
SCIENCE RESEARCH COUNCIL

RUTHERFORD LABORATORY
ATLAS COMPUTING DIVISION

F R 8 0 T E C H N I C A L PAP E R 2 6

FR80 DRIVER and Provably Safe Programs issued by
R W Witty

j March 1977

DISTRIBUTION: F R A Hopgood J R Gallop
L 0 Ford D C Sutcliffe
AH Francis R E Thomas
D A Duce' !W Witty

(Dr T Anderson, Newcastle University)

I. PREFACE

This paper outlines the principles of safe programming invented by Dr
Tom Anderson of Newcastle University (I) and imported by John Rushby.

FR80 SYSLOG and FR80 DRIVER are both (famous last words) examples of
safe programs. FR80 DRIVER is implemented in the language DRIL which
was specifically designed for safe programming (2).

2. INTRODUCTION

The provision of a proof of the correctness of a program should. increase
one's confidence that, when executed, the program's behaviour will
conform to its specification. Such a proof should consist of:

(a) the specification of the program's intended,function

(b) a~ argument to show that the progr.am will always meet its
specification. This argument should have two parts, firstly a
proof of termination and secondly, a proof that if the program
t-e.rminatest.hen it will have behaved according to its specification.

To be convinced that the program is indeed correct one must be satisfied
that both the specification and the argument are correct. Unfortunately
current experience indicates that correctness proofs constructed for
even quite short programs can be both lengthy and complex. For a proof
to be of any real value it must be clearer and simpler than its associated
program.

- 1 -

. \

Consider the following specification:

Using only integer arithmetic, find the largest integer i less than or
equal to the square root of a given non-negative integer n. That is,
given n ~ 0, find:

i ;: L rn J == (i2 ~n) 1\ «i + 1)2 >n)

The following solution is based on the Newton Raphson method.

SOLI : begin

i (initial value~

while . 2
1 > n

do begin

~ next estimates

end;

.end

A proof of correctness consists of:

Proof of termination:

I. The while loop must be entered at least once since tn ; 3J 2> n
for any integer n. Hence on entry to the loop i2>n which together

n + i2 Jwith i > 0 implies that i > [2' . Replacement of i by this
value at each iteration ensures1that the value of i must strictly
decrease, and as it is always non-negative, only a bounded number
of iterations can therefore occur.

Proof of correct behaviour:

1. The while loop must be entered at least once and must terminate
(see above).

2. After termination, i2 ~ n (from the while test) and also
.2

i = L n23 J:l where j denotes the penultimate value held by i.

3. Now (Ln2J j21 +)2 >n for any j f 0

therefore (i+I)2 >n and i2 ~n

The above proof 1S very informal, and some simple lemmas on integers
have been omitted. Even so, it fails to inspire a great deal of
confidence. If a proof is to be of any real value it must be clearer
and simpler than its associated program. For just as a simple program
is more likely to be correct than a complex program, so a simple
proof is more likely to be valid than a complex proof.

- 2 -

-
3 • ADEQUATE PROGRAMS

Dijkstra's proof guided program design methodology (3) helps to cr~ate
simpler proofs. A variation of this technique is instead of attempting
to prove the correctness of a program with respect to its original
specification, some weaker criterion of acceptable behaviour is selected.
That is, if the program's original specification is denoted by P then
a specification Q is chosen such that:

(1) any program which conforms to P will also conform to Q

(2) Q prescribes an acceptable behaviour of the program. The program
is then designed and constructed in an attempt to conform to P, but
so as to facilitate a much simpler proof of correctness with respect
to Q than would be possible using P. This ~ill be termed a proof that
the program·is adequate.

4 • SAFE PROGRAMS

In the context of sortware reliability a special case of adequacy,
termed safeness, is relevant. As a weaker specification for a program
intended to satisfy P, take Q to be P v 'error', meaning that the program
should either behave as was origninally intended or should terminate
giving a reason for its failure. A proof of adequacy for this particular
Q will be termed a proof that the program is safe.

