
UNIVERSITY MATHEMATICAL LABORATORY
. .

I CAMBRIDGE r

..•

As a temporary measure the Library files for GINO as described
in this third edition are named CAD/GINOSAL/E and CAD/GINO/GRAPHE.
CAD/GINOSAL/* and CAD/GINO/GRAPH co~tain versions corresponding to the
second edition (June, 1969). Users will be informed when the third
edition is preferedi until then it may be used on an experimental
basis.

The following brief summary of the new facilities in the third
edition is provided for the benefit of those familiar with the earlier
edition:-

1. The versions of GINO for producing Elliott 928 display file;
CALCOMP plotter output and COMPLOT on-line plotter output are new.
(see routines ELLIOTTGIN01 PLOTTERGINO, COMPLOTGINO).

2. Automatic scaling and positioning facilities are provided
(see routines PICTURE, PICTZCLIP, OBJZDM) and some new transformation
facilities (see routines AXONXYZ, PROJXYZ).

3. User-defined objects can be transformed at definition time
(see section 2-3)

4. Nesting of names in objects is now permitted, but nested names
in subpictures are not permitted (see section 2,10)

5. A routine for histograms is added to the graph routines (see
section 3)

6. The routines for handling the link have been rationalised (see
section 5)

7. Two new satellite programs for providing interactive graphics
facilities without any need to write satellite code are provided,
(see the interactive Handler and Terminal in section 6).

UNIVERSITY OF CAMBRIDGE

Computer-Aided Design Group

GINO

Graphical Input/Output

THIRD EDITION

Edited by P.A. Woodsford

June 1970

Copyright, Cambridge University CAD Group.
No part of this document may be copied or
reproduced without permission of the
Cambridge University CAD Group.

The version of GINO described in this third edition of the user's
manual is a result of extensions and improvements made to the version
described in the second edition. These improvements are the result of
the experience of over a year's usage of GINO at the University
Mathematical Laboratory and at the Ministry of Technology CAD Centre,
Cambridge. The extensions are mainly in the direction of accommodating
a larger range of graphical devices. This edition of the manual is a
revision of the second edition. One condequence of this is that 'TITAN'
is used (except when obviously juxtaposed with 'ATLAS') to mean 'TITAN
or 'ATLAS'. The term 'POP' is also sometimes used to mean 'POP or Elliott'.

Some parts of the first version of GINO, which was the work of
C.A. Lang, P.J. Payne, J.C. Gray, A.P. Armit and A.R. Forrest, are still
in use. The bulk of the current version is the work of P.A. Woodsford.
Contributions have also been made by P. Cross and R.P. Parkins and by
C. Litherland and M. Newell of the Ministry of Technology CAD Centre.
The latter has also provided valuable feedback from the use of GINO at the
Centre. C. A. Lang gave valuable advice about the des~gn of GINO and
A.W. Nutbourne helped with the presentation of this manual, which has been
again typed most efficiently by Mrs. S. Williams.

GINO was developed by members of the Cambridge University CAD Group
and is available on the TITAN computer. It is also available on the
ATLAS computer at the Ministry of Technology CAD Centre, Madingley Road,
Cambridge.

Computer Aided Design Group,
University Mathematical Laboratory,
Corn Exchange Street,
Cambridge CB2 3QG,
England.

CONTENTS

1. Introduction.

2. TITAN - Generation of Pictures.

2.1 Introduction
2.2 Built-in Objects
2.3 User-Defined Objects
2.4 Subpictures
2.5 Initialisation
2.6 Transformations
2.7 Windowing and Depth Modulation
2.8 Picture Part Naming and Use of the Light-Pen
2.9 Methods of Picture Output
2.10 SAL Entries to the Routines
2.11 Table of Characteristics of Available Devices
2.12 Sample Programs
2.13 Specifications of Picture Routines

3. TITAN - Generation of Graphs.

3.1 Introduction
3.2 Specification of Routines
3.3 Sample Program

4. TITAN - Plotting Display Files.

4.1 Introduction
4.2 Specification of the Plotter Routines
4.3 Sample Programs

5. TITAN - Using a Satellite Computer.

5.1 Introduction
5.2 Specifications of the Link Routines
5.3 Sample Program

6. PDP/Elliott - Programs for Using the Display and the Link.

6.1 Introduction
6.2 Specifications of DFTL and DFTP
6.3 DFM, the Interactive Handler and Terminal

7. How to Use the GINO Routines

8. References

9. Routine Index

10. Glossary

Appendix 1. Hardware Details

Appendix 2. Design and Implementation Features

1. INTRODUCTION

GINO provides a set of graphical facilities for use with the TITAN
and ATLAS computers. A number of graphical devices can be used including
the PDP 7/9 computer with DEC340 display, the Elliott 905 computer with
928 display, the CALCOMP digital plotter and the COMPLOT on-line plotter.
Programs using GINO are basically independent of the particular graphical
device used. An initialisation routine is provided for each device and
this is the only routine which has to be changed when changing a GINO
program from using one graphical device to another.

Two or three-dimensional pictures may be generated in TITAN or
ATLAS and displayed (as two-dimensional projections) on any available
graphical device. Optional transformation and windowing facilities are
provided for use in generating pictures. Further facilities allow for
applications using interactive graphics with the PDP or Elliott as a
satellite of the central computer. These facilities include the naming
of picture parts and the management of communications between the two
machines.

The GINO routines are designed to be usable by programmers in any
of the languages available in the TITAN Mixed Language System (MLS) (1).
It is anticipated that the majority of GINO users will write their programs
in FORTRAN, SAL or Assembly Code. All examples of routine calls in the
manual are given in the FORTRAN style, but complete sample programs in both
FORTRAN and SAL are included.

The present facilities provided by GINO are:-

1. TITAN/ATLAS - Generation of Pictures

A set of easy to use routines is provided to enable pictures to be
generated from lines, points, characters, arcs of circles, etc. Pictures
may be sent directly to the chosen graphical device or stored on disc file,
paper tape or magnetic tape.

2. TITAN/ATLAS - Generation of Graphs

Various styles of graph paper (e.g. linear, log-linear) may be
specified and any number of graphs may be plotted on each "piece of paper".
The graph routines are .compatible with the general picture routines of (1)
so pictures containing graphs and other pictorial information may be produced.

3. TITAN/ATLAS - Plotting Display Files

Pictures generated in the form of display files can be plotted on the
CALCOMP plotter. This is designed to provide a general "hard copy" service
for users of the display - the display files mayor may not have been
produced by GINO.

1/1

4. TITAN/ATLAS - Using a Satellite Computer

The PDP7 is attached to TITAN by a high speed data link, as is
the PDP9 to ATLAS. Two Elliott 905 computers are also attached to
ATLAS by 4800 baud lines. Any of these data channels is referred to as
a "link" (2). Routines are provided to handle conununicationsover t.hr,
link; they are designed to help the FORTRAN programmer in particular.

5. POP/ELLIOTT - Programs for Using the Display and the Link

Programs are provided for loading display file paper tapes (OFTI.)
and for punching out display files in a relocatable form (OFTP). The
Display file Manager (DFM) may be used to run the display, particularly
when display files are sent over the link. Two programs are availaLle
(the Interactive Handler and Terminal) which allow use of the POP/Elliott
as an interactive graphics satellite. These two programs may be used
without writing any code for the satellite.

The current version of GINO is a revision and extension of the
version of June, 1969 (20). Extensions are primarily in the direction
of accommodating new graphical devices although many new facilities have
been added as a result of the experience of a year's use at the
Mathematical Laboratory and the Ministry of Technology CAD Centre.

An earlier version of GINO (3) was written in FORTRAN. The current
version is written in the Systems Assembly Language (SAL) (4) with
consequent saving in space and increase in efficiency. (A package written
in SAL, equivalent to the early FORTRAN version would be less than 1/3 of
the size - the new version, with very many more facilities, is less than
2/3 of the size of the old FORTRAN version). The designers of GINO have
drawn on ideas used in previous graphical input/output packages (5), (6),
(7), (8).

The user who is unfamiliar with the computers used by GINO will
find basic hardware descriptions in Appendix 1 at the end of this manual.

The creation of pictures has traditionally been regarded as an art.
Of our readers whose bent is artistic, we would crave "that willing sus
pension of disbelief for the moment, which constitutes poetic faith." Of
the rest we would ask just that they read at least 20 pages before saying
that they do not understand.

1/2

2. TITAN ~ GENERATION OF PICTURES

2.1 Introduction

Pictures and Picture Parts.

The routines to be described in Section 2 make up a system
for generating 2D or 3D pictures for a range of graphical devices.
The pictures produced appear as assemblages of lines, points and
characters. However, they are generated as sequences of picture
parts, and it is as such that we shall describe them.

The simplest kind of picture part is called a built-in object.
Built-in objects are the basic components of pictures (e.g., lines,
points, characters, arcs of circles) that are built-in to the GINO
system.

Most pictures contain some kind of regularities in shape or
pattern. In order to exploit such regularities, two other kinds of
picture parts may be included in GINO pictures. One of these is the
user-defined object. A user-defined object is ~efined by the user as
a sequence of picture parts; once defined it has the same status as a
built-in object. The other kind of picture part is the subpicture. It
is also defined by the user, but has a much more specialised nature. The
differences between objects and subpictures, as they affect the user, are
tabulated in Fig. 2A. Subpictures are only available on devices that
have a subroutining facility (i.e. the PDP & Elliott displays). They are
used to shorten the length of a display file which contains repetitions
of the same image by treating this image as a display subroutine. This
facility is not available on the plotters and so when GINO is used for
plotter output subpictures are treated like user-defined objects.

To sumrnarise,GINO pictures consist of sequences of picture parts,
where picture parts are built-in objects, user-defined objects and
subpictures.

Definitions and Picture Construction.

The function of each picture building routine is to add a picture
part. Precisely what this means depends on the context of the routine
call. The picture part can be added to the definition of a user
defined object, to the definition of a subpicture or to the picture
being constructed. Definitions are explicitly opened and closed by the
user; if no definition is open, the picture construction process takes
place. The three processes are illustrated in Figs. 2B, 2C and 2D and
discussed fully in sections 2.2, 2.3 and 2.4.

Coordinate Systems.

Pictures must be specified in terms of space coordinates. Space
coordinates must be cartesian; they may be in 2 or 3 dimensions (they

2/1

will be denoted by upper case letters X,Y,Z). Space coordjnatcs are
abstract. They are chosen by the user to suit his picture and they
are only restricted by the fact that they are held as TITAN integers
(i.e., - 1048575 <X< 1048575, etc.)

Pictures are produced in terms of picture coordinates. (These
will be denoted by lower case letters x, y, z.) Picture coordinates
are either screen coordinates or plotter coordinates. In any case,
their limits are the physical limits imposed by the output device
(e.g., for the screen 0 < x < 1023; 0 < y < 1023). z is usually
ignored, but there is an option with pictures fnr the display to vary
the brightness of the picture with z (this is termed depth modulation).

In general a transformation is made from one coordinate system to
the other. When this happens we shall speak of the total picture,
expressed in space coordinates, being transformed into a view of the
total picture, expressed in picture coordinates. Typical basic
transformations are rotation, magnification, and projection. General
transformations are built up as combinations of basic transformations.

In addition to this transformation process (described in detail
in Section 2.6), the view may also be windowed (i.e., restricted to a
visible 2D or 3D region specified by the user). Details of this are
in Section 2.7.

Picture Part Naming.

A facility is provided for giving any picture part a name so that it
can be identified by the light pen. This facility, which is only useful
to those who wish to use the light pen for interactive work, is described
in Section 2.8.

Multiple Pictures.

In general a GINO program can produce several "pictures", For
the PDP and Elliott displays each picture is a picture segment, which is
the smallest amount of picture that can be individually displayed or
replaced. Any number of picture segments can be displayed simultaneously
and each one can be switched on and off. On plotters each new picture
corresponds to moving the plotter on to fresh paper.

This highlights another distinction between user-defined objects
and subpictures. An object definition is available for any number of
pictures whereas a subpicture is local to a particular picture segment
and will have to be redefined for each new picture segment.

General.

The rema1n1ng sections deal with system initialisation, output
facilities and routine specifications. Since most GINO programs are
likely to be written in FORTRAN, sample programs and routine
specifications are given in terms of FORTRAN. However, the routines
may be used from SAL or assembly code and relevant details (and a
sample SAL program) are also given.

2/2

COMPARISON OF USER-DEFINED OBJECTS AND SUBPICTURES

USER-DEFINED OBJECTS SUBPICTURES

1. Must be used if transformed
views are required.

2. Full windowing facilities
available.

3. Definition takes more buffer
space than a subpicture
definition.

4. May be used in any number of
picture segments.

5. Available on all devices.

1. Frozen in shape when defined
and cannot subsequently be
transformed.

2. Not clipped when windowing.

3. Definition takes less buffer
space than an object
definition. Also the display
file produced is shortened.

4. Local to a particular picture
segment.

5. Only effective on PDP &
Elliott displays.

2.2 Built-in Objects

Built-in objects are provided by single GINO routines and include
such basic picture parts as points, lines, character strings and arcs of
circles. They are used both in the definition of user-defined objects
and subpictures, and as picture parts when constructing pictures.

Points and lines can be defined in two or three dimensions. (2D
pictures can be considered as being set up in the plane z = 0.) A point
is defined by its space coordinates. A line may either be defined as a
vector increment or by its end point.

GINO pictures consist of ordered sequences of picture parts. At any
point in the sequence there is a "current position" in the picture. In
physical terms this corresponds to the positioh of the electron beam on
the display screen or the pen on the plotter paper. In constructing a
picture it is often necessary to change the current position before adding
the next picture part. Points and lines can be added invisibly for this
purpose. (The corresponding routine names are derived by prefixing the
letter I to the visible routine name.)

Examples of Built-in Object Calls.

CALL IPOINT(I,J}

CALL LINE(10,-20)

2/3

Current position set to
X=I,Y=J.

Vector increment X = 10, Y = -20
is drawn from current position.

CALL CHARS ('PLAN VIEW') Adds character string at
current position.

CALL LINEP3(100,-200,100) Line from current position
to X c 100, Y = -200, Z = 100
is drawn.

Using the Light Pen.

Built-in object calls may be named so that they can be identified
by the light pen. This facility is only useful to those interested in
using the display interactively.

Each routine has an optional last argument for specifying the
name associated with the built-in object call. Thus,

CALL LINE3(100,0,-100,81)

CALL LINE(20,60,82)

names the specified lines as 81 and 82, respectively. A pen hit anywhere
on these lines will be identified with the appropriate name. (Further
details of picture part naming are given in section 2.8.)

Further Details.

The following routines are relevant to this section:

Name Purpose

BCDCHARS To add characters held in binary coded
decimal form.

CHARS To add a character string in FORTRAN

CHARINT To display an integer in character form.

CHARFPT
CHARREAL

To display a floating point number in
character form.

CHARTYPE To select the size of characters.

CIRCLE To add an arc of a circle

CIRCLE3 3D equivalent of CIRCLE

CONTROL To control light pen sensitivity,
hardware scaling and intensity.

CREATEDISPLAY To provide formatted output facilities
in FORTRAN

2/4

LINE,ILINE To add a 20 line, specified by vector
increments, visibly or invisibly.

LINEP,ILINEP To add a 20 line, specified by its end
point, visibly or invisibly.

LINE3,ILINE3 3D equivalents of LINE,ILINE.

LINEP 3,ILINEP 3D equivalents of LINEP,ILINEP.

POINT, IPOINT To add a 2D point, visibly or invisibly.

POINT3,IPOINT3 3D equivalents of POINT,IPOINT.

.SALCHARS To add a character string in SAL .

Details of these routines are to be found in section 2.13.

2.3 User-defined Objects

The purpose of user-defined objects is to allow the user to define
for himself picture parts more complicated than those provided as built
in objects. Each user-defined object, once defined, can be called as
many times as it is needed in the construction of a picture. A user
defined object is given an identifier when it is defined and this
identifier is used to refer to the user-define~ object when it is called
The identifier is a TITAN integer chosen by the user.

The Definition Process.

The definition process is illustrated in Fig. 2B. It is started
by a call to routine DEFOBJ and closed by a call to routine ENDOBJ.
Picture parts added between these two calls are added to the definition
of the object and not to the picture being constructed. The object is
given its identifier by the argument of DEFOBJ.

A concrete example will help the beginner. Suppose we need as a
picture part a square of side 50 space units. This is not provided as a
built-in object, so we must define it as a user-defined object. We
decide to give it the identifier 10 and proceed as follows. The sketch
illustrates the geometry.

CALL DEFOBJ(10)
CALL LINE(50,0)
CALL LINE(0,50)
CALL LINE(-50,0)
CALL LINE(0,-50)
CALL ENDOBJ

,It

...

t STARTING POINT

2/5

DEFINING A USER-DEFINED OBJECT

Method Effect

Case A

CALL DEFOBJ(l)
•

•

Picture parts copied identically
•
•

•
CALL ENDOBJ

Case B
Picture
Parts Geometrical

information --__
CALL DEFOBJ(l,l)

tv
....•.•.•• •0'\

Current Current windowing•
• transformation operation
•

CALL ENDOBJ

Object/subpicture
buffer in TITAN

t-%j
H
G')
•

Notes: 1. An object/subpicture buffer must be created before any user-defined objects are constructed.

2. In Case A, object definitions are independent of the transformation & windowing environment current at
definition time. The two cases are distinguished by the absence/presence of a second argument of DEFOBJ.

3. Subpictures used in object definitions retain their peculiar status and are never transformed or windowed.

4. Object definitions are global and may be saved on disc file.

We can now add the square to the picture how and when we need
it. In fact we can use it in several different pictures or even file
it away and use it another day.

There is no restriction on the picture parts which can be used in
an object definition. They may be built-in objects, other user-defined
objects or subpictures provided, of course, that the picture part is
defined when it is called (since subpicture definitions are local to a
picture segment, the case of subpictures within an object definition,
whilst legal, is likely to be more trouble than it is worth) .

There is only one restriction on
Definitions may not be nested. A new
started before ending a previous one.
definition inside an object definition

the definition process.
object definition cannot be
Neither can we start a subpicture
and vice versa.

User-defined Objects in Pictures.

Having defined object 10 we can
a picture by calling routine OBJECT.
X = 500, Y = 500 space units:

now use it in the construction of
Thus, to obtain a square at

CALL IPOINT(500,500)
CALL OBJECT(lO)

is all that is required.

The particular merit of user-defined objects is that they are
transformed and windowed each time they are called in the picture
construction process (see Figs. 2A and 2D). The definition process is
independent of any transformation or windowing bounds that have been set
up, and is in terms of geometrical information only.

So our humble square object is not so humble. By calling it with
suitable transformations set up we can get any square (by MAGNIFY and
ROTATE) and even parallelograms (by SHEAR). Further, if we position it
near a window boundary it will be appropriately clipped:,

The reader familiar with the term will see that user-defined
objects are succinctly described as picture macros, i.e., every time
an object is added to the picture, code is inserted into the display file
to generate the desired picture part.

2/7

The Use of 'l'ransformations and Windowing in Object Definitions.

We have so far dealt with case A in Fig. 2B in which the object
definition is an identical copy of its component picture parts. There
is an alternative facility in which the component picture parts of an
object definition may be subjected to transformation and windowing
(case B). The reader unfamiliar with these terms should just note this
option until he has read Sections 2.6 and 2.7.

If DEFOBJ is given a second argument (the value of which is
immaterial) then the component picture parts of the object definition are
passed through the current transformation and windowing routines and the
results are entered in the object/subpicture buffer as the object
definition. In other words the object definition process is exactly the
same as the picture construction process shown in Fig. 2D.

This facility allows for considerable flexibility. It allows
the use of transformations in building up an object definition (Example
3 in Section 2.6 is a case of this). It may also be used to reverse
the built-in order of transformati0n and then windowing by using
windowing with transformations switched off at definition time and then
transformation (and perhaps windowing) at call time.

When using this facility the user must take care to explicitly
set the transformation and windowing environment he requires prior to
defining the object.

Light Pen Naming.

User-defined object calls can be named for the light pen in the
same way as built-in object calls. The name is an optional second
argument,so if we add a square to the picture by

CALL OBJECT(IO,I)

a pen hit anywhere on this particular square will be associated with
the name given by the value of I.

Names may also be given at definition time to the component
picture parts of a user-defined object. This leads to the nesting of
names. Details are given in Section 2.8.

Further Details.

Facilities are available for deleting a user-defined object
(thus freeing the space used), saving an object definition on backing
store and recovering an object definition from backing store. Note
that if an object identifier is reused the previous definition is
automatically deleted.

2/8

The following routines are relevant to user-defined obiects:

Name Purpose

BUFFERS To set up a buffe~ for object
definitions.

DEFOBJ To open an object definit~on.

DELETEOBJ To delete a user-defined obiect.

ENDOBJ To close an object definition.

GETOBJ To recover an object def i.n.i. t i on
from backing store.

OBJECT To call a user-defined object.

SAVEOBJ To save an object definition on
backing store.

Details are to be found in Section 2.13.

2.4 Subpictures

The purpose of subpictures is to allow users of the PDP and
Elliott displays to define picture parts like user-defined objects,
but of a more specialised nature. The differences between user
defined objects and subpictures have been tabulated already in Fig. 2A.
The limitations and advantages of subpictures are such that they will
only be useful in highly schematic contexts such as circuit layouts.

2/8a

These differences hinge on the fact that only a single copy of
each subpicture exists in the display file, repeated subpicture calls
causing the same display file code to be executed. On the other hand,
each object call has its own display file.

The mechanics of using subpictures is the same as for using
objects. Each sUbpicture must be given an identifier and must be
defined before it can be called.

The Definition Process.

The definition process is illustrated in Fig. 2C. To the
programmer it mirrors the process of defining an object, the corresponding
routines being DEFSUB and ENDSUB. Between a call to DEFSUB and a call to
ENDSUB, picture parts are added to the subpicture definition and not to
the picture being constructed. The restriction on nesting of subpicture
definitions is precisely the same as for object definitions and so a
subpicture definition cannot be started while another is unfinished.

Again we take an example. Suppose we wish to use a subpicture
for a special symbol (a cross) to be used to mark data points on a graph.
We have decided to give this subpicture the identifier 7 and so we proceed
as follows. In the sketch illustrating the geometry, full lines are
visible and broken lines are invisible.

CALL DEFSUB(7)

CALL ILINE(O,-IO) I
I

~

CALL LINE(5,5)

CALL LINE(-IO,IO)

CALL ILINE(O,-IO)

CALL LINE(5,5)

CALL ENDSUB

Using Subpictures.

Having defined subpicture 7 we can now add it to the picture where
and when we need it by calling routine SUBPIC. If we are using our cross
sUbpicture to mark data points on a graph made up of straight line
segments we might proceed as follows (the arrays IX, IY hold coordinates
for the N data points):

DO 10 J = 1,N

CALL LINEP(IX(J),IY(J))

10 CALL SUBPIC(7)

Note that since LlNEP draws a line from the current position to (IX(J),
IY(J), the current position must be correctly fixed before entering the
DO loop.

2/9

Points
Lines
Characters
i)isplay
Controls

N.....•...•....•

--_
- _
•

CALLS TO
BUILT-I~
OBJECTS

DEFINING A SUBPICTURE

Start - CALL DEFSUB
Finish - CALL ENDSUB
Delete - by CALL BUFFERS which deletes all Subpictures

•••

OVERALL
DISPLACEMENTS~~--------~~----~--~~~Display File
UPDATED Buffer in

Titan

CALLS TO
USER-DEFINED~
OB:ECTS

CALL SE~TRANSFORM
I \
TRANSFORMATION /l1---+-+----_
(optional) V

CALLS TO
PREVIOUS
SUBPICTURES

CALL SETWINDOW
/ \Space

Coordinates
Picture
Coordinates

OVERALL
._ BOUNDS -

UPDATED

At CALL ENDSUB
Subpicture identifier,
Pointer, Window Bounds

Picture Start-Finish Displace
ments. Picture Bounds relative
to Start.

~bjects/Subpicture
Buffer in TITAN

~otes: 1. The Object/Subpicture Buffer must be created before defining a Subpicture.

2. Caution: Don't use POINTS or Hardware .Scale changes within the definition of
a Subpicture without careful reference to the windowing procedures.

Subpictures are not as powerful as user-defined objects. They
are not transformed each time they are called (see Fig. 2D) and so
are frozen in shape when they are defined. Furthermore, they are not
clipped when windowing. Either the whole subpicture is displayed or,
if any part of it is outside the window, then it is omitted entirely.
The advantages of using subpictures are that the display file is
shortened and that less TITAN core space is needed. (Subpicturc
definitions use much less space than object definitions.) Subpictures
are chiefly used for special symbols like crosses on a graph or electrical
circuit symbols.

Subpictures are analogous to ordinary program subroutines without
arguments.

Like user-defined objects, subpictures may be made up of any
defined picture parts. It is usual, however, only to use incremental
picture parts like lines and character strings in subpicture definitions.
This is because a subpicture containing an absolute point will always
appear in the same position, no matter what was the current position when
the subpicture was called. This effect is generally unwelcome although it
can be useful, eg when making character strings stand out brighter than the
rest of the picture by displaying them several times over.

Light Pen Naming.

Subpicture calls, like all other picture parts, can be given a name
for purposes of identification by the light pen. An optional second
argument of SUBPIC is used to specify this name. A special PDP program
(the Display File Manager) must be used in running display files containing
named sUbpicture calls (this is dealt with in Section 2.8).

