

ICL Introduction
to
GEORGE 3

1900 Series

-
The policy of International Computers Limited
Is one of continuous development and Improve­
ment of Its products and services, and the right
Is therefore reserved to alter the Information
contained in this document without notice. ICL
makes every endeavour to ensure the accuracy
of the contents of this document but does not
accept liability for any error or omission. Any
equipment or software performance figures and
times stated herein are those which ICL expects
to be achieved in normal circumstances. Where­
ever practicable, ICL is willing to verify upon
request the accuracy of any specific matter con­
tained In this document.

•

Technlca' Publlcatlo", 4265

© International Computers Llmlted:1971

Second EdltiorrAprll 1971

Issued by Technical Publications Service
International Computers Limited
Head Office: ICL House, Putney, London SW15
Produced by ICL Printing Services
at Letchworth, Hertfordshlre

Preface

GEORGE 3 is the full ICL operating system for all unpaged central processors in the 1900 Series from the 1903A
upwards. References to "the current mark" are to Mark 6 of GEORGE 3. The manual will be brought up to date
as further.marks of the system are issued.

The minimum configuration for GEORGE is:

a 1903A central processor with the following features:

extended mode

a real time clock

a program timer

the commercial computing feature

48K words of COrestore if programs are small;otherwise 64K is a r.easonableminimum

512K words of direct accessbacking store (storage units and/or drum)

four magnetic tape decks

a line printer

a paper tape reader or card reader

The extended mode feature is required evenwith a core store of 32K words.

If MOPis to be used then 7071 teletypewriter consoles are required. These can be connected via:

a 7007/2 multiplexer and 7008 data terminals

a 7920 or 7930 scanner

a 7900 communications processor and 7920 or 7930 scanner

Alternatively, if only a few consoles are being used, then each console can be connected via a 7070 data terminal.

If remote batch processing is to be used then 7020 terminals on telephone lines are required. These can be
connected via:

I
I

I
I
I
I

7010/3 or 7010/5 or 7010/7 uniplexers

a 7007/2 multiplexer and 7010/1 or 7010/4 or 7010/6 data terminals

a 7920 or 7930 scanner

a 7900 communications processor and 7920 or 7930 scanner

Each 7020 terminal must have a 7023 teletypewriter connected to it.

A reasonable configuration for MOPwould include 96K words ot core store, a drum, a storage unit, and ten to
twenty consoles.

This manual is directed at users who have no experience of GEORGE3 but posses a basic knowledge of 1900
Seriesprogramming. It is essential that users read Introduction to GEORGE 3before tackling the main system
manual, OperatingSystems GEORGE 3 and 4 (4th Edition, TP 4267).

Introduction to GEORGE 3contains sevenchapters, of which the first is a general introduction to operating
systems. The second chapter covers the GEORGE command language and the function of the job description in a
GEORGEenvironment. Chapter 3 dealswith backing store and includes a section of the use of the editing facility.
Chapter 4 introduces methods of handling input and output to user programs. Chapters 5, 6 and 7 describe MOP
(Multiple On-lineProgramming), scheduling, and budgeting facilities respectively.Appendix 1 describes the
organization of a job description:

4265(4.71) iii

-
In addition to this introductory manual and the system manual, GEORGE 3 Operating (Edition 2, TP 4223) and
GEORGE 3 and 4 OperationManagement (Edition 3, TP 4199) describe the functions of the operator and the
installation manager of an installation running under GEORGE 3. More detailed information on the use of MOP
is available in the manual, Introduction toMOP (Edition 1, TP 4194).

This edition of the Introduction to GEORGE 3 supersedes all previous editions.

iv 4265(4.71)

L Contents

Preface iii

Chapter 1 Introduction to operating systems
OPERATING SYSTEMS
GEORGE 3
Job descriptions 2
Internal management of central processor and core store 2
Remote batch processing 3
Backing store and off-line facilities 3
MOP (Multiple On-line Programming) 4
Work scheduling 4
Logging and accounting 5
GEORGE 4 5
OTHER ICL OPERATING SYSTEMS 5

Chapter 2 Jobs 7
COMMAND LANGUAGE 7

Format of commands 7
Built-in commands 7
Macro commands 7
. System macros 8
User macros 8
Command processor levels 8
Parameters in user-defined macros 9
Conditional commands 9
Program event messages 10
Types of job description 10
Monitoring files 10
INPUT jOUTPUT FOR OBJECT PROGRAMS 11
Input and output using off-lining facilities 11
Input and output using on-line peripherals 11
TYPES OF JOBS II
On-line jobs II
Background jobs 12

Chapter 3 Backing Store 13
THE ENTRANT CONCEPT 13
The contents of an entrant 13
THE FILESTORE 13
Device independence 13
Types of file 13
Modes of access 14

4265(4.71) V

-
The structure of the tilestore 15

Filenames 17

Reasons for the structure of the filestore 18

THE BACK-UP SYSTEM 19

THE EDITOR 21

Calling in the editor 21
Editing language 21
Transcribing: T 23
Positioning the pointer: P 24
Inserting: I 25
Replacing data: R 26
The Forget (F) instruction 26
Ending the edit: The E and Q instructions 26
ENTRANTS OUTSIDE THE FILESTORE 27
Secure entrants 27
Insecure entrants 27
Conversion of entrant categories 29

Chapter 4 Input/output facilities 31
INPUT TO THE FILESTORE 31
The INPUT command 31
Embedded INPUT commands 31
Embedded data 32
INPUT AND OUTPUT FOR OBJECT PROGRAMS 32
Off-line peripherals: ASSIGN and LlSTFILE 32
On-line peripherals 34
THE PROPERTY SYSTEM 34
The PROPERTY and ATTRIBUTE commands 35
Some uses of the property system 35
MULTIPLEXERS 35
7020 REMOTE TERMINALS 35
Facilities provided on 7020 terminals 35
PERIPHERAL CLUSTERS 36
THE OPERATOR'S FUNCTION 36
MOP TERMINALS AS INPUT/OUTPUT DEVICES 36

Chapter 5 MOP 37
INTRODUCTION 37
ENVIRONMENT 37
SYSTEM CONTROL OF ON-LINE USE 37
THE BREAK-IN FACILITY 38
Break-in levels and command processor levels 38
MONITORING WITH MOP 38
TYPICAL MOP OPERATIONS 38
FURTHER MOP FACILITIES 39
Background jobs 39
Conversing with an object program: The ONLINE command 40

Subsystems under MOP 40

EXAMPLE OF A MOP JOB 40

vi 4265(4.71)

I

Chapter 6 Scheduling 43
SCHEDUliNG 43
THE HIGHLEVELSCHEDULER 43
Factors relevant to high level scheduling 43
What the high level scheduler does 44
THE LOWLEVELSCHEDULER 44
EXECUTIVESCHEDUliNG 45

Chapter 7 °Budgeting and accounting 47
BUDGETARYCONTROL 47
CLASSIFICATIONOF BUDGETS 47
Transient budgets 47
Stable budgets 48 °

ALlOCATION OF BUDGETS 48
REMOVALOF BUDGETS 48
PRIVILEGES 48

Appendix 1 Writing a job description 49
THE COMPLETEJOB DESCRIPTION 49
INTRODUCINGTHE JOB DESCRIPTIONTOGEORGE 50
THEWHENEVERCOMMAND 50
COMrILINGTHE SOURCEPROGRAM 50
CONNECTINGPERIPHERALSTO THE PROGRAM 50
ENTERINGTHE PROGRAM 50
PROGRAMEVENTS 51
THE PRINTCOMMAND 51
THE RESUMECOMMAND 51
THE RUNJOBCOMMAND 51

Indl»(S3

\ A °4265(4.71) vii

-
Illustrations

Figure 1 Filestore structure 16
Figure 2 Company Structure 1 18
Figure 3 Company Structure 2 18
Figure 4 Entrant category conversion 28

B 4265(4.71) ix

Chapter 1 Introduction to operating systems

Computers consist of hardware, the electronic machinery by which data processing is carried out, and software
which activates and directs the hardware. Software is the collective term for programs, the sequences of instructions
which, translated into a computer readable form, actually control the computer's activities. Programs fall into three
categories:

Those designedby user programmers, or possibly supplied by the manufacturer, to solve the particular
problems presented in the applications for which the computer was acquired.

2 The compilers, programswhich translate user programswritten in programming languagesinto machine code.

3 The control programs and operating systems which control the running of other programs.

Compilers, control programs and operating systems are always supplied by the manufacturer, and are as
indispensable as the hardware in making the computer work.

An example of a control program is Executive, permanently located in the core store of the ICL 1900 Series
computers. Executive regulates the flow of work through the computer in conjunction with the human operator.
It handles the transfer of data between peripheral (input and output) devicesand the core store.

Executive checks that the peripherals are functioning correctly and informs the operator when they require
attention. It translates and implements commands input by the operator via the console typewriter. Executive,
except for small configurations, provides multiprogramming facilities;where these are available,Executive allocates
peripherals as required, and selects programs to be run in accordance with the priorities specifiedby the programmer.
Executive also handles extracode facilities. (Extracodes are routines that supplement the standard hardware order
code. In some small central processors, for example, multiplication and divisionmust be carried out by extracodes.)

Despite Executive's internal organizingpowers, human intervention is still necessary to run a computer. The
operator is responsible for servicingthe basic peripherals; supplying the line printer with paper and the card punch
with cards, for example. It is the operator who initiates a program run, and who is largely responsible for the
schedulingwhen multiprogramming.

Executive, the hardware and the operator together form the basic operational environment of a 1900 Series
installation, with the operator as the point of contact between the operational environment and the user.

OPERATING SYSTEMS

In a small installation, the combination of the operator and Executive is usually sufficient to keep the work flow
up to the required level.However, in a large installation where many programs are being run, the operator's
activities become time-consumingto the point where it is impossible to obtain maximum efficiency. An operating
system is designed to help the userwith a large installation make the most of his machine's potential. This amounts
to cutting down as far as possible on the need for the operator to intervene in the running of programs.

The objectives of an operating system are:

As an aid to management, to increase the overall efficiency of an installation by increasing the throughput
rate and by providing accurate budgeting and accounting facilities.

2 As an aid to programmers in the development of programs, to decrease the turnround time of a program,
eliminate operator error and improveprogram testing and postmortem facilities.

3 To provide extra facilities not available in the basic operational environment, for example MOP(Multiple
On-line Programming,see below, and Chapter 5) and remote batch processing(see below).

GEORGE 3

The 1900Series Executive could be considered as a smalloperating system.

4265(4.71)

-
However, the term 'operating system' usually refers to a set of software routines exercisingmuch more extensive
control over the computer's activities than Executive does. Operating systems are designed to provide extra
facilitieswhich help to achieve the objectives already defined. The GEORGE 3 operating system achievesthese
objectivesby providing the following facilities:
1 Automatic handling of operating instructions which would normally have to be carried out by the operator

in the course of the run.

2 Efficient internal management in the use of core store and the central processor.

3 Givingprogrammers direct (on-line) access to the computer, bypassing the operator.

4 Batch processingusingperipherals remote from the machine room.

S Software control of files and a security system for controlling accessto them.

6 Minimizingreliance on basic peripherals by off-liningto magnetic media.

7 Automatic work scheduling.

8 Accurate and flexible budgeting and accounting facilities.

The next sections of this chapter discussthese facilities in more detail, and are followed by a brief description of
other operating systems available to 1900 Seriesusers.

Job descriptions

Under GEORGE3, any of the operating instructions which would normally be handed to the operator in a basic
operational environment can be givento GEORGE instead, in the form of ajob description. Ajob description is a
set of instructions, called commands, similar to a program, written in a specialcommand languagewhich resembles
simple English for ease of use.
Like programs,job descriptions are written on coding sheets and subsequently punched on cards or paper tape,
which are read by GEORGE from the appropriate input peripheral. The job description is then stored in ajob
description file.

At the beginning of his job description, the programmer specifiesone of two courses of action to GEORGE: either
the programs described in the job description may be run at once, or the job description may be filed on backing
store for later use. Jobs which run programs in this manner, without programmer intervention in the course of the
run, are calledbackground jobs (see Chapter 2).

Alternatively, instructions in command languagemay be input from a MOPterminal:

WithMOP,the programmer types in his instructions from a typewriter console and GEORGE implements each one
before inviting the programmer to type the next. In this situation the user in effect takes over the function of a job
description HIe;however, it is possible to initiate a background job from a MOPterminal.
Since the job description is executed by GEORGE the operator's need to intervene constantly in the running of a
program is clearly reduced. The resultant gain in efficiency is one of the major advantageswhich an operating
system offers in a large installation where many programs are to be run simultaneously.

Internal management of central processor and core store

The way in which an operating systemhandles the internal management of the central processor and core store is a
crucialfactor in decreasing the turnround time of ajob and increasingthe installation's computing power.
Multiprogrammingfacilities are provided by Executive to givemore efficient use of central processor time, but the
number of programs that can be run simultaneously is limited by the size of the core store and the number of
availableperipherals.

Under GEORGE 3, the number of programs that can be active at anyone time is not restricted to the number that
can be held simultaneously in core store, programs are held on fast magnetic media and brought into core whenever
processingtime is available.This process of swappingprograms in and out of core store is carried out automatically
by GEORGE. Furthermore, the off-liningfacilities, described on page 32, remove the restriction on multiprogramming
imposed by the number of peripherals on the installation.

The GEORGE 3 scheduling system decideswhat proportion of the machine's resources to allocate to each program
on the basis of scheduling information supplied by the user.

The GEORGE 3 scheduling system ismore fully described in Chapter 6.

2 4265(4.71)

Remote batch processing

A computer installation often consists of a central machine room, containing the required hardware configuration,
with programmers at various locations remote from the machine room writing programs and send~ngt~em to t~e
machine room to be run. For some smaller installations, this arrangement may not lead to any senous mconvernence
as the programmers' location might be close to the machine room, so that transportation problems are not involved,
and the volume of work being processed in the machine room ismanageable.Many organizations, however, have
branches or departments located at a considerable distance from each other and the existence of a singlecentral
machine room, besides being geographicallyinconvenient, can cause a seriousbottleneck.

On-line programming is one method of givingprogrammers at remote locations direct access to a computer
installation. However, the input and output facilities availablewith an on-line programming terminal are limited
and do not allow for large scale input/output. GEORGE 3 therefore includes a remote batch processing system that
allowsusers to input data and programs, and to receiveoutput, on peripherals remote from the central machine
room. This is done by means of 7020 terminals.

With the use of remote batch processing,job descriptions, programs and data are input from a basic peripheral at a
location remote from the machine room. This input is read into backing store and programmers can then use it in
the normal manner. Any output from the program may be routed by GEORGE to peripherals at the remote
installation where the job originated, or at another remote installation. Remote batch processingtherefore enables
a small computer installation to be set up at a distance from the central processor and backing store.

The GEORGE 3 remote batch processing facility with MOPthus offers a great increase in efficiency to a user with
a large installation whose facilitiesmust be made availableat widely separate locations:

Backing store and off-lining facilities

BACKING STORE

Under GEORGE, backing store is organized so that as much as possible of the data to be handled can be accessed
by the central processor without intervention by the operator. Data on backing store can be held in one of two
ways:

In the filestore. The filestore is the most important part of backing store under GEORGE 3. It is held on
direct access storage devices(fixed and exchangeable discs and drums) and also on magnetic tape. Information
in the filestore is logically organized into files which are device-independent; that is, they are referred to by
name rather than by hardware addresses, so that the user need not know where his data is physically located
at a givenmoment. GEORGE alters the physical arrangement of fileswithin the filestore according to the
requirements of the central processor. For example, a file may be read in from a pack of cards onto a disc or
drum in the filestore. Later it will be dumped to magnetic tape as a precaution against its loss in the event.
of machine failure. The file can subsequently be moved from one device to another any number of times
without the user's knowledge. The filestore enables users to store within the system all the information
necessary for running ajob. SinceGEORGEmonitors the input and output activities of the programs under
its control, it can be made to direct the appropriate input and output action to device-independent files.
Consequently programs need not be speciallywritten to exploit the filestore facility.

GEORGEprotects users' files against unauthorised interference from other users by means of user traps.
Each user file has one or more traps associatedwith it, each containing a user's name and listing the modes
(for example, READ, andWRITE) in which the user is allowed to access the file in question. A user with
READ access to a file can read from it but not write to it; with WRITE accessa user canwrite to a file but
not append to it, and so forth. A dumping system ensures that a minimum of data is lost in the event of
machine failure.

2 Outside the filestore. The user may sometimeswant information to be held in device-dependent form
outside the filestore. This may be the casewhen he wishes to retain information on a tape which is to be used
at another installation, for example, or on a tape to be used when the system is not running under GEORGE.
Such filesmay be on either direct accessdevicesor magnetiCtapes, but only tapes can come under the
GEORGE security system described above. Files thus stored remain device-dependent, and will not be
dumped as a protection against machine failure.

