
-
SCI~NCE RESEARCH COUNCIL

RUTHERFORD LABOR1\TORY
ATLAS COMPUTING DIVISIO'l'

'-
F R 8 0 T E C H N I C A L PAP E R 2 5

Dimensional Flowchart Generator -
an FR80 Software Tool

issued by
F Louazani

& R WHitty

4 September 1976

DISTRIBUTION: F R A Hopgood
••R \-l Witt"
F Louazani
L 0 Ford
D A Duce

R E Thomas
J R Gallop
D C Sutcliffe
A H Francis

1. INTRODUCTION

The program described here is the implementation of the TREE-~ffiTA
dimensional flowchart definition (see Appendix 1) to generate FR80
produced dimensional flowcharts. (Ref: FR80 Technical Paper 21 -DRIVER
SOFTWARE CONSTRUCTION).

1.1 DFG: What Is It?

The dimensional flowchart generator is a program to which the input is a
machine readable specification of the flowchart, and the output is a .
dimensional flowchart drawn on FR80.

The program is written in ALGOL, and it uses the GROATS graphics package.

The top-down structured design approach was followed in developing the
_program.

1.2 Implementation Method

A dimensional flowchart definition consists of:

DIM FLOWCHART: = .NAHE '\. NODE;

drawing the flowchart consists of:

(1) Printing the name of the flowchart.

(2) Drawing the R-dimension (ie next level).

(3) Drawing a NODE ,which can be several SERIALS.

(4) Each SERIAL is a flowchart in its own right, and the process of
drawing is, thus, achieved recursively.

- 1 -

The 3-D aspect is Lmpleuerrted by recognizing 3 levels:

(1) The Serial dimension: drawn as a vertical line.
(2) The Parallel dimension: drawn as a horizontal line.
(3) The Refinement dirnens i.cnr drawn as a diagonal line.

A statement can be either an ACTION statement or a CONDITIONAL
statement. To differentiate between these 2 categories a conditional
expression is denoted by drawing a half square around the beginning
of its text.

The idea of 'scoped comments' is implemented by using labels.to:

(1) Denote the beginning of a block.

(2) Describe briefly the action ~chieved in that block.

2. PHYSICAL AND LOGICAL CONSTRUCTION

2.1 Physical Layout

The following dimensional flowchart represents the physical layout
(construction), of the program. It was generated using the data
file listed in Appendix 4.

2.2 Logical Construction

The dimensional flowchart representing the logical flow of the program
is listed at the end of this paper.

- 2 -

Jl.OWS·SRC

\
PRQG~A" DESCRIPTIOH

--_I

IHITIALISE PLOTIHG PHOCEDURES

I
SEGIH

\

EHD

DECLARE .ARIABLES I.INITIALISE PARA"S

I
BEGIN

\
DEFINE LI"ITS AND REGIONS

I
DRAW 30 FLOW CHART

\
DECLARE YARIABLES

I
OEFIM£ PPOCEDURES

\
PROCEDURE "AX

I
INTEGER PROCEDURE GET CHAR

I
PROCEDURE DRAW THE FLOW CHART

I
PROCEDURE GET 'NON BLANl CHAR

I
PROCEDuRE DRAW NEXT LEYEL

I
PROCEDURE PRINTOUT POINTERS

I
PROCEDURE ORAW NODE

I
PROCEDURE DRAW SERIAL

I
PROCEDURE ORAW YERTICAL LINE

I
PROCEOURE DRAW HORIZONTALE LINE

I

END

E~O

END

PROCEDURE LOOP ERROR

ORAW BIG PICTURE

\
LOOP

\
LOOP

\
INITIALISE PARA"SI SEL(CT 1,0 UNITS

I
CALL DRAW THE FLOW CHART

I
ADVANCE FIL"I

AOVANCE
.I

I
END

ENO

(NO

- 3 -

-
3. PROGRAM PROCEDURES AND FUNCTIONS

3.i Programmer Defined Procedures

(1) INTEGER PROCEDURE GCHAR (character):

Inputs a character in 1900 ALGOL character ~ode and returns as
its value the 1900 GROATS equivalent; this is necessary to print
out using GROATS procedure 'TYPE'.

(2) INTEGER PROCEDURE MAX (a,b):

Takes two integer values a,b and returns the value of the greater.