Further Facilities.

There is no facility for deleting an individual subpicture definition.
A call to routine BUFFERS deletes all current subpicture definitions.

The following routines are relevant to subpictures:

Name Purpose

BUFFERS To set up a buffer for subpicture
definitions.

DEFSUB To open a subpicture definition.

ENDSUB To close a subpicture definition.

SUBPIC To call a subpicture.

Details are to be found in Section 2.13.

2/11

2.5 Initialisation

Initialisation of the GINO system is in two stages. First
is the basic initialisation of the system to produce output for
a particular graphical device. This will normally only be done
once. Second is the initialisation of each new picture. When
using a display, a new picture involves starting a new display
file. When using a plotter it involves moving to fresh paper.
Since a typical GINO program produces several pictures, this
initialisation may be repeated several times.

Basic Initialisation

There is one basic initialisation routine for each available
graphical device. One of these must be called before any other
GINO routine. This causes GINO to be loaded with the code generating
routines for the chosen device and no other. Only one graphical
device can be used by a given program and a program is not allowed
to contain more than one of the basis initialisation routines. However,
to change from one device to another only the initialisation routine
has to be changed.

The current set of basis initialisation routines is

Name Graphical Device AvailabiE ty
DF Buffer
needed

PDPGINO DEe 340 display with PDP7
or PDP9 computer

TITAN & ATLAS yes

ELLIOTTGINO Elliott 928 display with
905 computer

ATLAS yes

PLOTTERGINO Calcomp digital plotter
(2 sizes)

.TITAN & ATLAS no

COMPLOTGINO Complot on-line plotter ATLAS no

New Picture Initialisation

The user program must supply buffer space to GINO. Each buffer
is specified by 3 arguments - the start address, the length and an
overflow error label. For the PDP and Elliott displays, the picture,
is built in a display file buffer, which must be supplied. Output
for other devices (e.g. PLOTTERGINO, COMPLOTGINO) is sent to an output
stream and so a display file buffer is not required and if one is
declared it is ignored.

The second buffer which may be required is the object/subpicture
buffer which must be provided if either user-defined objects or subpictures
are used.

2/12

The routine used to set up the required buffer space is called
BUFFERS and it must be called before any picture part routine is
called. with PDPGINO and ELLIOTTGINO it may be called with 3 arguments
to set up the display file buffer or with 6 arguments to set up both
buffers. With PLOTTERGINO and COMPLOTGINO a call with 3 arguments sets
up the object/subpicture buffer and a call with no arguments is used
if user-defined objects and subpictures are not required. A call with
6 arguments is not rejected but the space declared for the display file
buffer is wasted.

In addition to establishing buffer space, a call to BUFFERS also
starts a new picture. Once buffer space has been established, BUFFERS
may be called with no arguments to start a new picture, reusing the
same buffer space. User-defined object definitions will still be
available since they are global but all subpicture definitions will be
lost since they are local to a particular picture. Object definitions
are only lost if the basic initialisation call (e.g., ELLIOTTGINO,
PLOTTERGINO) is repeated or if the location of the object/subpicture
buffer is changed.

Use of COMMON.

The user does not need to declare any COMMON variables for the
GINO system. Internally the system uses named COMMON blocks to hold
the transformation matrix and the current position. The user may
declare the necessary COMMON blocks if he wishes to have access to
this information (the details are in the next section) .

FORTRAN users can economise on the space taken by their programs
by using arrays in blank COMMON for their buffers. This reuses space
used by the loader which is otherwise wasted, e.g.,

COMMON BUFF(400)
CALL PDPGINO
ASSIGN 99 TO L
CALL BUFFERS (BUFF (1),200,L,BUFF(20l) ,200,L)

The first three arguments of BUFFERS specify the display file
buffer (giving start address, length and overflow lable). The second
three specify the object/subpicture buffer in similar fashion. Details
of how much buffer space the user should allow, etc., are to be found
in the routine specifications in section 2.13.

2.6 Transformations

The ability to transform picture parts during the picture
construction process is essential for 3D work and very useful for
2D work. Transformations include scaling, translation, rotation and
point projection in any combination. They are an optional feature
in GINO.

2/13

In 3D work the basic reason for using transformations is to
allow us to produce different views (projections) of total pictures.
For instance having defined a simple rectangular box we might wish
to view it as an isometric projection:

viewed as

Routines are provided for this and for any other projection.
These routines all work by projecting on to a picture plane passing
through the origin of space coordinates (they have to make some
assumption about the total picture being viewed - the assumption made,
that the centre of interest is at the origin, seems to be the most
reasonable).

The view produced will always have to be related to the coordinate
system of the display or plotter being used. All the devices currently
available with GINO have their origin of coordinates at the bottom
left hand corner and only permit positive coordinate values. So a
second transformation is necessary to position the view on the screen
or paper. It may also be necessary to scale the view to fit the
available area.

We have described the use of the transformation facility for two
distinct purposes - to project the total picture so as to produce the
required view and then to position (and perhaps scale) the view to the
appropriate position on the screen or paper. There are many other uses.
For instance we may regard the screen as a window on to a large total
picture and use the windowing facility (described in Section 2.7) to
remove all parts of the picture outside the window. Then we would use
transformations to position the appropriate part of the total picture
under the visible window. Another use is in connection with the
facility to transform a user-defined object while it is being defined
(see Section 2.3). This enables us to use transformations in building
up an object. This can be very useful for example in an object which
has axial symmetry.

2/14

Ilow Transformations Work

When GINO is set in transform mode (which can be switched on
and off as required) the space coordinates in the total picture are
multiplied by the current transformation matrix to produce the
corresponding picture coordinates. This is shown in the diagram
of the picture construction process, FIG 20.

Mathematically we have

r MR (*)

where r (x,y,z) is a position vector in picture coordinates

R (X,Y,Z) is the corresponding position vector in
space coordinates

M current transformation matrix (TR matrix)

(In fact, homogeneous coordinates and (4X4) transformation
matrices are used, so as to include projective transformations. The
theory of this is given in (9).)

Note that M in equation (*) above is the matrix current when
the picture part is called in the picture construction process. The
required transformation must therefore be set up before constructing
the picture. The x - y plane is taken as the picture plane and z is
ignored unless depth modulation (as described in the next section) is
used.

The current TR matrix is built up by calls to basic transformation
routines so that it represents the cumulative effect of the sequence
of transformations. Thus in the simplest case, that of producing an
isometric or perspective projection, two routines will be used to set
up the TR matrix. The first (ISOMETRIC or FROMXYZ) sets up the projection.
The second (OSHIFT) positions the resulting view. Conceptually it is
easiest to think of these as separate operations - in fact they are
achieved by a single matrix mUltiplication of the form (*) above.

In general the TR matrix will be built up from some sequence of
translations, rotations, magnifications and point projections. The
effect achieved is as if each picture part were subjected to this
sequence of transformations. Of course the order of the sequence is
often crucial, particularly in 3D work. For instance a translation
followed by a rotation will in general produce a different result than
a rotation followed by a translation.

Transformations do not affect the position of the space coordinate
axes, which remain fixed. They only affect position,orientation and
scale relative to these axes. Suppose we set up a TR matrix as follows:

CALL SETTRANSFORM
CALL OSHIFT(-500.,0.)
CALL ROTATE (2,-120.)

- initialise to unit matrix.
translate through DX = -500, DY

- rotate -120° about Y axis.
o

2/15

(CONSTRUCTION OF A ~ICTURE

TOTAL PICTURE

I \ r---- OPTION INTRODUCED BY
CALL SETTRANSFORM

ICALLS TO
BUILT-IN
OBJECTS

Picture
CoordinatesTRANSFORMATION~~I_\~ ~

(optional) (4x4) ~
~IATRIX

Space
\ Coordinates OBJECT

WINDOWINGv

Lines clipped exactly
Characters to nearest

CALL MAGNIFY
CALL OSHIFT
CALL ROTATE

etc.
character.
bounds are
bounds not

Screen
used if
specified.CALLS TO

USER-DEFINED ~ •..
OBJECTS

<,

Subp ict.ure>C4,llswi thin
user-defined ob1eG!

...............(Picture coordinates Display
File
Buffer
in TITAN
or output streamSUBPICTURE

WINDm.JING
CALLS TO
SUBPICTURES

.•... --
Picture
Coordinates

Subpictures are not clipped.
Only displayed if entirely
within the window .

"%j

H
CJ
•

1. If no transformations set, space coordinates nust be numerically equal to picture coordinates.

2. The case of subpicture calls with user-defined objects, represented by the dotted line, is unlikely to
occur often.

Notes:

If we then ask for a line AB joining (400,400) to (600,600)
we shall get A'B' (An B" represents position of line if shifted
onLy) •

Y
B'

z X
If we ask for CD joining (-100,400) to (100,600) we will get

C'D'. Note that the rotation is still about the fixed Y axis.

Y

- ..•.......
'D'

D

C'

N.B. D" is closer to the
axis of rotation than C".
Hence D' is also closer
than C'.

C

Xz
If we had followed the rotation by another translation through

DX = 500, DY = 0, we would have the effect of a rotation not about
the Y axis but about a parallel axis through X = 500.

CALL SETTRANS

CALL OSHIFT(-500.,0.)

CALL ROTATE(2,-120.)

CALL OSHIFT(500.,0.)

- shift the point (X=500,Y=0) to Y axis

- rotate about Y axis

- undo previous shift

2/17

A is (0,0,0) before transformation r
C is (500,0,0) before transformation' x - Z plane

A' A C
---~--- ¥- - +- - --, X

\
\ \
\
\ \, \,, \.•... ..)r - - ~- A'"....•_ ,. A' ,---

CA transforms into CA" '.
z

i.e., C is the apparent centre
of rotation.

This is the standard technique for effectively changing the
coordinate system.

How to Use Transformations

We emphasise again that in order to use transformations GINO
must be set into transform mode by call routine SETTRANSFORM and the
appropriate TR matrix must be built up by calls to transformation
routines before the picture is constructed. The transformation
applied to a given picture part is the one current when that picture
part is called.

Some care is necessary in the choice of space coordinates, since
rotations, scalings etc. all work relative to the fixed space
coordinate axes. This is particularly important in 3D work where it is
best to arrange that the centre of interest of the total picture is at
the origin. Note that this means that the total picture must at least
start with an absolute point (e.g. IPOINT3).

If we are using transformations to produce a particular view then
the transformation matrix is built up from a call to the appropriate
projection routine followed by scaling and positioning routines. If
the total picture does not centre on the origin then a translation
before the projection may be used to position it for the projection
routine. (This is the same technique as used above for rotations.)

Routines are provided to set up several standard axonometric
projections. These are projections in which the projection point is at
infinity. The main virtues ofaxonometrics are the relative ease with
which they can be produced in the drawing office and the absence of any

2/18

distortion. Using GINO it is just as easy to produce full perspective
views in which the projection point is a local point. These will be
characterised by having vanishing points and will generally produce a
more pleasing visual effect (see FIGS 2E, 2F). FIG 2G shows a simple
rectangular parallelipiped undere eight different projections.

Having chosen the required projection there remains the problem
of relating the view to the coordinate system of the display or
plotter. The simplest and most efficient way of doing this is to
follow the projection with a shift to the centre of the screen e.g.,

CALL SETTRANSFORM
C INITIALISE TO UNIT MATRIX

CALL FROMXYZ(1000.,200.,1500.)
C FULL PERSPECTIVE VIEW FROM X=lOOO, Y=200, Z=1500

CALL OSHIFT(511.,511.)
C POSITION TO CENTRE OF SCREEN

A problem arises if the transformed view does not fit in the
available area. Two solutions are possible. One is to use the
windowing facility (described in the next section) to remove everything
falling outside the available area. This takes very little extra
computing but may not be satisfactory if the user wants to see the whole
view. The other approach copes with this. A routine (named PICTURE)
is available which automatically scales and positions the transformed
view to fit exactly into a specified area. It requires that the total
picture be defined as a single user-defined object and does involve
rather more computing than the straightforward method. Suppose the total
picture consists of user-defined object 1 and an axonometric projection
is required with line of sight joining X=lOO, Y=50, Z=80 to the origin.
We are plotting and we require that the plotted view should fill the
paper: -

CALL SETTRANSFORM
CALL AXONXYZ(100.,50.,80.)

C WE NOW HAVE THE REQUIRED PROJECTION.
CALL PICTURE(1,5,1055,5,1055)

C OBJECT 1, UNDER THE REQUIRED PROJECTION, IS MAPPED ON TO
C 5 < x < 1055, 5 < Y < 1055 ON THE PLOTTER PAPER.

Which approach to adopt depends on circumstances. Automatic
scaling and positioning is suitable for non-interactive work - when
working interactively scaling and positioning is best controlled by
the user.

The easiest way to use transformations in building up a total
picture is to use the facility to pass the component parts of a user
defined object through the current transformation (and windowing routine)
while that object is being defined (see Section 2.3). Care is needed
here due to the fact that the transformations have a cumulative effect,
e.g. a rotation is superimposed on the existing transformation - if a
rotation on its own is required, the TR matrix must be set to the unit
matrix (by CALL SETTRANSFORM) before ROTATE is called. When building up
an object in this way it is often convenient to save the.current

2/19

ISOMETRIC PROJECTION. FIG. 2E

FULL PERSPECTIVE VIEW. FIG. 2F

2/20

71 .: /'

V V
CABINET CRl)RLIER

ISOMETRIC DIMETRIC

TRIl'lETRIC RXONXYz:

FROMXY2 PROJXYZ

transformation and later restore it, rather than build it up again.
Routines SAVETRANSFORM and SETTRANSFORM can be used to do this. It
is also useful to suspend transform mode temporarily so that picture
parts are not transformed at all. Routines UNSETTRANS and RESETTRANS
provide this facility.

Some GINO programs will not need transformations at all. If a
program does not contain calls to any transformation routines then
none of the transformation machinery is loaded.

Example 1

This example shows the use of transformations in 2D to produce
composite pictures. Suppose we have four 2D user-defined objects,
identified as 1, 2, 3 and 4. Each would fill the screen if displayed
directly. We construct a composite picture in which each object
occupies one quarter of the screen area.

CALL SETTRANSFORM
C TRANSFORM MODE ON. TR MATRIX = UNIT MATRIX

CALL MAGNIFY (0.5,0.5)
C REDUCE TO HALF SIZE

CALL OSHIFT (0.,511.)
C ORIGIN NOW APPEARS AT x = 0, y = 511

CALL OBJECT (l)
CALL OSHIFT (511.,0.)

C ORIGIN NOW APPEARS AT x = 511, y = 511
CALL OBJECT(2)
CALL OSHIFT (-511.,-511.)

C ORIGIN NOW APPEARS AT x = 0, y = 0
CALL OBJECT(3)
CALL OSHIFT (511.,0.)

C ORIGIN NOW APPEARS AT x = 511, Y = 0)
CALL OBJECT(4)
CALL DFOUTR

C OUTPUT IN RELOCATABLE FORM FOR THE DISPLAY FILE MANAGER

The make-up of the resulting picture is shown in the sketch
below:

1 2

OBJECT OBJECT

OBJECT OBJECT

3 . 4

SCREEN BOUNDS

2/22

Example 2

This example shows how to use transformations to map a given
rectangular area on to the whole screen. Then by using the windowing
facility to remove all parts of the picture that would fall outside
the screen area we can examine any part of the total picture in detail.

Y

D C--0.... ...••.
.••.

...••.
..••.. ..••.- - "- (PICTURE COORDINATES)A I' IB ..•.. "- SCREEN..•. ...••." ..••..

I ,I " "
..••.

I I' ••...
" ••...

I "-

I " "

Yl

YO

x

SPACE COORDINATES.

Suppose the required visible area ABCD is bounded by
xO~x~xl; yO~~l (space coordinates) and that these bounds are held
in Fortran real variables xO,xl,yO,yl. Then to achieve the desired
effect the following program must be executed before the picture is
constructed:

CALL SETTRANSFORM
C PARTS OF THE TRANSFORMED VIEW OUTSIDE O<x~1023, 0~y~I023 - THE SCREEN
C SIZE - ARE TO BE REMOVED BY THE CLIPPING ROUTINES

CALL SETWINDOW{O,1023,O,1023)
C SHIFT SO THAT POINT A WOULD BE MOVED TO ORIGIN

CALL OSHIFT(-xO,-yO)
C MAGNIFY SO THAT ABCD WILL FILL SCREEN

FX = l023./{xl-xO)
FY = l023./{yl-yO)
CALL MAGNIFY (FX,FY)

C NOW PROCEED TO CALL PICTURE PARTS TO CONSTRUCT PICTURE.

Example 3

We wish to construct and view a rudimentary lawn sprinkler.
The arm of the sprinkler is defined as a user-defined object. The
sprinkler is defined as a second user-de.finedobject. The component
parts of this second object are transfonned as the object is defined,
so that the arm can be rotated into its different positions. Finally
we produce an isometric projection and position it as required.

2/23

DEFINE THE SPRINKLER ARM AS OBJECT 1. THE
OF THIS OBJECT ARE NOT TRANSFORMED. y-AXIS

CALL DEFOBJ (1)
CALL IPOINT3 (0,100,0 I
CALL LINE3(200,0,01
CALL LINE3 (0,0,-20)
CALL LINE3(-30,0,-30}
CALL LINE3(60,0,0}
CALL LINE3 (-30,0,30)
CALL ENDOBJ•

C COMPONENT PARTS
C IS TO BE AXIS OF SPRINKLER

C DEFINE WHOLE SPRINKLER AS OBJECT 2. COMPONENT PARTS ARE TO BE
C TRANSFORMED - HENCE SECOND ARG OF DEFOBJ

CALL DEFOBJ(2,1)
DO 1 1=1,3
CALL SETTRANS
D=I*120
CALL ROTATE(2,D)

1 CALL OBJECT(l)
C WE NOW HAVE 3 ARMS EVENLY SPACED. THE CENTRE SHAFT DOES
C NOT NEED TRANSFORMATION

CALL UNSETTRANS
CALL IPOINT3(0,100,0)
CALL LINEP3(0,-100,0)
CALL ENDOBJ

C WE NOW SET UP AN ISOMETRIC PROJECTION. NOTE THAT OBJECT 2
C IS CORRECTLY CENTRED ABOUT THE ORIGIN OF SPACE COORDINATES
C WE HAVE FIRST TO RESET TR MATRIX TO UNIT MATRIX

CALL SETTRANS
CALL ISOMETRIC

C THEN A SHIFT TO POSITION THE VIEW
CALL OSHIFT(511.,511.)

C FINALLY WE CALL OBJECT 2 PRODUCING THE OUTPUT SHOWN BELOW
CALL OBJECT(2)

2/24

Further Details.

The reader will have noticed that most of the arguments of the
transformation modifying routines are reals. This is because the TR
matrix is necessarily real. The only integer arguments are those
specifying axes, where 1 indicates the x-axis etc.

A user who intends using his own matrices will need to know the
format of the TR matrix. This is given in the specification of
SETTRANSFORM in section 2;13. The salient point is that matrix
mUltiplication is taken as pre-multiplication.

As mentioned in Section 2.5, transformation information is held
in FORTRAN named COMMON blocks, so that it is accessible to the user.
The following information is available:

(a) The TR matrix is held in a 16 element real
array in a block named TRBOD.

(b) The current position in terms of space
coordinates is held in three integers in a
block called SPACEPOS.

(c) The current position in terms of picture
coordinates is held in three integers in a
block called PICTPOS.

Thus, if we declare

COMMON/TRBOD/T(4,4)/SPACEPOS/IX,IY,IZ/PICTPOS/JX,JY,JZ.

Then T contains the TR matrix, (IX,IY,IZ) is the current position
in space coordinates and (JX,JY,JZ) in picture coordinates.

The following routines are relevant to transformations:

AXONXYZ To set up an axonometric projection along the line
joining (X,Y,Z) to the origin.

CABINET To set up a cabinet projection.

CAVALIER To set up a cavalier projection.

DIMETRIC To set up a dimetric projection.

FROMXYZ To set up a perspective view, with (X,y,Z) as
viewpoint and horizontal line of sight towards origin.

ISOMETRIC To set up an isometric projection.

MAGNIFY To superimpose a magnification.

MODTRANS To multiply TR matrix by a user-supplied matrix.

2/25

PUrpose

OFIX To fix point (0,0,0) of space coordinates to be
specified point.

OSHIFT To translate through a specified vector.

PICTURE To call an object, mapping the resulting view
(i.e. the view under the current transformation)
onto a specified picture area.

PROJECT To project from a point on a coordinate axis onto
x-y plane as picture plane.

PROJXYZ To set up a perspective view with (X,Y,Z) as
viewpoint and line of sight through origin.

ROTATE To superimpose a rotation about a coordinate axis.

SAVETRANSFORM To save current TR matrix in a user-supplied array.

SELECTVIEW To permute coordinate axis, thus selecting new
picture plane.

SETTRANSFORM To set transform mode and initialise TR matrix.

SHEAR To superimpose a shear transformation.

TRIMETRIC To set up a trimetric projection.

UNSETTRANS
RESETTRANS

To unset/reset transform mode.

Details of these routines are to be found in the second half of Section
2.13.

2.7 Windowing and Depth Modulation

The range of picture coordinates is dictated by the size of the
display or plotter used and is much smaller than the range of space
coordinates. An attempt to draw outside the available area is termed
an edge violation. The behaviour of each graphical device when an edge
violation occurs is described in section 2.11. In general edge violations
should be avoided and this is one of the purposes of the windowing
facilities in GINO. This use was referred to in the last section (p. 2/19).

The windowing facilities can also be used to examine a particular
region of the total picture. This region may be defined in 2D or in 3D.
Only parts of the total picture falling in the chosen visible region will
appear. One technique for doing this was illustrated on page 2/23.

2/26

Windowing Operations

Two types of windowing operations are provided in GINO - 2D
windowing and 3D windowing. A program may select either or none of
these. In the normal picture construction process (illustrated in
Fig. 2D) the windowing operation takes place after transformation,
i.e. on picture coordinates. This is the most useful order as it
enables windowing to be used to avoid edge violations. When circum
stances arise in which another order of operation is required, the
facility to transform and window the component parts of an object
definition, as already described in section 2.3, may be used. In this
case the distinction between space and picture coordinates becomes
blurred.

2D Windowing.

The user can specify a rectangular window in the picture plane.
The picture is then clipped so that only parts within the window
appear in the picture.

y = BN

Y BS

VISIBLE

REGION

x = BW x = BE

Picture parts added as objects (built-in or user-defined) are
clipped exactly (the only exception being that character strings are
clipped to the nearest character). Picture parts added as subpictures
are only displayed if entirely within the window.

The user sets up the window bounds by a call to routine SETWINDOW.
The presence of a call to this routine causes the system routines for
2D windowing to be loaded. (See Fig. 2D.) In the normal case the window
bounds are in terms of picture coordinates. So if we just wish to avoid
edge violations on the display we can set the window by

CALL SETWINDOW(O,I023,O,I023)

2/27

The user can, however, set the window bounds to any value he
requires.

3D Windowing.

When 3D windowing is used, clipping is to a rectangular
parallelipiped or box defined by

BW ~ x ~ BE; BS ~ Y ~ BN; BACK ~ z ~ FRONT

In the usual case (when x and yare in the picture plane), z is
normal to the picture plane and towards the viewer. The bounds are
set and the appropriate windowing routines loaded by a call to routine
SET3DWINDOW. Clipping to the 3D window is exact, so the effect of a
depth cursor can be achieved by making the 3D window be a narrow band
at the relevant z value. 3D windowing may be used to remove "clutter"
from the foreground or background of a picture and it is also used in
connection with depth modulation (see below).

3D windowing as provided in GINO should not be confused with
clipping to a pyramid of view, as required when perspective transforma
tions are used. This is essentially a 2D windowing operation and is
provided by the 2D windowing option in GINO. (See section 6 of (13».

Depth Modulation

In all 2D representations of 3D total pictures, the third
dimension presents a problem. The most useful visualisation aid
provided in GINO is depth modulation. This is available on the PDP
and Elliott displays. The brightness of the picture is modulated over
the intensity levels of the display, with maximum intensity at the
front and minimum at the back of the visible z-region. Six intensity
levels are used on the PDP and five (two of them simulated) on the
Elliott. Depth modulation is automatically switched on by a call to
SET3DWINDOW. The user can then switch it on and off as required.

Example

The following example shows how the transformation and windowing
routines together can be used to produce quite complicated effects.
User-defined object 99 is an aeroplane occupying a region of space within
the bounds

X -4000 (nose) to +4000 (tail)

Y -1000 (bottom) to +1000 (top) of fuselage

Z -4000 (starboard wing tip) to +4000 (port wing tip)

We wish to obtain two pictures:

a. A composite picture, the top-half showing a side elevation
of the front-half of the aeroplane and the bottom-half a side elevation
of its rear-half. both views to have depth modulation.

2/28

b. A view of the rear-quarter of the aeroplane. It is to be
rotated about a vertical line through its centre, so that the tail
swings toward the viewer. Anything then appearing behind the centre
point is to be omitted.

We proceed as follows. In the comments we locate the nose (N)
and tail (T).

CALL SETTRANSFORM
CALL MAGNIFY (0.25,0.25,0.25)

C REDUCE TO QUARTER SIZE. N AT (-1000,0,0). T AT (+1000,0,0)
CALL OSHIFT (1023.,767.)