Ideally a program should be designed so that its proof·of safeness is
substantially simpler than its correctness proof. One way of achieving
this objective is shown in the following solution to the largest square
root problem introduced above.

Safe specification:

find i such that [(i2 ~ n)) A «i + })2 >n)] v 'error'

Program:

SOL2 : begin

i ; = initial value;

iteration-counter ;= 0;

while «i2> n) or (i + })2 ~ n) and iteration-counter
< iteration-limit

do begin

i := next estimate ;

iteration-counter :: iteration-counter + };
end;

safety check 1:
if iteration-counter;?: iteration-limit then error ('loop-limit');

safety check 2:

if not «i2 ~ n) and «i + })2> n» then error ('wrong answer');

end

- 3 -

-
Proof.of safeness:

Termination:

Guaranteed by testing of iteration-counter

Adequacy:

After termination either an error will have been detected or a correct
answer will have been calculated as an explicit test of correctness is
included.

The simple nature of this proof leaves little opportunity for error
which justifies a high level of confidence in the safeness of the program.
"Note tht a proof of correctness assumes that the program's input conforms
to the specification. It says nothing about the program's behaviour
upon inco.rrect data. However safeness is"valid for any input because
the only assumptions made are actually checked at run time.

5. BOUNDED REPETITION

The above program is atypical in so far as the explicit testing of a
program's results is rarely feasible in practice. However, it seems
perfectly feasible to eliminate the need for a proof of termination
simply by programming in languages which ensure that all programs must
halt, thereby greatly simplifying the overall proof.

Such languages do not provide explicit control transfer and impose
constraints on all iterative and recursive facilities. As a result they
cannot be used to program all of the recursive (computable) functions,
and are known as sub-recursive languages. The work of Constable and
Borodin (4) indi-cates that such languages do include all the functions
actually used in computing and this seems to be borne out in practice
(see below). Indeed these restrictions are an advantage of the sub­
recursive languages.

5.1 Bounded Iteration

An iterative facility provided by many languages can be denoted by:

repeat S possibly forever

where S denotes a statement list which mayor may not include conditional
exit s·. S is repeatedly executed until an exit is taken and the construct
is terminated. The while loop is.a typical example of this type.

Consider two special cases of the construct.

repeat S forever

S contains no exit s and is repeated infinitely. This special case is
rarely needed, and would deserve careful consideration if it were.

- 4 -

-
repeat S exactly n times

n denotes a non-negative integer value ; S contains no exits and is
executed precisely n times. This special case is frequently needed~
Its termination is guaranteed.

The main criticism of the more powerful possibly forever construct
is that it permits infinite repetition when in all probability the
programmer did not intend this to occur. By analogy with the two
special cases above an alternative version is suggested which prevents
infinite repetition

repeat S upto n times

.S contains one or more conditional exits and is executed at most n
times, the construct being terminated earliex if an exit is taken.
Compare this with the hand-coded version of 80L2. An implementation
of this scheme might allow the user to chose between handling his own
loop limit errors (as in SOL2) or automatically terminating the program.

A sub-recursive language only provides bounded iteration constructs.

repeat S upto n times (S contains one or more exits)

,repeat S exactly n times (S contains no exits)

If potentially infinite iteration is to be included in a programming
language then a separate construct should be specially.provided.

5.2 Bounded iecursion

Recursive constructs may be constrained 1n a similar manner to the
iterative constrUcts.

6. EXPERIENCE WITH ADEQUATE PROGRAMS

An attempt has been made to demonstrate the possibility of writing
a practical piece of software so as to obtain a simple proof of adequacy,
and is described by Reynolds (9). A file system was implemented with
specification P: "All user commands to the file system are correctly
processed". A proof of adequacy was provided for the specification Q:
"All user commands to the file system are either' correctly processed,
or if not, the user is sent a warning message and the integrity of
all pr~viously filed data is maintained". By means of isolating those
routines which actually modifed the file structures, and incorporating
run time checks to verify their actions, a reasonably simple proof of
Q was obtained. A large portion of the software could be ignored
completely when establishing adequacy, a considerable benefit. Another
encouraging feature of this experiment was that throughout the debugging
phase, when the program was patently not correct, its behaviour was,
however, always adequate.