(3) PROCEDURE DRAW THE FLmoiC1L<\RT(top, left, bottom, right):

Generates the instructions to draw the flowchart
defined by (top, left) ~ (bottom, right), where
right are defined in the selected re.gionunits.
above it calls procedure:

in the rectangle
top, left, bottom,
To achieve the

DRAW NODE.

DIMFLOWCHART:-.NAME'\' NODE

(4) PROCEDURE GET NON-BLANK CHAR (ch):

Returns the next non-blank input character as CH.

(5) PROCEDURE PRINT OUT POINTER (top, left, bottom, right):

Takes the parameters top, left, bottom, right and prints them out.
The output medium is the lineprinter. This is a debugging aid.

(6) PROCEDURE DRAW NODE (top, left, bottom, right):

To understand the mechanism of this procedure, it is helpful to
refer to META DIMFLOWCHART (see Appendix 1), where NODE:=FLOWC.
The purpose of this procedure is to draw one or more serials (see
DRAW SERIAL).

(7) PROCEDURE DRAW SERIAL (top, left, bottom, right):

SERIAL := STATEMENT(REFlNE/EMPTY) $ (PARALLEL)

Draw a SERIAL consists of:

(a) Draw a vertical line.
(b) Draw a statement (see DRAW STATEMENT) .
(c) Decide whether a refinement is needed, if so DRAioiNEXT LEVEL

and DRAW NODE.
(d) Draw one or more parallels which consists of:

DRAW HORIZONTAL LINE.
DRAW NODE.

.
Note how the recursive nature of dimensional flowcharts occurs in that
DRAW SERIAL calls DRAW NODE which itself calls DRAW SERIAL.

- 4 -

(8) PROCEDURE D~~W STATEMENT (top, left, bottom, right):

STATEMENT :~ ACTION/CONDITIONAL

Draw a statement consists of:

(a) Decide whether a statement is an ACTION statement or a
CONDITIONAL.

~) If it is an ACTION then write the text and update the pointers
to skip over it.

(c) If it is a CONDITIONAL then write the text and draw a half
square around it.

(9) PROCEDURE DRAW VERTICAL LINE (top, left, bottom, right):

Draws a vertical line joining the points (left, top) and (left,
bottom).

(10) PROCEDURE DRAW HORIZONTAL LINE (top, left, bottom, right):
•

Draws a horizontal line joining the points (left, top) and right,
top).

(11) PROCEDURE DRAW NEXT LEVEL (top, left, bottom, right):

Draws the diagonal line for the refinement dimension.

(12) PROCEDURE LOOP ERROR (top, left, bottom, right):

Indicates that a loop error has occurred, and prints out the
.pointers top, left, bottom, right. After a loop error has occurred,
the program-terminates.

3.2 GROATS Procedures

(1) SELECT CAMERA(7)'

Selects the camera used to produce hardcopy output - single frames.

(2) IDENTIFICATION'

Initialises the GROATS system and puts identification frames onto
the output.

(3) LIMITS (Xmin, Ymin, Xmax, Ymax):

Defines minimum and maximum values of x and y which coincide with
corners of the currently selected region.

(4) REGION (Xmin, Ymin, Xmax, Ymax, I):

Defines sub-region I as the part of the currently selected region
which has max coordinates (Xmax, Ymax), and minimum coordinates
(Xmin, Ymin).

,
(5) SELECT REGION (I):

Selects region I; all the GROATS procedures will have their positional
parameters defined in terms of the currently selected region.

- 5 -

(6) CHARACTER SIZE (height, width):

Defines size of characters in units of the currently selected
region.

(7) MOVE TYPE TO (x,y):

Moves typing positions to the point (x,y).

(8) CHARACTER SPACE (CH SP):

Inserts a space of CH SP units between character in the horizontal
direction.

(9) TYPE (CH):

Types the GROATS character CH at the current typing position and
moves the typing position one position to the right.

(10) PROCEDURE DRAW NEXT LEVEL (top, left, bottom, right):

Draws the diagonal iine for the refinement dimension.

(12) PROCEDURE LOOP ERROR (top, left, bottom, right):

Indicates that a loop error has occurred, and prints out the
pointers top, left, bottom, right. After a loop error has occurred
the program terminates.