C N AT (23,767,0). T AT (2023,767,0).
CALL SET3DWINDOW (0,1023,512,1013,-1000,1000)

C UPPER HALF OF SCREEN. INTRODUCES DEPTH MODULATION ACROSS WING SPAN
CALL OBJECT (99)

C TOP HALF OF FIRST PICTURE. N DISPLAYED. T CLIPPED.
CALL SETTRANSFORM

C TR MATRIX RESET TO UNITY.
CALL MAGNIFY (0.25,0.25,0.25)
CALL OSHIFT (0.,255.)

C N AT (-1000,255,0). T AT (1000,255,0)
CALL SET3DWINDOW (0,1023,0,511,-1000,1000)
CALL OBJECT (99)

C BOTTOM HALF OF FIRST PICTURE. N CLIPPED. T DISPLAYED.
CALL DFPUNB

C FIRST PICTURE OUTPUT ON PAPER TAPE

CALL SETTRANSFORM
CALL MAGNIFY (0.5,0.5,0.5)

C N AT (-2000,0). TAT (2000,0,0)
CALL OSHIFT (-1500.,0.)

C N AT (-3500,0,0). T AT (500,0,0). REAR QUARTER NOW
C CENTRES ON ORIGIN

CALL ROTATE (2,-30.)
C ROTATES ABOUT Y AXIS 30° TOWARDS VIEWER

CALL OSHIFT (511.,511.)
C SHIFTS ROTATED VIEW TO CENTRE OF SCREEN

CALL SET3DWINDOW (0,1023,0,1023,0,500)
C CLIPS PART OF TAIL BEHIND AXIS OF ROTATION AND
C POSSIBLY PART OF WING

CALL OBJECT (99)
CALL DFPUNB

C OUTPUT SECOND PICTURE TO PAPER TAPE

Further Facilities

A problem often arises in setting the values of the z-bounds in
SET3DWINDOW. If the bounds are set too far apart, the picture produced
will only use part of the available range of intensities. If they are
too close part of the picture that was required may be removed by the
clipping. Two routines are provided to help with this. PICTZCLIP is
an extension of the automatic scaling and positioning routine, PICTURE.

2/29

As well as spr-c i fying the x-y n~(lionthe picture is to occupy, UH~
v.i.si.bLe z+ranqe can be spe c i f i.cd on a normalised scale in which the
back of the whole object is represented by 0 (zero) and the front by
1. Thus to view the front half only values of 0.5 and 1.() would CJ(!

used.

PICTZCLIP invokes the whole machinery of 3D-windowing, which may
well be redundant. In the case where depth modulation without cLippi nq
is required the routine OBJZDM should be used. This displays any view
of a user-defined object, with depth modulation across the full range
of z, and no clipping. Space and time are saved since SET3DWIN~)W is
not used.

Miscellaneous Details.

2D-windowing adds about 600 words to the length of a TITAN program.
3D-windowing and depth modulation adds about 950 words and lengthens
the display file. The cost in terms of time depends on the number of
boundary intersections. Even if there are no intersections, there is a
slight penalty so windowing should not be used if it is not required
(e.g., with the graph routines of Section 3).

There are some anomalies in the windowing of subpictures. Subpictures
are not clipped. They are either displayed as a whole, or omitted. This
process only works properly for subpictures containing only incremental
picture parts. Subpictures containing absolute points or hardware scale
changes are always displayed and may give rise to boundary violations.

Programs must not include calls to both SETWINDOW and SET3DWINDOW.
2D-windowing is included in 3D-windowing and may be obtained by setting
large z-bounds (e.g., -1000000 < z < 1000000) and turning depth modulation
off. If a program contains SETWINDOW or SET3DWINDOW, bounds appropriate
to the size of the screen or plotter are assumed until the bounds are
explicitly set.

The following routines are relevant to this section:

Name Purpose

DEPTHON To restore depth modulation.

DEPTHOFF To suspend depth modulation.

OBJZDM To provide automatic depth modulation
across the full range of z.

PIcrZCLIP To provide automatic scaling, positioning,
clipping and depth modulation.

SETWINDOW To set up a 2D-window.

SET3DWINDOW To set up a 3D-window and initiate depth
modulation.

Full details are in the routine specifications in section 2.13.

2/30

2.8 Picture Part Naming & Use of the Light-Pen

Every picture part used in the picture construction process may
be given a name. The purpose of this name is to enable the picture part
to be identified by the light pen. This facility is essential if the
light pen is to be used as a tool in interactive graphics. It is of no
interest to the user who does not intend to use the light pen in this way.

The name of a picture part is specified by g1v1ng an optional last
argument in the relevant routine call, as described in sections 2.2, 2.3
and 2.4. The use of the term "name" may cause difficulty to those who
think of names as things like FRED or X or GINO. Picture part "names"
are, in fact, numbers which the user may assign in order to identify
picture parts. This number may be specified either by a constant, or by
using a program variable, e.g.,

CALL LINE (100,200,3)
C The name of the line is 3

CALL LINE (200,100,K)
C The name of the line is the value of K

Ways of Using Picture Part Names.

The name is used effectively to identify what a picture part
represents, rather than the picture part itself. For example, when
pointing at a circle which is part of a picture of a car the name may
be used to identify it as "the nearside front wheel", rather than just
a circle.

The name may be used in various ways. The simplest is just as
a code number. For example, suppose we wish to display a sequence of
squares (already defined as user-defined object 6) across the screen.
The squares are to be distinguished by having names 1 to 10.

DO 1 I = 0,9
CALL IPOINT (100*1,500)

1 CALL OBJECT (6,1+1)

A second way that names may be used is as pointers to a data
structure. When parts of the car are pointed at with the light pen,
the program may need to access information about the part pointed at.
For instance, information about the wheel (tyre characteristics,
materials, weight, etc.) might be held in some kind of data structure.
If we make the name of the picture part representing the wheel a
pointer to the data structure representing the wheel, then, when the
wheel is pointed at by the light pen, we can get very fast access to
the wheel information without any searching.

2/31

Suppose user-defined object 20 is a wheel. Then we might say

CALL OBJECT (20,NAME)

NAME

DATA STRUCTURE
REPRESENTING
THE WHEEL

N.B. The value of variable NAME
points to the data structure
representing the wheel.

The Nesting of Picture Part Names.

Picture parts may also be given names whe~ they are used in the
construction of a user-defined object, so that the individual parts
of a user-defined object can be distinguished by name.

The object may also be named when it is called. This leads to
the nesting of picture part names, so that a given picture part may be
distinguished as say picture part I within picture part J within picture
part K. The maximum allowed depth of nesting is 16 although 4 is nearly
always enough and is the maximum assumed in the standard version of the
Display File Manager and the Handler (described in Section 6.3).

Subpictures are treated differently. They are regarded as atomic
entities and their component picture parts cannot be distinguished by
name. Names given to picture parts used in the definition of a sub
picture are ignored and a warning message given.

Light Pen Sensitivity.

One of the parameters of the display is light pen sensitivity.
When the pen is turned on circuits are enabled so that the display is
interrupted whenever the light pen can "see" light. The pen has a
manually operated shutter and so can be used as a pointing device on the
screen. When an interrupt occurs owing to the pen seeing light from a
particular picture part we say that a pen hit has occurred on that
picture part. When the pen is turned off, pen hits cannot occur. Pen
sensitivity is controlled by the display file so it is possible to turn
the pen on for some picture parts and off for others. The user can do
this explicitly using routine CONTROL. Without any action on the part
of the user, the GINO system turns the pen on for named picture parts and
off for unnamed picture parts.

2/32

Satellite Programs for Handling Picture Part Names.

The Display File Manager (DFM) is the basic satellite program
for managing display files. One of the functions of DFM is to deal
with pen hits on named picture parts. When a pen hit occurs DFM passes
control to the user's satellite program with the relevant name (or
stack of names) in a standard position. This may result in some
computation in the satellite or in the transmission of the name(s) to
TITAN for computation and possible picture modification there. The
facilities for transmitting information over the link are described in
Section 5 and more details of DFM are in Section 6.3.

The Interactive Handler is a satellite program designed to make
the facilities of an interactive graphics terminal easily accessible
from FORTRAN programs running in ATLAS (or TITAN). The Handler may be
used without writing any satellite code at all. It provides the
following facilities for handling named picture parts and many other
facilities described in section 6.3.

(i) Automatic Bright-Up. ~nen a named picture part is seen by
the light pen the picture part is brightened so that it is easily
distinguishable. This is termed a pen-see. The picture part can be
reselected if a mistake is made.

(ii) Recording of Names for Pen Hits. A pen-see is confirmed as
a pen-hit by pressing the space bar of the button keyboard. The stack
of names and the display file segment number for the pen hit is added
to a list kept in the satellite.

(iii) Transmission of List of Names to ATLAS. The current list is
transmitted to ATLAS whenever a pen-hit on a picture part in segment 1
(a "light-button")is recorded or a button (not the space bar) on the
keyboard is depressed. In addition to picture part names associated
with pen-hits, the list contains other information - e.g., tracking cross
coordinates, button numbers, etc. (see specification of the Handler and
Section 6.3).

After transmission the list can be converted into a FORTRAN array
and processed.

Versions of DFM and the Handler exist for both the PDP 7/9 and
the Elliott 905 computers.

Further Details.

The display file segment number is always recorded with each pen
hit since any modification to the picture part chosen will involve the
replacement of this segment. The usual strategy in highly interactive
work is to use a large number of display file segments so that the amount
of display file to be replaced will be small.

The name of a picture part should not be confused with the identifier
of a user-defined object or subpicture.

2/33

Picture part names are only available to the programmer. If
a user wishes some name to appear on the picture beside the p i ct.uro
part he must program this explicitly. The Interactive Handler providr:;s
a facility akin to this. A piece of display file may be associated
with a call to a user-defined object and this associated display fil~
will only be displayed when the object is selected by the light pen.
The routine for adding an associated display file is called ASSOCIATE.

Names are TITAN integers, excluding 0 (zero) which is regarded
as the null name. Unless nested names are used (in which case only
unique combinations should be employed) unique names should be given
to each picture part.

2.9 Methods of Picture Output

The routines so far described are used to generate pictures for
a variety of graphical output devices. We now consider methods of
actually outputting and displaying pictures. The output devices fall
into two classes, depending on whether or not they are associated with
a satellite computer.

THE PDP AND ELLIOTT DISPLAYS

These two displays are associated with satellite computers.
PDPGINO or ELLIOTTGINO are the appropriate initialisation routines.
We need to distinguish two cases depending on whether the display file
is loaded into the satellite from paper tape or sent directly over the
link.

Paper Tape.

Display file paper tapes are punched out in binary form by routine
DFPUNB or in character form by routine DFPUNC. Relocation (i.e., setting
up the display file to be loaded at a particular satellite address) is
then performed in the satellite by loading the tape with the Display File
Tape Loader (DFTL). The specification of DFTL is in Section 6.2. Binary
tapes are approximately one third the length of character tapes and
should be used unless the user wishes to print his display file as well
as display it.

The Link.

The methods of sending display files to the satellite over the link
divide into two categories depending on whether the user is logged in in
normal mode or expensive mode on TITAN. In normal mode the display file
has to be output in binary to a disc file or pending stream and then sent
over the link by use of the PDP command (this is one of the commands
available on the Cambridge Multiaccess System (10». In expensive mode
link transmissions can be initiated at any time and the display file can
be sent to the satellite as soon as it is constructed. In either case
there are two options. The display file can be relocated in TITAN and sent
to the appropriate satellite address (optionally with a small program to
make it self-running). Alternatively, the display file can be transmitted
in relocatable form. The Display File Manager (DFM) is used to organise
relocation of such transmissions. DFM treats each link transmission as a

2/34

picture segment and provides facilities for displaying several picture
segments, switching picture segments on and off, etc. (Details arc in
Section 6.3.)

In normal mode the first effect is achieved by using routine
DFOUTB, which outputs the display file in binary, together with a
small program to run the display. The second effect is obtained by
using routine DFOUTR. In expensive mode both effects can be obtained
by using routine SENDPDP. Note that this is the method that must be
used for real time manipulation of pictures (details of this are in
section 5).

It should be noted that the PDP and Elliott links are handled
in the same manner by the ATLAS supervisor. They are only differentiated
at the time when the link is created (by the SIGNAL command when in
expensive mode, see specification (10}).

Preserving Display Files.

Since DFOUTB, DFOUTR and DFOUTC (for relocated character output)
send their output to a stream set up by the user, display files in
character or binary form can be sent to disc file, paper tape or
magnetic tape. They can then be displayed or plotted as and when
required.

Plotting Display File.

Pictures produced as display files can be plotted on the CALCOMP
plotter by outputting them to a disc file and reading them back into
core and plotting them using routine DFPLOT described in Section 4.
Display files which have been sent to the PDP or the Elliott to run
under DFM can also be read back for plotting (see Section 6.3) .

It is possible also to generate display files and plotter output
in the same program by using routines PLOTPDP or PLOTELL to translate
the display file produced into plotter output. To do this PDPGINO or
ELLIOTTGINO will be used as initialisation routine, and two output
routines will be called, one for the display file, and PLOTPDP or PLOTELL
for the plotter output.

DIRECT PLOTTER OUTPUT

Output for the CALCOMP and COMPLOT plotters may be generated
directly, PLOTTERGINO and COMPLOTGINO being the appropriate initialisation
routines (see Section 2.5). The basic routine for outputting a picture
to the plotter is PLOTEND although all the display file output routines
are equivalent to PLOTEND if plotter output is being generated.

Output Options Peculiar to Plotters.

The size of the plotter paper is only limited in one direction -
across the drum. The standard length along the paper per picture is
3000 units. This can be extended by cutting routine PLOTLENGTH. The
standard picture orientation is with x across the page. Output with x
along the page can be generated by calling routine XALONG before
generating the picture. The standard orientation can be restored by
calling routine XACROSS.

2/35

To aid identification each plotter picture produced by GINO
is normally preceded by a stream header giving user identifier, etc.
If this is a nuisance it can be supressed by calling routine NOSTrulEAO
(STRHEAD restores the plotting of stream headers) .

The details of these routines are included in the specification
of PLOTTERGINO in section 2.13.

Obtaining Plotter Output.

Output is sent to the CALCOMP plotter automatically when PLOTEND
is called. Should control fail to reach PLOTEND (e.g. because the
plot causes an edge violation) the on-line user can choose to have the
output so far plotted (by typing 'CLOSE') or lost (by typing 'DELETE').
Off-line the output will be plotted as far as the edge violation. The
procedure for producing output on the COMPLOT on-line plotter can be
demonstrated at the Ministry of Technology CAD Centre.

Routine Details.

The following routines are relevant to this section:

Name Purpose

DFOUTB To output a relocated, self-running binary
display file.

DFOUTC To output a relocated display file in character
form.

DFOUTR To output a relocatable display file for use
with DFM.

DFPLOT To output a picture in the form of a display
file on the plotter. (See Section 4.2.)

DFPUNB TO punch out a display file in binary form for
DFTL.

DFPUNC To punch out a display file in character form
for DFTL.

DFREAD To read a display file into core in TITAN.

DFTERMIN To terminate a display file in the manner
stipulated by the user.

PLOTPDP
PLOTELL

To produce a PDP or Elliott display file together
with corresponding plotter output in the same
program.

PLOTEND To end a plotter picture when using PLOTTERGINO
or COMPLOTGINO.

PLOTLENGTH To set the paper allocation when plotting.

2/36

Name Purpose

NOSTRHEAD
STRHEAD

To suspend or restore the plotting of stream
headers.

SENDPDP
SENDSAT

To send a display file over the link in
expensive mode.

XALONG
XACROSS

To control the orientation of output on
'the plotter paper.

Full details are in Section 2.13.

2.10 SAL Entries to the Routines

Special entry points for SAL and assembly code programmers are
provided in many of the routines. Use of these rather than the FORTRAN
entry points will make for more efficient code. The GINO routines will
not disturb B20 to B64 but may change any other B-line.

Arguments.

Arguments are handed over in B89, B88, B87, etc., and the link
is stored in B90. The following conventions apply about optional
arguments. The optional last argument in the picture part routines,
which specifies the name for light pen purposes, is normally not picked
up. A special routine called .NAMING is provided so that if light pen
names are required, they can be used. A call to .NAMING causes the
routines to pick up the name argument. Every picture part routine then
picks up the optional argument, until another call to .NAMING cancels
the arrangement.

Routine BUFFERS may be called with only 3 arguments by setting
B86 < O. All other routines that can have an optional number of
arguments are only available via the MLS calling sequence. Also routines
that have real arguments can only be called using the MLS calling sequence.

Routine Names.

For routine entries in which arguments are held in B-lines, the
name of the entry points is obtained by prefixing '.' to the FORTRAN
routine name. In SAL such names must be declared as global labels. In
ETAL they will be name parameters. For routines using the MLS calling
sequence, or which have no arguments, the only entry point is the FORTRAN
routine name.

The only exception to this rule is the routine equivalent to CHARS.
This is called .SALCHARS (it has to be a different routine owing to the
different methods of packing characters in FORTRAN and SAL).

2/37

Examples.

In the following examples parallel FORTRAN and SAL routine
calls are given. A full SAL program may be found in section 2.12.

CALL LINE(10,-20) B89 = 10; B88 = -20; ENTER .LINE
(ENTER .NAMING has not been executed.)

CALL OBJECT(77,I) B89 = 77; B88 = I; ENTER .OBJECT
(ENTER .NAMING has been executed.)

CALL INITGINO ENTER INITGINO or MLS INITGINO

CALL CHARS (IFRED I) B89 = PTR ::FRED: :; ENTER .SALCHARS

CALL OSHIFT(511.,5ll.) MLS OSHIFT(511.,511.)

2/38

••
J
)

Subpictures

CHARACTERISTIC PDP (DEC 340 display) ELLIOTT (928 display) CALCOMP PLOTTER

t--------------~-----------------_._------------------........_-- ----------
Display stops and interrupts Within an area of 4096 ~ 4096
the PDP processor. (DFM deals the beam is blanked if it falls
with this) outside the viewing area.

~------~---------~~-----------------+------------------------~---------------------
0-7. Six of these (2-7) are 0-2. Two more are simulated fox
used for intensity modulation. intensity modulation.

t-----------------I----- - ----------..-------
4 sizes provided by hardware:-

6 x 7, 12 x 14, 24 x 28,
48 x 56.

~--------------_;~-------------------_+-------------------.----_l------------------------
CALL PDPGINO

Raster size

Edge violation
behaviour

Available intensities

Characters

GINO initialisation
~-~---------------- -

1024 x 1024 (i.e. 0<x<1023)--
Viewing area is 9 3/8" by
9 3/8"

1024 x 1024 (i.e. 0<x<1023)
Viewing area is 10" by 10"

e

2 sizes provided by hardware:-
8 x 10, 16 x 20.

CALL ELLIOTTGINO

Buffer space require
ment.

Display file buffer must be provided; object/subpicture only if
required.t---------------~I__--------.---.-----------.-------- --.------------ --

Picture starting
routine.

1----_._---- _.------- ----- ..

Picture ending
routine.

BUFFERS

- - - --- - ---- ------- ------

BUFFERS

No variation of intensity.
(Colour of ink may be changed,
sparingly.)

--"--.-.-.----------- -- ------I

1 unit - 0.01 inches
width - 1060 (small), 2920

(large)
Length can be set by program
(PLOTLENGTH)

Program monitors.
deleted or plotted
edge violation.

Output may be
as far as the

4 sizes provided by software:-
6 x 7, 12 x 14, 24 x 28,

48 x 56.

CALL PLOTTERGINO

No display file buffer.
buffer only if required.

Object

BUFFERS

~-- - - -.-_ -- -_-_ .._-----_.__ ._------,..--- --

DFOUTB,_ DFOUTR, DFPUNB, SENDSAT

-_- __--------------- . -- -. ---------.--------------- - - - -- --- - --- ---- --- -_.-

Provided Provided

PLOTEND (DFOUTR, etc. have
same effect)

Treated as objects, automatic
ally.

9
III
I'i
IIIo
r+ro
I'i
1-'en
r+
1-'-
oen
o
Hl

~
jl)
1-'
t-'

~
t-'o
oro<:
1-'-
oro
(1l

CHARACTERISTIC PDP (DEC 340 display) ELLIOTT (928 display) CALCOMP PLOTTER

Availability (June 1970) CUML, MINTECH CUEL, MINTECH CUML, MINTECH

NOTES: 1/ Display files can be loaded into the PDP or the Elliott from paper tape (using DFTL) or over the
link (using DFM or the Interactive Handler) .

2/ Output is sent to the CALCOMP automatically. An option exists to plot x along the paper instead
of across. Each plot is preceded by an identifying stream header (which may be suppressed).

3/ The COMPLOT on-line plotter is treated by GINO in a very similar manner to the CALCOMP. The
initialisation routine is COMPLOTGINO. The standard width of paper is 1016 units (1 unit = 0.01
inches) and the length allowance is 3499 units. The COMPLOT is currently available only at MINTECH.

10 3.

y

STARTING POINT

8 1

6

z x
Visible picture parts
are numbered in the
order in which they
are added.

BOOKEND ISOMETRIC PROJECTION.

2/41 FIG. 2H

2.12 SAMPLE PROORAMS.

C FORTRAN PROGRAMTO PRODUCEDISPlAY FILES FOR
C PICTURES OF BOOKENDS. 0l1l'Pt11' IS TO BE FILED ON
C THE DISC SO THATPICTURES CANBE DISPlAYED IATER.
C 0t1rPUT IS TO STREAM6 WHICHSHOULDBE SET UP TO FILE.

COMPfJIDBUFF(300) ,aBUFP'(300)
C INITIALISE GIRO SYSTEM. OtJrPUT IS TO BE PDP DISPlAY FILE.

CALLPDRlINO
C SE'!' UP DISPLAYFILE BUFFERANDOBJECT/SUBPICTUREBUFFER. IF EITHER
C BtJFlI'EROVERFLOWSCOMTROLIS 'lU PASS ro IABEL 10 AT ERn OF PROORAM.

ASSIGI 10 'lU L
CALLiurFERS(DBUFP,300,L,OBUFF,300,L)

C WEDEFINE A BOOKENDAS lEER-DEFINED OBJECT 1. THIS IS LOCATED
C A'l cmIGIN OF SPACE COORDINATESANDIS PICTUREDIN FIG 2H OPPOSITE.

CALLDEFOiJ(1)
C lCJVE ro STARTIlfGPOINT IN FIG OPPOOITE. WEFOU.OWARROWS.

CALL IPOINT3(-150,0,0)
CALLLINEP3(-150,500,0)

C ARGS 1,2,3 SPECIFY CIRCLE CENTRE.ARGS 4,5,6 SPECIFY END
C POIl'fl' OF ARC. IN GENERALANYPOIm' ON ElID RADItE VEC'lURSUFFICES.
C ~q 7,8,9 SPECIFY DIRECTIONOF INITIAL TANGENTVECTOR.

CALLCIRCLE3(O,;oD,0,150,500,0,0,100,0)
CALLLINEP3(150,0,0)

C NEX'l'UNE RETURJS TO STARTINGPOINT.
CALLLINEP3(-l50,O,O)

C WECANSFECIFY LINES AS INCRmENTS AS WELLAS BY ENDPOINT.
CALLLINE3(0, °,200)
CALLLIRE3(0,30,O)
CALLLINE3(0,0,-175)
CALLLINE3(O,470,0)
CALLCIRCLE3(0,500,25, 150,500,25,0, 100,0)
CALLLIIE)(0,-470,O)
CALLLINE3(-300,0,0)
CALLILINE3(300,0,0)
CALLLINE3(0,0,175)
CALLLINE3(-300,0,0)
CALL lPOINT3(150,0,0)
CALLLINE3(0,0,200)
CALLLIIE3(0,30,0)
CALL ILINE3(0,-30,0)
CALLLINE3(-300,0,O)

C CL£l)E DEFDfITION OP' BOOKEND.
CALLDDOBJ

C DEnNE X-Y-Z AXESAS tEER-DEFINED OBJECT 2.
CALLDEroBJ(2)
CALLIPOI1f1'3(0, °,°)
CAll. LIIE3(200,0,0)
CALLCHARS(, X')
CALL IPOIRT3(O,o,o)
CALLLINE3(O,SOO,O)
CALLCBARS(' Y')
CALL lPOIlfl'3 (0, 0,0)
CALLLIKE3(0,0,240)
CALLCHARS(' z')

C cum DEFIIO:TION'OF AXES, AS YET NOTHINGHASBEEN
C ADDEDm DISPLAYFILE BUFFER (' PICTURE').

CALLEKOOBJ
C SET 'l'RAlmFORMKlDE.

CALLSE'rl'RAlfSP'QRt.(
C SEn' UP ISCN!TRIC PROJECTION

CALLISOMETRIC •

2/42

C POSITION ON THE SCREEN.
CALL OSHIFT(511.,300.)

C FIR..ST PICTURE IS 'ID BE ISOMETRIC PROJECTION OF BOOKEND
C DRAWNWITH SPACF. COORDINATEAXES.

CALL OBJECT(1)
CALL OBJECT(2)

C OlJI'PUT FIRST PICTURE ON STREAM 6 'ID FIlE,IN RELOCATABLEFORM.
C THIS PICTURE,PLtE ANND'lY\TION,IS SHOWNIN FIG 2H OPPOSITE.