7. EXPERIENCE WITH SAFE PROGRAMS

The Rutherford Laboratory has a small mini-computer (the FR80) whose
only software tools are an assembler, a loader and an ODT-like window
into the core. The machine has no supervisor program, no core protection

- 5 -

and no printer. A major difficulty in programming this machine is that
erroneously looping programs generally overwrite themselves making
debugging extremely difficult. Therefore it was decided to construct
all new software according to the principles of safe prograrrrrning. "
Several programs have been constructed including a multi-tasking program
(5). The multi-tasking program is built with multiple exit loops based
on Zahn's construct (6). These have proved a success as they eliminate
the need for additional tests immediately following the loop to determine
which of the possibilities caused the loop to terminate, see example 2
and (2).

None of the safe programs has failed to terminate, even during develop­
ment when bugs were obviously present. The need to place a bound on
each loop has proved beneficial rather than restrictive. The very act
of determining the limit has caught errors. It is suprising how small
most of the loop bounds are in practice. The overhead in implementing
bounded loops is negligible (2). Some errors caused by punching errors,
pre-processor errors and (unproved) modifications were caught at run
time by safe programming. These errors could not have been caught had
the programs merely been proved correct. The knowledge that a program
will terminate safely whatever its input has greatly increased confidence
in the programs, has saved hours of debugging time and has increased the
prograrrrrners'peace of mind.

Meissner (7) too has r.eported favourably about bounded loops and has
suggested a template from which bounded loops may be constructed in
standard FORTRAN, see example I. FOREST (8) supports bounded loops, see
example 3.

8. CONCLUSION

Safeness directed program design and construction really works.

6 -

-
I = initial value

DO 7 LOOP=I,LIMIT

IF«I**2).LE.N).AND.«I+l)**2).GT.N)GOTO 8
"'"" ..,. "",

I = next estimate(l)

7 CONTINUE

CALL ERROR ('LOOP LIMIT')

8 CONTINUE

Example Meissner's safe FORTRAN loop

I := initial value

terminate foundanswer if (12~n) and (1+1)2 > n endt

I := next estimate (I)

terminate looperror if done looplimit times

repeat

situation looperror causes error ('loop limit') ends

situation foundanswer causes ok ends

endloop

Example 2 Multiple-exit loop based·on Zahn's constuct

I ~ initial value

.CYCLE LOOP = 1, LIMIT

IF«1**2) .LE .N)•AND •«1+ 1)**2).GT .N)EXIT

1°; next estimate (1)

REPEAT

CALL ERROR ('LOOP LIMIT')

ENDCY

Example 3 FOREST

- 7 -

9. REFERENCES

1•. ANDERSON T 'Probably safe programs'
University of Newcastle, ConlputinttLabo ratxrry ~
Technical Report No 70 1975

2. WITTY R W 'FR80 DRIVER Sofware Construction'~'
FR80 Technical Paper 21

3. DIJKSTRA E W 'Concern for correctness as a Guid~l;lgPrinciple.
for Program Composition'.
INFOTECH Fourth Generation International
Computer State of.the Art Repor t.rp 357
1971

4. CONSTABLE R L,
BORODIN A B

'Subrecursive PrograminingLanguages
Part 1: Efficiency & Program:St.ruc ture
JACM 19 p 526 1972

5. WITTY R W 'FR80 DRIVER and the ACL SDF Subset'
FR80 Discussion Paper 15

6. ZAHN C T 'A Control Statement for Natural Top Down
Structured Programming'

Lecture Uses in Computer Science
Vol 19 Paris 1974 ed Goos, Hartmanis

7. MEISSNER L P 'Bounded Loops'
FOR-WORD Vol 3 Nol Jan 1977

8. DUCE D A 'FOREST A Structured FORTRAN:preprocessor'
PRIME User Note 3

9. REYNOLDS M S 'An approach to the probLem .of .m:-i ting
highly reliable file system -sof tware'
Internal Memorandum, Newcastle University

gm - 8 -

