4 and 6: Reserved

4095(5.69) 8 1

Word 5: Overlay directory word

Word 6: Self-monitoring address

Word 7: Priority of Member 0, which must exist

Words 8 to 12: Priorities of other members, which need not exist
Word 13: Negative check sum

Words 14, 15: Optional characters

The contents of each word are further defined below.

WORD 0

As standard, with character three set equal to one.

WORD 1

Four character program name composed of letters and digits of which the first character must be a
letter. The name EXEC is reserved. The four characters are used to identify the program within the
system and in Executive /operator communication. Optionally up to 8 further program name characters
may be placed in Words 14 and 15 for use as an accounting code, see page 84.

WORD 2
Bits 0 and 1

If either Bit 0 or Bit 1 is set to 1, the peripheral from which the program is loaded will be assigned
to the program as unit 0 of its type. If one or more peripherals of the same type are requested in
Bits 6 to 8 or Bits 15 to 17, the setting of Bit 0 or Bit 1 will not result in an additional unit being
assigned; it will, however, ensure that the load peripheral is the one retained as unit 0.

The distinction between Bit 0 and Bit 1 is that when the program is dumped Bit 0 is always zero, but
Bit 1 is in the same state as on loading.

Bit 0 is used with programs in G.P.L. form to ensure that the loader reads the semi-compiled pro-
gram from unit 0. It is set automatically by compilers and consolidators.

Bits 2 to 5
The table below gives the significance of each of these bits if set.

Bit Status Significance

2 Q Writes to direct access system /directory files

3 R trusted program facilities used

4 S trusted program facilities used; always set to zero on program dumping
5 T Requires use of GEORGE 3 Executive

Bits 6 to 20

These bits specify the number of basic peripherals required by the program as follows:
Bits 6 to 8 Number of paper tape readers

Bits 9 to 11 Number of paper tape punches

Bits 12 to 14 Number of line printers

Bits 15 to 17 Number of card readers

Bits 18 to 20 Number of card punches

Bits 21 to 23

Reserved

WORD 3

This word specifies the core store requirement of the program as shown below.

82 4095(5.69)

o

N

Bits O to 8

The number of units of 64 words, held as a binary number.

Bits 9 to 16

Must be zero.

Bits 17 to 23

The number of additional units of 32,768 words, held as a binary number.

WORD 5

If this word is zero, the bootstrap will take no action. If the word is non-zero, Bits 0 and 1 are re-
served and the remaining bits give the address of the first word of the overlay directory. In this case
the program's subfile description is scanned and a directory giving the layout of the program's over-
lay and permanent units is built up starting at the word indicated by the value of Bits 2 to 23.

WORD 6

Address for self-monitoring of illegal orders or floating-point overflow. Zero if no self-monitoring.

WORD 7
Bits O to N
The priority of Member 0 held as two characters.

Bits 12 to 17
Octal 77.

Bits 18 to 23
The number of the member, in this case 0.

WORD 8

The priority of Member 3 held in the same format as Word 7. If this or other members below do not
exist, their priority word must be set to zero.

WORD 9

The priority of Member 1 held in the same format as word 7.

WORD 10

Must be set to zero but must not subsequently be assumed to contain zero.

WORD 11

The priority of Member 2 held in the same format as Word 7.

WORD 12
The priority of Member 5 held in the same format as Word 7.

WORD 13

This word holds the check sum. The number of words in the request record is given in Character 1 of
Word 0. The value of the check sum word is such that if the words in the record (starting with Word 0)
are summed using the 127 order the result is zero.

4095(5.69) 83

WORDS 14 and 15

Optional program name extension, comprising up to 8 letters or digits, left-justified. These words are
used by the Log Analysis program in accordance with its specification. They are included in the check
sum word count character of Word 0 and are output on dumping.

Block type O: data block

This block contains between 1 and 16 words of program plus 3 or 4 further words as described below.
This type of data block is usually used with media other than magnetic tape or direct access media
since considerable economies result from the use of type 5 data blocks with these media.

WORD O

As standard with character three set equal-to zero. The word count is always the number of program
words plus three. ’

WORD 1

The destination address, relative to the datum, of the first word of program in the block i.e. Word 2.

WORD 2

The first word of program data in the block. 3

WORDS 3 to 17

These words are optional on paper tape but always present on punched cards and magnetic or cassette
tape. If present, they contain further words of program or zero.

NEXT WORD

Negative check sum.

WORD 19

Optional block sequence number. If present, this word is ignored by Executive and is not included in the
word count in Word 0. This word applies to cards only.

Block type 5: data block

This is a data block pair and consists of a five-word specifying block and a further block that consists
entirely of words of program and has a maximum length of 512 words. The block pair is regarded as
a single block for the purpose of block counts. The format of the specifying block is given below. —

WORD 0

As standard, with character three set<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>