3.3 Oxford Utility Library

ALGOBEY(S):

This is a semi-compiled procedure which issues GEORGE commands from
within the ALGOL program. It is a Boolean procedure; it returns "true"
if the command is issued successfully, and "fal-se" otherwise (see
Appendix 3).

3.4 Procedures Hierarchy

Because of the recursive nature of the procedures used in the program,
it may be helpful to list the interaction between different procedures.
Below are 3 different representations of the procedures hierarchy and
interaction.

- 6 -

NAME OF PROCEDURE r PROCEDURES CALLED

GCHAR
DRAW THE FLOWCHART DRAW NEXT LEVEL

PRINT OUT POINTERS
DRAW NODE
LOOP ERROR

DRAW SERIAL
LOOP ERROR

DRAW NODE DRAW HORIZONTAL LINE
DRAW NODE
GET NON BLANK CHAR

DRAW VERTICAL LINE
DRAW STATEMENT
GET NON BLA...~KCHAR

DRAW SERIAL DRAW NEXT LEVEL
DRA\.JNODE

- PRINT OUT POINTERS
DRAW HORIZONTAL LINE
LOOP ERROR

GET NON BLANK CHAR
DRAW STATEMENT LOOP ERROR

GCHAR

LOOP ERROR PRINT OUT POINTERS

REPRESENTATION 1 A SERIAL LIST

- 7 -

: I I I
! ! I I I, I..! I I· .---_.--;-- --.-..-t.----r----- --- .- - - --.-.--i------rl----'-, --+-----;------..-.--..----.
i i' - - I . :~~__-_+__-n-.p-.A-i-lt_TH-E_..F-I.-0,-1C-H/I__i:'-T------.--!. ..--. - -,

i
I,
I

I. - . --t· ---
t---___J~--_'

LOOP; ERROR .'~' -.=. -~-~--~.~~=-l .l t'-_-":'[-_-1,_ --~·=~-l-----.·=~~·;
i ' -- - ---- - -. --. - !
I

i
I.

. 00

i"r -_.

GET rlON -- - - --=-~~~.~~----.=--··DRAW -~ERIP.L:-- -.~~---.--~ ~~----.-.-.--j...--.n-R-.fl.I-.'I-+-No-n-E---i ---.-_--_-. . DRA\'I'l~NFoNTAj
RI aNI(CHAR __ n___ I - _.-.-.!-, ---+---1

=- I : ~ -=-~=-== ::::::-.= == =~-=~=_::_=--=_-·l-- ..:. ._- -- .:. ~:: -~ ~ 1- . I· i·
[- ---- - . ---. - .--- -.,... -..... -- ...---- --- ... - .--- .-.----.--.--- -.---._-.- --- .._- .-.------ .-.- ... - -.-.- .. -- ... -- I ,1- I

G-··--··-~!-+~___;__~i.____,"~--- --.-.-.-...:[r=-l=-·--··--~·~---+--I-----r-t·-+-· -.~_~:~--~-_~~~.. -!-,v~-+-.-r-+-{1--7-----;+ I i
! 'i
I

i
I
1 ~

i
I
I

I
I
I
I
!

O. n-:::
G c·
G 0:.:
__, 0:..:

LLJ

I- (/)= 0:::
C, LLJ

l­
I- Z~~,_. 0
0:..: 0._

. 0._ .

i ._-_---
tI .-- ...
i - . ---- -

,__-L___, . . .
I- (/)= ex:
C LLJ
l­

I- :z:;z:-1
•......•0
cr: 0..
0..

._:­
z.~ ~ ---_. __ .__ ..

c.~ LLJ . . '.__ ..

-=-'~I- .-----.- -.---.-..
(/)I-._~ .----..-----...-.---I-----i

. i : -:: -, . .-:=~..~::-. _ .
. + - I :.. =__=1 .. ,~....=~_.=:~~---. +

+---~ .-.....-1-------4 --.---..---I-----t

0.. 0:::
c·o
O~·__, 0:::

LLJ

I
. i ;

I
' !... i' . I', : I

REPRESENTATI~N 2-A top Dowk'DIAGRAM
I '1' I i I

-1- -) ,
.. I -. -I'
.- 1---- . - .. - -

<i~... ---- - -. .,... - LLJ<:: C'z
.~I"-..;-

t=..I - __,
Cc
c·=

,.---------- -.__ .._. __... -- - ._..- _.

0::: -. - -..- -
-e;.= ...
<...)
<.!:I _ __.. .._ ._._.