OFF·L1NING

In a normal environment, data transfers take place between core store and basicperipherals, that is card readers
and punches, paper tape readers and punches, and line printers. Two factors reduce the efficiency of this system:

The slownessof basic peripherals compared to the high speed at which the central processor operates means
that much of a program's run time may be spent transferring data to and from basic peripherals. During such

r

4265(4.71) 3

-
transfers the central processor is idle. Multiprogramminghelps to compensate for these delays but does not
completely remove them.

2 Multiprogrammingis limited by the number of basic peripherals availablefor inputting and outputting
programs at run time.

An Executive environment offers a partial solution to the problem by providing standard utilities to copy data to
and from tapes, discs, and drums. Sincemagnetic media are relatively fast, the time spent in peripheral transfers
during a program run is reduced. However, two disadvantagesremain:

Processingtime is taken up in running a standard utility before each run of the user program, and after each
run if basic peripheral output is required.

2 Data transfer instructions in the user program must be rewritten to refer to the appropriate magnetic media.

GEORGE 3 provides a more sophisticated solution to the problem of data transfers. This is the off-lining facility.

Under GEORGE, data fed into the computer following an INPUTcommand is automatically copied to magnetic
media in backing store. The format of the original file is retained and peripheral instructions can be automatically
referred to the correct device by means of an ASSIGNcommand, so that programswritten for basic peripheral
input and output need not be rewritten. Output may be directed, againby means of an ASSIGNcommand in the
job description, to a file in the filestore rather than to an on-line peripheral. Apart from reducing the time spent
outputting data to a basic peripheral, this has the advantage that data thus held in the filestore may be accessedby
any other program. Data may be output to a basic peripheral at any time, by means of a LISTFILE command.
Off-liningalsomeans that the availability of basic peripherals at run time does not limit the number of programs
which could otherwise be run simultaneously under GEORGE.

MOP(MultipleOn-lineProgramming)

The idea of on-line work is that a programmer has direct access to a central processor. He does not have to send his
program to be punched, then submitted to an operator at an installation possibly distant from his own location;
this eliminates the possibility of human error and delay at severalstages in the proceedings and also cuts down on
the loss of time involved in transporting the program to the machine room.

Obviously, if the programmer can bypass the operator, feed his program directly into the central processor and see
the output immediately, program development is made far more convenient and efficient.

GEORGE's MOP(Multiple On-lineProcessing)facility permits a number of users to be on-line simultaneously to a
central processor, while batch work goeson in the background. AllGEORGE facilities relating to jobs and the
filestore are availableto MOPusers. (See the appropriate chapters for more information.)

A convenient device for on-linework is a console typewriter, which is suited to the input and output of small
amounts of information. The current version of MOPis designed for 7071 console typewriters. Later versionswill
cater for other devices.

MOPenables users to feed information into the system, to run programs, and to receiveoutput. One or more basic
peripherals may be simulated at the MOPterminal. This mode of operation is particularly well suited to jobs that
fall naturally into small sections, between which human intervention is required: for example program development,
inter-related file enquiries or editing. However, it is also possible to use a MOPterminal to initiate batch jobs to be
run as background activities.

MOPismore fully described in Chapter s.
Workscheduling

In a 1900 Series installation not running under GEORGE, the operator shares the task of scheduling with
Executive; that is,when multiprogramming, the operator loads programs into the availablecore store and
Executive allots central processor time to the programwith the highest priority which is able to run at a given
moment. When one program is suspended, for example, while awaiting a peripheral transfer, Executive scans the
other waiting programs and runs the one with the highest priority able to run.

When a program is completed, the operator is informed and he loads a new program into the newly freed area of
core store.

There are severalreasonswhy this system is an inefficient way to manage the resources of the core store and
central processor:

The need for physical intervention on the part of the operator in loading new programs results in considerable
loss of time considering the speed of the central processor.

4 4265(4.71)

-
2 The operator must decide which program to load at anyone time. This is a complex task, ashe must take

into account not only the availablecore store but also such factors as the peripheral requirements of the
various programs; consequently it is likely that job mixeswill not be the most efficient possible.

3 The system of Executive priorities is inflexible. The operator cannot ensure that a low priority job gets
sufficient use of central processor, without constantly changingpriorities. This difficulty becomes serious
when on-lineworking, requiring a fast response to each user, is involved.

THE HIGH AND LOW LEVEL SCHEDULERS

The two GEORGE routines that control schedulingare the high and low level schedulers.The high level scheduler
replaces the operator's function of selectingwhich waitingjob is to be run, on the basis of requirements specified
by users aswell as peripheral requirements and other criteria. Jobs selected by the high level scheduler are passed
to the low level scheduler, which sharesout central processor time in accordance with policies determined by the
high level scheduler. The low level scheduler is geared towards givinga reasonable response time to MOPusers,
although heavy demands necessarilycreate delays. These routines are described in Chapter 6.

Logging and accounting

In a typical installation, time on the machine will be bought by individual departments within the organization.
Each job, or program, will be givenan accounting number and the operator will keep a log of who uses the
machine. At a later stage, these figureswill be used to calculate the amount each department is to be charged.

Even in the most efficient installation, however, these figures cannot be completely accurate. It is difficult to
estimate the time taken to run one particular program, particularly in a multiprogramming environment, and it is
difficult to decide how much of that time was due to operator error or organizational inefficiency.

GEORGE 3 provides loggingand accounting facilities to calculate precisely the amount of time used by each
program and enables the installation manager to control the users of his installation by allocating to each of them
budgets for resources such asmill time and magnetic tapes. GEORGE checks that users do not exceed these
budgets.

Aswell as these built-in facilities,GEORGE 3 installations are also suppliedwith a log analysisprogram which will
calculate accounts for each user of the system. This program can be modified by the installation manager to provide
the kind of accounting information most appropriate to the installation.

The accounting and budgeting facilities are described in more detail in Chapter 7.

GEORGE 4

GEORGE 4 provides the same facilities asGEORGE 3, but is designed for usewith a paged 1900. In these
machines, the direct accessbacking store and core store of an object program are considered to be a unit, the
virtual store, which is divided into pages of 1Kwords in length. These pagesmay be distributed throughout those
parts of backing store and core store reserved for object programs, and only the particular pagewhich is required
need be in core store at a givenmoment. GEORGE automatically handles the swappingof pages in and out of
backing store. Advantagesof this system are that it is not necessary to find a contiguous area of core store large
enough to contain the whole object program, and that backing store transfers are reduced, since only the required
pages need be swapped into core store. It is also possible for two or more programs to have accessto the same page
in store. A page to be accessed in this manner must be written in pure code, that is, code which does not modify
itself in the course of processing, since only one copy of the page iskept in store. GEORGE 4 uses this hardware
facility to provide shared programs: that is, the same (pure) program operating simultaneously on two or more
different data areas. (In an unpaged system, if more than one program has access to a section of coding, a separate
copy will be kept in store for each program; consequently it does not matter if modifications in the coding occur.)

OTHER ICL OPERATING SYSTEMS

In addition to GEORGE3 and 4, ICL suppliesoperating systems that work in conjunction with the normal
Executive. These programs usually have some kind of privilegedstatus which givesthem facilities not availableto
other object programs. For example, an operating systemmight perform the extracode functions normally
undertaken by Executive. Two of the ICLGEORGE operating systems,GEORGE I and 2, are of this type.

Whenmultiprogramming, all programs are under Executive control and each can be regarded as occupying a
channel. The number of channels availablewith a particular Executive is the maximum number of programs that
can be multiprogrammed under that Executive. (A channel has no physical representation. It is simply a
convenient way of describing the method by which Executive controls multiprogramming.)GEORGE I thus
occupies one channel; however, it has the privilegeof setting up within itself a user's object program, the PUC

4265(4.71) 5

-
(ProgramUnder Control). Programs to be run under GEORGE are batched together into jobs; all the information '--
necessary to run the job is input to the system as a job description, in the GEORGE 1 and 2 command language
(which is similar to the one used with GEORGE 3 and 4) and where Executive would normally request operator
intervention, GEORGE interprets the appropriate command as specified in the job description.

GEORGE2, which consists of three programs occupying three channels, provides all the facilities of GEORGE 1
and, in addition, permits off-lining;two of its three programs are concerned with input and output between
backing store and basic peripherals. UnlikeGEORGE 3 and 4, off-line filesmay not be retained permanently in
backing store, but are output immediately to slowperipherals. However,GEORGE 2 off-liningapproaches that
availablewith GEORGE 3 in that it is not necessary to rewrite programs to take magnetic media into account.

It is not necessary that all channels be occupied by GEORGE; some channelsmay contain programs under
Executive, while others contain a copy of GEORGE and its PUC.
Other ICL software providing certain operating system facilities includes:

(a) Executive, as already described.

(b) Facilities supplied as part of the basic operational environment but which fulfil the operating system function
of reducing operator intervention. The PLANDELTY instruction is an example.

(c)

(d)

(f) Automatic Operator, which replacesmessagesfrom the typewriter console by pre-punched messages.
The remainder of this manual dealswith GEORGE 3. Unless otherwise stated, references to GEORGE are therefore
to GEORGE3.

Batch compilerswhich allow a sequence of programs to be compiledwith little operator intervention.

MINIMOP1 and 2, providing a limited range of on-line facilities for the small user.

6 4265(4.71)

Chapter 2 Jobs

The unit of work submitted to GbORGE is called a job. The information necessary torun the job is input in the
form of a iob description, comprising a seriesof commands from the GEORGE command language.
COMMAND LANGUAGE

The languageused to write job descriptions for jobs to be run under GEORGE is called the GEORGE command
language.

Format of commands

Ajob description is written as a seriesof commands. Each command consists of an optional label, preceding a verb
which may be followed by one or more parameters.

LABELS

A label is givenif it is required to GOTO the command in question from some other command in a job description
or macro definition file. The label servesto identify the command which is to be branched to and obeyed.

VERBS

A verb definesthe operation to be carried out. LOAD,RUNJOBand WHENEVERare examples of verbs.

PARAMETERS

Parameters define the manner in which the command is to act. In the command specification sections of GEORGE
manuals, all possible parameters for each command are given.Parameters are either mandatory or optional. If
mandatory, they must be giveneach time the command is issued. If optional, they may either be given (in permitted
groupingsonly, as defined in the command definition) or not specified. In some commands the parameter sequence
is fixed; in this case, if an optional parameter is omitted between two parameters which are specified, the absent
parameter must be indicated by a second comma following the first parameter.
In the EDIT command, for example, the parameter sequence is fixed; parameter A (oldfile) ismandatory, while B
and C (newfile and editfile) are optional. Thus

EDIT FRED

is permissible; so are

EDIT FRED,

and

EDIT FRED"HARRY

In the first example, the second and third parameter are omitted; in the second, the second parameter is null (as
indicated by the presence of the separating comma) while the third is omitted; in the third case the second
parameter is again null while the third is specified.

Built-in commands

A built-in command activates a relatively simpleGEORGE function, for example, loading or entering a program:

LOAD

ENTER

filename

Built-incommands are implemented by built-in parts of the GEORGEprogram.

Macro commands

Job descriptions are usually a mixture of built-in commands and macro commands. The latter are used to call in
more complex functions, such as compilers or the programs known to the system. Amacro command expands into

c 4265(4.71) 7

-
one ·ormore commands according to a definition stored in a file. The command as issued is the name of the tile
containing the definition.

. A macro command may be issued followed by one or more parameters, which represent the values of the variables
in the definition (seeParameters in user macros, below, for more detail on parameters)..

A macro command may be either supplied as part of the system or defined by the user. In either case, macro
commands are one of GEORGE's most important features. The macro concept means that, while the built-in
facilities of the system are relatively limited, the systemmay be considered by the user for practical purposes to
be very much larger, since built-in commands are supplemented by system or user macros which are used in exactly
the sameway. Asmore software is developed, it can be incorporated into the system-either as standard system
macros supplied by the manufacturer or as user macros available to users at a particular installation; thus each
installation can define its own command set in accordance with its users' requirements.

System macros

Systemmacros are used to call in standard software produced by leL for the 1900 Series, such as compilers. The
macros FORTRAN, followed by the appropriate parameters, will activate the FORTRAN compiler.When
GEORGE encounters a FORTRANmacro in a job description it finds the appropriate system file and expands the
macro into the commands necessary for loading the FORTRAN compiler from backing store, entering it and
running it.
A system macro such as FORTRAN and a built-in command like LOADare issued in exactly the same way.

. Note: Systemmacros like FORTRANwhich are described in this manual may be superseded by new macros.
Systemmacros will be defined in the relevant software manuals, and users should refer to these manuals to be sure
of havingup-to-date information on any systemmacros they wish to use.

User macros

If a user wishes to repeat a sequence of commands a number of times, he can define his own macro command and
store it in a me. Later the whole sequence can be implemented by calling the macro with the necessary parameters.

For example, a user might define a macro RUNPROGwhich expands into the commands

LINGO sourcefile, objectfile

LOAD file description

ENTER number

Note: LINGOis a fictional systemmacro, analogous to FORTRANwhich loads and runs the FORTRAN
compiler. LINGOhas been substituted where examples of a system macro are required in this chapter, since
specifications of actual systemmacros are subject to alteration.

Command processor levels

Whena job is initiated by a JOB or RUNJOBcommand, the source of commands to GEORGEchanges from the
card or paper tape reader (or MOPterminal) to a temporary or permanent job description file. The JOB command
is normally issued from a basic peripheral, but the commands that follow JOB and constitute the job description
are stored in a me and subsequently issued from it. This change of the source of commands is called a change of
command processor level. The JOB commandis said to be obeyed at command processor level zero; the commands
in the job description file (LOAD,ASSIGN,ENTER, etc.) are obeyed at the next lower level, in other words at
command processor levelone.

MACRO LEVELS

Within a givenjob the command processor level is increased if amacro in the job description file issues one or
more commands. For example, if the job description contains a macro, the commands within the macro definition
file will be obeyed at a command processor level one lower than that at which the macro is issued. If the macro is
issued at level one, the commands that constitute the macro will be obeyed at level two. If one of the commands
within this macro definition file is itself a macro (called a nested macro), it will cause a further increasein the
command processor level. Every time the source of commands changes to a new macro definition file, the command
processor level increasesby one. When the program exits from the macro control will be returned to the level one
higher than that at which the macro was obeyed.

8 4265(4.71)

Parameters in user macros

In the RUNPROGuser macro defined earlier in this section, the problem of assigningparameter values arises.An
ordinary job description to compile the FORTRAN source program contained in me named JACK, place it in file
JOE, and enter it at entry point I, would be written:

LINGOJACK,JOE

LOADJOE

ENTER I

If this sequence of commands is defined as a macro RUNPROG,as above, the parameters are included in the
originalmacro definition and the commands would be issued simply as

RUNPROG

THE PARAMETER BLOCK

Whena user macro is issued it has made available to it a parameter block of twenty-four variable length parameter
locations; these are named A to X in alphabetic sequence.

PARAMETER IDENTIFIERS

Manycommands are followed by a string of parameters, which are specifiedwhen the command is issued. In the
case of commands within a macro, actual parameter valuesmay be replaced by a string of parameter identifiers
if it is intended that the macro be used with a series of different values. Each macro may have a total of up to
twenty-four of these, from A to X, each corresponding to the parameter block location identified by the same
letter; actual values are stored in the parameter block locations. When a macro is executed, GEORGE substitutes
the actual values for the givenparameter identifiers.

The execution of the RUNPROGmacro requires three parameters: source filename (actual value JACK), object
filename (actual value JOE, later the name of the file to be LOADed) and the number indicating the entry point
(actual value I). For the purposes of this example JACKwill be stored in location A of the parameter block, JOE
in location B, and I in location C.When RUNPROGis expanded, parameter:identifiers will therefore be as follows:

LINGO%A,%B

LOAD%B

ENTER%C

The macro will be called as RUNPROGJACK)OE, 1;, at run time, GEORGEwill substitute for %Athe value held
in location A, that is, JACK; for %B,JOE; for %C, 1.

THE SETPARAM COMMAND

If the user wishes to repeat the macro using different data, he must re-issuethe macro call specifyingnew parameter
values.However,under some circumstances the user may wish to alter parameter values in the course of a run.

The SETPARAMcommand may be issued from within the macro whilst the macro is running to allow valuesheld
in the current parameter block to be reset.

The use of the SETPARAMcommand is fully dealt with in the GEORGE 3 and 4 manual

Conditional commands

Conditional commands are an important feature of the job description. There are two of these built-in commands,
IF and WHENEVER. .