CALL DFOTJrR
C NEXT PICTURE,SO CLF~R OUT DISPLAY FIlE BUFFER. SINCE PDPGINO
C IS NOr CALLEDAGAIN OBJECT DEFINITIONS WILL STILL BE AVAlIABLE.

CALL BUFFERS
C THE AXES ARE 'NO LONGER~UIRED. WE DEFINE A NEWOBJECT 2
C CONSISTING OF TWOBOOKENDS, RED~ ro 7/lIJ SIZE AND
C P03ITIONED AS ON A SHELF.
C DEFUBJ IS CAllED WITH 2 ARGS AS THE COMPONENTPARTS OF OBJECT
C 2 ARE ro BE TRANSFORMEDAND WIDOWED.

CALL DEFDBJ(2,1)
C ro!SET TR MP-TRIX'ID UNITY.

CALL SE'rI'RANSFOR:"1
C sm WINOOWBOUNDSEXPUCITLY. AT THIR STAGE WE ~UIRE NO
C CUPPING. SET3DWINDOWIE NECCESSARYAS IT IS tEED IATER.

CALL SET3DW1NDOW(-10000,10000,-~,lOOOO,-10000,lOOOO)
C ONE BOOKENDIS ro BE Afl Db"}<'JNED BUT REDUCEDTO 7/10 SIZE AND
C FOSITIONED AT X-O, Y=O,Z=300.

CALL ~GNIFY(O.7,O.7,O.7)
CALL OSHIFT(O.,O.,300.)

C ADD FIRST BOOKENDTO DEFINITION OF OBJECT 2.
CALL OBJECT(1)

C RESm TR I..fATRIX.
CALL SE'rI'RANSFORM

C SECONDBOOKENDIS TO BE SIlwULARLYSCALED AND VIEWED,
C BUT AT 'arHER END' , AT X=O,Y=O,Z=-300.
C NEGATIVE SCALE FACTOR CAUSF.SREFLECTION.

CALL ~GNIFY(0.7,0.7,-0.7)
CALL OSHIFT(0.,0.,-300o)

C ADD SECONDBOOKEND.
CAll OBJ~CT(1)

C CLOSE DEFINITION OF OBJECT 2.
CALL ENOOBJ

C WE NOWGENERATE SECOND PICTURE - A PERSPECTIVE VIEW OF THE BOOKENDS
C WITH VIEWFOINT AT X:al2OO, Y-IOOO,Z=2000 AND INTENSITY MJDtJU.TION.

CALL SE'l'l'RANSFQRM
C SET UP PERSPECTIVE VIEW.

CALL FRO\fXYZ(1200., 10000 , 2000.)
C POSITION ON SCREEN.

CALL OSHIFT(511.,300.)
C SET 3D-WINDOWBOUNDS.

CALL SETJDWINDOW(200,800,o,lIJ23,-450,450)
C CALL OBJECT 2 'ID GENERATE PICTURE.

CAll OBJECT(2)
C OUTPUT RECONDPICTURE - SEE FIG 2J.

CALL DFOUTR

C THIS IR OVERFLOWEXIT.
lIJ STOP

END

C DETAILS OF HOWTO DISPlAY THE PICTURES ON THE PDP ARE IN
C SECTION 6.3. FIGS 2H AND 2J WERE PRODUCEDON THE PlDTTER SIMPLY BY
C SUBSTITtJrING PLO'ITERGINO FUR PDPGINO AT UNE 8.

2/43

N.B. Part of left-hand bookend
is outside the visible window.

TWO BOOKENDS - OUTPUT FROM SAMPLE FORTRAN PROGRAM

2/44 FIG. 2J

SAL PROORAf>{ro DISPLAY THE PRIMITIVE 'tWISTED CUBIC.
NOl'E THAT B-LINE ARGUMF.:NTENTRIE:S CO~CF. WITH '.'
ROtJI'INES NEEDING RF...ALARGl.JMENTSt-ruST TEE THE MU3
CONSTRUCTION. ENTER USES B~ AS LINK.

GLOBALLABEL GO,INITGINO,.BUFFERS,.CONTROL,.IPOINT,.LINEP,
.SALCHARS,.SET3DWINDOW,.IPOINT3,.LINRP3,.ILlNEP,SETTRANSFORM
INTEGER DBUF(200)
BLINE 20 T !B-UNES 20-64 ARE UN'lUUCHEDBY GINO.

!ENTRY POINT. INITIALISE GINO AND DF BUFFER.
GO, ENTER INITGINO

Bi39-PTR DBUF(O) jB;~200jBf37=DERR;BB6--1jENTER .BUFFERS
!N{J,.lSET SCALE 1, INTENSITY 3 FOR AXES.

Bi39aO;BM=ljB87;Z3;ENTER .CONTROL
Bi39=O;Bi3i3=OiENTER • IPOINT
Bl39==1023 jBM--o ; ENTER •LINEP
Bi39- 511 j B88=o ; EN'I"~ • ILlNEP
B89-511jB88-1023j~~ .LIPEP

!SCALE UNCHANGED,INTENSITY 7 FOR TITLE.
Bi39aOjBi38a-1iBi37-7 jEltrER .CONTROL
B89-350 jBBB=900 ; ENTER .IPOINT
B89=PTR::THE PRI~TIVE TWISTED CUBIC.::
ENTER •SALCHARS

IRES'ltlRE SCALE 0
Bi39aO ;B88=O jBi37''"-ljENTER .CONTROL

!SET UP WINDOWAND TRANSFORMATIONFOR ':NISTED CUBIC.
Bi39aO;B88-1023;B87=O;B86-1023;B85--600jB84=600
ENTER • SET3DWINDOW
MU3 SETl'RANSFORM !COULDHAVEARG. SO MUSTBE MLS.

lr •• GNIFY, SO THAT CUBIC FILLS SCREEN.
MLS ~GNIFY(0.5,10.0,5o.0)
~ OSHIFT(511.) ISHIFT TO THE DISPIAYED AXES.

!THE CUBIC IS (T*T*T,T*T,T) FOR T IN [-10,10]
B89--1000;B88s100;B87--10;ENTER .IPOINT3
FOR T--9 STEP 1 UNTIL 10 DO

B87aTjB88-T*B87;B89aT*B38
ENTER .LINEP3

REPEAT

DERR, MIJ3 DFPUNB

IBINARY PAPER TAPE OUl'PUT, FOR tEE WITH DFTL.
COUlD HAVEARGUMENT,SOMl.£T BE MLS.

STOP

ISEE A.R.FORREST'S THESIS FOR DERIVATION OF GENERAL 'lWISTED
CUBIC FROMTHIS PRIMITIVE FORM.

FINISH

2/45

2.13 Specifications of Picture Routines

Routine specifications are given in terms of FORTRAN. The type
of each routine argument is indicated by the first letter of the
argument name, following the standard FORTRAN convention (I - N indicates
integers, others indicate reals). Where optional arguments are allowed.
several examples of the routine call are usually given or the optional
arguments are indicated by'?'.

Each routine specification is on a separate sheet, so that it may
be rapidly updated. The practice of giving routine lengths has be"~n
discontinued since the lengths usually depend on which device (e.g. ~DP,
Elliott, plotter) is being used. Those lengths which remain should be
regarded as very loose upper bounds. As an approximate guide, enouah
GINO to do points, lines and characters and to output pictures will t.akr:
about I 1/2 K of core. User-defined objects and the full range of
transformation facilities use about 1/2 K each and 3D-windowing with
intensity modulation takes about lK. A full selection of facilities v!ill
not take more than 4K (excluding buffer space).

All routines needed by other routines are loaded automatically.
Each routine specification contains details of any error messages that
may be provoked. In the case of serious faults the GINO system stops
the user's job by forcing a fault 49. For FORTRAN jobs this causes
line number information to be given, which, together with the GINO erroy
message, should pinpoint the mistake. For SAL and assembly code jobs,
the fault causes an entry to system Monitor. The user may, of course,
trap fault 49 or set up his own post mortem routine.

The routines for handling transformations are grouped together and
given after the general picture routines.

This section contains specifications of the following routines:

ASSOCIATE
BCDCHARS
BUFFERS
CHARINT, CHARFFT, CHARREAL
CHARS
CHARTYFE
CIRCLE
CIRCLE3
COMPLOTGINO
CONTROL
CREATEDISFLAY
DEFOBJ
DEFSUB
DELETEOBJ
DEFTHOFF, DEFTHON
DFCONTIN
DFOUTB
DFOUTC

2/46

DFOUTR
DFPUNB
DFPUNC
DFREAD
DFTERMIN
ENDOBJ
END SUB
GETOBJ
INITGINO, PDPGINO, ELLIOTTGINO
LINE, ILINE
LINE3, ILINE3
LINEP, ILINEP
LINEP3, ILINEP3
OBJECT
OBJZDM
PICTURE, PICTZCLIP
PLOTTERGINO
PLOTPDP, PLOTELL
POINT, IPOINT
POINT3, IPOINT3
.SALCHARS
SAVEOBJ
SENDSAT, SENDPDP
SETWINDOW
SET3DWINDOW

SUBPIC

CABINET, CAVALIER
FROMXYZ, AXONXYZ, PROJXYZ
ISOMETRIC, DIMETRIC, TRIMETRIC
MAGNIFY
MODTRANS
OFIX, OSHIFT
PROJECT
ROTATE
SELECTVIEW
SETTRANSFORM, SAVETRANSFORM
SHEAR
UNSETTRANS, RESETTRANS

2/47

Name:

Purpose:

Example of use:

Argument:

Description:

Errors:

IASSOCIATE I
Issue 1, .June 197(1

ASSOCIATE

To set up a call to a user-defined object to be
"associated" with a named picture part for use with
the Interactive Handler program in the PDP and
Elliott computers.

CALL ASSOCIATE (IDN)

IDN the identifier of a user-defined object.

This routine only produces any effect when used with
PDPGINO and ELLIOTTGINO. The display file for the
object is added but will not be visible when displayed.

The routine can be used only when the last picture
part added to the total picture was named.

The object specified in ASSOCIATE is associated with
this object so that when a pen-see occurs on the named
picture part the associated display file is made visj_b~_
This facility is only available when the Interactive
Handler satellite program is used (see Section 6.3).

Associated display files thus provide a method of
making additional information available when using the
light pen.

1/ GINO ERROR - ASSOCIATE USED IN WRONG CONTEXT.
The last picture part called was not named.

2/ GINO ERROR - ASSOCIATE USED IN OBJECT/SUBPICTURE
DEFINITION.

This is forbidden.

2.13/ASSOCIATE/l 6.6.70

IBCDCHARSI
Issue 2, Feb. 1969

Name: BCDCHARS

Purpose: To add a character string which is held
in binary coded decimal form in a FORTRAN
real or real array.

Examples of use: CALL BCDCHARS(A,N)

CALL BCDCHARS(CHARRAY(lO), 8, NAME)

Arguments: A - a real or real array element, which
contains the characters in BCD form. In
the case of an array element, characters
in excess of 4 are taken from the next
consecutive array elements.

N - an integer - the number of characters
in the string.

NAME - an optional integer argument - the
call name associated with the string.

Description: As for CHARS

BCDCHARS is useful for displaying character
strings read in in FORTRAN A4 format or by
use of SYMREAD (see the IAL library
documentation.)

e.g. DIMENSION CH(4)

READ(2,10) CH

10 FORMAT (4A4)

CALL BCDCHARS(CH, 16)

Language: SAL

Length: 340 (uses some space as CHARS)

2.13/BCDCHARS/l 29.4.69

I BUFFERS I
I"sue 3, April 1970

Name: BUFFERS

Purpose: (a) To establish buffer space in TITAN. For displays,
a display file buffer is always needed; this is not needed for
plotters. A subpicture/object buffer will be required if sub
pictures or objects are used.

(b) To start a new picture. For displays this means
that a new display file is initialised, any existing display file
being discarded. For plotters the output stream is initialised so
that the plotter moves to new paper.

Example of use: CALL BUFFERS (DPLACE,IDSIZE,IDERR,SNPLACE,
ISNSIZE,ISNERR)

Arguments: DPLACE Location of start of display file
buffer. In ASA this may be an array
name; in T3 it may be base address + 1.

IDSIZE Size of display file buffer.

IDERR Error label for display file buffer
overflow.

SNPLACE Location of start of subpicture/object
buffer.

ISNSIZE Size of subpicture/object buffer.

ISNERR Error label for subpicture/object
buffer overflow.

Description: Calls with arguments are used to set up buffer space.
For displays (e.g. when PDPGINO, ELLIOTTGINO are used) the first
three arguments specify the display file buffer, which must be
provided. Each display file word occupies half a word in the buffer.
The second three arguments, which may be omitted, specify the
subpicture/object buffer. Each subpicture uses four words of buffer
space. The space for an object definition depends entirely on
contents. Each GINO call within the definition uses approximately
three halfwords.

For plotters (e.g. when PLOTTERGINO is used) a display file
buffer is not required and only three arguments need to be given,
to specify the subpicture/object buffer. In this case a call to
BUFFERS with no arguments will be used if subpictures and objects
are not required.

Every call to BUFFERS removes existing subpicture definitions.
It does not remove existing object definitions unless preceded by
INITGINO or its equivalent. Every call to BUFFERS also starts a

2.13/BUFFERS/l

new picture, as defined above. A call without arguments can
always be used to start a new picture without changing the
location of the buffers. The display file buffer space
(if required) will be reused, the subpicture definitions will
be lost but the object definitions will still be available.

The user wishing to take specific action on buffer overflow
(e.g., to output the picture so far, to output diagnostic
information) must assign appropriate labels to IDERR, ISNERR using
FORTRAN ASSIGN statements. If buffer overflow is not expected,
the simplest course is to give IDERR, ISNERR negative values.
Should overflow then occur, a machine code monitor results.

2.l3/BUFFERS/2 4.5.70

Names:

Purpose:

Examples of use:

Arguments:

Description:

Errors:

CHARI NT
CHARFPT
CHARREAL

Issue 2, June 1970

CHARINT, CHARFPT, CHARREAL

To display an integer or floating point number
in character form.

CALL CHARINT{INTEGER, N)

CALL CHARFPT (REAL,N)

CALL CHARREAL (REAL,N ,M)

The first argument is the number to be displayed.
N - field width. M - no. of places after decimal
point (CHARREAL only) .

CHARI NT outputs an integer, justified to the right,
preceded by space or minus and filled out on the left
with spaces.

CHARFPT outputs a floating point number in the following
format. The number is standardised so that its mantissa
satisfies 10-1 < mantissa < 1. The mantissa is output
to a maximum of six figures, preceded by space or minus
and a decimal point. It is followed by an exponent
marker and a three figure exponent. The whole is right
justified and filled out with spaces on the left. Thus

CALL CHARFPT(123.456,16) produces

,,"'•.••.•••••123456E 3

CHARREAL outputs a real number in a format like the
FORTRAN 'F' format.

The routines use the basic routine CHARS.

If a negative or zero field width is demanded, a single
'E' is output. If the number is too large for the
specified field, the field is packed with 'E' 's.

2.l3/CHARINT/l 6.6.70

CHARS

Issue 3, April 1970

Name: CHARS

Purpose: To add a character string.

Examples of use: .CALL CHARS ('HERE BE CHARACTERS. ')

CALL CHARS ('NAMED STRING', NAME)

Arguments: The first argument is a compiled Hollerith
string (produced by the ASA compiler).

NAME - optional integer argument - call
name associated with the characters.

Description: The size of the characters generated depends on

(a) the latest call to CHARTYPE (q.v.) which sets
the current character scale.

(b) the particular output device used.

On the PDP, characters are produced using the 340 character
generator. The basic character size is 6 x-units by 7 y-units
so character scale 1 (size 12x14) is recommended and assumed if
CHARTYPE is not called. Four character sizes are available. The
basic character size of the Elliott 1 (size 16x20) is recommended
and assumed. Two character sizes are available.

Other output devices (e.g. the CALCOMP plotter) produce
characters by software, the characters being exactly the same as
those produced by the PDP character generator.

In every case the starting point for displaying the character
string is the bottom left hand corner of the initial character.
At the end of each character the current position is at the bottom
right hand end of the string so that another string can be added
without repositioning. When necessary, character strings should be
positioned by using routine IPOINT.

Character strings cannot be transformed: they may be windowed
(windowing is to the nearest character).

Characters tend to be dim in large display files on the PDP.
One solution to this is to define the characters and their positioning
point(s) as a subpicture, which is then called repeatedly.

Language: SAL

Length: Approximately 350 if hardware characters, 600 if
software characters.

Warning: The directive 'INNERSET' to the ASA compiler should not
be used with CHARS.

2.13/CHARS/l 30.4.70

Name:

Purpose:

Example of use:

Argument:

Description:

ICHARTYPEI

Issue 1, May 1970

CHARTYPE

To choose the required scale for characters.

CALL CHARTYPE(N)

N the chosen character size. The basic
character size is magnified by 2N.

For the PDP, N may be 0 - 3 giving four sizes:-

6x7 (the basic size), l2x14, 24x28, 48x56.

For the Elliott, N may be 0 or 1 giving two
sizes

8xlO (the basic size), l6x20.

Other devices, which draw characters by software,
have the same range of sizes as the PDP.

N = 1 is assumed until CHARTYPE is called. The
scaling of characters is independent of the
scaling of lines (which may be obtained by use of
routine CONTROL) .

2.l3/CHARTYPE/l 4.5.70

Examples of use:

Arguments:

Description:

Errr.r :

Language:

Length:

Issue 2, June 1969

CIRCLE

To add a two-dimensional circular arc. The arco
subtends an angle c where 0 < a < 360 •

CALL CIRCLE(IXC,IYC,IXE,IYE,ISENSE)

CALL CIRCLE(400,400,600,600,1,NAME)

lXC,IYC the X and Y coordinates of the centre
of the arc.

lXE, lYE the X and Y coordinates of a point on
the line joining the centre to the end
point of the arc.

ISENSE o for clockwise arrs, 1 for anti
clockwise arcs.

NA}1E optional argument specifying the call
name of the arc.

The arc is drawn from the current position, which
can of course be set by a suitable call to IPOINT.
Enough short vectors are generated to produce a
visibly smooth arc.

If a degenerate case occurs (e.g. centre and
starting point coincident)

GINO ERROR - CIRCLE NOT DEFINED.

~s printed on stream 0 and the job continues.

SAL and FORTRAN

CIRCLE and CIRCLE3 together total 285 words.

2.l3/CIRCLE/l 10.6.69

Name:

Purpose:

Examples of use:

Arguments:

Description:

Issue 1, June 1969

CIRCLE]

To add a three-dimensional circular arc. The
arc subtends an angle a where 0 < a < 360 •

CALL CIRCLE3(IXC,IYC,IZC,IXE,IYE,IZE,IXT,IYT,rZT)

CALL CIRCLE3(400,400,400,600,600,600,lOO,O,O,NAME)

IXC,IYC,IZC the X, Y and Z coordinates of the
centre of the arc.

IXE,IYE,IZE the X, Y and Z coordinates of a
point on the line joining the
centre to the end point of the arc.

IXT,IYT,IZT The X, Y and Z coruponen ts of the
"approximate tangent vector" at the
start of the arc (see below).

NAME optional argument specifying the
call name of the arc.

The arc is drawn from the current position. The
"approximate tangent vector" is used as follows:

(i) Where the arc is not a semicircle or a
full circle, the tangent vector determines
whether the major or minor arc is r~quired.
For this purpose it need only point into
the correct half plane.

(ii) Where the arc is a semicircle or a full
circle, the tangent vector determines the
plane in which the arc is to be drawn.
For this purpose it must point in the
correct direction.

Note that the magnitules of IXT, IYT and IZT are
not used - the tangent vector is only used to
establish direction.

2.l3/CIRCLE3/l

Error:

L..r.guage :

Length:

ln pra t I, L', arcs are usually drawn as part o f
.' 1a".I':: Li gure, lhen, for instance,

"ALL LTNE3(lOO.200,-100)

CLd, L1ReLE3 (- , - • - , - , - , - ,] 00,200,-100)

1S used to produce continuity i.e.

If a degenerate case occurs

GINO ERROR - CIRCLE NOT DEFINED.

is printed on stream 0 and the job continues.
Degeneracy in the tangent vector (i.e. it passes
through the centre) does not produce an error
if the plane of the arc is determined. In this
case the minor arc is drawn.

SAL ar'dFORTRAN

CIRCLE ano CIRCLE3 together total 285 words.

2.11/CIRCLE3/2 10.6.69

Name:

Purpose:

Example of use:

Arguments:

Desc.ri J d_ion:

Irr,rs.

I COMPLOTGINO I
Issue I, June 1970

CO~1:rLOTGINO

To initialise the GINO system and to select the
COMPLOT on-line plotter for graphical output.

CALL COMPLOTGINO
CALL COMPLOTGINO(NSTREAM, NSIZE)

NSTREAM the output stream to be used. This should
not exceed 200.

NSIZE the output limit in blocks.

Both of these arguments are optional. If they are
not given then stream 7 is used with an output limit
of 25 blocks. This should be quite adequate for most
programs.

This routine is very similar to PLOTTERGINO (q.v.).
It must be called before any ot~er GINO routine. I~
cannot he used with any of the other basic initialisa-
tion routines (e.g. PDPGINO, PLOTTERGINO). The routine
performs internal initialisation and loads the intp:-;ji1
code generating routines for the COMPLOT on-line pLot.ter.

It s not necessary to supply a dispLay file huffer when
rout i.ne BlI ·'FERSis called. A plot must be tx.rminat.edby
calling rout.i.nePL,)TEND,wh i ch moves the pl.ot.tar to new
paper. A new plot may then be started by another calL
to BUFFEf'-S.It is not necessary to call COHPLOTGINO
aqa..r, u.iLess all object definitions are to be dele·ted.

If t.he("·u~~ut stream specified exists when rOMPLOTGTN,)
is ca i l ._d, it is used. Otherwise, it ib cr-eut.ed as a
pending stream. Output is not sent to the ploi.ter
automat~cally. It is the user's responsibility tc
secure the services of a COMPLOT plotter an« to pIot
the out.put; by use of the PLOT command. Thus if working
with the plotter at one's side one would typ~

PLOT 07 ('0' for output)

after running a COMPLOTGINO program, to plot outp~t
sent to pending stream 7. Output may also be sent to
a f.Le end plotted (using 'PLOT <file title>') when
convenient.

If the pr~gram moves the pen over the edge of the
paper allo rati.ona monitor message is printe 1 lP-j f- ,r.
job stops. Such edge violations can be avo.l.:ledby
use of the windowing option.

2.13/COMPLOTGINO/I

Ex~ya Facilities: These are as for PLOTTERGINO except that thc-strcar.•
hcz.der is normally amitted (i.e. it has to be
explicl~ly requested by use of routine STffiIEAD).

One unit on the plotter is 1/100 inch. The standard
~idth across the paper is 1016 units and the maximum
available is 1079 units. The length limit is 3499
units.

2.U/COMPLOTGINO/2 10.10.70

CONTROL I
Issue 3, l-1ay F)"

Nan.e : CONTROL

Purpose: To set display file controls for pen sensitivity,
scale and intensity.

Examples of use: Cl,LLCONTROL (IPEN,ISCALE,INTENS)

IPEN pen o no change

2 disable pen

3 = enable pen

ISCALE scale 0, 1, 2, 3. If ISCALE is
negative, the scale is not
changed.

INTENS intensity 0, 1, 2, 3, 4, 5, 6, 7.
If INTENS is negative, the
intensity is not changed.

Description: Note that the windowing routines do not deal Witll
hardware scale change within subpicture definitions. If CONTROL
is called within a subpicture definition so as to change the s:ale,
the subpicture will not be windowed - it will be displayed every
time it is called, at the user's risk.

These display file controls are modelled exactly on those
for the PDP. With other devices equivalent effects are achieved
as far as possible.

For plotters the same image is produced as on the PDP screen
but pen sensitivity and intensity arguments are ignored.

For tl1eElliott, the effect of PDP hardware scaling is
sir:.ulatedby the soft:ware. At scales 2 and 3 lines wilj appear
dot.t.ed, OnLy 3 intensity levels are available; INTENS = 0, 1 0;:-

2 giving the dimmest, INTENS = 3, 4 or 5 giving the next "nj
I~TENS = 6 or 7 the brightest.

2.13/CONTROL/l 4.5.70

I ~RE~TEDISPLAY
Issue 1, Feb.]969

Name: CREATEDISPLAY

Purpose: To provLde full formatted output facilities
by setting up a notional output stream to
the display for use with FORTRAN WRITE
statements.

Example of use: CALL CREATEDISPLAY(N)

Argument: N the number of notional output stream.

Description_ After CALL CREATEDISPLAY(N) all output sent
to stream N by FORTRAN WRITE statements is
not output on stream N but added to the display
file buffer. Carriage control characters are
not included so only a single record can be
output at a time. The beam must be repositioned,
using IPOINT, for each new record.

Only one such notional stream can be set up
and the routine must not be used together with
the IAL routine CREATEPLOTTER. Note that only
output via the FORTRAN I/O package is affected -
other output to stream N will be lost (it goes
to NONE!)

Errors: Illegal use of CREATEDISPLAY causes loader
errors.

2.13/CREATEDISPLAY/l 29.4.69

DEFOBJ

Issue 3, April 1970

Name: DEFOBJ

Purpose: To open the definition of a user-defined object.

Example of use: CALL DEFOBJ(IDENTIFIER)

Argument: IDENTIFIER - the identifier by which the object
is to be known to the GINO system.