~ I
I

II
GCHAR

i
- i

I
I

I

I

I·
I
I

i

I
'1
I

'i

. ~

i

j'
I

I
I
I;i _.

'''''-,-
1
G(.I} R

I
lJRAIi NEX! LEVEL

I
~l '; j n : I) r: r r: (j f '; f !. I".S

I
ORA)/ NDDE

I~
I !I fEr NON BLANK

DfJA)I S(RIAL

I"",

L11~ /I WIll t r I il;1

i
i
iI,
I
f'R !N T
I
I
LOc)P

(11 .~ !< I

DRAW VERTICAL LINE

I
DRAW STATEMENT

"'"

-

GET NON BLANK CHAR

I
GCHAR

I
LOOP ERROR-,

GET NON BLANK CHAR

I
DRAW NEXT LEVEL

I .
DRAW NODE

"'"
I RECURSIVE

D;:; ~ Ii H 0 R i 7 [J ii r AL

DRAI< NODE

I"",
I RECURSiVE

I
LOOP ERROR

DRA~ HORIZONTAL LINE

I

o ~~A ,., ~HL')E

'",
RECURSIVE CALL

(' L' T P COI II ; E P S

Representation 3

PRINT OUT POINTERS

CALL

LINE

CALL

A 3-D Flow Chart

- 9 -

4. LIST OF VARIABLES NAMES

VAR NAMES SCOPE
(I) (2)

TR
tr 5 Block 0

XHAX,YMAX Block 1
CH WIDTH, CH HEIGHT -
CH .sr -

DESCRIPTION l

.WIDTH 3 CH
CH 2 I-IEIGHT

o

DIAGONAL

DTB
DRP
DELTA MLP
RJ,RK

TOP, LEFT
BOTT0l1, RIGHT
Cll
J
A, B
CHARACTER

NEH LEFT,
NEW RIGHT,
NEW TO P
NEW BOTTOM

Block 2

PROC MAX
PROC GCHAR

PROC
DRAW
THE
FLOWCHART

PROC
DRAW
NEXT LEVEL

Set to 'true' if the GEORGE command is issued successfully, and false
otherwise.
Delimits size of single frame of output.
Defines character width and height respectively in the selected region units
(see Appendix 2).
Sets up the horizontal spacing left between 2 consecutive characters (see
Appendix 2).

Set up horizontal and vertical offset for the starting position of drawing
next level (diagonal line) (see Appendix 2).

Length of vertical line between two serial statements (see Appendix 2).
Horizontal offset for next parallel node.
Horizontal offset for minimum length parallel.
Used as loop parameters in drawing the big picture (ie in defining the new
LIMITS) •

These are the pointers throughout DRAW 3.D FLOWOlART to update the drawing
positions, they are also used as formal parameters of the program procedures.
A character; defined in all procedures.
Used as a loop counter throughout.
Formal parameters of the procedure.
Formal parameter of the procedure.

Used to reset pointers to new positions to draw next level.
They are redefined in DRAW NODE to control drawing positions; they are updated
after a drawing instruction has been issued.

Length of X and Y components of diagonal line.

I(I
/L-~ ~ L- _(

I

(((

VAR NAHES
(1)

SCOPE
(2)

DESCRIPTION

MAX NEW RITHT
MAX NEW LEFT

TOP MLP,
LEFT MLP,
BOTTOM MLP,
RIG!!TMLP
HAX BOTTOM MLP,
MAX RIGHT MLP

TOP SERIAL,
LEFT SERIAL,
BOTTOH SERIAL
RIGHT SERIAL

NEXT TOP,
NEXT LEFT,
NEXT RIGHT,
NEXT BOTTOH

TOP PARA,
LEFT PARA,
BOTTOH PARA,
RIGHT PARA

TOP TEXT,
RIGHT TEXT

ACTION

DRAW
NODE

DRAW
NODE

DRAW
SERIAL

DRAW
SERIAL

DRAW
SERIAL

DRAW
STATEMENT

DRAIV
STATEMENT

Pointers to control drawing positions, updated after a drawing instruction
has been issued.

Pointers to denote coordinates of minimum length parallel; used in calling
DRAW HORIZONTAL LINE for m.l.p.

Pointers to denote serial drawing positions.

Pointers to denote coordinates for drawing next node.