The IF command enables the user to specify alternative courses of action according to whether or not certain
conditions have been satisfied. Typical examples of such conditions are program halts; messages;failures; states of
switches. The format of the IF command is shown in the example:

IF FAILED, GOTO IA

where the command (GO TO IA) which follows the condition (IF FAILED) indicates the course of action to be
taken if the condition is satisfied.
With theWHENEVERcommand, the user specifiesthe action to be taken whenevercertain categoriesof event occur:

4265(4.71) 9

-

WHENEVERBREAKIN,GOTO 2

WHENEVERCOMMANDERROR, GOTO lA

LOADJACK

ENTER

IF FAIL, GOTO lA

TheWHENEVERcommand applies to all the commands following it, until a newWHENEVERcommand
specifyingthe same event is issued, at which point the original command is superseded. If the condition specified
in the first parameter is encountered, the WHENEVERcommand is unset before the command givenin the second
parameter is obeyed. The events which permit a WHENEVERcommand are: command error, break-in and finish.

These two commands supply the decision-makingfunction of the programmer working on-line, or of the operator
working in a non-GEORGEsystem.

Program event messages

Whena program event occurs, a programevent message is written to a special area of core store. A job can have
only one program event messageat anyone time, that is each program event messageoverwrites the previous one.
The messagesassociatedwith HALTEDand DELETEDevents consist of the messagesgenerated by the extracodes
that cause the program events. For FAILED events, the messagegivesdetails of the failure.

To define the condition of an IF command more strictly, the user can include in the command a character string
to be compared with the program event message.The character stringmust be enclosed in parentheses or quotes;
if spaces are to be significant in the comparison, quotes must be used.

The user need not giveas his character string the entire text of the program event message.The condition will be
satisfied if the n characters specified in the IF command agreewith the first n characters of the program event
message.

Program event messagesare alsowritten to the job's monitoring file (see below).

Types of job description

PERMANENTLY STORED JOB DESCRIPTIONS

In the standard type of background job, all information necessary for the running of the job is stored in permanent
files in the filestore. Programsare loaded from the filestore, and all peripheral transfers are off-line transfers
between core and filestore. A job with a permanently stored job description is initiated by the RUNJOB command.

ONCE-ONLY JOB DESCRIPTIONS

Whena job description is to be used only once, it may be stored in a working job description file which will be
erased as soon as the job is terminated. A once-only job description is introduced to the filestore, and the job
initiated, by the JOB command (see Chapter 12 of OperatingSystems GEORGE 3 and 4 for details of JOB and
RUNJOB.
Monitoring files

Each time a job is begun, GEORGE creates a monitoring file. This me holds information which would be sent to
the operator's console both from Executive and from the programs comprising the job in a non-GEORGE
environment. This includes the output of program extracodes and logginginformation. Some categories of
monitoring file data are also output on the operator's console or MOp terminal. The user may specify which categories
of information are to be stored in the monitoring file by means of the TRACE command, and also those which he
wants output. These categories are described in full in the GEORGE3 and 4 manual.

Whenajob is terminated, by an ENDJOBor LOGOUTcommand, its monitoring file is closed and GEORGE uses
its contents to calculate the charge for running the job (see the GEORGE3 and 4 manual).

10 4265(4.71)

By means of parameters in the terminating command of the job, the user can indicate which categories of
monitoring information he wishes to have listed. In this way the operating system can assist in the task of
analysing a program run.

INPUT/OUTPUT FOR OBJECT PROGRAMS

Input/output operations under GEORGEmay be either off-line or on-line. Normally most work will involve the
off-lining facilities.

Input and output using off·lining facilities

In a typical GEORGEjob, data is input to permanent files in the filestore from a basic peripheral. Output is
initially stored in the filestore and eventually transferred to a basic peripheral.

INPUT TO FILESTORE

Data is transferred from a basic peripheral to the filestore by means of the INPUT command. This command creates
a file in the filestore containing all the data following the INPUT command up to a terminator.

The INPUTcommand inputs data separately before a program is loaded or run. It is possible to include data in a
job description by means of an embedded INPUTcommand which initiates the transfer only when the job is
begun.
Embedded data, not preceded by an INPUTcommand, may also be included in the job description file and read
directly from it by a program previously loaded in the job description.

INPUT/OUTPUT VIA SIMULATED BASIC PERIPHERALS

The ASSIGNcommand opens a filestore file associatedwith a peripheral channel of an object program, so that
control instructions for the peripheral are referred to the filestore file. As a result, programs originally written for
basic peripherals need not be rewritten to be run under GEORGE.

OUTPUT VIA BASIC PERIPHERALS

The LlSTFILE command causes some or all of the data in a file created by an ASSIGNto be output off-line via a
basic peripheral or the monitoring file.

For a more detailed description of these input/output facilities, see chapter 4.

Input and output using on-line peripherals

Basicperipherals can be connected on-line to a GEORGE-controlled program in the sameway as they can to a
program running under Executive. Under GEORGE, the ONLINEcommand, issued in the job description, makes
the peripheral available to the program.

This command is further discussedin Chapter 4.

TYPES OF JOB

Jobs run under GEORGEare of two types: on-line jobs and background jobs.

On-line jobs

The most significant feature of an on-linejob is that the user is informed at every stage of what is happening to his
job and can act accordingly. This is possible because information sent to the monitoring file is output on a
typewriter console as the job progresses.If, for example, a program fails to compile, the programmer will be
informed of the failure as soon as it occurs and can correct the error in the source program immediately by
performing an edit (see Chapter 5); he can then attempt the compilation again and, if it is successful, run his
program. This facility is advantageouswhen the program's requirements cannot be met by using the conditional
commands (IF and WHENEVER,see page 9). In this case, the user is communicating with GEORGE; it is also
possible to communicate with a program under GEORGE's control.

The on-line user can also input data, including program and job descriptions, from his terminal, and have output
directed to it.

The GEORGEon-line facility is called MOP(Multiple On-line Programming).MOPis described in more detail in
Chapter 5.

4265(4.71) 11

-
Background jobs

Background jobs differ from MOP jobs in that monitoring information is not output for the user's immediate
scrutiny. Consequently, programs to be included in a background job should come within the decision-making
scope of the conditional commands included in a previously written job description.

A background job may, however, be initiated from a MOP terminal, or it may be a MOP job which has been
disconnected because it no longer requires intervention by the programmer. This may be the case with programs
which have been tested on-line and are to be run with input data already in the filestore. Jobs can also be
disconnected and allowed to run independent of the MOP terminal if the user has issued a command which will
take some time to process. While the job is disconnected, the user can do other on-line work and later, if he wishes,
either reconnect to the original job or connect another background job to the MOP terminal.

12 4265(4.71)

Chapter 3 Backing store

THE ENTRANT CONCEPT

Data held on backing store in a GEORGE environment is contained in entrants. These may be inside or outside the
GEORGE filestore; entrants inside the filestore are known asfiles, whereas entrants outside are either magnetic tapes
or exofiles (direct access entrants outside the filestore).

The word 'entrant' is used because, in the context of GEORGE, the word 'file' has the restricted meaning of
'filestore file'. The significance of the word 'entrant' will become clear when directory entries are explained (see
page 15).

The contents of an entrant

An entrant may contain any finite, ordered sequence of words or characters. It may consist of a user's program in any
language or in the form of a binary dump, an item of standard 1900 Series software, a batch of data for a user's
program, or data produced or required by GEORGE. In short, almost all the information involved in running jobs
under GEORGE may be held in entrants.

Most of this chapter is concerned with files (that is, filestore files) since these normally comprise the bulk of
backing store at an installation using GEORGE. Other kinds of entrant and their relation to the filestore are
explained on page 27.

THE FILESTORE

Device-independence

Unlike conventional files, GEORGE files are not held on anyone particular storage medium. They may be
distributed over all the available backing store, on both direct access devices and magnetic tapes. The user does not
have to know where a particular file is held at a particular time, since he identifies files by their names, not by their
hardware addresses. Thus, if occasion demands, GEORGE can alter the physical arrangement of the files within the
filestore without the user's knowledge. A file that the user treats as a continuous series of blocks may in fact
consist of fragmented elements scattered throughout the filestore.

Types of file

In the current mark there are three main types of file within the filestore, basicperipheralfiles, direct accessfiles
and magnetic tape files. If a user wants a file to simulate a basic peripheral, so that programs can handle the file
serially in the same way as they handle basic peripheral data, he must create a basic peripheral file. If the user wishes
to read from or write to specific addresses within the file, he must create a direct access file. Magnetic tape files
simulate magnetic tapes in the filestore. The user will often choose the type of file in accordance with the
specifications of the software he is using; when he has a free choice, basic peripheral files are usually the most
convenient. In all cases the size of a file is limited to 24SK words. However there is a multifile facility which
effectively allows larger files to be used.

BASIC PERIPHERAL FILES

Although all basic peripheral files consist of strings of records, their formats vary. One reason for this is that their
initial input medium may have been cards or paper tape, and in most cases the format of a file must correspond to
its input medium. A second reason is that, regardless of the input medium, the format of a file must be compatible
with the transfer instructions in the program to which it is connected as the source or destination of data. This
does not mean that, for example, a file in card reader format (a CR file) can be processed only by PERI instructions
for a card reader; the format of a CR file is also compatible with card punch PERIs. Similarly, though CP and LP files
are normally written to by card punch and line printer PERIs respectively, they may also be read by card reader
PERIs because their formats are compatible with this type of transfer instruction.

A user's basic peripheral file has the format appropriate to the peripheral it simulates so it may be a CR, CP, LP, TR
or TP file. The user, however, has greater scope in handling a basic peripheral file than in handling the corresponding

4265(4.71) 13

-
I

device. For instance, the user can arrange for a program to write to an.LP file with line printer PERIs and can then
use this file as the source of input for a second program. He does not have to transfer the output data to cards or
paper tape and load it on a basic peripheral, since LP files can be read by card reader PERI instructions.

If the user should require a basic peripheral file longer than 245K words he may use a multifile. A multifile is a set
of files with the same format and the same name, except that the generation number is increased by one for each
file. The file with generation number one is used as an index to the other files which are called the elements of
the multifile. This facility is a temporary one which will be replaced later by a comprehensive facility hidden from
the user.

It is intended that eventually all operations using basic peripheral files should be able to operate on any basic
peripheral file. Basic peripheral files are held by GEORGE in several different formats. In certain cases where a file
is read by a PERI of a different type or mode to that with which the file was written, it becomes necessary to
convert the file to the correct format to be dealt with by the reading PERI. However, this drawback does not
apply to simple cases such as the off-lining of cards to be read by a program; such cases are dealt with more
efficiently than they would be if all files were held in a single internal format and each file had to be converted
each time. There are certain restrictions to the present system that the user needs to be aware of; some
categories of conversion are not possible at present, some conversions are slow and should be avoided if possible,
and some conversions necessarily cause information to be lost. For example, information is lost if a paper tape
has been read into a filestore file in NORMAL mode and the me is subsequently read by a program in ALLCHAR
mode. Details of the different internal file formats may be found in the manual OperatingSystems GEORGE 3
and 4 and details of which conversions are possible in the current mark are given in the same manual

System files and directories (see below) are usually also handled serially, but they do not correspond in format to
basic peripheral files and are therefore known as amorphous files.

DIRECT ACCESS FILES

A direct access file must have either drum or disc format; there is no difference between an ED file and an FD file.
Because of the different ways in which disc files and drum files (DR files) are addressed, it is not possible to use
PERIs for disc to access a drum file, or vice versa.

It should be noted, however, that this restriction derives not from the medium on which the file is held, but from
the way in which the me is organized. A disc file may be held on drum (or vice versa), but, regardless of its storage
medium, it will be organized as though it was held on disc.

MAGNETIC TAPE FILES

A magnetic tape file must have a magnetic tape format. There is a difference in that the first MT block of the file,
which corresponds to a tape's header label record, need not have a header label format. The details in the control
area of an open PERI to this tape file will not be checked against the contents of the first MT block; thus it is not
necessary for this MT block to have the standard header label format. In other respects, since the file will be written
to and read from by standard magnetic tape data transfer instructions, the format of the file will conform to
magnetic tape standards.

Modes of access

User programs are connected to files by means of the ASSIGN command. This command causes a named file to be
opened and associated with the current program in such a way that PERI instructions for a specified peripheral are
simulated by reading from or writing to the file.

If the file is a basic peripheral file, the only possible mode of access is serialaccess.Serial access in the input mode
is the reading of each record in the file, starting at the first record, going on to the second record, and so on.
Serial access in the output mode is the writing of successive records, either starting at the beginning of the file and
going on to the end, or starting at the end of the file and writing successive records up to a new end of the file.
Writing records to a serial file is generally referred to as appending.The term 'append' has a more restricted sense
in the context of user traps (see Privacy, page 19).

It is possible for a serial file to be accessed by more than one program peripheral channel simultaneously. Any
number of channels can read from the same serial file at the same time and in the current mark a file may be shared
by peripheral channels appending to it and reading it, subject to certain controls. A serial file that is being read by
one or more peripheral channels whilst others are appending to it is known as a communications file. GEORGE
must be informed if a file is to be used in this way. It will then ensure that the file is in a basic peripheral format,
so that the reading and appending programs can access the file simultaneously in a serial mode. Briefly, GEORGE
will organize the processing of communication files in the following way: if an appending program is ready to read

14 4265(4.71)

the same record, the information will be passed across in the core store, thus eliminating a backing store transfer
(the record will still eventually be written to backing store, but it will have to be read again); if the reading program
attempts to read a record that has not yet been generated by the appending program, the reading program will, unless
direct response mode is being used (see Chapter 14 of OperatingSystems GEORGE 3 and 4), automatically be
suspended and reactivated when the record becomes available.

Direct access files are accessed randomly. This means that the user program PERI instruction specifies an address
within the file where reading or writing is to start. Successive addresses that are specified need not be in any
sequence. A direct access file cannot be a communication file, in the sense mentioned above, since it is not in
general possible for GEORGE to organise the synchronisation of the' programs accessing it. However, it is possible
for one or more programs to read from the same direct access file at the same time as another program is writing
to it.

Magnetic tape files are accessed in the same manner, and by the same instructions as a real magnetic tape. The file
is always opened in such a way that the first non-open mode PERI will operate on the MT block after the first MT
block in the file. This initial positioning procedure is compatible with GEORGE's handling of ONLINE standard
tapes. More than one user may have a magnetic tape file open for reading at one time. COMMUNE writing (see
the manual OperatingSystems GEORGE 3 and 4) is not allowed to magnetic tape files.

The structure of the filestore

To enable users to refer to files by names, GEORGE keeps a Dictionary, held in the filestore, which consists of a
number of entries, one for each user. Each entry contains, among other things, the name of a user's proper
directory. A directory is a file that holds information about a particular user's files. These files may themselves be
directories associated with users, or they may be terminal files, that is, files containing user information such as
programs or data.

This a! rangement gives the filestore a hierarchical structure. At the top of the hierarchy is a master directory, which
contains information about files at the level below. If any of these files are directories, they contain information
about files at the next level down, and so on to any depth. The effect is to give the filestore a tree-like structure,
as in Figure Ion page 16.

This diagram shows a very simple four-level filestore. The terminal files, or users' files, are represented by boxes
containing names beginning 'TF'. Each user's file is directly linked to a directory above it indicated by a circle
containing a name beginning 'DIR'. To show that each directory has a user associated with it, each circle has a
user name outside it, beginning :USER (user names always start with a colon). This is explained under Filenames
below.

Each directory in the filestore contains a number of directory entries, one for each of the files at the level below.
In the case of the highest directory in Figure I, the directory entries consist of information about the three
directory files at the level below. The entries in these directories contain information about the directories and
terminal files at the third level, and so on. The path leading from any file in the filestore to the master directory
is unique. It may include several directories, and the file is said to be inferior to each of these. A file that has an
entry in a directory is said to be immediately inferior to that directory and is regarded as belonging to the
directory, and so to the user associated with it, who is said to be the owner of the file. Thus the terminal file
TF2A, in Figure I,belongs to the directory labelled D1R IA and is owned by user: USER I.File TF2A is
immediately inferior to DIR IA and inferior to DIRO. The practical significance of th is hierarchy of relationships

. will become clearer when filenames are explained below.

A directory, with user name :MANAG ER, is issued to the user with the initial filestore (see Chapter 5 of the
manual GEORGE 3 and 4 OperationManagement). This directory is regarded as being at depth O.The user can
create further directories up to a maximum depth of64 by using the MAKEDIR command; the filestore can
therefore have a maximum of 66 levels, including terminal files (that is a terminal file at the 66th level will be at
depth 65 since depths are numbered from zero, and will be contained in a directory at depth 64). In certain
circumstances, however, GEORGE can create a temporary directory for a job running in a directory at depth 64.
This temporary directory will be at depth 65, and its terminal files at depth 66, giving a maximum of67 levels.

THE CONTENTS OF A DIRECTORY

Directories are serial files, and each entry consists of a group of records. The first record of each directory entry
contains the 10c(\1name of a file (see Filenames, below), information such as the file generation number, date and
time written, details concerning the structure of the file (serial or direct access) and information needed by the
back up and security systems. Next there are a number of records containing the addresses of the blocks occupied
by the file, one record for each type of direct access backing store on which the file is currently held. When a file
or part of a file is moved from one physical position in the filestore to another, these records are updated by

4265(4.71) 15

-
~

0\

~.....
~~
'"C)
~
'"
~
<"'l

~-e
r1)

(

TF3BTF3A. TF3B TF3B TF3ATF3A TF3BTF3A TF3BTF3A TF3B

((

I

-
the system. Finally there is a group of records which indicate which users are allowed to access the file and how
they may access it.