Description: DEFOBJ is used to open an object definition. Until
ENDOBJ is called, nothing further is added to the total picture.
Instead the object definition is built up in the object buffer.
Normally this definition will be a record of the object exactly
as defined (i.e. not transformed, not windowed). However if a
second argument is given for DEFOBJ then the object will be
transformed and windowed as it is defined. In this way quite
complicated effects can be achieved. In all cases objects may
be transformed and windowed when called (by routine OBJECT).

Object definitions may include calls to existing user
defined objects and subpictures and they may include named
calls. Object definitions may not be nested, i.e. after DEFOBJ
has been called it may not be called again until ENDOBJ has been
called. Also objects may not be defined within subpicture
definitions and vice versa.

The value chosen for IDENTIFIER is up to the user. It may
be a code number or a pointer to a piece of data structure. If
there is already an object defined with the given identifier, the
new definition supersedes the old (which is automatically deleted).

Errors: 1. GINO ERROR - ATTEMPT TO NEST OBJECT DEFINITION.

The program stops.

2. GINO ERROR - OBJECT BUFFER OVERFLOW.

Control passes to the location specified by the
sixth argument of BUFFERS. The normal course is
to try again with more buffer space.

3. GINO ERROR - OBJECT BUFFER REQUIRED.

The job stops. Try again with 6 arguments for BUFFERS.

2.13/DEFOBJ/l 30.4.70

I DEFSUB J
Issue 2, Feb. 1969

Name: DEFSUB

Purpose: To open the definition of a subpicture.

Example of use: CALL DEFSUB(IDENTIFIER)

Argument: IDENTIFIER - the identifier by which the
subpicture is to be known to the GINO system.

Description: DEFSUB is used to open a subpicture definition.
The value chosen for IDENTIFIER is up to the
user. Until ENDSUB is called, thus closing the
subpicture definition, further display file
commands are added to subpicture definition
and not to the main display file. Subpicture
definition is subject to the transformation
current at definition time: the subpicture is
then frozen and cannot be changed except for
hardware scaling.

Subpicture definitions may include calls to
previously defined objects and subpictures:
they may not include named calls. Subpicture
definitions may not be nested, ie, after DEFSUB
has been called it may not be called again until
after a call to ENDSUB. Also objects may not be
defined within subpicture definitions and vice
versa.

Errors: 1. GINO ERROR - ATTEMPT TO NEST SUBPICTURE DEFINITION.
The program stops.

2. GINO ERROR - SUBPICTURE BUFFER OVERFLOW.
Control passes to the location specified by the
sixth argument of BUFFERS.

3. GINO ERROR - SUBPICTURE BUFFER REQUIRED.
The program stops. Try again with six arguments
for BUFFERS.

Language: SAL

Length: 98

2.13/DEFSUB/l 29.4.69

DELETEOBJ

Issue], April 19h9

Name: DELETEOBJ

Purpose: To delete the definition of a tlser-dcfjoE:d
object.

Example of use: CALL DELETEOBJ(IDENTIFIER)

Argument: IDENTIFIER - the identifier of the object
lhat is to be deleted.

Description: The information making up the definition
is deleted and the buffer is "closed up"
so thdt the space is freed. Tne deleted
object can no longer be called.

Error: If the object specified by IDENTIFIER 1S

not currently defined then

GINO ERROR - OBJECT 'n> NOT DELETED.

is printed on stream 0 and the job continues.

Language: SAL

Length: 53

2.l3/DELETEOBJ/l 29.4.69

Issue 1, April 1969

Names: DEPTHOFF,DEPTHON

Purpose: To suspend/restore depth modulation when
3D windowing is being used.

Examples of use: CALL DEPTHOFF

CALL DEPTHON

Language: SAL

Length: 4

2.13/DEPTHOFF/l 29.4.69

Issue 2, Feb. 19()9

Name: DFCONTIN

Purpose: To "unterminate" the display file.

Example of use: CALL DFCONTIN

Description: DFCONTIN is used whenever it is required
to continue adding to the display file after
it has been terminated, either explicitly
by a call to DFTERMIN or implicitly by a (:,111
to one of the output routines (DFPUNB, LFOUTR,
etc.).

Language: SAL

Length: 37

2.l3/DFCONTIN/l 29.4.69

DFOUTB

Issue 1, April 1969
2, May 1970

Name: DFOUTB

Purpose: To output a relocated, self-running binary
display file.

Examples of use: CALL DFOUTB(lOOO)

CALL DFOUTB (IADR,NSTREAM)

Arguments: IADR - satellite address to which display file
is to be relocated.

NSTREAM - optional integer argument - specifies
the stream for output.

Description: Display files output by DFOUTB are suitable for
transmission over the link by use of the PDP command (10). It
is assumed that they will be transmitted and run with the appropriate
version of LINKBOOT in core in the satellite.

The display file is output in binary to the stream specified,
or to stream 6 otherwise. If the output stream does not exist,
it is created to pending and a suitable message given. The display
file is preceded by a small program to run the display.

Suppose a display file has been output to file /DFB by
CALL DFOUTB(2000) , then it can be run as follows:

1/ Load and start LINKBOOT

2/ Ensure that the link is engaged.

3/ On the TITAN console type

PDP (/DFB) W A2000 D2000

Further details of the PDP command and of LINKBOOT are in
reference (10). The above procedure is the simplest way of
transmitting a single display file to the satellite - better
facili ties are provided by the Display File Manager and routine
DFOUTR.

Message: After CALL DFOUTB(M)

DFOUTB - <N> WORDS FOR SATELLITE ADDRESS <M>

is printed on stream O. The display file and
program for running it total N satellite words.

2.13/DFOUTB/2 4.5.70

I DFO~TC 1

Issue 1, April 19G9

Name: DFOUTC

Purpose: To output a relocated display file ~n
character form.

Examples of use: CALL DFOUTC(2000)

CALL DFOUTC(IADR,NSTREAM)

Description: As for DFPUNC except that the display file
is first relocated to address IADR. The
user must set up the output stream (stream 6,
if not specified by the optional argument).

Message: DFOUTC - < n > PDP WORDS.

Language: SAL

Length: 65

2.l3/DFOUTC/l 29.4.69

I DFOUTR I
lssue l, April 19h()

Name: DFOUTR

Purpose: To output a display fill'in the re locatab l c
form used by the Display File Manager (Unl).

Examples OC use: CALL DFOUTR

CALL DFOUTR(NSTREAH)

Arguments: NSTREAM - optional integer argument - specifies
stream f or output.

Doseription: The display file is terminated with a s topcoIe
and output in binary form, preceded by a
header consisting of a code word and a bit
map (see description of DFM, Section 6.3).

DFM is capable of receiving a sequence of
display files output in this form i~ a
single FDP command and so DFOUTR may be us c.d
repeatedly to the same stream. This makes lor
economy of disc file space.

Output is to the stream specified, or stredD
6 otherwise. The user is responsible for
setting up the output stream.

DFOUTR - < n > PDP WORDS.
The display file (excluding the bit mdp) lS

n words long.

Language: SAL

Length: 48

2.13/DFOUTR/I

DFPUNB

Issue 2, June 1~70

Name: DFPUNB

Purpose: To punch out a display file in reversed binary form.

Examples of use: CALL DFPUNB

CALL DFPUNB(NSTREAM)

Arguments: NSTREAM - optional integer argument - specifies
output stream number.

Description: Display files punched out in reversed binary form can
be loaded into core in the PDP or Elliott computers
using DFTL. Each word of display file occupies 3 rows
of holes on 8-track paper tape. DFPUNB is the routine
recommended for paper tape output.

The output stream number may be specified (by the
optional argument). stream 15 is used if the stream is
not specified. The output stream is created to 8-track
tape if it does not exist. The display file is terminated,
if necessary, with a stop code or frame timer hold.

The format of reversed binary tape is:

~ DIRECTION INTO READER

SPROCKET HOLES ~ A B C- - - - - - - - - - - - - -

~

RELOCATION BIT

BEGIN/END BIT

A, B, C each consist of 6 bits. They form a single
display file word:

C B A

LEAST SIG. END

Message: After each call to DFPUNB

DFPUNB - <n> DISPLAY WORDS

is printed on stream O. The display file is n
display words long.

2.13/DFPUNB/l 6.6.70

E~~j
Issue 1, I\lril lSih')

Name: lFPUNC

Purpose: To punch out a display ri l e i.n ch arar tor
form.

Examples of use: CALL DFPUNr,

CALL DFPUNC(NSTREAM)

Arguments: As for DFPUNB

Description: Display files punched out in chardctar form
can be loaded into PDP core at any location
u3ing DFTL. Each word of display file
'c~upies 8 rows of holes on the ?aper Lape.
Cnaracter tapes are:thus longer tba.i) eversed
binary tapes. The user is advised Lr use
DFPUNB rather than DFPUNC unless he I, j':; a
sp-=..:ialreason for ne2ding character Clutput.

The output slream number may be specified
(Ly the optional argument). Stream IS i"
nsed if the stream is not specif ied. The
output stroam is created to 7-track tape if
it does not eyist. The display file LS

tf r:ninated,if necessary, with a DJP PA TOP.

1 nch TITAN half-word is output as 8 oct al
uigits, the format being:

TERMINATOR
BIT

JL...4II~LL~._--l.-L_-__--L-I- -=-l __~_I___.__,;J~-_J--~
IGNORED 18 BIT PDP [W WORD

RELOCATION
BIT

Message: After each call to DFPUNC

DFPUNC - < n > PDP WORDS

is printed on stream O. The display file ~s
n PDP words long.

Language: SAL

Length: 59

2.13/DFPUNC/l 29.4.69

[D~-~;~-J
Issue 2, April 1969

Name: DFREAD

Purpose: To read a display file into core ~n TITAN.

Example of use: CALL DFREAD(ADDRESS,ISTREAM)

Arguments: ADDRESS - Address in TITAN where display file
is to be read to. (eg., an array element tn
ASA, base address + 1 in T3 FORTRAN).

ISTREAM - Number of input stream from Whl n
display file is to be read.

Description: DFREAD reads a display file stored in character
form (as produced by DFPUNC, DFOUTC) or in
reversed binary form (as produced by DFPUNB).
The display file may have been produced in
TITAN, or punched out from the PDP by DFTP
(as described in Section 6.2).

DFREAD distinguishes between character and
binary streams. The input stream is deleted
after it has been read. To set up an input
stream from a reversed binary paper tape, the
following form of job description is used:

INPUT D2 (PAW/BDF)

***C

runout

(PAW/BDF)

***F

The binary tape must then follow the JD on the
same tape reader. It is set up as input stream
2.

Language: SAL

Length: 78

2.13/DFREAD/l 29.4.69

IDFTERMINI

Issue 2, June 1970

Name: DFTERMIN

Purpose: To terminate the display file in the manner
stipulated by the user.

Example of use: CALL DFTERMIN(IHOW)

Argument: IHOW specifies the terminator as follows:

IHOW = 0 the display file is to run in
isolation.

IHOW 7- 0 the display file is to run with
others. Specifically in the PDP
case, when IHOW = 0 the terminator
is DJP PA top, otherwise it is
PAR PA SI. In the Elliott case a
frame timer hold is inserted if
IHOW = 0, otherwise it is omitted.

Description: DFTERMIN terminates the display file if it is
in an unterminated state. It is provided to allow
the user to overide the terminators used by other
GINO routines.

2.13/DFTERMIN/l 6.6.70

l s s ue 2, F~iJ.1969

Name: ENDOBJ

Purpose: To close the definition of a user-defined
object.

Example of use: CALL ENDOBJ

Description: ENDOBJ closes an object definition.

Error: GINO ERROR - UNMATCHED ENDOBJ.

A call to ENDOBJ without a corresponding
call to DEFOBJ has occured. The job stops.

Language: SAL

Length: 10

2.13/ENDOBJ/l 29.4.69

JSSII(' 2, Fob . 1969

Name: ENDSUB

Purpose: To close a subpicture definition.

Example of call: CALL ENDSUB

Description: ENDSUB closes a subpicture definition.

Error: GINO ERROR - UNMATCHED ENDSUB.

A call to ENDSUB without a correspond~ng
call to DEFSUB has occurred. The job stops.

Language: SAL

Length: 94

2.13/ENDSUB/l 29.4.69

Issue 1, April 1969

Name: GETOBJ

Purpose: To recover an object definition that h~~
been saved on backing store by routine
SAVEOBJ.

Example of use: CALL GETOBJ(IDENTIFIER,NISTREAM)

Arguments: IDENTIFIER - the identifier of the object
to be recovered.

NISTREAM - the number of the input str0Jrn
containing the object definition.

Description: The stream is scanned and the relevant object
definition is added to the subpicture/object
buffer. The object is thus defined and can be
called (using routine OBJECT).

The stream ~s rewound and left open, so that
GETOBJ can be called repeatedly.

Error: If the object definition specified by IDENTIFIER
~s not on the stream then

GINO ERROR - OBJECT < n > NOT ON STRE&~

~s printed on stream 0 and the job stops.

If the subpicture/object buffer overflows
then control passes to the error label set up
by the 6th argument of BUFFERS.

Language: SAL

Length: 75

2.l3/GETOBJ/l 29.4.69

INITGINO,PDPGINO
ELLIOTTGINO

Issue 3, May 1970

Name: INITGINO, PDPGINO, ELLIOTTGINO

Purpose: To initialise the GINO system and to select the
required graphical output device.

Examples of use: CALL ELLIOTTGINO

CALL PDPGINO

Arguments: None

Description: One of these routines must be called before all
other GINO routines. Only one of them may be used in a given
program - failure to observe this rule will result in errors
at load time.

The routine performs internal initialisation and loads the
internal code generating routines appropriate to the required
device. To change the graphical output device used by a GINO
program, only this routine needs to be changed.

PDPGINO (or INITGINO, which is synonomous for historical
reasons) causes output for the DEC 340 display associated with
the PDP7 and PDP9 computers.

ELLIOTTGINO causes output for the 928 display associated
with the Elliott 905 computers.

Both of these devices will require routine BUFFERS to set
up a display file buf fe'r, The first call to BUFFERS after
PDPGINO or ELLIOTTGINO will clear the object buffer. This is the
only reason for which it is necessary to call PDPGINO or ELLIOTTGINO
more than once in a GINO program.

2.13/INITGINO/l 5.5.70

Ls s ue 2, Feb. 1969

Name s : L J i~E, lL J NE

Purpose: To ;Jeld ,1 two+d imens iona l l inc , specified
by vcr t.or inr r c-rne n t s ,

Examples of llse: CALL LINE (tux , IUY)

,:/\LL ILlf'.Ir(-lO~~,100)

L/',LL LINE(lLX,lOY,NAl1EJ

Ar gumeu t s : tu., thE: ., ir.cremenr i f [he line

iLlY - the 'i i ncremen t 01 the Li nr-

l';.. \ I', - optioria l int e;c I a rgurr.crit - the
c;]lL name a~30ciated with the line.

['110. line is drawn from the current position,
w i th the specified increments. LINE adds the
Li r.e visibly; ILINE adds it invisi.cIy , If
trar.s f ormat ions and windowing are used. the
~'I(rements can be any integers. If not,
incrpments must be in the range -1023 < IDX <
1023. This restriction is imposed by the
display raster size. Note that the hardware
scaling effect is superimposed on the vector
i~~rement. Thus, CALL LINE(100,-40) when the
ur rdv-a re scale is 2 wilI produce a vector on
the screen with x-increment 400 and y-increment
- d;O.

Error: If LINE or ILINE causes a vector too large for
the screen to be added to the display file

GINO ERROR - LIN1~TOO LONG

l.S printed on scream 0 and the job stops. This
CAll only happen wher, not wi.ndowing,

Language: SAL

Length: The combined LINE and POINT routines occupy
290 words.

2.U/LINE/l 29.4.69

! L T~f~ '~, -I J. J NI':2-]
l s s ue 2. h..:!J. 19()9

Names: LL'GJ nna'.]

Purpose: 'J<) acid a t.h re e+d i mens i on a l line, s pe ci f i c-d

by v2ctor increments.

Examples of use: CALL LINE3(IDX,lDY,IDZ)

CJ..LL ILINE3(100, 0, -100)

CATl LINE3(IDX,IDY,IDZ,NA'lE)

Arguments: If. - the X increment of the line.

ID i - Lhe Y increment c f the line.

ID/, - the Z increP1ent , .L the line.

NAW~ - optional integer arg.Jffient_. the
call name associiltedwith the line.

Descriprion: LINE3 adds the line as a visible Li ue ; [LINE3
as an invisible line. I'hree+dimensi onal lines
w ilI only produce useful results if traus f ormat ions
are used.

Error: As for LINE

Language: SAL

Length: The crrnbinedLI~E and PJINT routines occupy
290 wo rds.

2.l3/LINE3/l 29.4.69

I LINEP , ~;~~NEP I
L. -

Issue 2, Fcb. 1969

Names: LINEP, ILINEP

Purpose: To add a two-dimensional line from the
current posit~on to the specified end
point.

Examples of use: CALL LINEP(IX,IY)

CALL ILINEP(200,O)

CALL LINEP(IX,IY,NAME)

Arguments: IX - the X coordinate of the end point of
the line.

IY - the Y coordinate of the end point.

NAME - optional integer argument - the call
name associated with the line.

Description: As for LINE, except that the line is drawn
from the current position to the specified
end point. This is independent of the hardware
scaling factor.

Error: As for LINE

Language: SAL

.Length: The combined LINE and POINT routines occupy
290 words.

2.l3/LINEP/l 29.4.69

f L IN'~~~~'~'~~'l
Issue 2, fit'I" J969

Name s : LINEP 3,ILINEP3

Purpose: To add a three+dimensional l:ine, join inj ,
the current position to the specified
end point.

~~xamples of use: CALL LINEP:'"(IX, IY ,1Z)

CALL LINEP 3(100,200,-50,NA1\1E)

IX - the X coordinatl; or the eri.l PJint of
the line.

[y - the y coordinate 0;: the end point.

T' the '7 (oordinate of the enG po in r .L. .,

Arguments;

NAME - opt ional intoger argument - rhe.call
name associated with the line.

Description: LINEP3 adds the line as a visible li~e;
ILINEP3 as an invis~ble line. Three
dimensional lines will only produce useful
results if transformations are us~d.

Error: As for LINE.

Language: SAL

Length: The combined LINE and POINT rout ines O;:CUDY

290 words.

2.l3/LINEP3/l 29.4.69

OBJECT

Issue 3, June 1970

Name: OBJECT

Purpose: To add a user-defined object.

Examples of use: CALL OBJECT(IDENTIFIER)

CALL OBJECT(IDENTIFIER,NAME)

Arguments : IDENTIFIER the identifier by which the object
is known to the GINO system. This identifier is
given at definition time.

NAME optional integer argument the call
name associated with this particular call of the
object.

Description: If the object is called in the picture construction
process, graphical output for the object is
generated. In general, this will represent the
transformed, windowed view of the object.

Calls to objects may also be used in other object
or subpicture definitions.

For compatibility with issue 1, the routine is
also called CALOBJ.

Errors: If IDENTIFIER is not currently defined

GINO ERROR - OBJECT <n> NOT FOUND

is printed and a fault 49 is forced, which the
user may trap if he wishes.

2.13/0BJECT/l 6.6.70

Name:

Purpose:

Example of use:

Arguments:

Description:

TSSUf' 1, June 191d

OBJZDM

'I'ocall a user-dcfjned ob j ect, pi th automatic
ir,tE'nsity modulation across its full z+runqe.

('ALLUHJZDM (ION, NAME?)

ION the identifier cf the user-defined object
being called.

NAME optional argument. The name associated
with this call.

This routine is designed to provide automatic intens~ty
modulat.lonwithout the time and core space nenalties
of 3[-windowing O,ly the range of z-valu('sis
calculated before the object is calleQ - th~s range
is then used for intensity moduLati.onso tl,ltthe viow
produced uses the full range of intensities. This
z-range is left set up on return from the rout.ine so
that n'her objects can be called using the same ranqe.

The routine sbould be used without windowing as no
clipping is necessary.

2.13/0BJZDM/l 6.6.70

Names:

Purpose:

Examples of us,":

Ar qi.me rrt.s .

Description:

PICTURE
PICTZCLIP

Issue 1, June 1970

PICTURE, PICTZCLIP

To provide automatic scaling and positioning and
3D-windowing (PICTZCLIP) of any transformed view
of a user-defined object.

CALL? .l.C'TURE(IDN,HJ, IE,IS,IN,?AC?)
CALL PTr::TZCLIP(IDN,IW,IE,I~,IN ,BACl:,FRONT,FAC?)

ION the j dentifier of t.he us er+defi.ncuol .je ct being
called.

IW.IE,I: TN the bounds, in picture coordinates, of
the area on to which the transformed view is to
be mapped.

FAC optional r=al argument.]f this argument is
given, it w.i.Ll, be set to the linear scaling
tactor used to scale the view to the required
~rea, and the TR matrix will be left on return
from the routine at the value used within the
routine. If this arqument is omitten, the TR
mat.rix is restored on return to its value before
the routine was called.

BACY,FROlJT real arguments (PICTZCLIP only). The
back and front bounas of the z-clipping on a
normalised scale in which 0.0 is the back of
the object and 1.0 the front.

The routines calculate the extent of the view of the
object under the transformation current when they are
called and superimposes suitable scaling and positioning
transformations so as to map the view onto ~1e defined
area. TLe result is that thP required view is produced
in the specified area. The scaling is uniform in x
and y so no dist.ort.Lon is oaus ed ,

In addltlon, PICTZCLIP sets the z bounds for
SET30WINDO~7automatically. This routine involves the
whole 3D-windowing machinery and cannot be used with
2D-windmving.

2.13/PICTURE/l 6.6.70

Name:

Purpose:

Example of use:

Arguments:

Description:

Errors:

PLOT'l'ER(;INO

Issue 1, May 1~70

P L01''1' t:RG I NO

To initialise the GINO system and to select
the CALCOMP plotter for graphical output.

CALL PLOT'1'ERGINO
CALL PLO'T'TERGINO(NSTREAM,NSIZE)

NSTRE~. the output stream to be used.
NSTREAf1 exceeds 200 then stream (NSTREAM -
is useu t, the big plotter. If NSTREAM is
than 2Gu tne small plotter is used.

If
200)
less

NSIZE t.ae output limit in blocks.

Both of t.l.e se arguments are
are not :j~~venthen stream 7
output lir.lt of 25 blocks.
adequatc ~or most programs.

optional. If they
is used wi th an
This should be quite

This l.·G1 lc must be called before any other
GINC, rO'l 1 ._ It cannot; be used with any of the
otrer basic initialisation routines (e.g.
ELLIOTTGINO, PDPGINO). The routine performs
internal init~alisation and loads the internal
code generating routines for the CALCOMP plotter.

It is not necessary to supply a display file
buffer wheT; routine BUFFERS is called. A plot
must be terminated ty calling routine PLOTEND. A
new plot may t.heri be started by another call to
BUFFERS. It ;~['not necessary to call PLOTTERGINO
again un Less all object definitions are to be
de Le t.e d

If the output stream specified exists to plotter
when PLGTTERGINO is called, it is used. If it
exists aE a pending stream it is also used, so
as to permit dummy runs. In all other cases an
eXlsting output stream is terminated and recreated
to plotter

If the program moves the pen over the edge of the
paper allocation a monitor message is printed.
The stream will not be terminated so the on-line
user has the option of deleting it (e.g. by typing
'DELETE 07') so as to suppress the output or
closing it, so as to cause it to be plotted up to
the point where the violation occurred. Doing
nothinq lS tantamount to failing to suppress the
plot, so use of 'DELETE' is to be encouraged.

Edge violations can of course be avoided entirely
by use of the windowing option (see routine
SETWINDCJW) .

2.l3/PLOTTERGINO/l

Extra facilities: (a) Orientation. The standard orientation is
x across the paper and y along. This may be
altered to x along and y across by the routine
XAJ ,(JNG:

CALL XALONG

The standard orientation may be restored

CALL XACROSS

(b) Paper length. The standard allocation per
plot is 3000 units (one unit on the CALCOMP
plotter = 1/100 inch). This is the allowed limit
along the paper. This limit can be altered by

CALL PLOT::-ENGTH(N)

which sets the limit to NX 1024 units.

It is not of course possible to vary the width
across the paper. This is 1060 units for the
small plotter and 2920 units for the big plotter.

(c) Stream headers. Each new plot (i.e. each
ne} ..;allto BUFFERS) is normally annotated with
a stream header, giving user identifier, stream
number, job number, date and time. These headers
can be suppressed by calling routine NOSTRHEAD
and restored by calling routine STRHEAD.

2.13/PLO~TERGINO/2 6.6.70

PLOTPDP
PLOTELL

Issue 2, June 1970

Name: PLOTPDP, PLOTELL

Purpose: To produce plotter output in addition to
generating display files when using PDPGINO
or ELLIOTTGINO.

Example of use: CALL PLOTPDP (IFRAME,NSTREAM)

Arguments: IFRAME integer in range 0 to 7 specifies
plotter control information as follows:

o no frame drawn round picture, plotter advanced.

1 frame drawn, plotter advanced.

2 no frame, plotter not advanced so new picture
is superimposed on previous picture.

3 frame drawn, plotter not advanced.

In each of the above cases the y axis is along
the plotter paper and the x axis across it. If
4 is added to any of the above values, the same
effect is obtained but with x and y interchanged.

NSTREAM optional integer amount specifies
the number of the output stream to be used for
plotter output (stream 7 is used if NSTREAM is not
specified).