Denote coordinates for drawing positions of minimum width parallel.

Denote X coordinates of starting and finishing of text.

Set to 'true' if starting character is (') (ie SERIAL)
and 'faZse' if starting character is (?) (ie CONDITIONAL).

NOTES: (2) BLOCK 0
BLOCK 1
BLOCK 2

the most outer block
the second most outer block
the draw 3-D flow block

(1) Variable names are of integer type except the following:
RJ,RK REAL
TRS,ACTION BOOLEAN

I

5. THE INPUT DATA

Data is presented in a formzhich uses the following symbols as 'reserve
symboZs' to implement different features of a 3-D flowchart.

--

SYMBOL l-f.EANING DRAWING ACTION

_Denotes R-dimension
(ie next level)

Denotes the end of a
node

Draw diagnonal line

Reset pointers to previous
level

Draw a half square around
text

Text without half square

Draw horizontal line of
length DRP followed by
DRAW NODE

Draw horizontal line of
length DELTA MLP followed
by DRAW NODE

? text ? Denotes a conditional
statement

, text ' Denotes an action
statement

Denotes a serial­
parallel

Denotes a minimum
length parallel

=

The first data record is of the form:

N •NAME text;

where:

N is the scaling factor for the whole flowchart,
text describes the title of the flowchart.

The second record will be always a R dimension symbol (!).

the last data record is of the form:

• text ;

Note: An example of the input data used to generate the physical
construction of the program is included in Appendix 4.

6. ERROR CHECKING AND DEBUGGING AIDS

6.1 Error Checking

(1) Loops: all loops in the program are proved to terminate, and any
iteration outside the maximum loop range will result in an appropriate
error message stating the whereabouts of the error, eg:

ERROR IN COPY TITLE ..
(2) The input data checks: errors in the input data format (eg, errors in

statements delimiters) will result in one of the following error messages:

- 12 -

-

1
~--~

ERROR MESSAGE CAUSE

ERROR IN COpy TITLE Either:
(a) text exceeding 82-characters
(b) (;) missing

•ERROR (.) end of data marker not
encountered

ERROR IN NON BL~K CF~ Loop to get non blank characters
exhausted

ONE OR MORE SERIALS ERROR More than 5000 serials

MIN LEN PAR LOOP ERROR More than 50 consecutive min len
Parallel nodes

ERROR (#) end of node marker not
encountered (often when a statement
is started by an illegaZ character)

PARALLEL
LOOP ERROR

More than 82 consecutive serial -
parallels encountered

? OR ' ERROR Wrong statement type (ie not an
action nor a conditional statement)

WRITE OUT TEXT ERROR More than 999 chs in statement text

ACTION OR ' OR ? ERROR Delimeters of a statement not
compatible (eg starting delimeter '
and terminating delimeter ?)

This will normally follow the error
messages:
(a) one or more serials error
(b) parallel loop error
(c) write out text error J
(d) •ERROR
(e) min len par loop error

L....---- .

A LOOP ERROR HAS OCCURRED

- 13 -

-
6.2 Debugging Aids

Throughout the program, a number of trace statements recording the
progress of the program execution are built in as 'comments' statements
of the form:

'COMMENT'
'COMMENT!

'~'RITETEXT ('text');
PRINT OUT POINTERS (top, left, bottom, right);

Leaving out the ALGOL words 'COMMENT' will result in a full trace of the
program execution; this is to be used in extreme necessity as it results
in a large amount of printer paper.

- 14 -

APPENDIX 1

META DIHFLOHCHART

DIMFJ..OWCHART.­
FLOWC
NODE
SERIAL

REFINE
PARALLEL
STATEMENT
ACTION
CONDITIONAL

.­.-.-
:=

:"".-
.-
.-

.NA.."1E'\' FLO'JC ;
NODE
SERIAL $ (SERIAL) '#' ;
STATEMENT (REFINE/ .EHPTY)
$ (PARALLEL)

'\' FLOWC ;
'-, , FLOHC ;
ACTION/CONDITIONAL
'TEXT' ;
'1' BOOLEAN EXPRESSION OR TEXT '?'