Filenames
Since a user's directory indicates the names and physical addressesof all the files that belong to him, GEORGE
can always locate a file that is referred to by name, provided that the name that is givenenablesGEORGE to find
the relevant directory.

Each file, whether a directory or a terminal file, has a localname; for example, TF2A or DIRIA in Figure 1. It is
not possible to have two files with the samegeneral local name entered in the same directory, although it is possible
for two files with the same name to be entered in different directories. Thus, in Figure 1, the directories DIR1A,
DIRIB and DIRIC all contain entries for files called DIR2A and DIR2B. Since it is possible for the filestore to
contain a number of directories with the same name, it is not necessarily possible to uniquely identify a file
informing GEORGE simply of its local name and the local name of the directory in which it is entered (in Figure 1,
page 16, there are three files calledTF3A, entered in directories calledDIR2A). For this reason each directory
must have a second name associated with it, and this second name must be unique within the filestore. This name is
the user name, for example :USER4, :USER6 or :USER8 in Figure 1.No two directories may have the same user
name associated with them. This means that a user can uniquely identify a file by including in his file name an
explicit or implicit reference to the user to whom the file belongs.

REFERRING TO FILES

A user who wishes to refer to a file must use a name that informs GEORGEof the logicalposition of the file
relative to a user. To do this he may use either an absolute name or a relative name.

Absolute names

Any file in the filestore may be referred to by an absolute name. In the simplest case,where the user is referring to
a directory, the absolute name may be just the user name associated with the directory. For example, to return to
Figure 1, any user may refer to the directory DIR1A by the name

:USERI

This givesGEORGE enough information to find the physical address of the directory, with the aid of its
Dictionary of users.

If a user wishes to refer to a terminal file by an absolute name, he must at least givethe user name associated with
the directory to which the file belongs, followed by the local name of the file being referred to. For example, any
user can refer to the file TF2A by the name

:USER1.TF2A

(Component names in filenames are always separated by points.)

Alternatively, the user may begin an absolute name with the user name associatedwith some other superior
directory. In this case the logical relationship between the named user and the file that is being referred to must be
made explicit. This is done by including, after the user name and before the local name of the me, the local names
of any lower superior directories (not the user names associatedwith these directories). These must be given in
order of seniority, starting with the local name of the directory that belongs to the named user. For example,
instead of using the name :USER1.TF2A, a user might refer to TF2A by the name

:USERO.DIRlA.TF2A

Relative names and the current directory

Associatedwith each job at any time there is a current directory. The user name associatedwith this directory is
sometimes referred to as the current user name.

If a file is referred to by a name that consists of one or more local names, without a preceding user name, the
filename is taken to be relative to the current directory of the job. In other words, if no user name is given, the
current user name is assumed. Names of this kind are known as relative names.

The current user name is used only to simplify the namingof files by jobs. The user who initiated the job (for
example by a JOB command) is called the proper user, or simply the user. It is the proper user who pays for the
job and whose access to entrants in the filestore is controlled by GEORGE (see page 19,Privacy and Accounting).

4265(4.71) 17

-
At the start of a job the current directory is the same as the proper user's directory. However, the job's current
directory may be changed any number of times by means of the DIRECTORY command. By using this command,
the user can alter his base of reference, so that he can use relative names where previously absolute names were
necessary. For example, if user: USER4 in Figure I starts a job, he can initially refer to only two files by relative
names, TF3A and TF3B. To refer to any other file in the filestore he must use an absolute name. However, if he
changes the job's current directory from DIR2A to DIRO by means of a DIRECTORY command, he can use a
relative name to refer to any file in the filestore apart from DIRO. Thus, he can refer to TF2B by the name

DIR1C.TF2B

instead of using an absolute name such as

:USER3.TF2B

or

:USERO.DIR 1C.TF2B

Reasonsfor the structure of the filestore

It will probably be the case that all levels of management in an organization will need to control files of data, and
different departments within an organization will need to keep their data separately. This is equally true of
universities, public authorities and commercial concerns. There is, then, a correspondence between an organizational
structure and the way the filestore has been designed.

The naming system of an organizational hierarchy will depend very much on what the organization is doing. To take
the case of a fairly large company which purchases raw materials, processes them in a factory to produce finished
goods and sells these goods to consumers, the company structure might be as in Figure 2, below.

Managing Director

I
I
Chief
Accountant

Personnel
Manager

Data
Processing
Manager

Production
Manager

Marketing
Manager

Figure2 Company structure

Each of the line managers reports to the Managing Director, and each would typically control a number of staff,
who would again be organized in a hierarchy. The department of the Data Processing Manager might be organized
as in Figure 3.

I
Section
leader leader

I
Section
leader

Chief Programmer

I
I
Section
leader

I
Section
leader

Installation Manager

I
I
Chief
Operator

Data Processing Manager

Senior Systems Analyst

I
I
Section Section

leader

I
Data Preparation
Supervisor

Figure3 Company structure 2
The Senior Systems Analyst, the Chief Programmer and the Installation Manager would all report to the Data
Processing Manager. Similarly, the Section Leaders under the Chief Programmer would report to him, and so on.
There might be further levels below the lowest level of management shown.

The filestore of the hypothetical company in the example above can be made to reflect the company structure. For
example the Data Processing Manager will have a user name and a directory. This directory will contain details
about the three directories that belong to it and also about any terminal tiles that the Data Processing Manager may

IX 4265(4.71)

create. Each user in the sytem may be either a single person or a group of people associated with a particular area of
the firm's activities. For example, the user name associated with the Data Preparation directory need not be the
name of the Data Preparation Supervisor. It may be a collective name for all members of this section who are
allowed to use the Data Preparation files.

ACCOUNTING

One consequence of the tree-like structure of the filestore is that strict budgetary control can be exercised over the
use of an organization's computing facilities.The senior user in the system, the ManagingDirector in the example,
can share out the availablecomputing facilities (time and space) among the users at the levelbelow him. These in
turn can distribute some or all of their share of these facilities among the users under their control, and so on
down the hierarchy. GEORGEwill ensure that users do not exceed their budget allocations and will, by-means of
chargingalgorithms, calculate what proportion of the running costs of the installation should be borne by each
user.

In this way the role of the computer in an organization can be made subject to the normal rules of cost accountancy,
and statistics vital to higher management, such as the rate of return on investment, can be conveniently calculated.

PRIVACY

One of the features of non-computerized data processing is that many copies of what is essentially the same file are
held in different places. This is because the users of these files are physically remote from each other. Given the
capacity of a computer installation to hold largevolumes of data in an easily accessibleform, and also the convenience
of on-line working, the need for wasteful duplication of files disappears. Since the whole of a company's data can
now be stored in one place, however, it becomes very important to specify who can and who cannot have access to
information, and equally important what sort of access is permitted; for example a certain user might be allowed .
to read a file but never under any circumstances to alter the information in it.

GEORGEcan be told to grant particular users access in specifiedmodes to certain groups of files. Similarly
GEORGE can be told that certain users have restricted access, or none at all, to other files.The ManagingDirector
of a company, for example, might wish to ensure that nobody but himself everhad access to certain of his files.
GEORGE thus makes information available to those who need it and minimizes the risk of unauthorized
manipulation of data.

Unlessa user (single or collective) takes deliberate action to grant other users access to some of his files, he alone
is permitted to access them, and even then only in specificmodes chosen by himself. This system of protection is
implemented by means of user traps.

User traps are stored in each directory entry. Entry user trap contains the name of a user who is allowed access to
the file concerned, and indicators that govern the modes in which access is permitted. The modes of access are
READ,WRITE, EXECUTE(of files containing programs) and APPEND(that is, append to the end of a file). A user
attempting to open a file in a particular mode will only be allowed to do so if there is a user trap that contains his
name associated with the file, and if it has an indicator corresponding to the required mode, that is, only if the
trap is open. If a user wishes to grant himself or another user access to one of his files in certain modes, he must
inform GEORGEwith the appropriate command (TRAPGO). A user may also issue a TRAPGO specifying a group
of users instead of a singleone. This causes agroup trap to be set. Later, if he wishes,he may remove his
permission by means of a TRAPSTOPcommand. The traps initially granted to the owner of a newly created file
vary with the type of file. The owner of a basic peripheral file has READ, EXECUTEand APPENDaccess to it
after it is closed (unless he elects to alter the traps); while it !s still open he hasWRITEaccessas well.The same
applies to magnetic tape files and direct accessfiles, except that the owner is not automatically granted APPEND
access to either. Since a user can only control access to files that belong to him, these facilities afford complete
protection against unwanted interference by other users and also against unintentional destruction by the owner
At the same time they enable a user to refer to any files in the fiJestoreas long as he has the cooperation of the
owner.

THE BACK-UP SYSTEM

The back-up system in GEORGE3 provides two facilities:

It enables GEORGE3 to be started or restarted after a breakdown, with a recent and usable version of the
filestore.

2 It enables the Iilestore 10 occupy more space than is availableon direct access store, and helps prevent and
clear backing store jams.

4265(4.71) 19

-
WhenGEORGE is loaded, it checks whether a valid version of the filestore is present on direct access backing store.
If it finds that some directories or vital system files are incomplete, a general restore is initiated with the operator's
assistance; in this case the existing filestore is ignored, and GEORGE restores enough of the filestore from the
incremental dumps on magnetic tape to enable it to start runningjobs. (Note that information created since the
last dump will be lost.) Normally, however, a general restore will not be necessary. In either case, after ?EORGE
has started running jobs, accessmay be needed to files which are not on-line; these are restored as required from
tape by the file retrieval system.
The incremental dumper is a specialjob which runs a program at regular intervals in order to preserveon magnetic
tape copies of fileswhich have recently been changed or created. Each time it is entered, the dumper searches the
filestore for such files and writes them to tape as an increment. A copy of the complete filestore is thus held as a
seriesof increments on the dump tapes. During dumping it is not possible to open files, and this may cause slight
delay to jobs running at the time. As well as being run at regular intervals, the dumper may also be started by the
operator or when the availablebacking store space is nearly fuU. In the latter case, filesmay be dumped to tape .
in order to allow backing store space to be freed.

Further details of the back-up systemmay be found in the manual GEORGE 3 OperationManagement, but in
general its operation does not concern the user. An exception is the RETRIEVE command which forms part of the
file retrieval system.

The file retrievalsystem

From time to time, jobs will need files that are not on-line, and so have to be read from tape. All requests for such
files are coordinated by the Retrieval System, which will put the requests on a queue, ordered according to the
order of the files on the tapes, and open tapes appropriately. The user may make such requests implicitly by the
ASSIGN,USTFILE or LOADcommands, or explicitly by the RETRIEVE command, which puts requests for the
named fileson the queue and allows the user to proceed.

It is advantageous to use the RETRIEVE command in job descriptions unless it is certain that the file in question
is in fact on-line. Usually it should appear near the beginning of a job description or macro, requesting all the files
that will be used during the job. If the files are on-line already, there is no effect (although there is a small overhead)
and if they are not they will be retrieved autonomously and acoording to their order on tape, which is clearly
more efficient than retrieving them in the order in which they are mentioned in the job description.

The Juggernautrestorer

Whena general restore has been done from the latest increment, it is possible that many of the most often used
files in the filestore will no longer be on-line. Usersmay RETRIEVE files from the dump tapes. However, for
greater efficiency, a job under :MANAGER,called the Juggernaut, is automatically run after a general restore and
retrieves from dump tapes those fileswhich the manager considers should be on-linewhen sufficient space is
available.These fileswill only be dumped if they are infrequently used or if a particularly bad backing-storejam
occurs. They will be brought on-line if the general restore does not include them.

Usersneed not attempt to RETRIEVE fileswhich will automatically be restored by the Juggernaut. System files,
also are automatically restored and should not be RETRIEVED.

The dump tapeprocessor

This is an operator-initiated routine, which aims to keep the number of tapes containing incremental dumps to a
reasonable figure.Whenentered it finds one of the tapes on which the oldest unprocessed reliable increment is
dumped. It searches down the tape checking the directory entry of each file it encounters. There are three possible
states for each file:

There is a later dump of the file, or no reference to the file in the filestore; in either case the file is ignored.

2 There is a copy of the file on backing store but no later dump. In this case the copy on backing store is
marked 'to be dumped'.

3 There is no later dump or copy of the file on backing store. Here the file is restored to backing store and
marked 'to be dumped'.

Whena tape is found with filesonly in state I above, the increments on it are marked as obsolete and the dumper
will release the tape after the next increment has been created.

20 4265(4.71)

THE EDITOR

The editor which is built in to GEORGE3 enables the user to make detailed alterations to almost any basic
peripheral file. The old file is edited into a new file according to editing instructions supplied by the user. These
editing instructions index a particular character in the old file by reference to a conceptual pointer (see below).

Severalold filesmay be edited to produce the new file; files can be of any peripheral type and the editor produces
a new file of the same type as the first old file opened. The file containing the editing instructions and any new
text to be inserted can also be of any basic peripheral type and need not be of the same type as the old file.
Editing instructions and text can also be input from a MOPterminal.

Calling in the editor

To call in the editor, the user issuesan EDIT command.

The format is:

EDIT oldfile.newfile.editfile

where

oldfile

newfile

editfiie

is the file description of the old file to be edited

is the file description of the file to which the edited information is to be written

is the file description of the source of the editing instructions.

The oldfile may be any basic peripheral file, other than a directory, to which the user has READ access, except for
certain major system files. The oldfile parameter ismandatory and its omissionwill result in an error message.

The ncwfile may be an existing basic peripheral file to which the user has WRITEor WRITEand APPENDaccess.
If the file described does not exist, the editor will create a file of the sameperipheral type as the old file. If this
parameter is null or omitted, the editor will create a file identical to the old file, except that the generation number
will be increased by one.

The editing file or filesmust be basic peripheral files to which the user has READ access. If this parameter is null or
omitted, the editing instructions will be taken from the job source: either the job description file or a MOPterminal.
If the user is inputting from aMOPterminal, GEORGEwill reply EDITOR IS READY, followed by an invitation
to type, after the files specified in the EDIT command have been opened.

CONTEXTUAL RESTRICTION

The only context in which the EDIT command is forbidden isNOUSER.

Editing language

The editing languageis a series of editing instructions.

RECORDS

The editing file, like other files, is divided logically into records.Editing instructions are set out in lines, each line
representing a record. One record may contain several instructions separated by commas. It is not normally possible
for a singleinstruction to extend overmore than one editing record. The exception to this rule is the I instruction,
used to insert text (see below).

CHARACTER STRINGS

If the user knows what character or group of characters he wishes to locate but is uncertain of their position within
the file, the relevant record may be identified by means of a characterstring.A character stringmay be any
character or group of characters enclosed by a pair of identical stringdelimiters from the following set:

: ;<=>?! "£%&'+/

Thus,

:STRING:
and

<STRING<

are valid character strings;

4265(4.71) 21

-
<STRING> I

on the other hand isnot validbecause the delimiters are not identical.

Note: For the sake of convenience, character stringswill be given the form

/STRING/

throughout this manual, unless otherwise specified.

THE POINTER

Understanding the pointer concept is essential in the use of the GEORGE editor. The point locates individual
records or characters within records in the oldfile. Severalediting instructions alter the position of the pointer.
Many require that the pointer's location after the instruction has been executed be specified; for example, the T
instruction transcribes a file up to (but not including) the point specified in the instruction. This point is called the
endpoint and can be identified in severalways:

As an absolute decimal number; for example,

#2.4

The number to the left of the decimal point, preceded by a hash mark, respresents the position of the record
relative to the beginningof the file. The second number, following the decimal point, represents the
position of the character within the record. Both records and characters are numbered from zero. Therefore,
the example above specifiesas endpoint the fifth character of the third record of the file.

Note: . If the character field is omitted, the pointer will indicate the first character (character zero) of the
record specified.Thus, if the endpoint is givenas #2, the pointer will be set to the first character of the
third record.

2 As a relative number;

7.5

indicates the sixth character of the seventh record from the record currently indicated by the pointer. For
example, if the pointer is at #1.3, the above end-point will have an absolute position of #8.5 when the
instruction is obeyed (note that the character field of the pointer's initial position is ignored).

3 As a character in a record containing a givencharacter string:

C/FRED/.4
givesas endpoint the fifth character of the first record that the editor encounters which contains the
string FRED.

4 As a character in a record beginningwith a character string:

/SMITH/.3
specifiesas endpoint the letter T, in the first record beginning SMITH.

5 As the (conceptual) character after the end of the last record in the file:

E

as endpoint will set the pointer to the beginningof a conceptual record after the end of the file; following
a T instruction, for example, it will cause the file to be transcribed to the end of the last record.