Description: If the output stream does not exist it is created
as a plotter stream. The display file currently
occupying the user's display file buffer is
terminated (if necessary) and output on the CALCOMP
plotter, using the routines of Section 4.2. PLOTPDP
must be used with PDPGINO, PLOTELL with ELLIOTTGINO.
PLOTTERGINO must not be used.

Messages: As for DFPLOT

2.13/PLOTPDP/I 6.6.70

POINT, rl'()rN~

l s s ue 2, Feb. L969

Names: l'OINT,IPOINT

Purpose: To add a two-dimensional point.

Examples of use: CALL IPOINT(IX,IY)

CALL POINT(200,300)

CALL POINT(n,IY,NAME)

Arguments: IX - the X coordinate of the point.

IY - the Y coordinate.

NAME - optional integer argument - the call
name associated with the point.

Description: POINT adds the point visibly; IPOINT adds it
invisibly. If transformations and windowing
are being used, the point coordinates need
not be within the range 0 < IX < 1023;
o < IY < 1023 of the display raster. Note,
however, that the system does not allow the
beam to be positioned off the screen by a call
to POINT or IPOINT.

Error: GINO ERROR - ILLEGAL POINT

The point would have been outside the screen
area. The job stops. This can only happen
if windowing is not being used.

Language: SAL

Size: The combined LINE and POINT routines occupy
290 words.

2.13/POINT/l 29.4.69

POINT3, IPOINT3

Issue 2, Feb. 1969

Names: POINT3, IPOINT3

Purpose: To add a three-dimensional point.

Examples of use: CALL IPOINT3(IX,IY,IZ)

CALL POINT3(200,300,-100,NAME)

Arguments: IX - the X coordinate of the point.

IY - the Y coordinate of the point.

IZ - the Z coordinate of the point.

NAME - optional integer argument - the
call name associated with the point.

Description: POINT3 adds the point as a visible point;
IPOINT3 adds it as an invisible point.

Three-dimensional points will only produce
useful results if transformations are used.

Language: SAL

Length: The combined LINE and POINT routines occupy
290 words.

2.13/POINT3/l 29.4.69

·SALCHA[S

lssuc 1, April l%9

Name: .SALCHARS

Purpose: To add a character string in the SAL format.
(This routine is not of interest to FORTRAN
programmers.)

Example of use: B89 = PTR :: GINO MAY BE USED FROM SAL.
ENTER .SALCHARS.

B89 should contain the ~ddress of the string.

BB8 should contain the call name, if names
are being used. It is ignored otherwise.

b9' ,hould cvntain the r~turn address.

Description: As fo) rt~RS except that, if the string LS

terminated by a newlin~, carriage return and
line feed charac~~rs a~e included in the
display file.

LanguRge: SAL

Length: 400 (shared space with CHARS)

2.13/.SALCHARS/l 29.4.69

r_~~~EOB!]
Issue 1, Ap ri 1 1969

Name: SAVEOBJ

Purpose: To save the definition of a user-defined
object on backin~ store.

Example of use: CALL SAVEOBJ(IDENTIFIER,NOSTREAM)

Arguments: IDENTIFIER - the identifier of the object
that is to be saved.

NOSTREAN - the nllmberof the outplt stream
to be used.

Description: The definition of the object specified is
output as a single record on the output
stream. More than one object defi~ition
can be saved on a single stream.

Error: If the object specified by IDEKiIFIER lS not
currently defined then

GINO ERROR - OBJECT < n ~ NOT SAVED

r s printed on stream 0 and the job con t iru.es,

Language: SAL

Length: 49

2.13/SAVEOBJ/l 29.4.69

SI~~I[JSI\'1'
SENUPf)P

1[;511(,: 3, .June J.'J7U

Name: SENOSAT (also SENOPDP for com~atibility)

Purpose: To send a display file to the sateLl i t-.
computer (POP or Elliott) over the link,
whilst operating in expensive ~ode.

Examples of use: CALL SENDSAT(IPLACE,IHOW,IOATA)

CALL SENOSAT(IO)

Arguments: IPLACE determines the interpretation placcd
by the satellite on the data transmitted.
If IPLACE < 256, it is interpreted as a
segment for OFM, IPLACE being the segment
number (see section 6.3) and the other two
arguments (which may be omitted) are used as
follows:-

IHOW o or omitted: segment will be dis[layed

IHOW < 0

IHOW > 0

segment will be invisible

on/off status of new segment ;ame
as that of existing stament of
same number; on if no ex i st i nq
segment.

data word of transmission.IDATA

If IPLACE > 256 it is taken as the satellite
address at which the display file is to be put.
In this case:-

IHOW = 0 : the display file is started,
otherwise not.

IDATA is used as jump address in the
satellite after starting the display
file.

Description: In addition to being logged in in expensive mode,
the user must create the link (by using the
SIGNAL command) and select it (using routine
SELECTSAT, Section 5) before calling SENDSAT.

Errors: Direct fault 26 occurs if the link is not created
or selected. Delayed fault 60 occurs if the link
is disengaged, or if a transfer error occurs.
These faults may be trapped by the user.

2.13/SENDSAT/I 6.6.70

SETWTNDOW

Ls sue 1. Fel). 1Y6()

Name: SETWINDOW

Purpose: To introduce 2D-windowing, so that the
picture is visible only within a specified
2D-region.

Example of use: CALL SETWINDOWCIBW,IBE,IBS,IBN)

Arguments: IBW,IBE,IBS,IBN - these specify the horizontal
(west and east) and vertical (south and north)
bounds of the window. The bounds are in terms
of picture coordinates.

Description: Parts of the picture outside the visible window
are omitted from the display file. Points on
the boundaries are included. Clipping is
exact.

Since SETWINDOW has an effect at load time,
windowing occurs throughout a job thdt includes
a call to SETWINDOW. Until a call co SETWINDO~
is executed the assumed window is the whole
screen (i.e. IBW = IBS = 0; IBE = IBN = 1023).
Note that SETWINDOW may be called more than once
~n order to vary the window bounds.

In addition to the extra space required for
windowing, there is a time penalty although
the windowing routines do seek to minimise this.

Language: SAL

Length: 640

2.l3/SETWINDOW/I 29.4.69

SET3UWINDOW

Issue 1, April 1969

Name: SET3DWINDOW

Purpose: To introduce 3D-windowing, so that the picture
is visible only within a specified 3D-region.
At the same time, depth modulation is introduced.

Example of use: CALL SET3DWINDOW(IBW,IBE,IBS,IBN,IBACK,IFRONT)

Arguments: IBW,IBE,IBS,IBN these specify the horizontal
and vertical bounds of the window, as for
SETWINDOW.

IBACK,IFRONT these specify the bounds on the
notional z axis normal to the screen. The
positive z-direction is towards the viewer. Note
that all the bounds are in terms of picture
coordinates.

Description: Parts of the picture outside of the visible
region set up are omitted from the display file.
Points on the boundaries are included. Clipping
is exact.

Depth modulation is also introduced. The
intensity of the picture is modulated, with
maximum brightness at the front of the visible
region and minimum brightness at the back.
Depth modulation may be suspended/restored at
any time by calling routines DEPTHOFF and DEPTHON.

Until a call to SET3DWINDOW is executed the
assumed window bounds are the whole screen, with
IBACK = -1000000; IFRONT = 1000000 and no depth,
modulation.

Language: SAL

Length: 1010

2.13/SET3DWINDOW/l 29.4.69

l_ SUBPI_::]

Issue 3, June 1970

Name: SUBPIC

Purpose: To call a previously defined subpicture.

Examples of use: CALL SUBPIC(IDENTIFIER

CALL SUBPIC(IDENTIFIER,NAME)

Arguments: IDENTIFIER the identifier, given at definition
time, by which the subpicture is known to the
GINO system.

NAME optional integer argument the call
name associated with this particular call of
the subpicture.

Description: Subpictures are not transformed at call time.
When windowing, subpictures which cross window
boundaries are omitted. Subpictures may be
called at any hardware scale. This is the only
way in which they can be altered. If any other
effect is required, user-defined objects must be
used.

Subpicture calls may be included in object
definitions and such calls may be named. They
may also be included in subpicture definitions but
in this case they may not be named.

Error: If IDENTIFIER does not exist

GINO ERROR - SUBPICTURE <n> NOT FOUND

is printed and the job stops.

2.13/SUBPIC/I 6.6.70

CABINET
CAVALIER

Issue 1, April 1969

Names: CABINET, CAVALIER

Purpose: To set up standard oblique projections.

Examples of use: CALL CABINET

CALL CAVALIER

Description: In each case the projection is set up for
a total picture centred on the origin, with
the X-axis horizontal and the Y-axis vertical.
The projections are specified as follows:

1/ The X and Y axes remain orthogonal
and are not foreshortened.

2/ The Z axi s ~s equally inclined to
the X and Y axes.

3/ In the CABINET projection, the Z
axis is not foreshortened; in the

CAVALIER projection it is foreshortened
by a factor of 1/2.

Language: SAL

Length: 16, 16.

2.13a/CABINET/l 29.4.69

Names:

Purpose:

Example of use:

Arguments:

Description:

FROMXYZ
AXONXYZ
PROJXYZ

Issue 2, June 1970

FROMXYZ, AXONXYZ, PROJXYZ

To set up perspective or axonometric views
from the specified viewpoint, with centre of
interest at the origin of space coordinates.

CALL FROMXYZ(X,Y,Z)

X,Y,Z reals
projection point.

the space coordinate of the

In all cases the view is obtained by projecting
from the viewpoint on to a picture plane at the
origin of space coordinates. The kind of views
obtained are illustrated in Fig. G on p. 2/21.

AXONXYZ uses parallel projection onto a picture
plane normal to the line of sight, producing an
axonometric view.

PROJXYZ is similar but uses point projection,
producing a perspective view.

FROMXYZ also uses point projection but uses a
vertical picture plane normal to the vertical
plane containing the line of sight. This has
the effect of keeping vertical lines vertical -
it can introduce extreme distortion in cases
where Y is large.

In all cases the view produced still centres on
the origin. It will generally have to be
positioned by calling OSHIFT.

2.13a/FROMXYZ/l 6.6.70

ISOMETRIC
DIMETRIC
THIt1ETRIC

Lssue 1, April 1969

Names: ISOMETRIC, L liIJ''l'RTC,IhJI'1ETRIC

Purpose: Tn 8et up standard axonn~etric projections
(i.e. projections with projection point at
"nlinity).

Examples of use: CALL ISOMETRIC

CuLL DIMETR1C

('AIL TRIMETRIC (THI:TA,r L)

Arguments: TKL:-1t.TRIConly

nItTA, 1<'1 reals
about Y and X axes,

.otation in degrees
re8pectively.

Description: In each case the projection is set up for
a total picture centrpd on the origin, with
the X-axis horizontal dnd the Y-axis vertical.
The specification of each projection is as
.tollows:

TSOMETRIC - each axis ~s equally fore
sho r tene d ,

DL lI.TR' - the .,"I'dY axes are equally
f oreshr r tened, 1'1,,- i out i.nesets up the
special rase in which the third axis ~s
foreshor~ened by a factur of a half.

TRIMETRI(; - this i- the general case. The
only condition ib Lhat the orthogonality of
the coordinate axes i", preserved.

Language: SAL

Length: 15, 16, 24

2.l3a/ISOMETRIC/I 29.4.69

-
'1;\(:NII y J

Name: NAI,;J IFY

Purpose: To moI i Ly the "llrr<.:ntt r ans f o rrnat ion h,i
s up c r impos ini. t iic s p ec iLi c , s c a l.o ch aru.o s .

Examples of use: CA LL ~lAc.;NIFY (2.0 ,2.0)

CALL ~\(,NH"Y (U v , t~)

Arguments: U,\',tv one, l""1 ,\I' t hre v ~ ar gurt.-n r s -
scalp [actors. If only one is ~iven il is
tJken as the X-scale factor; if two, as Lhe
\ ~nrl Y scale fnctors, respecti,ely.

Description: The n rv umen t s "l,eci;'\ the s c a l c factors, o r
the' \, ': and Z d i r e c.t i ons , Y', s p--r c i vo l.
Ne z a r i v o s c a L, I ac t o r s may I u s o d to reverse
Lh rus tomary right-handed, r i.n t a t ion of the
axc.s . (e.!:,. in thc p r od uc t ivn of s t e r co pairs.)

No t.e ch.rt ';\".a1 inj, is r e La t i.v e to the origin
or "rar coo r d i.nates curren . ,,,Ikn HAGNlfY is
caLled . Thus a f ter

l:ALL m·-X(-')OG. ,-SOO.)
CA.LL tIAGNlfY(2.0,2.0)

CALL POINT(600,600)

produces a poinl whose picture coordinates
are (200,200) whereas if the order is reversed,
it produces a point at (700,700).

Language:

Length: 15

2.l3a/MAGNIFY/l 29.4.69

Issue 1, Feb. 1969

Name: MODTRANS

Purpose: To modify the current transformation by
superimposing a user-defined transformation.

Example of use: CALL MODTRANS(ARRAY)

Argument: ARRAY - the name of a real (4x4) array
(ASA Fortran) containing the matrix of the
modifying transformation.

Description: The current transformation matrix is
mUltiplied by the modifying matrix. The
format of elements in the transformation
matrix is given in the specification of
SETTRANSFORM.

Language: SAL

Length: 37

2.13a/MODTRANS/l 29.4.69

Names:

Purpose:

Examples of use:

Arguments:

Description:

OFIX,OSHIFT

Issue 2, June 1970

OFIX, OSHIFT

To modify the current transformation by super
imposing the specified translation.

CALL OFIX(Sll.,Sll.)
CALL OSHIFT(X,Y,Z)

X,Y,Z one, two or three real arguments -
one argument is taken as X, two as X and Y,
respectively.

OSHIFT causes a translation through the vector
specified by (X,Y,Z) OFIX causes the translation
necessary to bring the point (0,0,0) in space
coordinates to the point (X,Y,Z) and thus may be
used to translate to an absolute position (e.g.,
as the last step in a sequence of translations.)

Note that the space coordinate system remains
fixed even when OSHIFT or OFIX are used.

OSHIFT may be used to achieve the effect of
rotation about an axis not through the origin of
space coordinates as follows:-

(i) Call OSHIFT to translate the required
centre to (0,0,0)

(ii) Call ROTATE to achieve the required
rotations.

(iii) Call OSHIFT again to translate back to
the original position.

2.13a/OSHIFT/l 6.6.70

iSSl1!' 1, Feb. [969

PRUJELI

Purpose: 10 l')oii,) r .« ",rr,,'nL t r .ms Io rmat ion by
S IIPL r iii, 1)() ~ j nb the s r")~,,:i I j (:d per S PI Ic l ive
in til, IVt.'l1 cco rd r i. a te d i r e ct i m,

Example nL U~,,: CALL PROJECn, .n.s , PJ'.J HI)

1011" "te~t' r ~n r a.i.
.l.e cc o r d i 'Ire d i rec ti n ,

to '3 speciti\,;s

<:1'(.;'] + i e s the 1 agnitude o t

De;,criptJnn:

•• l I ., (

r:,I[""Llj a <.,1111 r ea l numbe r , say
1'1 l a r g, • t ,(Hue, f KATIO, t he

the P l jlt'LLive emp l oy e d •

R.\T10 .I.

1 -1

~lon prL.L.;'.y the po in r a t infinity on the
axis FpLci_lLd iJ 1 h~ transformed into a
p -i nt d i s t ant I/Rn T [n 1 rom the or ig in on that
.ixis .mc this will o, come the va.i ish ing poin t,

o f lint ! at vl('Ye n.ir aLl e I to the axis before
~bt p r s p c ct.i ve I'. I:' Lied.

Ii PAfIL is ':Lbative, the v an i s h i rig point will
be 0n the negative a~is. This is useful for
pe i s p e c t i 'e i n the d ir e c t icn since w i th the
star. LtJ r ivnt at ioi. (I axes CALL PROJECT(3,O.OOl)
pr oducc s a van i sh i.n., l : in t in t r on t of the screen
instead Jf behilld it.

Language: Sc.L

Length: 30

2.1 a/Pill') LCT/l 29.4.69

[ROTATE I
Issue 1, Feb. 1969

Name: ROTATE

Purpose: To modify the current transformation by
superimposing the specified rotation.

Examples of use: CALL ROTATE(3,30.)

CALL ROTATE(IDIR,DEGREES)

Arguments: IDIR integer in range 1 - 3 specifies
the axis of rotation (1 for X, 2 for Y, 3 for Z).

DEGREES real specifies the amount of
rotation in degrees.

Description: The positive sense of rotation is that of a
right-handed corkscrew along the positive axis
of rotation. So positive rotation about the
third axis is antic10ckwise rotation on the
screen.

Language: SAL

Length: 43

2.13a/ROTATE/1 29.4.69

SELECTV[EW

Issue 1, Feh. 1969

Name: SELECTVIElv

Purpose: To modify the current transformation by
permuting the coordinate axes.

Example of use: CALL SELECTVIEW(NHORIZ,NVERT)

Arguments: NHORIZ integer in range 1 - 3 specifies
axis that is to be the horizontal aXiS.

NVERT specifies aXiS that is to be the
vertical aXiS.

Description: The effect of SELECTVIEW is to permute the
rows of the transformation matrix. The remaining
axis (i.e. the one not specified by NHORIZ,NVERT)
becomes the third axis (i.e. in PDP terms, it is
normal to the screen and 'out of' the screen).

It is prudent to make SELECTVIEW the last
transformation modifying routine used. Since it
changes the transformation matrix rather violently
the user is liable to lose track of things after
it has been called. Suppose we wish to obtain plan
and elevation views of a picture made up of a
single user-defined object 10. Having set up the
transformation to give us the orientation and View
we required, we could procede as follows: (A is
a real l6-element array.)

CALL SAVETRANSFORM(A)
C Preserve the current transformation.

CALL OBJECT(lO)

C Display x - z view (front elevation)
CALL SETTRANSFORM(A)
CALL SELECTVIEW(1,3)
CALL OBJECT(lO)

C Display y - z view (side elevation)
CALL SETTRANSFORM(A)
CALL SELECTVIEW(2,3)
CALL OBJECT (10)

Language: SAL

Length: 27

2.l3a/SELECTVIEW/l 29.4.69

SETTRANSFORM
SAVETRANSFORM

Issue 1, Feb. 1969

Names: SETTRANSFORM,SAVETRANSFORM

Purpose: SETTRANSFORM is used to set transform mode
and to initialise the transformation matrix.
SAVETRANSFORM is used to save the transformation
matrix by copying it into a user supplied array.

Examples of use: CALL SETTRANSFORM

CALL SETTRfu~SFORM(TRMATRIX)

CALL SAVETRANSFORM(A)

Argument: The argument is the name of a real 16-element
array (ASA FORTRAN). If SETTRANSFORM is called
without an argument, the transformation matrix
is set to the unit matrix, otherwise it is set
to the user supplied array. SAVETRANSFORM
copies the current matrix into the user supplied
array.

Description: SETTRANSFORM must be called before any other
transformation routines. (Failure to do so
will usually produce a loader error and will
certainly produce nonsensical results.)

If the transformation matrix is A(4,4), the
significance of the elements is:

A(1,1),A(2,2),A(3,3) represent magnification
factors.

A(4,4) represents the overall scaling factor
and should be 1.0.

A(1,4),A(2,4),A(3,4) represent origin change
terms.

A(4,1),A(4,2),A(4,3) represent perspective
terms.

Other off-diagonal elements represent shear terms.

A user wishing to set up his own transformation
must use this format. Note that a transformation
saved by

CALL SAVETRANSFORM(T)

may be restored by

CALL SETTRANSFORM(T)

2.13a/SETTRANSFORM/l

SAVETRANSFOIU1 does noL un so t tr an s f or m modr-,
'I'll is is a ch i e ve d hy d ,:ll1 to r o u t j 11('

UNSETTRANS.

Lant-,llilge: SAl

Length: llO

2.13a/SETTRANSFORM/2 29.4.69

[-~)~lEA~]
Ls s uc 1, Fcb . 19fi9

Name: SHEAR

Purpose: To modify the current transformation by
superimposing the specified shear.

Example of use: CALL SHEAR(IDIR,IDEP,A)

Arguments: IDIR integer in range 1 - 3
direction of shear (1 = X, etc.)

specifies

IDEP integer in range 1 - 3
dependent direction of shear.

specifies

A real shearing factor.

Description: This routine is included for the sake of
completeness.

Language: SAL

Length: 21

2.13a/SHEAR/1 29.4.69

ISSll(': 1, Feh. 1969

Names: UlSETTRANS, RESETTRANS

Purpose: To suspend or restore transform mode.

Examples of use: CALL UNSETTRANS

CALL RESETTRANS

Dt'scriplion: After a call to UNSETTRANS, points anu lines
are not transformed, i.e. CALL POINT(600,O)
puts a point at (600,0) in picture courdinates.
The current transformation matrix is unaffected.
Transform mode may be restored by a call to
RESETTRANS. This facility is useful tor
rlacinb titles, etc. where required.

Languag0.: SAL

Length: 6

2.l3a/UNSETTRANS/l 29.4.69

3. Tf'rAN - GENERATION(.JFGRAPIlS

3.1 Ln t r odu c t ior . ,

The first t.wo rc ut i.nes of this sc.c t.i on may b. tJ cd tu l'ru(JiI<":(
qr aph s . One routine generates the graph raster and Lhc oth or qeno r a t.e..
the graph. More than one qr aph may be plotted on ny (, r as tr.r. .nd rnorr
t.h.in one raster ruav be used at a time. FI..ur di f fr-r nt - ml.oLs ar (~ avai L
able for points and five jntensities of lines can be selected t.o di s t i nq: i i.h
graphs on the same raster. Scaling is done Ly an Ln t.errv i.c r. I t ir«- ar d (oJl"'

be linear or logarithmic on either axis. (,raphs are p lot t.cd frum a r r a.s of
their t rue values to suit th0 raster on whi cn th ey aj)pcar. In furmation
about. t.he raster is t:ransferred from the raster routim to t.l. lru};h l'] ot : Ilt'j
routine by a] 2-eh:!hlent array argument. Scaling numr ers "l·_t?f::aralongside t.he
ax i s when sufficient space is available. The grapL> _aI, be 1'1. t t.ed as
individual po.i r t.s or as straigLt Li.ne, joining COnSe -uti.v pC, -; Point 0

off the raster are not plctted, but Li ue s to such po i nr., arE:: tc...h n t_r ~h
edge of lJlt r as t.c r in the correct direct.ion.

The third routine will produce histograms. ThE::h i s t.oc , d ,1. de f i ncd t
the routi Le by all array con tal ning tLe he i.qh t.s of the co lumns .ir. the co r re. .>

sequence toqe+h r w i th Lnfo rmat i.on about; s caLes arid t.he size ah 1 l'o~ 1 t.i on r
tnt..' f r ame Columns »ut.s i.de th Trame a i, not pLotced b1. I the er.u columns
are tell 'O'nto thf' edges of the ;-rame. Provision is made .ror havlng scaline;
numb=r s a Loriqs i.de the axis or not and for omitting tr.:! lnte~d.ll "ertical
lines of the histogram. A control for br i qht.r.es s 1S provided (only
applicaLle for display output) to make it possible to h. e t','lO di s t i.nqu.ish
ab l.o hi stograms in t.he same f r ame: this is done by two calL to the routin.--.
with those parameters which affect the s ca l i nq unaltereti.

These routines use the p i ct.ur e par c z'outi.r es of Sel tion 2, SJ that
graphs may be .i.ncorpc r at.ed in some more complex picture 1'- de s i i co . GINO
must be lnitialised (Section 2.5) using the routine dPp~ pL~atp to tJ'e
di s; Lay cr pLot.t-er before ca Ll i nq the graph rout.i nes . '·ote th.t ar,oL,ject,
subpl.eture buffer must be provided so BUFFERSshoulJ alle' \ '~h 6
ar qument,s (when i.s i.nq PDPGPJ()or ELLIOTTGINO)or 3 argwnents \ ' r us ing
p1.m'TERGl.NOor Cu,-1PLOTGINO). Also the LIBRAi'Y command must ar r ,» -_ for 1--j

graph routine Li ,,'lr" tile to be scanned before the rna.i,n library t i I.e
(st-~ Section 7). The graphs are output just like any otf "r GINO picture
(se~ section 2.9).

3.2 Specif_catl>n of Routines.

This s ect i (']1 contains specifications of the foLl ow.i nq routi.,'es:

PLOTGRAPH

PLOTPAPER

PWTHIST

3/1

PLOTGRAPH

Issue 2, April 1969

Name: PLOTGRAPH

Purpose: To build display file commands to generate
a point or line graph from FORTRAN arrays
of X and Y coordinates.

Example of use: CALL PLOTGRAPH(N,X,Y,M,P,IG?)

Arguments: N Integer number of elements ~n each input
coordinate array.

X) N - element real arrays containing the
Y) x and y coordinates of the points in

correct sequence. Actual values should
be used, the routine scales them to suit
the specified raster.

M Integer code number to select type of
graph.

Straight lines plotted between
consecutive points or to raster
edge. Intensity of line
controlled by (7 - M).

-4 ~ M ~ -1 Gives graph of points only as one
of following symbols:

M -1 Cross, M -2 Triangle,

M -3 Square, M = -4 Diamond.

P 12-e1ement information real array previously
created by the subroutine 'PLOTPAPER'. This
defines the raster on which the graph will
appear, also whether linear or log.