- 15 -

APPENDIX 2

1 CH WIDTH = 8

2 CH HEIGHT = 8

3 CH SP = 2

4 CH 2 HEIGHT = 16

5 DIAGONAL = 40

6 \VIDTH3 OH = 20

7 DTB = 20

J . 8 DRAW NEXT LEVEL
I
I 9 DRAW VERTICAL LINEI
i
I

I

" I

(

A
4~'--------{F~0 W 5

~ ~
• •

~ .• - - - - - - - - - - .•••- - - - L.I I - - - - - - - - - - - - - - - ;\.- - - - - T ~
I I(6)I

I

i
t

IS
I

..-.-_. - -- - - - ..- .- - - .- - - - - - - - - .- ~.-_.I - - - -.:....•- - - • - - - -

11 19- - ..•.._ - - _. ---__ - -_ - - -,

TEXT
((

I

-
, L

APPENDIX 3

1. Boolean procedure ALGOBEY(S);

string S;

2. This procedure issues GEORGE commands from ~7ithin an ALGOL
program. Most commands which do not cause deletion or suspension
of the program may be issued by this procedure. The routine
returns TRUE if the GEORGE command was issued successfully and
FALSE otherwise.

Since GEORGE parameter substitution involving use of % characters
cannot be used directly in an ALGOL string the routine will convert
any £ characters in the string to % characters before issuing the
command. Parameter substitution is therefore accomplished using
£ characters in the original string in posl.twns where GEORGE
would require % characters. % characters in the original string
will of course be converted at compile time into space characters.

3. Language PLAN

4. Parameters

S - a character string which consists bf the command to be
obeyed enclosed in string quotes.

5. Error Indicators

The routine returns FALSE if the GEORGE command ~TaS not issued
successfully.

6. Examples

(a) In the following example NEWFILE will be assigned to *CRO

'IF' 'NOT' ALGOBEY ('('AS%*CRO,NE~~ILE')') 'THEN'

'BEGIN' 'COMHENT' ERROR ROUTINE;

'END' 'ELSE'

'BEGIN' 'COMHENT' CO~~D OBEYED OK;

(b) If a call to the macro that runs a program includes the
parameter:

PARAM (F1 FILE 1, F2 FILE2)

then to issue the GEORGE commands: "

AS *CRO,%(Fl)

AS *CPO,%(F2)

from within the ALGOL program, the calls to ALGOBEY should be:

- 17 -

-
'IF' 'NOT' (ALGOBEY('('AS%*CRO,£(FI')'»)

'M~D'ALGOBEY(' ('AS%*CPO,£(F2)')'»

'TIffiN''GOTO' 199;

- 18 -

._
APPENDIX t~ - DATA USED TO PRODUCE FLOH CRA.F.T IN CHAPTER 2

o 1500 .NAME FLOWB~SRC;
1 I
2 'PROGRAM DESCRIPTION'
3 'BEGIN'
4 I .
5 'INITIALISE PLOTING PROCEDURES'
6 'BEGINf
7 I
8 'DECLARE VA~IABLES &,INITIALISE PARAMS'
9 'BEGIN'

10 I
11 'DEfINE LIMITS AND REGIONS'
12 'DRAW 3D fLOW CHART'
13 I
14 'DECLARE VARIABLES'
15 'DEFINE PROCEDURES'
16 I
17 'PROCEDURE MAX'
18 'INTEGER PROCEDURE GET CHAR'
19 'PROCEDURE DRAW THE FLOW CHART'
20 'PROCEDURE GET NON BLANK CHAR'
21 'PROCEDURE DRAW NEXT LEVEL'
22 'PROCEDURE PRINTOUT POINTERS'
23 'PROCEDURE DRAW NODE'
24 'PROCEDURE DRAW SERIAL'
25 'PROCEDURE DRAW VERTICAL LINE'
26 'PROCEDURE DRAW HORIZONTALE LINE'
27 'PROCEDURE LOOP ERROR'
28 #
29 'DRAW BIG PICTURE'
30 !
'31 ;LOOP'
32 I
33 'LOOP'
'34 I
35 'INITIALISE PARAMS& SELECT ISO UNITS'
36 'CALL DRAW THE FLOW CHART'
37 'ADVANCE FILM'
38 #I
39 'ADVANCE FILM'
40 'END'
41 II
42 'END'
43 #
44 'eND'
45 II
46 'eND'
47 II
48 'END'
49 #I
50 'END'
51 #
52 'eND'
53 II
54 .END OF FLOW;
55 ••••
56
57

- 19 -