E may also be used after the decimal point to indicate the character after the end of a specific record:

#2.E

sets the pointer to the character after the last character of the third record in the file.

In the above examples, the file or record is left open after the instruction is carried out; more text may be
added to the record and additional records to the file. If a record is left open, the next instruction does not
start a new record, even if the instruction occupies a new line in the editing file. A record is closed by
moving the pointer to the first character of the next record, as in the instruction

T#3
which transcribes to the beginningof the fourth record, closing the third.

A file is closed by issuingE as an instruction; this transcribes to the end of the file, closes it, and ends the
edit. (See the section which describes the basic editing instructions for more detail on the significanceof

22 4265(4.71)

I 6

open and closed records.)

The record field may be null or omitted. This means that the endpoint is either located in the record
containing the character currently indicated by the pointer, or, if the record field is specified as an absolute
number (#0), is in the first record in the file.

The pointer is initially set to the first character of the first record (#0.0). Thereafter the user must take into
account its changing position when he issues instructions, which will act with reference to the pointer's
current position.

The remainder of this section deals with basic editing instructions which permit the user to transcribe (T)
files or parts of files; to position the pointer without transcribing (P); to replace one character string with
another (R); and to insert records or parts of records (I). The E and Q instructions, which end the edit, are
also described, as is the F instruction which erases text already written to the new file.

Note: MOP users should see notes on editing in Chapter 5, page

Transcribing: T

This instruction copies text from the old file to the new file without alteration. The instruction is issued in the
format:

Yendpoint

where the endpoint is the character after the last character to be transcribed.

For purposes of illustration in this and succeeding passages assume that there is a file NAMES consisting of the
following records:

Record number Record

0 JOESMITH

JACKJONES

2 MOJAMES

3 HARRYEVANS

4 PETERBROWN

Unless otherwise specified, it will be assumed that the pointer is set to its initial position of #0.0 when
instructions are issued.

The instruction

T#2
will transcribe NAMES up to, but not including, the character preceding the endpoint; that is, up to the beginning
of the third record in the file. The new file will contain

JOESMITH

JACKJONES

If the user issued a second instruction

T2
this would transcribe from the pointer's current position (#2, the endpoint specified for the first instruction) up
to but not including the first character of the second record from the current one, adding to the contents of the
new file

MOJAMES

HARRYEVANS

Note: In the above example, the second T instruction begins a new record because the previous record has been
closed (see section 5, page 22). If the first instruction had been

Tl.E

the last record would have been left open and the effect of the second instruction would be .

JOESMITH

4265(4.71) 23

-

JACKJONESMOJAMES

HARRYEVANS

Character strings can be used to specify an endpoint:

TC/JAMES/

will transcribe up to the first character of the first record containing the string /JAMES/, giving

JOESMITH

JACKJONES

while

T/JACK/

would transcribe up to the first character of the first record beginningwith JACK giving

JOESMITH

Positioning the pointer: P

This instruction moves the pointer either forwards or backwards to a specified endpoint. (Movingthe pointer
backwards does not delete the intervening records in the new file, as the pointer refers only to the old file.) This
facility could be used to alter the order of records within a file; for example,

T#l

P#4

T1

P#2

T2

P#l

T1

P#5

will transpose the fifth and second records of the old file.

DELETING

The P instruction may be used in combination with the T instruction to delete parts of the old file as it appears
in the new file. Still referring to the file

JOESMITH

JACKJONES

MOJAMES

HARRYEVANS

PETERBROWN

The sequence

T#2

P#3

TE

(assuming that the pointer is initially at #0.0), will transcribe to the end of the second record, skip to the end of
the third, and transcribe to the end of the file, giving

JOESMITH

JACKJONES

24 4265(4.71)

HARRYEVANS

PETERBROWN

Inserting: I

CHARACTERS

To insert a character or string of characters, an I instruction is given, followed by the text to be inserted. The text
must be enclosed by string delirniters selected from the set listed on page 21. The delirniters should of course not
be characters which occur in the body of the text. The text will be inserted before the pointer's current position.

In file NAMES the instructions

T#2

I/RUTH/

TE

will give

JOESMITH

JACKJONES

RUTHMOJAMES

HARRYEVANS

PETERBROWN

RECORDS

To insert a complete record or records, the pointer must be moved to the beginning of the record that is tofollow
the new record. The I instruction is the only instruction which can occupy more than one record in the editing file;
if it were required to add three records to NAMES,

BILLCARTER

JANEBAXTER

MALCARDEN

after the fourth record, the I instruction could be used as follows:

T#3

I/BILLCARTER

JANEBAXTER

MALCARDEN

/,E

The format of the editing file records indicates the beginning and end of an inserted record; thus, a new line
within an Insert instruction means a new line (that is, a new record) in the new file. The opening delimiter marks
the position, with reference to existing records, of the beginning of the insertion, and the closing one locates the
end of the insertion. Thus

T#3

I/BILLCARTER

JANEBAXTER

I MALCARDEN/

E

I gives

I
JOESMITH

JACKJONES

MOJAMES

I 4265(4.71) 25

I
I

-
BILLCARTER

JANEBAXTER

MALCARDENHARRYEVANS

PETERBROWN
while the instructions

T#3

1/
BILLCARTER

JANEBAXTER

MALCARDEN

/,E

will leavea null record before inserting the three new records.

Replacing data: R

The Replace instruction, which has the format

R/oldstring/ newstring]
transcribes the current record up to the first character of oldstring, inserts newstring in the new file, skips
oldstring and sets the pointer to the next character after oldstring. The two strings need not be of the same length.

For example, the instructions

T#S

R/EVANS/EBENEZER/

TE

will give

JOESMITH

JACKJONES

MOJAMES

HARRYEBENEZER

PETERBROWN

in the new file.

Note: When replacinga string by a longer or shorter string, usersmust take into account that the new record
will be correspondingly longer or shorter than the old one.

The Forget (F) instruction

The Forget instruction erases anything written to the new file by the previous editing record, and sets the pointer
in the old file to its position before this record was obeyed.

Note: The F instruction cannot be used twice without an intervening instruction.

Ending the edit: The E and a instructions

The edit can be ended by either of two instructions: the End (E) instruction already described (see page 22) and
the Quit (Q) instruction.

The End instruction transcribes to the end of the old file and ends the edit.

The Quit instruction closes the new file and abandons the edit.

26 4265(4.71)

ENTRANTS OUTSIDE THE FILESTORE

A basic feature of the filestore is that it is GEORGE, not the user, that controls the allocation of storage space to
files. In certain circumstances this may not be convenient for the user. Hemay wish to ensure that a particular
batch of information always stays on a particular magnetic tape or disc cartridge, so that it can easily be
transferred to another installation. Hemay wish to control the shape of a direct access file to minimize head
movement. To enable the user to control a part of backing store in this way, GEORGE allowsconventional
magnetic tapes and disc files to be included in the system. If a user wishes to hold information of more than
245K words in a singleentrant, he must either use an entrant outside the filestore instead of a file, or make use
of the multifile facility (see page 14).

There are two kinds of non-filestore entrant, secure and insecure entrants. They differ in the amount of control
that GEORGE exercisesover them. In the current mark secure entrants consist only of magnetic tapes. Insecure
entrants can be either magnetic tapes or exofiles.

Secure entrants

GEORGE can keep, in the filestore, a record of some or all of the magnetic tapes used at an installation and can
thereby provide a means of managing and controlling their use. The various files that contain these records and
the routines for handling them are known collectively as the Librarian.

The Librarian maintains a record, in the file :SYSTEM.SERIAL,of all tapes known to the system. This record is
consulted whenever a tape is requested, to ascertain whether the entrant is subject to Librarian security. Such
entrants are of three classes:

Tapes owned by specific users

2 Pool tapes availablefor allocation to owners

3 Work tapes for temporary usage

Tapes are converted from pool tapes to owned tapes by means of the GET command and are returned to the pool
by means of the RETURN command.

The user may also acquire pool tapes by means of a GETONLINEcommand, or a program may issuean
unanticipated open mode #400 PERI, both of which bring the tape permanently under the user's ownership and
also connect the tape on-line to the user's program.

The same security arrangements apply to owned secure tapes as to files in the filestore (seePrivacy,page 19
Whena tape is transferred to a user's ownership by one of the commands just described, a directory entry is set
up in the owner's directory and the user trap system comes into effect.

Work tapes are kept in a worktape store and are used solely for temporary allocation to users. In the current
mark worktapes are acquired in one of two ways. If the user wishes to pass the tapes between programs within
ajob, he issuesa GET (or GETONLlNE) command specifyinga reference name in the form:

GET worktape name

The worktape name, which always beginswith the character!, has no relation to the name on the tape's header
label and servesonly to identify the tape in order to connect it to subsequent programs within the job. Once
the tape has been returned to the worktape store it can no longer be accessed by that name.

If it 'isnot required to pass a tape between programs the user can obtain a worktape by an unanticipated #600
mode PERI or the equivalent ONLINE command. A tape obtained in this way can be givena worktape name by
using the RENAMEcommand.

The user may assignthe sameworktape name to severalsubsequent work tapes. These files are said to be stacked;
when the name assignedto them is used, it will always access the most recently named worktape. If this tape is
returned to the worktape store, the worktape named immediately before it will be accessed,and so on.

Insecure entrants

It is not always desirable for entrants to be objects of Librarian scrutiny since it may be necessary to move them
frequently between installations. It is also necessary that facilities be availablefor 'accessingtapes which do not
possessnormal 1900 header labels. Facilities for these requirements are availablein GEORGEwith security
arrangements reduced to the necessaryminimum of ensuring that a secure tape is not accidentally used in this way.
Magnetic tapes may under some circumstances be converted into secure entrants (seeConversionof Entrant
Categories).In the current mark all direct accessfiles outside the filestore are insecure entrants and are termed
exofiles.

4265(4,71) 27

-

Insecure
magnetic
tapes

Librarian
magnetic
tapes

COPYOUT

Card-like
files in the
filestore

Figure 4 Entrant category conversion

28 4265(4_71)

An exofile is a conventional direct access file. These files, apart from scratch files, must be allocated by the same
means as in a normal environment, since GEORGE commands are not available for this purpose (see the manual
Direct Access Utilities (Edition 1, TP4190)). Once allocated, they can be connected to user programs by ONLINE
commands or open mode PERI instructions in the sameway as insecuremagnetic tapes, except that the
retention period for writing is checked.

Conversion of entrant categories
Entrants can be converted from insecure to secure entrants, since the data they hold need not differ in internal
format. Both types of entrant can also be copied into the filestore.

The FILEIN and COPYINcommands copy magnetic tapes into card-like files in the filestore; the COPYOUT
command copies basic peripheral files from the filestore to magnetic tape. These commands enter subject
programs (system object programs) to copy data across, so that two versionsof the data result.

Exofiles can be copied into the filestore using standard disc utilities (see the manualDirect Access (Edition I,
TP4107»)with appropriate job descriptions.

The NEWand DEADcommands convert entrants between the insecure category and the librarian category. In
this case no copying is involved.

Figure 4 opposite illustrates the interaction of the conversion and copying facilities in diagram form.

4265(4.71) 29

Chapter 4 Input/output facilities

This chapter describes the various methods of handling input and output to user programs running under GEORGE.
The GEORGE filestore, described in the previous chapter, enables the user to input his data from a basic peripheral
to a file in the filestore before his program is run, and connect that file to the program at run time. Similarly, the
user may output data from an object program to the filestore and have it listed on a basic output peripheral at any
convenient time. In this way programs can be freed from dependence on basic peripherals, with a consequent
increase in the throughput of the system.

There may, however, be cases where the user wishes to control basic peripheral input and output himself, as in an
Executive environment, and GEORGE therefore allows basic peripherals to be connected directly to an object
program. The user issues requests from his job description for the types of peripheral he requires, and can also
specify particular properties that the output peripherals must have (see The property system, page 34).

INPUT TO THE FllESTORE

The INPUT command

In order to create a permanent file in the filestore, the user must input his data from a card reader, paper tape
reader or a MOP terminal and head it with an INPUT command. The data following the command is read into a
serial file in the filestore until a terminator is reached. The terminator is usually four asterisks, but if there are four
consecutive asterisks included in the data, GEORGE will assume that they mark the end of the input data, so there
is an optional parameter to the INPUT command allowing the user to specify another set of four characters as a
terminator.

Example

INPUT :JONES,CARDDAT A,T????

linesofinput data

????

This command will create a serial file named CARDDATA in the filestore and read into it the data following the
INPUT command, up to but not including the four question marks.

PAPER TAPE INPUT

Where data is input from a paper tape reader, GEORGE has to know in what mode to convert the paper tape
characters to internal six-bit characters. Mode parameters can be specified with the INPUT command and these
correspond to the PERI paper tape modes normally available in the 1900 Series. The parameters ALLCHAR and
NORMAL, for example, correspond to modes #26 and #06 respectively. (For a complete list of mode parameters,
see OperatingSystems GEORGE 3 and 4.) If no mode parameters are specified, a default value of NORMAL
(corresponding to mode #06) is assumed by GEORGE.

Example

INPUT :JONES,T APEDAT A,ALLCHAR

lines ofinput data

This command will create a serial file named TAPEDATA in mode #26 and read into it the data following the
command up to and including the four asterisks.

Embedded INPUT commands

As an alternative to inputting data separately before a program is run, the user can' include the data in his job
description, preceded by an INPUT command. In this case the INPUT command and the data following it are read

F 4265i4.71) 31

-
into the job description file and the command is obeyed only when the job is run. (For details of job descriptions
see Chapter 2). INPUT commands included in the job description are known as embedded INPUTcommands. A
disadvantageof this method is that the data has to be transferred twice, first into the job description file and then
into its own file.

Embeddeddata

It is possible to include one or more streams of input data in a job description without any introductory INPUT
command. In this case the data is read by the program direct from the job description file. Normally only one
stream of data is input in this manner, as it is difficult to organize several interleaved streams.

INPUT AND OUTPUT FOR OBJECT PROGRAMS

The most common type of job run under GEORGE is one in which a program's input data is read into the filestore
by an INPUTcommand before the job is run, and the output data is written to the filestore either to be output
later on a basic peripheral or to be input to a subsequent program. In this case the peripheral transfers are said to
be off-line. It is, however, also possible to have basic peripherals connected directly to a program so that data
transfers can be carried out on-line.

Off-line peripherals: ASSIGN and LlSTFI LE

The provision of the filestore and off-lining facilities is one of the major advantagesof the GEORGEoperating
system, and object programs should therefore make use of off-line input and output whereverpossible. If
peripheral transfers are all carried out off-line, the program is freed from restrictions imposed by the speed of the
peripherals and the need for operator intervention to load and unload documents.

The ASSIGNcommand enables the user to connect the input and output channels of his program to filestore files,
and he can obtain a listing of any appropriate basic peripheral file by issuinga L1STFILEcommand.

THE ASSIGN COMMAND

Bymeans of the ASSIGNcommand the user can open a filestore file and associate it with a peripheral channel of
an object program so that all PERI instructions for the peripheral are treated as PERIs for the filestore file. ASSIGN
commands are included in the job description, preceding the ENTER command, and they connect the input and
output channels of the program to the actual source and destination of the data. For example, suppose the user
wishes to run a program held in a file called EXTRACT,which reads a pack of cards and prints certain items on the
line printer. The cards have already been input off-line to the filestore and are held in a file called CARDDATA.
The following instructions will cause the program to read the file CARDDATA,and write the results to a file
called RESULTS.

JOBNOlJOB,:JONES

LOADEXTRACT

ASSIGN*CRO,CARDDATA

ASSIGN*LPO,RESULTS

ENTER

ENDJOB

The input and output instructions in the program do not have to be altered in any way to take advantageof
off-liningfacilities. After an ASSIGNcommand has been issued,GEORGEwill take care of any necessary changes
in the format of data being transferred to and from the filestore.

THE LlSTFILE COMMAND

Whena program's output has been ASSIGNedto a file in the filestore, the user will frequently require a listing of
that file and this can be produced off-line by means of the L1STFILEcommand. A L1STFILEcommand can be
used to output any appropriate basic peripheral file in the filestore to any basic output peripheral or to the
monitoring me (see page 10). The command must be issued from within a job description and the file it specifies
will be listed as soon as an appropriate peripheral is availableafter the file is closed. If a program's output data file
is closed before the end of the run, it is therefore possible for the file to be listed while the program is still
running.

32 4265(4.71)

For example, if the user who submitted the program EXTRACT in the previous example wishes to have a listing
of his output file on a line printer, he should amend his job description to read as follows:

JOB NOlJOB,:JONES

LOAD EXTRACT

ASSIGN *CRO,CARDDATA

ASSIGN *LPO,RESULTS

LISTFILE RESULTS, *LP

ENTER

ENDJOB

Note that the LISTFILE command is placed before ENTER. Since the ASSIGN command opens the file RESULTS,
there is no danger of the file being listed before the program is entered. The advantage of placing LISTFILE before
ENTER is that the output file may then be listed as soon as it has been closed (provided that a suitable peripheral
is available), whereas if the order of these two commands were reversed, the LISTFILE could be implemented only
after the program had been deleted.