IG Optional integer argument - call name
associated with the graph. This argument
should be omitted unless light pen techniques
are being used.

Description: Points outside the bounds of the raster are
not displayed but may be used to control the
direction of line segments which will be
displayed as far as the edge of the raster.

3.2/PLOTGRAPH/l

In the case of linenr scaling, coordinates
with very La rj;e values which might rau s r-

ov~rflow in the arithmetic unit are set to
a value which can be handled by the program.
The resulting graph will go to the edge of
the raster in a position indistinguishable
from the correct one.

For logarithmic graphs, negative or zero
coordinates are given values off the raster
in order to avoid a monitor. The resulting
graph will contain erroneous excursions to
the raster edge which will usually appear as
obvious errors. These features relieve the
user of the obligation to remove such
invalid points from his input arrays.

Languclge: FORTRAN

Length: 1150

3.2/PLOTGRAPH/2 10.4.69

[PLOTPAPER]

Issue 3, June 1970

Name: PLO'rPAPER

Purpose: To generate a suitably scaled raster.

Example of use: CALL PLOTPAPER(WI,HI,XO,YO,LX,XMIN,XMAX,LY,
YMIN,YMAX,P,IP?)

Arguments: LX and LY are integers, P is a l2-element REAL array
and must be so dimensioned in the calling programj the rest
are real variables. (Note that real arguments require
decimal points when called numerically.)

WI, HI Width and height of the raster in screen or plotter
uni ts.

XO, YO Coordinates of the bottom-left hand corner of the
raster in display or plotter units. This is used to
position the raster.

The following size checks are made by PLOTPAPER. If
output is for the PDP or Elliott displays then the values
must satisfy

o < WI < 1023j 0 ~ HI ~ 1023

XO > OJ YO > OJ 0 < XO + WI < 1023j 0 < YO + HI < 1023- - -

For plotter output the only check is XO ~ OJ YO > 0,
so as to permit long graphs. (In this case it is the user's
responsibility to avoid edge violations.)

If scaling numbers are required alongside the axes,
a margin of 56 units at the bottom and left side and 7
units at the top and right side must be allowed. This changes
the constraints to:

XO > 56 YO > 56 XO+WI < 1016 YO+HI < 1016

This means that the largest raster obtainable on the
screen with scaling numbers is 960 x 960.

LX Integer code number for type of scaling on horizontal
axis.

LX 1 gives linear scaling.

LX 0 gives logarithmic scaling (up to 10 decades).

3.2/PLOTPAPER/l 4.6.70

XMIN Vn luc to be' used by scaling alrori thm in
deciding the left-hand extreme value to
be shuwn on the raster. On return from
the sul,routineXMIN is 'letto this
extreme value as computed by the scaling
algorithm; in some cases this will involve
no change.

XMAX Similar to XMIN but for right-hand extreme.
Note that XMAX may be less than XMIN if
graph is to be plotted this way round.

LY) Similar to LX, XMIN and X}ua but for
YMIN) vertical axis.
Yl-ua)

p Output drray (12-element) contains
information about the raster for transfer
to PLOTGRAPH. If a raster too large for
the screen is requested, pel) is set to
zero as an error indication.

IP Optional integer argument - call name
associated with the raster. This argument
should be omitted unless light pen techniques
are being used.

Des cr i.pt.Lon ; The linear scaling algorithm is desi~ned to
choose scales that will place the bi" n "1IN
and MAX as near to the edges of the rdster as
possibl~, i.e. to make the graph fill the paper.
In some cases this results in scales somewhat
less convenient than a human plotter might have
chosen; in particular, the algorithm has no
inbuilt prejudices about the number 10 and has
only a slight bias towards multiples of 5.
However, if the user loads MIN and r-ua wi th
simple whole numbers the scaling algorithm will
usually pass them through unscathed. The range
o to 11 is the smallest that is not accepted; it
is changed to 0 to 12.

The logarithmic scaling algorithm only provides
complete decadts in sufficient quantity (up to
10) to accommodate the given values of ~lINand HAX.
Exact mUltiples of 10 will be accepted by the
algorithm if the user requires to force the scales.
For one or two decades, lines appear at position3
representing nIl the whole numbers 1 to 9; for 3
or 4 decades lines appear for all even numbers;
for 5 or 6 decades lines appear at the 4 and 8
positions only; for 7 to 10 decades the decade
lines only appear.

3.2/PLOTPAPER/2

Note, however, that the scaling algorithm
cannot provide for the logarithms of negative
or zero values and will refuse to construct
the raster file.

The raster display is constructed such that
the grid lines appear dotted and fainter than
the subsequently plotted graph, (i.e. they are
built in display scale 2). In linear graphs,
a line corresponding to a zero value (if present)
appears brighter than the other lines. Similarly
in logarithmic rasters, the lines bounding each
decade are brighter.

When sufficient space has been allowed, scaling
numbers appear along each axis. For linear
graphs these numbers are one or two digit signed
integers and represent those digits of the actual
values that are varying. For instance, an actual
range of 9950 to 10150 is shown as:

95 o 5 10 15

The true extreme value nearest the bottom left
corner is additionally displayed in exponential
form to 3 significant figures, e.g., .995E 4
in example above. For logarithmic scaling, only
the exponents of the integral powers of ten are
displayed along the axes; the extreme value again
appears in exponential form.

Language: FORTRAN

Length: 1950

3.2/PLOTPAPER/3 10.4.69

Name: PLOTHIST

IPLOTHISTI

Issue 1, June 1970

Purpose: To generate a histogram from a FORTRAN array of
column heights.

Example of use: CALL PLOTHIST(WI,HI,XO,YO,XMIN,XMAX,YMIN,YMAX,L,
Xl,XN,Y,N,MSCALE,MLINES,INTENS,IH?)

The arguments WI,HI,XO,YO,XMIN,XMAX,YMIN,YMAX are
concerned with the scaling and the size and position
of the frame. They have the same meanings as in the
routine PLOTPAPER.

Arguments:

L

Xl)
XN)

Y

N

MSCALE

MLINES

Integer code number for type of scaling on
vertical axis, i.e. heights of columns.
L 1 gives linear scaling
L = 0 gives logarithmic scaling

Are the x-coordinates of the centres of the
first and last columns. Actual values are used,
the routine scales them to suit the frame.

An N-element array containing the heights of
the columns in correct sequence. Actual values
are used, the routine scales them to suit the
frame.

Integer number of columns in input array. Any
columns not within the frame will not be plotted.

Integer control number

MSCALE = 1 Scales, end values and ticks provided
along edges of frame if space is

sufficient.

MSCALE o Scales end values and ticks are
omitted; frame only plotted.

MSCALE -1 Scales and ticks provided but no end
values.

Integer control number.

MLINES = 1 Internal vertical lines of histogram
inserted.

MLINES o Internal lines omitted, outer boundary
only plotted.

3.2/PLOTHIST/l

Description:

Language:

MINTENS Integer control number for brightness.
Recommended value for a typical single histo
gram, 5. When plotting two histograms in same
frame, use 6 and 4.

IH Optional integer argument call name associated
with the histogram. This argument should be
omitted unless light pen techniques are being used.

Scaling is done by the same routine as is used by
PLOTPAPER which should be consulted for details.

Columns which would go above or below the frame are
drawn across the top or bottom of the frame with no
other indication of error.

FORTRAN

3.2/PLOTHIST/2

3.3 SAMPLE PROORAM.

C EXAMPLEOF WE OF GRAPH ROt1l'INES.
C LEAST SQUARES FIT ro STRAIGIfl' UNE LAW,Y-A*X+B.
C DATA IS ro BE RFAD OFF STREAMO. CALCUNE IS EXTERNALROUTINE.

C(V.MJN SPACE(20) ,X(100), y(100) ,XX(4), yy(4) ,pC 12)
C INITIAUSE GINO. CALCOM?PLOl'1'ER 0UTPl1l' IS ~UIRED.

CAll. PI..OrrERGINO
C SET UP OBJECT BUFFER. NO OVERFLOW IS ANTICIPATED SO WE
C -VE THIRD ARGUMENT.

CALL B~(SPACE,20,-1)
C N.B. IF PDPGINO OR EU.ICFrolNO ARE USED, BUP'FERS MOOTHAVE
C 6 ARGS. AS A DISPLAY FILE BUFFER IS NEEDEDAS WELL.
e READ DATA, THE X AND Y VALUES OF POINTS.

CALL SELECTIN (0)
N••READREAL(O)
DO 1 I-l,N
X (I)-READREAL(O)

1 Y(I)-READREAL(O)
C CALL SUBROlJI'INE 'lU COMPl11'EMAXAND MIN VALUES AND THE
C CONSTS A AND B.

CALL CALCLINE(N,X,y,A,B,XMIN,~,YMIM,~)
C PLCJr RASTER, UNEAR/UNEAR, MAXIMlMSIZE.

CALL ~PER(960.,960.,56.,56.,I,XMIN,XMAX,1,YMIM,~,P)
C TEST FOR ERRJR.

IF ("p(1» 5,5,2
C PLCJr POINTS AS GIVEN AS SMALLSQUARES.
2 CALL PLOTGRAPH(N,X,Y,-3,p)
C COl..fi'UTE4 X-VALUES STRADLING EDGES OF RASTER FOR
C STRAIGHT UNE.

Z"(~~-XMlN}/50.
xx(l)-XMIN-Z
XX(2):a~N+Z
XX(3)=){MAX-Z
XX(4):aDt\X+Z

C COMPtJl'E CORRESPONDINGY-VALUES.
DO 3 1-1,4

3 YY(I)~*XX(I)+B
C PIm' STRAIGHT LINE.
C THIS WILL BE CUPPED 'lU RASTER EDGES BY THE ROUTIRE.

CALL PI.O'roRAPH(4,XX, yy,O,p)
C END THIS PLOT. IT WILL GO 'lU THE PLOTTER AUlUMATICALLY.
5 CALL PLOTEND
C N.B. PLOTENDWOULDBE REPLACED BY DF.PUJm.• DFOUTR, OR SENDSAT
C WHENWING PDPGINO OR ELLICJ1'roIlID.

END

4. TITAN - PLOTTING DISPLAY FILES

4.1 Introduction

Pictures in the form of PDP display files may be drawn on the
CALCOMP plotter attached to TITAN. The display files may be produced
by GINO, or punched from the PDP (see the description of DFTP in
Section 5.2), or produced in any other way. Corresponding routines
for Elliott display files will be produced shortly.

The basic routine used for plotting a display file is DFPLOT
(DFPLOTNS can also be used for the same purpose, and has a simplified
argument format). At the time of plotting the picture contained in the
display file may be clipped to a rectangular region, scaled and than
positioned on the plotter paper. The user can also control the plotter
output stream so as to plot a number of display files as one composite
picture, or separately, or in any other grouping. _

Routine PLOTLIMITS is used to set up limits on X and Y in display
coordinates. Parts of the display file outside these limits are omitted;
clipping being exact. The picture inside these clipping limits may be
scaled (routine PLOTSCALES is used to specify X and Y scaling factors) and
positioned on the plotter paper (routine PLOTSHIFT being used to specify
transverse and longitudinal shifts). The scaled and positioned picture is
clipped (if necessary) so as to fit the plotter paper. Routine PLOTSTREAM
may be used to control the plotter stream.

All these routines are optional and the parameters they set have
default settings such that if none of them are called, DFPLOT "copies"
the picture from the screen to the plotter (there is a slight change in
size owing to the differing basic increments on the two devices) •

Display files produced by the other GINO routines may be plotted
directly, without an intermediate output stage to paper tape or file, by
using routines PLOTPDP or PLOTELL (see Section 2.13).

4.2 specifications of the Plotter Routines

This section contains specifications of the following routines:

DFPLOT
DFPLOTNS
PLOTLIMITS
PLOTSCALES
PLOTSHIFT
PLOTSTREAM

Routines DFREAD, PLOTPDP and PLOTELL of Section 2.13 are also
relevant to this section.

4/1

Name: DFPLOT

I DFPLOT I
Issue 2, June 1969

Purpose: To send a display file to the plotter.

CALL DFPLOT(IENTRY,ISTART,ITLOC,ISCALE,IFRAME)Examples of use:

CALL DFPLOT(IENTRY,ISTART,ITLOC,ISCALE)

CALL DFPLOT(O,O,DFARRAY,l,l)

Arguments: IENTRY

ISTART

ITLOC

ISCALE

IFRAME

the PDP address at which display
execution starts.

the PDP address which is the lower
limit of the whole display file;
in most cases it will be the same
as IENTRY.

the address in TITAN of the array
containing the display file (the
first halfword of this array corres
ponds to ISTART in the PDP.)

a PDP screen to plotter reduction
factor, which may be 1,2,4 or 8.
This is applied before any scaling
and clipping under the conditions
set up by PLOTSCALE,PLOTLIMITS (q.v.)

optional integer argument in range 0
to 7 giving control information as
follows:

Let IFRAME = Nl + N2 + N3

Nl = 0 or 1. If Nl = 1, then draw
a frame around the picture; otherwise
omit. This is the "frame" option.
The frame corresponds to the current
values of XLIMl, XLIM2, YLIMl, YLIM2
(see PLOTLIMITS). N2 = 0 or 2. If
N2 = 2 then the picture is superimposed
on the previous picture; otherwise the
plotter stream is broken so that the
plotter advances to fresh paper. This
is the "superimpose" option. N3 = 0 or
4. If N3 = 4 the Y axis is drawn
parallel to the axis of the plotter
drum (i.e. "across" the paper); otherwise
the X axis is drawn across the paper.
This is the "exchange" option.

4.2/DFPLOT/l

Description: DFPLOT will draw on the plotter any display
file stored in consecutive halfwords with each
right justified. The display file is interpreted
as it would be by the PDP hardware - illegal
conditions which would stop the 340 display cause
error messages to be printed. By previous calls
to PLOTLIMITS, PLOTSCALES, PLOTSHIFT and
PLOTSTREAM the user may obtain arbitrary scaling
and clipping of the picture (subject to further
clipping if required to ensure the picture will
fit the plotter), and may specify an output
stream. If there has been no call to PLOTSTREAM,
DFPLOT uses the lowest numbered stream existing
to plotter. Should there be no such stream,
stream 7 will be terminated if necessary and
recreated to the plotter (using CREATEPLOTTER),
with an output limit of 20 blocks.

A display file on paper tape or disc file in
one of the standard GINO formats (detailed in
the specifications of DFPUNB, DFPUNC in Section
2.13) may be read into core in TITAN by use of
routine DFREAD (see Section 2.13).

DFPLOT insists that the display file be terminated
either by a stop code (in parameter mode) or by
a display Jump to the entry address.

DFPLOT is used by routine PLOTOUT (see Section 2.13)
which may be used to plot a display file produced
by GINO directly from the display file buffer.

Message: For each display file successfully sent to the
plotter the message

DISPLAY FILE n PDP WORDS AT m PLOTTED.

- where m ~s the value of ISTART - is sent to
stream O.

Errors: The following error messages may occur on stream O.

DFPLOT ERROR - DISPLAY ENTRY BEFORE DISPLAY FILE
START.

DFPLOT ERROR - OP CODE ZERO IN SUBROUTINE MODE.

DFPLOT ERROR - SLAVE MODE.

Language: SAL

4.2/DFPLOT/2 20.6.69

IDFPLOTNSI
Issue 1, June 1969

Name: DFl'LO'lNS

Purpose: To s~nJ a display file to the plotter.

Examples of use: CALL DFPLOTNS(IENTRY,ISTART,ITLOC,lFRAME)

CALL DFt'LOTNS(I ENTRY ,ISTART,ITLOC)

Arguments: As for DFPLOT except that ISCALE is omitted.
(ISCALE is included in DFPLOT for compatibility
w i th i 5::i Lie 1.)

Description: As ,-orDFPLOT

Language: SAL

4.2/DFPLOTNS/l 20.6.69

PLOTLIMITS

Issue 1, June 1969

Name: PLOTLIMITS

Purpose: To set up clipping limits for plotting with
DFPLOT.

Examples of use: CALL PLOTLIMITS(IXLIM1,IXLIM2,IYLIM1,IYLIM2)

CALL PLOTLIMITS(200,300,0,700)

Arguments: The arguments are 4 integers as follows:

IXLIM1,IXLIM2 the limits (in display units)
to be imposed on X when
plotting.

IYLIM1,IYLIM2 similar limits for Y.

Description: The lower of each pair of values is chosen to
be the lower limit so that, for instance, it
is not necessary that IXLIMl < IXLIM2.

Additional clipping may occur if the picture
clipped as specified by PLOTLIMITS and scaled
as specified by PLOTSCALES will not fit on the
plotter. The initial limit settings are:

IXLIMl = 0, IXLIM2 = 1023, IYLIMl = 0, IYLIM2 1023

Thus until a call is made to PLOTLIMITS the
whole of the visible display screen will be
plotted (subject to plotter overflow).

Language: SAL

4.2/PLOTLIMITS/l 20.6.69

PLOTSCALES

Issue 1, June 1969

Name: PLOTSCALES

Purpose: To set up arbitrary scaling in X and Y for
plotting with DFPLOT.

Examples of use: CALL PLOTSCALE(XSCALE,YSCALE)

CALL PLOTSCALE(l.,6.5)

Arguments: 2 rea1s as follows:

XSCALE conversion factor from X on the
display (in display units) to X
on the plotter (in plotter units).

YSCALE similarly for Y.

Description: Scaling by arbitrary factors may be applied
independently in X and in Y. With incremental
pictures, only the end points of a line are
scaled (the line increments then being
recomputed). Lines that are supposed to meet
will, therefore, meet in the plotted picture.

The initial settings are XSCALE • YSCALE • 1.0

Language: SAL

4.2/PLOTSCALES/1 20.6.69

6. PDP/ELLIOTT - PROGRAMS FOR USING 'rIlEDISPLAY AND TilE LINK

6.1 Introduction

Several programs are available for both the PDP and Elliott
computers. The first group (DFTP and DFTL) may be used without the
link to TITAN/ATLAS. The second group (DFM, the Interactive Handler
and Terminal) use the PDP/ELLIOTT as a satellite. Full specifications
of DFM, the Interactive Handler and Terminal are published separately
as they are to a greater or lesser extent dependent on which machine
is used as satellite. The purpose of Section 6.3 is to provide a summary
of the facilities available and an indication of how to use a basic sub
set of them.

The Display File Tape Producer (DFTP) extracts a display file from
the PDP and punches it on paper tape in relocatable form. DFTP which is
itself relocatable, may be loaded anywhere in core and needs only the
first address of the user's display file. An Elliott version will be
produced when required.

The Display File Tape Loader (DFTL) loads into the PDP relocatable
display file tapes produced by DFTP or GINO, at any desired location.
DFTL can also start the display from any address. A version of DFTL for
the Elliott is available.

The Display File Manager (DFM) is a program used to manage the
display, particularly when the PDP/Elliott is being used as a satellite.
It can be used in a standard preassembled form (as described in section
6.3) or as a module that can be incorporated in user's satellite programs.
Versions of DFM are available for both computers.

The Interactive Handler and Terminal are two "prepackaged" programs
designed to make interactive graphics facilities easily available, without
any neccessity to write code for the satellite computer. The Handler
provides interaction using the light pen, the button keyboard, the
satellite teletype and the joystick (PDP only). Terminal provides text
editing facilities which can be used for the preparation, modification
and monitoring of program data. Versions of the Handler are available
for both computers. A version of Terminal for the PDP is available and
an Elliott version is being prepared.

6.2 Specification of DFTL and DFTP

6/1

IS S IJ t, 2, /\p r i J I9f/1

Name: Display File Tape Loader

Length: 375 octal

Destroys: C(AC), C(L), C(registers 0 and 1)

Relocatable display tapes produced from T[lA~
(by GINO routines) or from the PDP (by OFTP;
may be read into the PDP using DFTL. The
display file so produced can be placed [ro~
any address in the machine (above DFTL); chis
loader also allows the display to be started
from any address. Also, any number of display
files can be loaded so as to be displayed
together.

Hethod of use: DFTL is loaded by setting 22 on the address
~witches and pressing 'readin'. At this ti;c
the C(AC) is the first address above DFTL.

A display tape is loaded as follows:

1. Set address switches to 22.

2. Set accumulator switches to the
first address for the display rile.

3. Press 'start'.

These steps may be repeated for other display
tapes. At the end of each successful loadin~
the C(AC) is the last address of the display
file, or zero otherwise.

To start the display runninb:

1. Set address switches to 23.

2. Set accumulator switches to the address
from which the display is to start.

3. Press 'start'.

Any interrupt causes the display to be restart ed
from the address set on the accumulator switches
when the display was last started by the 'start'
key.

6.2/DFTL/l 2.4.69

To load display files to be displayed together:

1. Load the first tape in the usual manner.

2. For succeSSive tapes do (a) or (b):

(a) If the display has not been started
since the last tape was loaded, place
the next tape in the reader and press
,continue' •

(b) If the display has been started, place
the next tape in the reader, set the
address switches to 24 and press 'start'.
(Method (b) may be used instead of (a».

Further details: Display tapes are produced in one of three codes -
Titan flexowriter, ASCII and a 'reversed binary' - and DFTL
automatically recognises and decodes these.

In flexowriter and ASCII codes, the data on the display tape is a
succession of numbers, each comprising 8 octal digits. If the
first octal digit is 2 then the number to be interpreted will be
relocated against the first address of the display file. When the
first octal digit is found to be 4, the display file built is taken
to be complete. The second octal digit is ignored. The third to
eigth octal digits are interpreted as an l8-bit number which is
placed in the store (possibly after relocation).

Successive sets of 8 octal digits are similarly treated. The
loader ignores all the codes for 0 to 7 and for the asterisk, which
halts reading after discarding the next three rows of tape holes.

In reversed binary code each word is represented by three rows of
tape holes, with the LEAST significant six bits read FIRST.
Channel 7 of the third row is punched whenever relocation is needed
and channel 8 is punched at the start and end of the tape.

Display files can legally end 'PAR PA SI' or 'DJP PA first address'.
DFTL alters the latter type of ending to the former so that display
files of either type can be added and displayed together.

Elliott 905 Version

This loads reversed binary paper tapes (from DFPUNB) only. DFTL is
loaded using the "initial instructions".

1/ To load and run a display file. With DFTL in core start with
4002008 set on the handkeys. Place the display file paper tape in the
reader, set the address to which it is to be loaded (mod 177778) on the
handkeys and set handkey switch 18 to zero. The display file is read in
(to module 1) and displayed. The next free location is display in the
accumulator.

2/ To start a display file already in core (i.e. previously loaded
by DFTL) start at 4002018' set the start address on the handkeys and set
switch 18 to zero.

6.2/DFTL/2 2.4.69

~

Issue 2, April 1969

Name: Display File Tape Producer

Length: At least 1210 octal

Destroys: C(AC), C(MQ), C(L)

Method of use: For each display subroutine or 'DJP' instruction
in the user's display file DFTP uses the next three registers above
its highest address so far.

DFTP loads itself anywhere in store by the following procedure:

1. set both the address and accumulator switches
to the first address available for DFTP.

2. press 'read-in'

3. when reading halts, press 'start' to complete
the loading.

, To produce a display tape:

1. set the accumulator switches to the first address
of the display file.

2. set AC¢ up to produce a display file ending 'DJP PA
first address', or down to end 'PAR PA SI'.

3. set ACI up if this is the first of a number of display
files to be joined together (and subsequently displayed
together). If ACl is up the state of AC¢ is not
considered.

4. set AC2 up for ASCII code, or down for reversed binary
code for the display tape.

5. Press 'start'. If ACl is down, DFTP will complete the
display tape and the following steps do not apply. When
ACI is up, DFTP halts when all the first display file has'
been punched. The next word to be punched is expected in
'PA' mode. When display files are joined this is supplied
by the first word of the next display file. To add the
next display file if it is alr~ady in store:

1. leave ACl up

2. set accumulator switches to the first address of the
next display file.

3. press 'continue'.

6.2/DFTP/l 2.4.69

To add the next display file if it is not in storr:

1. note the address on the program counter
when DFTI'halts after punching the last
display file,

2. set up the next display file in the machine,

3. set accumulator switches to the display file
starting address,

4. set ACI up,

5. set the address switches to the address noted
in (1),

6. press 'start'

After the last display file has been punched, complete the
display tape:

1. set ACI down,

2. set AC¢ up for a 'self-running' or down for an
'interrupt running' display, as mentioned before,

3. press 'continue'.

At the end of each intermediate stage the AC and MQ lights are
alternately on and off (i.e. bits 0,2,4 etc. on, and 1, 3,5 etc. off).
At the complct i ou of the display tape the AC and MQ lights are all on and
the bell on the teletype is sounded. If the program halts under different
conditions then DFTP has been unable to follow the display file.

Notes: It is intended that DFTP will operate with any likely (or not so
likely) method of programming the display. DF~P follows the user's display
file doinb any 'DDS' instructions met. For this reason the display should
not be running when using DFTP.

A display file is considered terminated by a 'DJP PA < first address > '
or by an instruction stopping the display.

Only the d~splay instructions used will be punched. Subroutines used
are only punched once. However, if display files using common subroutines
are joined by DFTP, subroutines used in each display file will be punched
once for each display file. If this presents a problem the user might
deposit 'PAR SB' (16¢000 in octal) for the 'PAR PA SIt and follow this by
'DJP PA < next first address > ' (4XXXXX in octal where XXXXX is the first
address of the next Jisplay file). DFTP will then produce a display tape
holding the subroutines once only.