If it is not necessary to list all the contents of the file, parameters may be included in the LISTFILE command to
specify which parts of the file are to be output.

ERASING FILES

If a file will not be required after it has been listed, it can be erased by adding an ERASEcommand after the
LISTFILE in the job description. Similarly, input files that will not be required after a program has ended can be
erased by placing an ERASE command after ASSIGNin the job description.

For example, if the program EXTRACTis to be run once only, and the data will not be required after the results
have been listed, the followingjob description could be used:

JOBNOlJOB,:JONES

LOADEXTRACT

ASSIGN*CRO,CARDDATA

ASSIGN*LPO,RESULTS

LISTFILE RESULTS, *LP

ERASECARDDATA

ERASE RESULTS

ENTER

ENDJOB

WORKFILES

An alternative method of storing data for once-onlyjobs is the use of work files. Workfilesare temporary files held
in a work file stack which belongs to the current job and exists only for the duration of the job. To set up a
workfile, the user issuesa CREATEcommand of the form:

CREATE!

where! is alwaysused as the workfile name.

A subsequent CREATE! command will push down the workfile stack so that to access the first workfile the user
will have to use the workfile name! I, since! always refers to the file at the top of the stack.

For once-only jobs, workfiles can be used with embedded INPUTcommands to eliminate the need to set up
ordinary files and then erase them.

4265(4.71) 33

-
Example

JOBNOlJOB,:JONES

CREATE!

INPUT! ,T????

lines a/input data

????

LOADPRINT

CREATE!

ASSIGN*CRO,!1

ASSIGN*LPO,!

LISTFILE !,*LP

ENTER

ENDJOB

Pushes down the workfile stack so that the input file is now second
in the stack and must be referred to as !1

Note that the input data cannot be terminated with four asterisks as this would be taken as the end of the job
description, so the optional parameter of the INPUTcommand is used to indicate that the input data will be
terminated by four question marks.

On-line peripherals

Input and output operations can be handled via on-line peripherals in much the sameway as in an Executive­
controlled system. The peripherals that can be connected on-line to a program are basic input or output peripherals,
magnetic tapes and direct accessdevices,and in all cases the ONLINEcommand is issued in the job description to
connect the peripheral to the program.

BASIC INPUT PERIPHERALS

If data is to be read by a basic input peripheral on-line to a program, the user must preface his data with a
DOCUMENTcommand, which givesa document name to the batch of data that follows. From within the job
description an ONLINEcommand is then issued in the form;

ONLINEperipheralname, document name

GEORGEsearchesall peripherals of the type named until it finds the one on which the specified document is
loaded. (If the document is not already loaded, it is requested on a suitable peripheral.) This peripheral is connected
to the program channel specified by peripheralname and data transfers can then be carried out in the normal way.

BASIC OUTPUT PERIPHERALS

The ONLINEcommand for basic output peripherals has the same format as the command for basic input peripherals.
In this caseGEORGEwill select a free peripheral of the required type and connect it to the program channel
specifiedby the peripheral name parameter of the command. Output data will automatically be headed by the
document name specified in the ONLINEcommand.

MAGNETIC TAPES AND DIRECT ACCESSDEVICES

Magnetictapes and exofiles (direct access files outside the filestore) can also be connected to a program by the
ONLINEcommand. GEORGEwill perform certain checks to ensure that the correct tape or exofile has been
loaded and that the user is permitted to accessit, and will superviseexofile transfers (most data transfers between
program and peripheral are handled by Executive).

THE PROPERTY SYSTEM

Whena command requests a peripheral of a certain type, GEORGEnormally selects any peripheral of the type
requested that is currently free. There may, however, be cases in which one particular peripheral should be used to
implement the command. For example, one of the line printers in an installation may be loaded with special

34 4265(4.71)'

stationery and certain files must be listed on this stationery. The property system enables the user to specify the
properties which the type of peripheral he requires must have.

The PROPERTY and ATTRIBUTE commands

Properties are given names of up to twelve characters, and these property names are declared to the system by
means of the PROPERTY command. Once a property name has been declared to the system, it can then be
connected with any peripheral on the installation by an ATTRIBUTE command. A peripheral may have more than
one property ATTRIBUTEd to it, and each propertymay be ATTRIBUTEd to any number of peripherals. An
optional parameter in the LISTFILE and ONLINE commands is used to indicate that the device allocated must
have a certain property or properties.

Peripherals can be freed of previously ATTRIBUTEd properties by means of the CANCEL ATTRIBUTE command.

Someusesof the property system

The property system can be used to solve a very wide range of problems. The following examples show just a few
of the ways in which it can be used:

Peripherals in a particular location may be given a property name that indicates their geographical position.
Thus a line printer in Manchester, for example, can have the property MANCHESTER ATTRIBUTEd to it
and ajob whose output is required in Manchester can then specify that property in its LISTFILE commands.
This use of properties is further described under Peripheralclusters, page 36.

2 When a maintenance engineer wishes to run test programs on a particular peripheral, he can ATTRIBUTE a
property such as MAINTENANCE to the peripheral and so ensure that it is not used by any other job before
being tested.

3 On some types of magnetic tape deck the assumed packing density of the tape can be varied by a manual
switch. To cater for jobs which need to use these decks, property names such as 800PBI can be declared to
the system and a job can then specify the packing density required by including the appropriate property
name in its ONLINE commands. If GEORGE cannot find a deck with the property requested, it will output
a message to the operator's console. The operator will then select a free deck, switch it to the required density
and ATTRIBUTE to it the property specified in the job's ONLINE command.

4 If an installation has both fast and slow line printers and it seems that throughput could be improved by
ensuring that large files are listed on the fast printer, FAST can be declared as a property name and
ATTRIBUTEd to the fast printer. Jobs that output lengthy listings can then request a printer with the
property FAST.

MULTIPLEXERS

A multiplexer is a device for co-ordinating simultaneous input and output between several communication channels
and a single standard interface. Multiplexers may be connected on-line to user programs by means of the ONLINE
command, in which case any kind of terminal device may be connected to the lines of the multiplexer, or they may
be controlled by GEORGE for system use of MOP terminals and 7020 data terminals.

It is also possible to define a conceptual multiplexer which consists of a group of lines from any multiplexers or
uniplexers on the installation that is to be treated by GEORGE in the same way as a hardware multiplexer.
Several lines of a single multiplexer can therefore be defined as a conceptual multiplexer and connected on-line to
a user program, whilst other lines of the same hardware multiplexer are being used by GEORGE for MOP or 7020
devices.

7020 REMOTE TERMINALS

The 7020 terminal is a communications device that allows on-line transfers of data between the central processor
and a number of remote peripherals. Data is transmitted over a telephone line between a telephone terminal in the
central computer room and the 7020 terminal. Basic input and output peripherals can be attached to the 7020.
Each 7020 must have connected to it a 7023 teletypewriter which is used only as an operator's console. In this way
a complete mini-installation for the input and output of batch data can be formed.

Facilities provided on 7020 terminals

User files and job descriptions can be read into the filestore from the 7020 by using the INPUT command in the
normal way. Background jobs can be initiated from the 7020 by the use of JOB and RUNJOB commands.

4265(4.71) 35

-
The peripherals attached to a 7020 terminal cannot be individually on-lined to a user program, but the multiplexer
or uniplexer to which the 7020 is attached can be used as an on-line unit; also the line to which the 7020 is attached
can form a conceptual multiplexer or part of a conceptual multiplexer.

PERIPHERAL CLUSTERS

Groups of peripherals at remote installations are managed by the peripheral cluster facility, which is an extension
of the property system. A console property is declared by a PROPERTYcommand including a parameter
identifying a 7023 teletypewriter. This property is ATTRIBUTEd to each of the peripherals at the remote
installation served by the 7023 console. A group of peripherals havinga console property in common forms a
cluster, which is giventhe name of the console property. When an ONLINEor LISTFILE command is issued, a
console property name may be givenas a parameter, in which case output from the command will be directed to
the appropriate devicewithin the cluster named by the console property. It is also possible, by means of an
ASSOCIATEcommand, to specify that output from any LISTFILE command from a particular peripheral cluster
be automatically sent to a givencluster. Usually this will be the cluster from which the comnand originates but if,
for example, the user required an output devicewhich his cluster does not contain, he could have output for that
device routed to another cluster.

More information about the peripheral cluster system is to be found in Chapter 10 of the manual GEORGE 3
Operation Management.

THE OPERATOR'S FUNCTION

Servicingperipherals is one of the operator's main tasks in a GEORGEenvironment. GEORGEwill output requests
to the operator's console askinghim to carry out any of the following actions:

1 Load input documents on to basic peripherals.

2 Load and unload magnetic tapes and exofiles.

3 Assist repeats on card and paper tape readers.

4 ATTRIBUTEproperties to peripherals or free peripherals of properties previously ATTRIBUTEd.

In any of these cases there are two, or sometimes three, courses of action the operator can take:

He can implement the request.

2 He can issue a CANTDOcommand; this will cause GEORGE to take the default action appropriate to the
activity that generated the request.

3 In the case of basic peripheral activities only, he can issue a TERMINATEcommand; this will terminate the
activity that generated the request.

There is also a command WHATPERwhich the operator can use to find out the current state of a specified
peripheral or all peripherals of a specified type.

MOP TERMINALS AS INPUT/OUTPUT DEVICES

AMOPterminal can be used to input data off-line to the filestore by issuingan INPUTcommand from the terminal
and then typing in the required data, followed by a terminator. INPUTcommands embedded in a job description
(described on page 31) are more efficient when issued from a MOPconsole than from a basic peripheral. Since each
command typed on the console is obeyed immediately, rather than being first stored in a job description file as in
a background job, data following an embedded INPUTcommand is transferred directly to a filestore file, bypassing
the intermediate stage of being stored in the job description file.

It is, however, more common for MOPterminals to be used as on-line input/output devices. If the user issuesan
ONLINEcommand without a document name parameter from his console, PERI instructions for the peripheral
specified in the command will be implemented either by reading data typed in by the user or by sending output
to the console as appropriate.

The MOPfacilities availableunder GEORGEwill be fully described in the next chapter.

36 4265(4.71)

Chapter 5 MOP

INTRODUCTION

For a powerful computer with a capacity for a largework load, it is essential to reduce to a minimum the amount
of human intervention at run-time, to enable this capacity to be fully utilised. This can be done by planning each
stage of a process beforehand and presenting the operating systemwith a complete job description to control the
run.

Some types of work are not suited to this kind of operation, but require decisions at various stagesof the run,
because each decision depends on how the process has behaved so far. For this type of job it isbest if the step-by-step
decisions can be made by the originator of the job, rather than by the computer operator. If the various courses of
action can be described to the operator, they can usually be described equally well to the operating system.What
is required is the facility to 'converse' with the computer via an on-line terminal, using the same command language
as is provided for batch jobs under the control of GEORGE.

The GEORGEMOPsystem provides this facility. It allows a number of users to have simultaneous access to a
computer, while batch jobs are being processed as background. MOPshares computing time between the various
on-line users so that each user has the illusion that the entire machine is at his disposal.This is possible because, for
each on-linejob, processor utilisation is low, the most time-consumingelements being the human decision, the
input of commands to the operating system telling it what to do next and the output of responses from the system.
Since each on-linejob makes only a-smalldemand on the computer, the operating system can run a larger number
of 'conversations' simultaneously.

ENVIRONMENT

The current version of MOPis designed for use with 7071 console typewriters. Later versionswill cater for other
communications devices.Users are also able, by means of the peripheral cluster system, to run batch jobs via a
remote configuration of peripherals (card or paper tape readers, line printer, or MOPterminal linked to a central
processor by telephone lines (see page 35».

The minimum configuration required for the current version of MOPis givenon page iii. A core sizeof at least 96K
words is recommended, although MOPcan theoretically be used with less.

SYSTEM CONTROL OF ON-LINE USE

EachMOPuser has access to the filestore and is subject to the filestore controls described under Accounting,
page 19. In addition, before a user is allowed to initiate an on-linejob, GEORGEmay carry out a password check
to ensure that the user is authorised to use the computer.

A user starting an on-line sessionwith GEORGE first issuesa LOGINcommand, givinghis user name; for example:

LOGINjob name, :FRED
GEORGE first checks that the computer is capable of bearing the load. There is an installation parameter
(JOBLIMIT) that sets a limit on the number of jobs of all kinds that may be introduced to the system. The value of
this parameter is originally calculated by the Early MorningStart routine of GEORGEbut may be reset by the
command INSTPARA.(Further details may be found in the GEORGE 3OperationManagementmanual.) If the
initiation of this job would cause the limit set by INSTPARAto be exceeded, the command is rejected.

GEORGE then searches its Dictionary (see page 15) and, provided that it finds an entry for this user, it askshim to
givehis password.This is compared with the one held in the Dictionary against the user's name. If the correct
passwordhas been given, the user is allowed to run ajob.

A simple check is carried out on the state of the user's money budget (see Chapter 7) when he tries to startajob.
If he has used more money than is allocated to him, an error is signalledand the LOGINcommand is abandoned.

4265(4_71) 37

-
Once loggedin, the user can issue standard GEORGE commands from the MOPterminal. Each command is obeyed
as soon as it is given, and the user is then invited to issuehis next command. I
THE BREAK-IN FACILITY

An important feature of MOPoperation is the break-in facility. By means of a special signalthe MOP user can
freeze the operation currently in progress in his job and return the system to a state such that it is ready to receive
a command.

The user can break in before, during or after the implementation of a command or during the running of a
program. Later he can continue his job from the point at which the break-in occurred, by issuinga CONTINUE
command.

Whilethe user is broken-in, he can issue any command that does not create a core imageor enter a program. The
user can, for example, break-in during a program run, and examine and alter the core image. Havingmade changes
to the core image,he can issue a CONTINUEcommand, and the program run will continue from the next
instruction as indicated by the contents of word 8.

Break-in levels and command processor levels

Aswas explained in Chapter 2 (Command processor levels, page 8), the command processor level of a job
normally changeswhen the source of commands changes.This is equally true of MOPjobs. When the user logs in,
his job is initially at command processor level zero. The job remains at level zero until the source of commands
changes from the MOPterminal to a macro, a program or a built-in command; the levelof the job then changes to
one. Furthercommand processor levelsmay be created in the sameway.

If the userbreaks-inwhile his job is at a command processor levelgreater than zero, all existing levelsare preserved
and a new command processor level is created. This level isboth a command processor level and a break-in level.
Because it is a break-in level, it is logicallydistinct from all the command processor levelscreated before the break-in.
What this means in practical terms is that the only way the user can return from the break-in level to the command
processor level above it isby terminating the break-in by means of a CONTINUEcommand.

During a break-in, command processor levelscan be created in the normal way, for example by macros. These
levelswill be break-in levelone, break-in level two, and so on. The user can terminate the break-in by issuinga
CONTINUEcommand at any of these levels,When the CONTINUEcommand is given,all the existing command
processor levelsup to the top level are destroyed, not merely the levelscreated during the break-in. In addition, the
current core image is deleted if there is one.

If a break-in signal is givenduring a break-in, all the existing break-in levelsare destroyed, but the job does not
continue from the point at which the original break-in occurred (unless of course a CONTINUEcommand is given).
Instead, the job remainsbroken in, and a new break-in level zero is created.

MONITORING WITH MOP

Aswas explained under monitoring files. page 10, a monitoring file is created for each job that is run under
GEORGE. This file contains categories of information specified in a TRACE command. In the case of a MOPjob,
the user can arrange for some or all of the information that is sent to the monitoring file to be output at the MOP
terminal during the course of the job. This is achievedby means of the REPORT command.

Using this command, the user can specify that certain categories of monitoring data, such as object program
output, command errors or log analysis information, are to be output at the MOPterminal. During the job, the user
can adjust the amount of monitoring data output, by issuingfurther REPORT commands. In addition, at the end
of the job the user can get a complete or partial listing of the monitoring file on a line printer, by means of optional
parameters in the terminating command (WGOUT).

TYPICAL MOPOPERATIONS

One standard application of MOP,which illustrates many of the facilities it offers the user, is program development:
the preparation, compilation and testing of programs. A programmerwishing to test a program usingMOPfacilities
must first log in to the system in the manner described above(page 37). Provided that he is acceptable to GEORGE,
he can file his source program in the filestore by inputting it from the MOPterminal. If the program is long, he
may prefer to input it to the filestore on cards or paper tape, in order to savehimself the trouble of typing it line
by line.