At the end of the display tape the code
punched if the display tape is in ASCII code.
are given under the Display File Tape Loader.

for four asterisks is
Details of the tape formats

'"
6.2/DFTP/2 2.4.69

6.3 DFM, The Interactive Handler and Terminal

Description of DFM

The Display File Manager (DFM) offers a convenient way of display
ing pictures produced by the GINO routines. Pictures are handled as
display file segments, each of which can be switched on or off, or
replaced or preserved on backing store. Segments are identified by their
segment number. Any number of display file segments can be used (up to
a limit preset by the user) and the segments may be generated in the
satellite or in the central computer, using GINO. In the later case,
core allocation in the satellite is performed automatically by DFM within
a region of core set aside by the user for display files. DFM also deals
with all display interrupts and with named picture parts.

Those wishing to use the full range of facilities of DFM should consult
the detailed specifications of the PDP version (14) and the Elliott version
(15). Use of the standard preas sembled versions, which provide a subset
of facilities suitable for picture viewing but not for fully interactive
work, is described below.

Use of DFM for Picture Viewing

(i) Setting up DFM in the PDP.

(a) Log in in normal mode on the console allocated to the PDP

(b) Load the LINKBOOT paper tape by setting the PDP address
switches to 176008 and pressing READIN. Engage the link.

(c) Transmit and start the DFM program by typing on the multi
access console

PDP(CAD/DFM) W AO D022 (022 is '0' for 'Octal')

(ii) Setting up DFM in the Elliott. This procedure may be modified in
the future to allow normal mode access.

(a) Log in in expensive mode.

(b) Set some octal number (N) on the handkeys of the Elliott
to be used and load the LINKBOOT paper tape using the
initial instructions.

(c) Create the link by typing on the multiaccess computer

SIGNAL LINK SATELLITE <N> (N is the octal number set
on the handkeys)

(d) Transmit and start the DFM program by typing on the multi
access console

PDP(CAD/DFM/905) W AO 0022 (022 is '0' for 'Octal')

(iii) Displaying pictures (both computers)

Display file segments produced by DFOUTR may be transmitted using
PDP commands with address < 256. The address is taken as the segment
number. Address zero is taken as meaning "allocate the lowest unused

6.3/DFM/l

segment number to this segment." Several segments may be sent in one
PDP command. In this case all but the first are treated as having zero
address. In expensive mode segments may also be transmitted using
SENDSAT.

Thus if file (USER/DF) contains a display file segment

PDP(USER/DF) W A6

transmits it as segment 6, overwriting any existing segment 6.

PDP(USER/DF) W AO

would transmit it as a new segment, the number being allocated by DFM.

(iv) Manipulating display file segments (both computers).

The standard version allows up to 16 segments. Numbers 1 - 9 can
be switched (on if off and off if on) by typing the corresponding digit
on the satellite teletype. Segments can also be switched using the data
word (+N switches segment Non, -N switches it off, N=256 switches all
segments). This is most likely to be useful in expensive mode (using
WRITEPDP to transmit zero words of data with the required data word) but
it can also be used with the PDP command, e.g.

PDP W NO D0777771

may be used to switch off segment 7 (077i771 = -7 in octal).

(v) Reading display file segments back to TITAN/ATLAS.

Any segment originally sent to the satellite over the link can be
read back, e.g. to read segment 7 to file (USER/SEG7)

PDP(OI USER/SEG7) R A7 PI

is used. One circumstance in which this facility is useful is when a
plotter copy of the display file segment is required (see Section 4).

DFM Error Conditions and Restart Procedures

The following error conditions may arise when using either the
standard versions of DFM described above or any program (e.g. the Inter
active Handler or Terminal) that uses DFM. The error is indicated by a
message on the screen. Error messages are:-

(i) LINK FAULT. A partial restart is possible on the PDP. A complete
restart may be necessary on the Elliott.

(ii) INSUFFICIENT SPACE FOR DF. The zone set aside for display file
segments from the link is full.

(iii) DF RECEIVED IS IN WRONG FORMAT. Either it is not in display file
segment format at all or the format is wrong - usually caused by omitting
a call to BUFFERS.

6.3/DFM/2

(iv) SEGMENT NUMBER TOO LARGE. The attempted segment is ignored.

(v) PDP COMMAND WITH WRONG P. In an attempt to read a display
file segment the argument given with P was not 1.

(vi) SEGMENT CANNOT BE READ. An attempt has been made to read a
display file segment up the link when the segment is not in the correct
format (i.e. it did not originate from the link.)

DFM may also halt if an attempt is made to switch a segment whose
number is too large.

In all cases the satellite program must be restarted. Two kinds
of restart are available - a complete restart and a partial restart in
which existing segments are preserved. In the standard versions for
picture viewing described above 228 in the complete restart address and
238 in the partial restart address. In some circumstances a partial
restart may not be possible, so that a complete restart cannot be avoided.

Description of the Interactive Handler

The Interactive Handler is designed to make the facilities of the
PDP/Elliott, as an interactive graphics terminal, easily available from
FORTRAN programs running in the central computer. The user of the Handler
need write no satellite code at all.

Facilities provided include graphical input using the light pen
(tracking cross, sketching, character input), means of selecting named
picture parts and reporting the names to the central computer (as already
described on page 2/32), the provision of light buttons and the handling
of the button keyboard and the joystick (PDP only) as a means of inter
acting with the program. Versions are provided for both computers and a
full user"s guide is available (16).

Description of TERMINAL (PDP only)

The version of TERMINAL provided for the PDP is designed to enable
the PDP to be used as a graphical on-line terminal for TITAN/ATLAS. It
can be used without writing any PDP code.

It consists of a standard DFM plus a scope text editor program.
The facilities of DFM have already been described. The text editor allows
the display of text and provides deletion and insertion facilities using
the-lightpen or the teletype. When using the editor,part of the text
buffer is displayed on the screen. The part of the text buffer chosen
for display can be varied at will. More sophisticated editing facilities
are :alsoprovided. The full specification of TERMINAL is to be found
in Ref. (17).

TERMINAL may be used in normal mode or in expensive mode to prepare,
modify and monitor program data. For a discussion of this method of
interaction see Ref. (18).

6.3/DFM/3

7. HOW TO USE THE GINO ROUTINES

The routines are kept in precompiled form on disc files as
detailed below. Programs will usually be run under the COMMAND program
although they can also be run under MLS. The GINO routines are obtained
by scanning the appropriate library files using the' .LIBRARY , command.

The main GINO lib~ary file on both TITAN and ATLAS is called
CAD/GINOSAL/*. This contains all routines except the graph routines
of Section 3, which are held in a dise called CAD/GINO/GRAPH and the
routines for plotting display files, described in Section 4, which are
held in file CAD/GINO/PLOTTER.

For the benefit of those new to the COMMAND program and the on-line
system we give a few basic details of how to run a program which uses
GINO. Those needing more information should consult "The TITAN ASA
FORTRAN System Manual"(l) and "The Cambridge Multiple-Access System -
User's Reference Manual" (11) and "Command Specifications" (10).

A typical FORTRAN job is run in three stages: compilation, loading
of library routines and execution. Suppose the file (USER/GINO/PROG)
contains an ASA program which uses GINO routines from Section 2 only.
Then the following commands are required:

.ASA USER/GINO/PROG

.LIBRARY CAD/GINOSAL/*

.ENTER

This may fail for large programs, when the standard space allocations
are not enough (see p.ll/l to 11/6 of Volume I of Ref. (1) for details) .
The allocations may be increased by using various options with the '.ENTER'
command. One common source of trouble is insufficient space for forward
references. This can be avoided by adding 'FR 1024' after the '.ENTER'
command. The program may also require more than the standard allocation
of core space. More core may be requested by, say, 'STORE 12K' with the
'.ENTER' command. Thus for a large program we might need

.ENTER FRI024 STORE 16K

An environment declaration may also be used with the '.ENTER' command
to set up input or output streams for the program. This must be enclosed
in round brackets and must follow the '.ENTER', preceding any of the options.
It is made up of directives such as '0 n <file title>' used to set up
output stream n to a file.

If the graph routines are used the appropriate library file must
be scanned before the main library file, i.e. the command must be

.LIBRARY CAD/GINO/GRAPH CAD/GINOSAL/*

An incorrect '.LIBRARY' command causes a loader printout with unset
parameters (e.g., LINE --- unset).

7/1

The most appropriate way to run a job on-line is to use the
COMMAND command, which takes a list of commands and obeys them. The
commands may be taken from a file or from the on-line input stream. This
may be set up in the environment declaration of the COMMAND command.
It is introduced by the letter 'H' followed by a single terminating
character. All that follows until the terminating character is found on
a line of its own is taken as the on-line input stream, i.e. the list of
commands to be obeyed. Thus to compile and run a GINO program held on
file USER/GINO/PROG and sending display file output via stream 6 to file
USER/GINO/DF, we type

COMMAND(H*
.ASA USER/GINO/PROG
.LIBRARY CAD/GINOSAL/*
.ENTER (06 USER/GINO/DF)

*

The final ')' closes the environment of the COMMAND command and
must be followed by a carriage return. The command must, of course,
only be typed when in command status (i.e. when the system is 'READY').

The system responds immediately by echoing the first command
(i.e. '.ASA USER/GINO/PROG') and then, when it has finished the job it
echoes the remaining commands and types any messages produced by the
program. In this instance this will be

DFOUTR n DISPLAY WORDS

followed by

READY

The user is then in a position to display his picture on the PDP
or Elliott, following the instructions of Section 6.3.

If PLOTTERGINO is being used there is no need to set up output
stream 6 with the .ENTER command. The message will be

PLOTTERGINO END OF PLOT

and the plotted output will duly appear in the output area.

7/2

8. REFERENCES

(1) Titan ASA FORTRAN System Manual (2 Volumes). UML, Cambridge.
April 1969.

Section IV of Volume 1 contains
the current specification of MLS.

(2) The ATLAS-PDP Link (3rd Edition) by C.A. Lang and P. Cross.
UML, Cambridge. June 1969.

(3) GINO Graphical Input/Output (1st Edition) by C.A. Lang, P.J. Payne,
J.C. Gray, A.P. Armit and A.R. Forrest.

University of Cambridge CAD Group.
April 1968.

(4) SAL User's Manual (1st Edition) by H. Brown.
UML, Cambridge. June 1968.

For a description of SAL see
SAL: Systems Assembly Language by C.A. Lang. SJCC 1969.

(5) New B-Core System for Progranuning the ESL Display Console by
C.A. Lang.

ESL Memo 9442-M-122. M.I.T.,
Cambridge, Mass. April 1965.

'(6) Display Interface System, User's Manual by A. Mozley.
TM67/l, UML, Cambridge, 1967.

(7) Fortran Package for Generating a PDP-7 Display File by J.W. Brackett,
A.C. Kilgour and J.V. Oldfield.

CAD Project, University of Edinburgh.
November 1967.

(8) The Adage Graphics Terminal by T.G. Hagen, R.J. Nixon and L.G.
Schaeffer.

FJCC 1968.

(9) Coordinates, Transformations and Visualisation Techniques by
A.R. Forres t .

University of Cambridge CAD Group
Doc. No. 23 (June 1969).

(10) Cambridge Multiple-Access System, ConunandSpecifications.
Ed. D.F. Hartley.

UML, Cambridge. July 1969.

(11) Cambridge Multiple-Access System, User's Reference Manual.
Ed. D.F. Hartley.

UML, Cambridge, November 1968.

(12) 340 Display ProgranuningManual by Sanford C. Adler.
DECUS No. 7-13, Maynard, Mass.

(13) GINO - Design and Implementation Features by P.A. Woodsford.
University of Cambridge CAD Group
Doc. No. 27 (October 1969).

8/1

(14) Specification of Display File Manager (PDP version) by P.A. Woods ford ,
University of Cambridge CAD Group.
Doc. 43 (to appear).

(15) Specification of Display File Manager (Elliott version) by
C. Litherland.

Ministry of Technology CAD Centre,
Cambridge. (to appear).

(16) The Interactive Handler (PDP and Elliott versions) by M. Newell.
Ministry of Technology CAD Centre,
Cambridge (to appear) .

(17) Specification of Terminal - Mark 2 by R.P. Parkins.
University of Cambridge CAD Group.
Doc. 29 - Revised. (Nov. 1969)

(18) How to Use Interactive Computer Graphics in Engineering Analysis
Programs by R.J. Pankhurst.

University of Cambridge CAD Group.
Doc. 32 (Nov. 1969)

(19) 928 Graphical Display by J.A. Monro.
Elliott Brothers (London) Limited
(Nov. 1967)

(20) GINO Graphical Input/Output (Second Edition)
University of Cambridge CAD Group
(June 1969)

8/2

9. ROUTINE INDEX

This index indicates where to find the routine specifications.
The comment' (with X)' means that the routine is grouped with routine
'X'. Thus to find the specification of DIMETRIC look in section 2.13a
for ISOMETRIC.

Name Section

ASSOCIATE 2.13
ATTNSET 5.2
ATTNWAIT 5.2
ATTNLOOK (with ATTNWAIT) 5.2
ATTNREAD (with ATTNWAIT) 5.2
AXONXYZ (with FROMXYZ) 2.13a
BCDCHARS 2.13
BUFFERS 2.13
CABINET 2.13a
CAVALIER (with CABINET) 2.13a
CHARFPT (with CHARI NT) 2.13
CHARI NT 2.13
CHARREAL (with CHARINT) 2.13
CHARS 2.13
CHARTYPE 2.13
CIRCLE 2.13
CIRCLE3 2.13
COMPLOTGINO 2.13
CONTROL 2.13
CREATEDISPLAY 2.13
DEFOBJ 2.13
DEFSUB 2.13
DELETEOBJ 2.13
DEPTHOFF 2.13
DEPTHON 2.13
DFCONTIN 2.13
DFOUTB 2.13
DFOUTC 2.13
DFOUTR 2.13
DFPLOT 4.2
DFPLOTNS 4.2
DFPUNB 2.13
DFPUNC 2.13
DFREAD 2.13
DFTERMIN 2.13
DIMETRIC (with ISOMETRIC) 2.13a
ELLIOTGINO 2.13
ENDOBJ 2.13
ENDSUB 2.13
EXPAND 5.2
FROMXYZ 2.13a
GETOBJ 2.13
ILINE (with LINE) 2.13

9/1

Narno

TLLNE3 (w it.n LINl:;3)
1~,Lr'EP (w iWi Iun- »

:::LINEP3 (with LINE! n
INhSC
na'l'GING
IPOIN'l' (with PO:>.t;I)
IPOINT3 (with pon';T1)
ISOMETRIC
LINE
LINE3
LINEP
LTNEP3

Sectj 01,

Ml\GNIF\
MODTRANS
NOS'TRHEAI) (lith PIJ)T'IfRGINO)
OBJECT
OBJZDM
OFIX
OSHIFT
OUTASC
PDPCR
PDPCW
PDPGINO
PI("Tt;RE
PICTZCLIP (with P:C'TJRL)
PLOTELL (with PLOTPDF)
PLOTEND (with pu)'r'rEl~INO)
PI.(,TGRAPH
PLO-rHIST
PLOTLIMITS
PI,GTPl>.PER
fIlTPDP
PLOTS CALES
PLOT SHIFT
PLOTSTREAM
FLOTTERGINO
POINT
POINT3
PROJECr
PROJXYZ (with FROr~Y?')
READPDP
P.ESETTRANS (wi th UNSETTRANS)
ROTATE
.SALCHARS
SAVEOBJ
SAVETRANSFORM (with SBTTANSFORM)
SELECTPDP ,SELECrSAT
SELECTVIEW
SENDPDP, SEND5AT
SETTRAN3FORM
SETvHNDOW
SET3DWINDCW
SHEAR

(witll OFIX)
(w.i, th INAS,~)
(with INASC)
(with INASC)
(with INIT";PJ,)

2.13
2 .13
2 .13
5.2
2 .13
2.13
2 .13
2.13a
2.13
2.13
2.13
2.13
2.13a
2.13a
2.13
2.13
2.13
2.13a
2.13a
5.2
5.2
5.2
2.13
2.13
2.13
2.13
2.13
3.2
3.2
4.2
3.2
2.P
4.2
4.2
4.2
2.13
2.13
2.13
2.13a
2.13a
5.2
2.13a
2.13a
2.13
2.l3
2.13a
5.2
2.13a
2.l3
2.13a
2.l3
2.l3
2.l3a

9/2

Name section

SQUASH (with EXPAND) 5.2
STRHEAD (with PLOTTERGINO) 2.13
SUBPIC 2.13
TRIMETRIC (wi t.h ISOMETRIC) 2.13a
UNSETTRANS 2.13a
WRITEPDP 5.2
XACROSS (with PLO'rTERGINO) 2.13
XALONG (wi th PLOTTERGINO) 2.13

9/3

lll. CLOSSARY

This section is presented as .111 attempt to slImmarisesome of
the vocabulary o[the manual. It also acts as an index, together with
Section 9. Reference is made to the principle seclions of the manual
bearing on each topic.

ASA FORTRAN American Standards Forlran
(Fortran IV).

ATTENTION An interrupt to TITAl\l,issued
by the PDP when it wishes to
initiate a link transfer, or
to receive some kind of
attention from TITAN.

ATTENTION DISPLAY A special display item
displayed only when an
attention is being processed,
as a visible sign that an
attention request is uutstand
ing.

AXONOHETRIC PROJECTION A projection In which the
projection point is at infinity
so that parallel lines remaln
parallel.

BACKING STORE Auxilliary storage. In the TITAN
operating system this may be
magnetic disc or magnetic tape.

BUFFER An area of core set aside for a
special purpose. In the GINO
system there are 2 buffers, one
for display file and one for
subpicturelobject data.

BUILT-IN OBJECTS Picture parts that are built-in to
the GINO system, i.e. points, lines
characters and circular arcs.

CLIPPING The restriction of a picture to a
specified region by omitting
parts of the picture that are
outside the region. Not to be
confused w i th BLANKING, in which
parts outside the visible region
are not omitted, but rendered
invisible. BLANKING is not used
in GINO.

loll

Section

5.1

6.3

2.6, 2.13a

2.3

2.3, 2.4,
2.5

2.1,2.3

2.7,4.1

CURRENT POS ITION

DELAYED TRAP STATUS

DEPTH MODULATION

DEPTH CURSOR

DISPLAY FILE

DFTL

DFTP

DISPLAY FILE MANAGER

DISPLAY FILE SEGMENT

DISPLAY INTERRUPTS

EDGE VIOLATION

Pictures are generated as a
sequence of picture parts so
at any time there is a current
position.

The state into which the user's
TITAN program is put when the
PDP issues an attention or a
link transfer error occurs. All
these events occur as delayed
fault 60. Further delayed faults
(including fault 60's) are held
up while the current one is
processed.

A visualisation aid whereby the
intensity of the display is made
proportional to the z coordinate
so that a 3D effect is suggested.

A visible region (or window) that
is a narrow band in the z-direction.
By varying the depth of the cursor
various sections of 3D pictures may
be obtained.

A list of display commands. To
produce an image on the screen
a display file must be executed
repeatedly.

The Display File Tape Loader

The Display File Tape Producer

Any PDP program which deals
the running of the display.
includes a version (DFM).

with
GINO

The unit in which DFM handles
display files. A display file,
of any length, terminated by a
stop code.

Edge violations, light pen hits
and stop codes cause the display
to stop and interrupt the (PDP)
central processor, which can then
identify and process the interrupt.

An attempt to position the display
beam or the plotter pen outside
the allowed area.

10/2

Section

2.1, 2.2

5.1

2.7

2.7

2.1, 2.9,
4.1, 6.2,
6.3,
Appendix 1

6.2

6.2

2.9, 6.3

2.9, 6.3

2.7,6.3

2.7,4.1,6.3

ETAL

EXECUTIVE

GRAPH

HARDWARE SCALING

HOMOGENEOUS COORDINATES

IDENTIFIER

LIGHT PEN

LINK

~ MLS

MODES OF ACCESS

A verS10n of TITAN assembly code
available under MLS.

The PDP program which deals with
the link.

In this manual a graph is the
straightforward graph of
schooldays - a plot of Y against
X.

Scaling performed by the display
hardware when executing display
file.

The technique of using (n+l)
coordinates for points of an n
dimensional space.

The integer used by the GINO system
to identify a user-defined object
or subpicture. It is assigned by
the user when he starts the
definition of the user-defined
object or subpicture.

A photoelectric pointer used with
the display. When the pen is
enabled, a pen hit interrupt occurs
when the pen is pointed at a visible
display item.

The high speed data link connecting
the multiaccess TITAN to the PDP7
as satellite.

The Mixed Language System, under
which programs using FORTRAN
(ASA & T3), ETAL and SAL are run
in TITAN.

There are several modes of on-line
access to TITAN. In normal mode
only certain system commands
(e.g. EDIT) can be obeyed inter
actively. In expensive mode any
interactive command can be called
and the link can be used directly.

10/3

Section

5.1, 6.3

3.1

2.l3/CONTROL
Appendix 1

2.6

2.3, 2.4

2.8, 6.3
Appendix 1

2.9,5.1,
6.3

1, 7

2.9, 5.1

NAME

OBJECT

PAPER TAPE FORMATS

PDP COMMAND

PERSPECTIVE

PICTURE COORDINATES

PICTURE PARTS

PROJECTION POINT

RELOCATABLE

The integer used to identify
light pen hits on a picture
part. Sometimes denoted
"call name" to emphasise the
fact that each call to a picture
part should be give a unique
name. Names for picture parts
are optional.

This term is used to include
built-in objects and user
defined objects but not
subpictures.

Display files may be punched
out on paper tape in character
form or in reversed binary form.

The multiaccess system command
used to transfer data over the
link when in normal mode.

The term "full perspective
view" is used in this manual
to describe projections with
a local projection point. Such
views are characterised by the
existance of vanishing points.

The coordinate system of the
transformed view. This is
identical with the screen or
plotter coordinate system.

Built-in objects, user-defined
objects and subpictures.

The common point of the pencil of
lines used in a projection. It
may be regarded as the viewpoint.
The intersection of the pencil of
lines with the projection plane
gives the projection on to the
plane from the projection point.

A relocatable program can be
loaded anywhere in core.
Relocation is the process of
filling in a re1ocatab1e program
ready for loading.

10/4

Section

2.2, 2.3,
2.4, 2.8,
5.1, 6.3

2.2, 2.3,
2.4

2.l3/DFPUNB
2.13/DFPUNC
6.2

2.13/DFOUTB
5.1, 6.3

2.6

2.1, 2.6

2.1

2.6

2.9, 6.2,
6.3

SAL

SPACE COORDINATES

STOPCODE

STREAM

SUBPICTURE

TOTAL PICTURE

TRACKING CROSS

TRANSFORMATION

TRANSFORM MODE

T3 FORTRAN

USER-DEFINED OBJECT

VIEW

The Systems Assembly Language.

The coordinate system in terms
of which the total picture is
defined, i.e. the untransformed
coordinate system.

A display file command causing
the display to stop and interrupt
the central processor.

An ordered set of input or output
information ~n the TITAN operating
system.

A user-defined picture subroutine.
Calls to a subpicture share the
same display file.

A collection of picture parts,
defined in terms of space
coordinates, i.e. the
"untransformed picture".

A displayed item that can be
positioned on the screen using
the lightpen. It's coordinates
are available to the PDP central
processor.

Mathematically, a change of
coordinate base effected by a
matrix multiplication.
Geometrically this includes
scaling, rotation, shifting and
point projection.

When GINO is in transform mode,
picture parts are transformed so
that the display file reflects a
transformed view of the total
picture.

A FORTRAN variant peculiar to
Cambridge.

Section

2.1; 2.6

2.9, 6.2,
6.3

2.9

2.1, 2.4

2.1, 2.6

6.3

2.1, 2.6

2.6

A picture part, defined by the user, 2.1, 2.3
which causes new display file to be
generated each time it is called.

The picture presented on the display 2.6
or plotter. If transform mode is set
this view is a transformation of the
total picture.

10/5

HINDOWING Restriction of the visible
picture to a window - a
defined region in piclure
coordinates. 2D or 3D windows
may be set up in GINO.

10/6

Section

2.7

APPENDIX 1 HARDWARE DETAILS

Details of the hardware on which the GINO system is implemented
will be of interest to readers unfamiliar with the machines available
at Cambridge.

TITAN/ATLAS

ATLAS is the ATLAS II computer, of which TITAN is the prototype.
Both machines have 128K of 48 bit words and operate under a multi
access system with background batch processing. ATLAS has hardware
for paging.

PDP7/PDP9

These two computers are practically identical. They have 8K of
18 bit word store. The two PDP's used by GINO are equipped with
DEC340 displays. A detailed specification of this display is to be
found in Ref. (12).

Elliott 905

This computer has 16K of 18 bit word store. It is equipped with
a 928 display, the specification of which is to be found in Ref. (19).

Data Links

The speed of the data links to the PDP's can be adjusted by the
hardware. The PDP7-TITAN link operates at approximately 20000 baud; the
PDP9-ATLAS link at a rather higher speed.

The data links to the Elliotts operate at 4800 baud and use the
Elliott 916 Modem Controller.

APPENDIX 2 DESIGN AND IMPLEMENTATION DETAILS

These are described in CAD Group Document 27 (13), which covers
all but the most recent features of GINO. An article is in preparation
which gives an up-to-date account.