38 4265(4.71)

-

I

Normally every source program that is tested on a particular installation will have been written in the source
languageof one of the compilers provided with the operating system or added by the installation itself. Provided
that this is true a systemmacro will have been filed in a system file, to provide the necessary interface between
GEORGE and the required compiler. To compile his source program the programmer must simply type the correct
systemmacro command, together with parameters givingthe names of the appropriate input and output files and
any special options needed. This command will call in the compiler from a system file and enter it. Compiler
diagnostics can be output on the MOPterminal as they occur. If errors occur during the compilation, the user may
either abandon this run of the compiler at once, or allow the compilation to finish and then call the Editor.

To abandon the compilation, he must break-in using the break-in signaland then issue a QUIT command to delete
the existing command processor levels.He can then call the Editor to amend his source program.

To edit the contents of a file he must issue an EDIT command (see Chapter 3). This command calls in the built-in
Editor which will edit the file line by line in accordance with specialediting instructions. These instructions may
either be issued from the MOPterminal or be stored in an amendments file and issued from that file.

The user may have the contents of the (edited) file output on his MOPlog by requesting a listing at the time of
issuinghis first editing instruction, in this format:

L, instruction
After each instruction, the text in the newfile is also typed out on the log.

Note: Incomplete records are not output; an instruction to transcribe two records and half of a third will cause
only the first two to be output on the log. The third will be output when it has been closed by a subsequent
instruction (see Chapter 3).

The programmer will normally have specified that a core imageof the object program is to be produced. He may,
however, have specified that a file containing semicompiled segments is to be produced so these segmentsmay
now be consolidated with other semicompiled segmentsand loaded. Before entering the object program, the user
must inform GEORGEhow the program's input and output instructions are to be handled. Aswith background
jobs, the program may be linked to permanent input/output files, temporary input/output files or on-line
peripherals. Alternatively, input and/or output instructions may be associatedwith the MOPterminal (by
ONLINE commands). In this case,when the program requires input, the programmer will be invited to input a line
from the MOPterminal, and when program results are ready for output they will be sent to the MOPterminal
instead of being output on a basic peripheral or written to the filestore.

If the program comes to a natural conclusion, GEORGEwill indicate that it is ready for another command. If the
program does not end naturally, it will have run until either the user has quitted the program, because, for example,
it seemsto have got into an endless loop, or a program event has occurred. Program events include program
failures (due to illegal instructions or reservation violations, for example), program halts or deletions, or a failure
due to a program exceeding a time limit. (By means of a TIME command, the programmer can set a time limit on a
program run to ensure that he does not waste processor time on a program that has got into an endless loop.)

In all of these cases the program becomes dormant and is preserved in its unfinished state until the programmer
types another command. If he wishes, the programmermay file the unfinished program as a saved-program file
using a SAVEcommand. He will then be able to restore the program later and resume it from the point reached.

The programmer may at this stagewish to perform a post-mortem on his program or rerun selected portions of it
in a regulatedmanner, for example under the control of a MONITORcommand. This command will allow the
programmer to stop the program at a pre-arranged points to examine the valuesof various program variablesand
registers, and then to alter individual instructions and restart the program at an arbitrary point. In this way the
programmer can test the program until either it runs correctly or an error is found that necessitates recompilation.

FURTHER MOP FACILITIES

Background jobs

Normally, the MOPuser wishes to control hisjob from the MOPterminal, issuingcommands one at a time and
waiting for each one to be obeyed before issuingthe next. However, there are likely to be times during an on-line
sessionwhen little or no communication between man and machine is required. For example a programmerwho
has finished testing a long program on-line and nowwishes to run it using input data held in the filestore, does not
usually expect to have to intervene during the run. GEORGE allows the on-line user to initiate a background job
from his MOPterminal. The user can issue a command involvinga long process, or a seriesof commands filed as a
user defined macro, and can then allow the job to proceed autonomously. While the job isbeing run as background,
the user can perform other MOPoperations. Later he can, if he wishes, resume his interaction with the first job or
link some other background job to the MOPterminal.

4265(4.71) 39

-
Conversing with an object program: The ONLINE command

Instead of conversing with GEORGE, the MOP user may converse directly with an object program under
GEORGE's control by connecting input and output channels of the program to the MOP terminal. The user issues
an ONLINE command and identifies the peripheral device at which the relevant data transfers are requested.
Transfer requests involving this peripheral will subsequently be directed to the MOP terminal, and data can be
typed in from or output to the terminal even though the program's original transfer requests refer to basic peripherals.
For example, the command

ONLINE *CRO

means that each request for input from card reader zero will result in an invitation to the user to type in data from
the MOP terminal.

ONLINE *CPO

causes output which the object program would normally direct to card punch zero to be printed out on the MOP
log.

Subsystems under MOP

As has been explained, it is possible to incorporate almost any item of software in the operating system by means
of a system macro command. In particular it is possible to make available to the MOP user any special purpose
subsystem designed for on-line use: for example, one requiring remote and immediate access to a filing system.

EXAMPLE OF A MOP JOB

The following is an example of a MOP job. It demonstrates the sort of situation in which the usefulness of an
on-line terminal is most obvious: the user attempts to compile a program and the compilation fails. He is then able
to request that the program be listed oil his MOP log; he locates a syntax error, corrects it using the MOP editor
facility, compiles the program successfully and runs it.

+-LOGIN FRIARMJ, :AUTH

TYPE PASSWORD+- XXXX

STARTED :AUTH,FRIARMJ,2JAN7l 15.06.27

+-QFORTRAN BUG

User logs in

Requests compilation of FORTRAN program in file
BUG

CORE GIVEN 18176

0.11 :HALTED: LD

HALTEDZZ Halted ZZ indicates failure to compile

15.09.36+- LISTFILE BUG ,NUMBER

1 LIST

PROGRAM

Lists the contents of BUG numbering records

11 RBUGAD(1,20)B LANK ,COMMA,FSTOP ,Q Syntax error in record eleven: 'RBUGAD' for 'READ'

24 STOP 444

25 END

26 FINISH

40 4265(4.71)

~-
**** End of listing

Requests editor to edit BUG into new file OKPROGlS.11.28+-EDITBUG,OKPROG

EDITOR IS READY

O.O+-Tll

11.0+-R/BUG/E/
1l.l0+- E

Alter RBUGADto read READ in OKPROG
Transcribes remainder of BUGinto OKPROGand ends
the edit

lS.13.28+-QFORTRANOKPROG

lS.14.00 0.16 COREGIVEN 18176

0.18 :HALTED: LD

0.20 :DELETED: FI #XPCK

Second request to compile

0.28 :HALTED: LD

15.16.00+- ONUNE *CRO

IS.16.09+- ONUNE *CRI

lS.16.18+- ONLINE *LPO

IS.16.38+- ENTER

TYPENECESSARYCONSTANTS

Successfulcompilation; program loaded

Input/output channels connected to MOP terminal

Program running

DISPLAY: 444

0.30 :DELETED: 00

15.19.18 0.30 DELETED

lS.19.21+- LOGOUT End of run; user logs out·

4265(4.71) 41

Chapter 6 Scheduling

SCHEDULING

In a 1900 Series installation that is not controlled by an operating system, the task of scheduling is shared by the
operator and Executive. To make use of the multiprogramming facilities of the larger 1900 Series computers, the
.operator loads a number of programs into the available core store and Executive shares out central processor time
between these programs in accordance with their priorities. Executive always allows the program with the highest
priority to use the central processor, provided that this program is free to run. When a program is suspended,
because, for example, it is awaiting the completion of a peripheral transfer, the program with the next highest
priority is entered. At the end of the transfer, Executive is called in to reactivate the top priority program .
.Whenever a program is completed, the operator is informed. He can then load a new program into the area of core­
store that has become available.

. .

This method of scheduling in a multiprogramming environment tends to be inefficient for a number of reasons.

Firstly there are bound to be long delays when the operator loads each new program as space becomes available.

Secondly it is the operator's task to decide which program to load at anyone time. To achieve an ideal job-mix he
must take into account not only the amount of available core but also such factors as the peripheral requirements
of the various programs he has to run. Because of the complexity of the factors involved, the job mix is likely to
fall far short of the ideal and throughput consequently suffers.

Thirdly the system of Executive priorities is inflexible. The operator has no means of ensuring that a low priority
job uses the central processor at all, other than by adjusting program priorities. Where all the work involved is
background work, this inflexibility is not very serious, though it does make it difficult for the operator to ensure
that all deadlines are met. Where some or all of the work is on-line, the Executive-controlled system is inadequate.
It is essential that a fast response be given to all on-line users, but a simple priority arrangement cannot guarantee
this ..

The two GEORGE routines that control scheduling are called the high level scheduler and the low level scheduler.
At any given time there may be a number of jobs loaded and waiting to be run. The function of selecting which of
the waiting jobs to run is performed not by the operator but by the high level scheduler. This routine makes its
selection on the basis of the urgency, peripheral needs, and so on, of the jobs waiting in the filestore , and the
scheduling requirements that have been presented to it by users. The jobs that are selected by the high level
scheduler are passed on to the low level scheduler. This routine shares out central processor time in accordance
with policies presented to it by the high levei scheduler.

THE HIGH LEVEL SCHEDULER

Factors relevant to high level scheduling

The high level scheduler can be thought of as formulating the strategy of the scheduling process, by determining
the policies that the low level scheduler carries out.

The purpose of the high level scheduler is to control the supply of jobs (in particular, background jobs) to the low
level scheduler and to regulate the amount of machine time used on each one, in order to maintain efficient
operation of the system. It has under its control all the jobs that have been submitted to the system. It also has
information about the state of the system, such as the size of the core store and the availability of peripherals, and
information about each job, such as its time of arrival and urgency (GEORGE priority). Different installations
may require a variety of different constraints to be placed on the way jobs are scheduled. For this reason a large
part of the high level scheduler consists of a subject program.

Factors that might affect overall scheduling at an installation include the size of core store available for running
programs, the proportion of computing power allocated to background rather than MOP jobs, and the availability
of peripherals.

In addition to these, there are such factors as the following ones which affect the scheduling of individual jobs: the
urgency of ajob and the time before which it must be completed, ajob's estimated run time and program size, the

4265(4.71) 43

-
availability of required files and whether the job is umited by the central processor, the filestore or on-line
peripherals.

The above is not an exhaustive list of the factors that may be relevant to an installation. They merely serve to
show some of the things that could be taken into account in determining high level scheduler policy. In an
installation where the majority of jobs are test runs of programs, preconceived estimates of job characteristics may
prove to be pious hopes rather than a reliable guide for scheduling. In such an installation it is probably best to
take into account only user requirements such as urgencies and deadlines. Other installations may wish to
experiment with a variety of methods of dealing with job characteristics in order to aid scheduling.

What the high level scheduler does

'Note: While a standard high level scheduler is issued with GEORGE 3, installations may write their own HLS to
suit their particular requirements, but the following information is likely to apply in most cases.

The user can give the high level scheduler details about a particular job and its scheduling requirements by means
of commands issued from a MOP terminal or included in ajob description. These commands correspond roughly
to those of the factors listed above which can be specified by the user in the scheduling of individual jobs.

Thus, there is a command called the URGENCY command, which assigns a GEORGE priority (as opposed to an
Executive priority) to ajob. The urgency of ajob is expressed as a letter of the alphabet between A and Z, A being
the highest urgency, Z the lowest. Another command that may be used to communicate scheduling requirements
to the high level scheduler is MAXSIZE, which sets an upper limit to the size of core images within the job. There
is also the JOBTIME command, which has the dual purpose of informing the high level scheduler of the amount of
mill time used by a job and setting a limit on it. In its second function this command operates independently of
the high level scheduler.

Using the data at its disposal the high level scheduler decides which jobs to run (in practice, which jobs to tell the
low level scheduler about). Typically, most if not all the MOP jobs will be accepted, but not all the background
jobs. To prevent the system being overloaded with MOP jobs, an upper limit is set on the number of MOP users
who can run programs interactively. After the user has logged in, his job can be tentatively started, that is, it will
be allowed to proceed until a command such as LOAD, CREATE, ASSIGN, SAVE, REALTIME, ENTER,
ONLINE or RESUME is encountered. If the limit for interactive programs has been reached, the user will be
informed that his job cannot be fully started. Jobs must be made fully started by the high level scheduler before
they can run programs. If a particular job is of a very high priority the EXPRESS command can be used to inform
the high level scheduler that this job should not be made to wait when it requires to be fully started, and that a
high proportion of computer time should be devoted to it.

The next step for the high level scheduler is to examine the relative urgencies which users have set on the selected
jobs and to establish a Computing Power Index (C.P'!.) for each one. The C.P'!. for a given job is a number
representing the proportion of the computer's time to be given to that job. It is not an absolute, unchanging
number, but is relative to the urgencies of the other jobs that are to be time-shared. Asjobs start or finish, the
C.P.!.'s for other jobs may need to be changed. To achieve this dynamic control the high level scheduler is called in
at regular intervals and also whenever a new job is submitted to the system or commands that necessitate
scheduling action are given by a user (for example, if a user issues a new URGENCY or MAXSIZE command, thus
changing the job's scheduling requirements, the high level scheduler is called in before a program can be entered or
resumed by this job).

To illustrate the meaning of the C.P.!', consider the case of three jobs to be run with urgencies F, K and Q
respectively. The high level scheduler might assign C.P.l.s which informed the low level scheduler that the F job
was to run for 48 minutes in every hour, the Kjob for IO minutes and the Q job for 2 minutes. This does not mean
that the F job could run for 48 minutes continuously, if it was long enough, because the C.P.1. is used to determine
the proportion of computing time given to ajob, not the length of time for which ajob can run without interruption.
This latter factor is controlled by the low level scheduler.

THE LOW LEVEL SCHEDULER

The low level scheduler is concerned with the tactics of scheduling. It arranges the sharing of time between
programs in accordance with the C.P.l.s presented to it by the high level scheduler. It is automatically entered
several times every second to decide which program to run next.

Under GEORGE more programs can be active than there is room for in core. Less active programs are kept by the
low level scheduler on backing store. The low level scheduler assigns to each program a time slot and a fair waiting
time. A time slot is the amount of time a program may run without interruption. Its length, for both background
and MOP programs, is proportional to the size of the program. The actual value is determined by the value of the
installation parameter SLOTTIME in combination with the core size.

4265(4.71)

The fair waiting time is the amount of time a program should ideally wait between time slots, and is determined by
the program's C.P.I., the number of programs currently loaded and the actual time used in the current time slot.

Each time the low level scheduler is entered at the end of a program's time slot, the next program to be run will
be the one for which the actual waiting time exceeds the fair waiting time by the greatest amount (or falls short of
it by the least amount). If this program is on backing store in the filestore, the low level scheduler first loads it
into core. This process may involve swapping some other program out of core and dumping it to backing store.
When only background jobs are being run, the low level schedulerwill not swap out a program at the end of its
time slot in order to replace it by another program unless it is necessary to relocate programs in order to make the
optimum use of core store. It is therefore unnecessary, and not recommended, that the value of SLOTTIMEbe set
unduly high in this situation.

EXECUTIVE SCHEDULING

Executive carries out the schedulingprocess at the millisecond level, as in the normal Executive-controlled system.
If a program is suspended during its time slot, the system is not held up awaiting the next entry of the low level
scheduler. Executive automatically switches control to the program in core with the highest Executive priority. In
future versions, to make this process as efficient as possible, the low level schedulerwill dynamically adjust
Executive priorities at frequent intervals, to ensure that the right program is entered by Executive.

4265(4.71) 45

-
Chapter 7 Budgeting and accounting

BUDGETARY CONTROL

Becauseof the hierarchical structure of the filestore, it is possible for the installation manager to keep strict control
over the use that is made of the computer. .

A userwith a directory in the filestore and who holds the NEWUSERprivilegecan, by means of the MAKEDIR
command, create userswith directories immediately inferior to his proper directory. Each user represents an
account, so that, in creating new users inferior to his directory, a user is effectively breaking down his account into
separate categories. In this way a manager-userin charge of a number of different projects can arrange for each to ..
be costed separately and can determine in what proportions the computing facilities at his disposal are shared
between them. The user name of each new user mayor may not denote an actual individual. It may serve to
identify one of a number of projects under a singleman's control or it may denote a group of people associated
with a singleproject. In either case the account might be broken down further, into sub-projects, and so on to a
depth of up to 64 levelsbelow :MASTER.

Each user in the system is allocated budgets by his immediate superior and can himself allocate some or all of his
budgets to users he has created, the amounts he givesto his inferiors being subtracted from his own budgets. There
are three main budget categories, space, time and money. Budgets are allocations of space, time and money.
Space budgets are allocations of space for entrants of different kinds and are measured in space units, for example
magnetic tapes. Time budgets refer to central processor time for use in runningjobs of different urgencies(A to Z).
The urgencies for which time budgets are to be allocated and the units assignedto each are decided by the
installation manager. A money budget is the quantity of money, real or notional, that is allocated to pay for a user's
consumption of time and space-timeunits, according to the chargingalgorithms in use at the installation. In the
current Mark there are four budget types:

SPACEMT
TIME

MONEY

REALTIME

measured in units of one magnetic tape
measured in units of one second of mill time

at the installation manager's discretion

measured in words of core for realtime programs (see belowClassificationof
budgets.

CLASSIFICATION OF BUDGETS

Budget types are classifiedas transient or stable.A transient budget is one that is permanently diminished by being
used, a stable budget is one that can be made re-availableafter use. Time and money budgets are transient, whereas
spacebudgets, including the REALTIMEbudget which limits the amount of core availablefor realtime work, are
stable.

Transient budgets

Transient budgets are allocated to users at intervals, for use during the coming budget period. A budget period is
the time interval between entries of the accounting program; its length is determined by the installation manager.

In the case of transient budgets, a distinction must be drawn between a user's ration, the amount of time or money
regularly allocated to him for each budget period, and his allowance, the amount that has been made availableto
him for the current budget period. When a user runs ajob, he consumes some of his time andmoney allowances,
but he does not alter his rationsof time and money. If a user givesaway part of his money ration, he does not
affect his money allowance for the current period, though his money allowance for the next period will be less as
a result.
A user's ration of a particular transient budget type mayor may not be equal to his allowance.This will depend on
whether the user's ration (or allowance) is altered in the middle of a budget period and also on whether the user's
consumption during one period affects his allowance for the next period.

4265(4.71) 47

-
Stable budgets

In the case of stable budgets the term 'allowance' has no meaning, an allocation of spacebeing called a ration.
Since stable budgets are not permanently diminished by being used, there is no need for a user's allocation of space
to be replenished at periodic intervals.Once a user has been givena space ration it belongs to him permanently,
until he decides to giveit away or it is taken from him by his immediate superior.

The difference between the ways stable and transient budgets operate can be illustrated by an example. Suppose
that a user has a stable budget ration of one hundred magnetic tapes, of which he is usingninety at the moment.
Should he now require fifteen tapes, he can releasefive of the tapes he is using and thereby increase the number of
tapes availableto fifteen.

In the case of a transient budget like money, this kind of operation is not possible. If a user has an allowance of
£100 and he has used £100, he cannot recover any of the money he has spent. Hemust either supplement his
allowanceby usingpart of another user's allowance(seeRemoval of budgets, below) or wait until his allowance,
is renewed at the beginningof the next budget period. The sizeof his money ration does not affect the amount of
money he can use in the current budget period; this is used to determine the sizeof his new allowancesat the
beginningof the next period.

ALLOCATION OF BUDGETS

The standard method of allocatingbudgets is by means of the BUDGETcommand. This enables a user to give
stable and transient budget rations to users that are immediately inferior to him. The amounts that he can allocate
are limited by the sizesof his own budget rations, since it is these that he is in effect givingaway. A user can also
allocate rations to his immediate superior by means of this command, but he cannot give rationsdirectly to any
user more than one level above or below him in the hierarchy.

Since the BUDGETcommand acts only on rations, it cannot affect a user's allowanceof time or money for the
current period. A userwhose money ration has been increasedwill begin to benefit only when transient allowances
are reallocated at the beginning of the next period. To increase a user's current allowanceof time or money, an
ALLOWANCEcommand must be given.UnlikeBUDGET,this command can be used to increase the allowance of
any user in the system, but the amount given is subtracted from the giver's current allowance.The virtue of this
facility is that if a user finds that he requires an abnormally largemoney allowance for a specialproject during the
current period, a user any number of levelsabove (or below) him in the hierarchy can increasehis allowance
directly without affecting the size of his regular ration.

REMOVAL OF BUDGETS

A user's power to reduce other user's budgets is more limited. By means of the BUDGETand ALLDWANCE
commands, he may take back rations and transient budget allowancesonly from userswho are immediately
inferior to him. This restriction is sensibleenough. Clearly it would be impossible for a line manager to organize
his budget efficiently, if his managingdirector was liable at any time to appropriate budgets belonging to the line
manager's staff. Under the GEORGEbudgeting system a managingdirector who wishes to cut down on his
company's budgets would have to decrease the budgets of his line managers.They would then be responsible for
the efficient reallocation of their reduced resources.

PRIVILEGES

To aid the installation manager in controlling his installation, GEORGEprovides specialkinds of budgets, the
privileges. Once assigneda privilegeby the manager, by means of a BUDGETcommand, a user can make use of the
facilities specified for that privilegein the file :MASTER.DICTIONARY,while users not holding the privilege
restricts the right to create new usersby means of the MAKEDIRcommand, while the TRUSTEDprivilegeis
needed if the user is to perform extracodes requiring a trusted status for the object program using them.

NEWUSERand TRUSTEDare examples of built-in privileges; of the twenty privilegesavailablein :MASTER.DICTIONARY,
a smallnumber are of this type; the rest may be defined by the manager in accordancewith the needs of the
installation.

Usersholding privilegesmay assignthem to their immediate inferiors in the hierarchial structure, or take them
awayby a BUDGETcommand with a GIVE or TAKEparameter. If a user loses a privilegehis inferiors also lose it.

At the end of a budgeting period, the installation manager runs an accounting subject program to compile period
accounts for each user and to allocate fresh transient budgets. This aspect of GEORGE's budgeting and accounting
facilities is more fully described in the Operational Managementmanual.

48 4265(4.71)

Appendix 1 Writing a job description

This Appendix describes the organization of a typical job description to compile and run a program. It should be
read in conjunction with Chapters 2 and 4 of this manual.

THE COMPLETE JOB DESCRIPTION

It is assumed that the source program and the input data have already been input to the filestore as follows:

INPUT :JOHN,PROGA

lines of source program

INPUT :JOHN,PROGADATA

lines of data

The job description can then be submitted to GEORGE:

JOBMYJOB,:JOHN

WHENEVERCOMMANDERROR, GOTO 2L

UNGOPROGA

SAVEBINPROGA

ASSIGN*CR1,PROGADATA

ASSIGN*LPl,PROGAOUT

USTFILE PROGAOUT,*LP

ERASEPROGADATA

ERASEPROGAOUT

ENTER

IF HALTED,RESUME21

IF FAILED, PRINT (0,7)

IF DELETED "PROGAOK", RUNJOBNEXTJOB,JDFILE

2LENDJOB

4266(4.71) 49

-
INTRODUCING THE JOB DESCRIPTION TO GEORGE

If the job is to be run more than once, the job description will be introduced t? ?EORGE by an INPUTco~mand
so that it can subsequently be initiated by a RUNJOBcommand. If, h~wever, It.lS?~ly necessary to run .theJ~b
once, the job description will be introduced by a JOB command. In this appendix It ISassumed that the Job will
only be run once, so the first command in the job description is:

JOBMYJOB,:JOHN

-

THE WHENEVER COMMAND

WHENEVERcommands can be issued at any point in the job description. In the example givenhere, the
WHENEVERcommand at the start of the job description ensures that if there is an error in any of the commands
the job is immediately abandoned.

COMPILING THE SOURCE PROGRAM

The job's first task is to compile the source program, so the next command in the job description will be a
compilation macro. In this example, the fictitious macro UNGO is used, and its format is assumed to be:

UNGO sourceprogram file name,object program file name

If the second parameter is omitted, the object program will be left in core at the end of the compilation. A listing
will alwaysbe sent to the monitoring file system.

The command included in the job description will be:

UNGOPROGA

Thiswill compile the source program in the file PROGAand leave the binary output in core ready to run. If the
user wishes to keep a copy of the object program he then issuesa SAVEcommand:

SAVEBINPROGA

A card-type file called BINPROGAis created in the filestore by this command, and the current core image copied
to the file. If the user wishes to run the program again later, he can write a job description starting:

JOBNEWJOB,:JOHN

RESTOREBINPROGA

CONNECTING PERIPHERALS TO THE PROGRAM

Before the object program in core can be entered, the user must connect the program's peripheral channels to
ftlestore files. This he does by means of ASSIGNcommands:

ASSIGN*CRO,PROGADATA

ASSIGN*LPO,PROGAOUT

If he wants a listing of the output flle, he can then issue a USTFILE command:

USTFILE PROGAOUT,*LP

ERASEcommands can be placed after the USTFILE if the input and output fileswill not be required again:

ERASEPROGADATA

ERASEPROGAOUT

The fileswill not be listed and erased until after they are closed (see page 33).·

ENTERING THE PROGRAM

Whenall the peripherals have been ASSIGNed,the program can be entered. If the entry point is zero, the
command is simply:

ENTER

50 4265(4.71)

PROGRAM EVENTS

After ENTER. the user places the conditional commands which inform GEORGE what action to take if a program
event occurs. In this example of a simple job description. three types of program event are monitored.

HALTED EVENTS These are caused by the program halting

2 DELETED EVENTS These are caused by the program being deleted

3 FAILED EVENTS These are caused by program failures such as illegal instructions and peripheral
failures

The three types of conditional command needed to monitor these three types of program event are as follows:

IF HALTED

2 IF DELETED

3 IF FAILED

Note: Negative versions of these conditions can be specified; for example: IF NOT HALTED.

The conditional commands can be further qualified to test the program event message. Thus in the example. the
user tests whether the program has output the message: PROGA OK on being deleted by means of the command:

IF DELETED "PROGA OK' •...

Once GEORGE has loaded and entered a program. the program will run until a program event occurs. At this point
the program is suspended and GEORGE reads and acts upon the commands following ENTER in the job description
until. in the example. the ENDJOB command is obeyed.

THE PRINT COMMAND

If a program fails. the user may wish to know the contents of certain areas of the program in core. The PRINT
command can be used to write specified parts of the program area to the monitoring file. It is most likely to be
used in conjunction with conditional commands. for example the command:

IF FAILED. PRINT (0.7)

will cause the contents of the accumulators to be output if the program fails.

THE RESUME COMMAND

If he wishes to continue with the object program run after a program event, the user must issue a RESUME
command. By including the number of the desired entry point (relative to word 0) the user can specify at which
point in the object program he wishes to restart processing. If he wishes to continue from where the program has
halted. he issues a RESUME command with no parameters.

THE RUNJOB COMMAND

In the example the use of RUNJOB after IF DELETED ... illustrates the way in which the initiation of a job can
be made dependent on the success of a previous job. If NEXTJOB is initiated, control passes to the commands
contained in its job description file. When NEXTJOB has finished. control returns to the command following the
one that initiated NEXTJOB, that is. to ENDJOB in MYJOB's job description.

4265(4.71) 51

Index

Absolute names 17 COPYOUT command 29
Accounting facility 5,19 CREATE command 33
Accounting subject program 48 Current directory 17
ALLCHAR mode 14,31
Allowances (budgeting) 47 DEAD command 29
ALLOWANCE command 48 Deleting with the Editor 24
Amorphous files 14 Dictionary 15
APPEND command 19 Direct access devices, on-lining 34
Appending to serial files 14 Direct access flies 14
ASSIGN command 11,32 modes of access to 15
ASSOCIATE command 36 Directories, current 17
ATTRIBUTE command 35 depths of 17
Automatic Operator 6 master 15

proper 15
Background jobs 11 DIRECTORY command 18

with MOP 39 Disconnecting MOP jobs 11
Backing Store 3 Dumps, incremental 20
Back-up system 19 Dump Tape processor 20
Basic peripherals, simulated 11
Basic peripheral files 13 Early Morning Start 37

modes of access to 14 EDIT command 21
Batch compilers 6 Editing language 21
Batch processing remote 3 deleting text 24
Break-in facility 38 ending the edit 26
Break-in levels 38 Forget (F) instruction 26
BUDGET command 48 Insert (I) instruction 25
Budgeting ,47 Pointer (P) instruction 24
Budget period 47 Replace (R) instruction 26
Built-in commands 7 Transcribe (T) instruction 23
Built-in privileges 48 Editor facility 21

E instruction 26
CANTDO command 36 Elements of multifiles 14
Character strings 21 Embedded data 11,32
Clusters, peripheral 36 Embedded INPUT commands 31
Command language 2,7 from MOP terminal 36

in GEORGE 1 and 2 6 Endpoint 22
Command processor levels 8 Entrant concept 13

and break-in 38 Entrants in the filestore 13
Commands, built-in 7 outside the filestore 27

conditional 9 ERASE command 33
macro 7 Erasing files 33

Communications files 14 EXECUTE mode 19
Compilers 1 Executive, functions of 1

batch 6 and multiprogramming 2
calling in, from MOP terminal 39 Execu tive scheduling 4,45

Computing Power Index (CPI) 44 EXPRESS command 44
Conceptual multiplexers 35 Exoflles 27-28
Console property 36 Extracodes 1
Console typewriters (7021's) 4,37
CONTINUE command 38 Fair waiting time 44
Conversing with an object program 40 FILEIN command 29
Conversion of entrant categories 29 Filenames 17
COPYIN command 29 File retrieval system 20

4265(4.71) 53

-
Files, amorphous 14 Localname 17

basicperipheral 13 Log analysisprogram 5
communications 14 Logging 5
direct access 14 LOGINcommand 37
formats of 13-14 Low level scheduler 44
job description 2
magnetic tape 14 Macro commands 7
modes of access to 14 nested macros 8
referring to 17 systemmacros 8
serial 13 user macros 8
stacked 27 Macro levels 8
terminal 15 Magnetic tape files 14

Filestore 13 modes of access to 15
structure of 15 on-lining 34
reasons for structure of 18 MAKEDIRcommand 15,47

Forget (F) instruction 26 MAXSIZEcommand 44
Fully started jobs 44 MINIMOP(GEORGE 1 and 2) 6

MONEYbudget 47
General restore 20 Monitoring file 10
GEORGE 1 and 2 5 MOP 4,37
GEORGE4 5 MOPterminals as input/output devices 36
GET command 27 Multifiles 14
GETONLINE 27 Multiplexers 35
GIVE parameter 48 Multiprogrammingwith Executive 2
Highlevel scheduler 43 with GEORGE3 and 4 2

IF command 9 Nested macros 8
Incremental dumper 20 NEWcommand 29
Increments 20 NEWUSERprivilege 47
INPUTcommand 10,31 NORMALmode 14,31

from MOPterminal 36
Input facilities 31 Off-lineperipherals 32
Input and output for object programs 32 Off-liningwith GEORGE2 6
Insert (I) instruction 25 with GEORGE 3 and 4 3, 10,32
INSTPARAcommand 37 ONLINE command 27,34

and MOP 36
JOB command 10 and multiplexers 34
Job description: GEORGE 1 and 2 6 and peripheral clusters 36

GEORGE3 and 4 2, 11 and properties 35
file 2 On-linejob 4, 11
once-only 10 On-lineperipherals 34
permanently stored 10 Operating systems, objectives 1 "--"JOBLIMITparameter 37 facilities: GEORGE3 and 4 2

Jobs, background 11 other operating systems 6
background with MOP 39 Operator, functions of under Executive 1
fully started 44 under GEORGE3 36
on-line (MOP) 4, 11 Output from object programs 10, 11,32
tentatively started 44

JOBTIMEcommand 44 Paged 1900's 5
Juggernaut restorer 20 Paper tape input 31

Parameters 7
Labels 7 blocks 9
Language,command 2, 7 identifiers 9

editing 21 in user macros 8
in GEORGE 1 and 2 6 locations 9

Levels,command processor 8 Passwords 37
break-in 38 Peripheral clusters 36

Librarian 27 Peripheral names 34
LINGO(fictional) macro 8 Peripherals, basic (on-lining) 34
LISTFILE command 11,20,32 PERIs 13,14

and peripheral clusters 36 .Pointer 22
and properties 35 Pointer (P) instruction 24

LOADcommand 20 Pool tapes 27

54 4265(4.71)

Privacy 19
Privileges 48
Program development with MOP 4
Proper directory 15
PROPERTYcommand 35
Property consoles 36
Property names 35
Property system 34
PUC(Program under control) 5
Pure code 5

Quit (Q) instruction 26

Rations (in budgeting) 47
READ accessmodes 19
REALTIMEbudget 47
Relative names 17
Remote batch processing 3
Remote data terminals (7020's) 3,35
RENAMEcommand 10
Replacing (R) instruction 26
REPORT command 38
RETRIEVE command 20

Secure entrants 27
SETPARAMcommand 9
.Shared programs 5
Simulated basic peripherals 11
SPACEMTbudget 47
Stable budgets 47
System macros 8

TAKEparameter 48
Teletypewriters (7023's) 35
Tentatively started jobs 44
TERMINATEcommand 36
TIME budget 47
TIME command 39
Time slot 44
TRACE command 10
Transcribe (T) instruction 23
Transient budgets 47
TRAPGOcommand 19
TRUSTEDprivilege 40
Typewriters, console (7021 's) 37

URGENCYcommand 44
Usermacros 8
User names 17
User, proper 17
User traps 19

Verbs 7
Virtual store (Paged 1900's) 5

WHATPERcommand 36
WHENEVERcommand 9
Workfiles 33
Workingjob description file 10
Worktapes 27
WRITEaccessmode 19

4265(4.71) 55

