SCIENCE RESEARCH COUSCLL

RUTDERFORD LABORATORY
ATLAS COMPUTING HIVISION

R 8O0 LY EG N e © ASTRSNP A PR By 25

FR8C DRIVER Software Construction

igsued by
R W Witty

10 Decenmber 1975

DISTRIBUTION: F R A Hopgood
Brandwood
Buchanan
Burraston
Chiu
Dewvar

an -}
Ford

trd
O b H =

1. INTRODUCTION

New software, FR80 DRIVER, is under counstruction to case

oo

H Francis

R Callop

M Neison
Ralphs
Sutcliffe
Themas

LLy

g

L O

=)

T
w

the current
a

maintenance problems with the existing III Displayer, and to provid
new facilities (FR80 DRIVER is outlined in FR8J DRiscussion Paper 15).

This paper describes the methods of design and construction in use

with DRIVER. These methods include designing b
and its representa

into an intermediate language, and the translation of
inte, an FRE80, pregram. The paper closes with
programming standards and style.

tion by flowcharts, the encoding of the

~
(99

L’) &

his language
il

i
. % SRS
discussion of DRIVER

Rd s

v Step Wise Refinement
ese flowcharts

2. FLOWCHARTING AND STEP WISE REFINEMENT

2.1 Conventional Flowcharting

)

'R80 SYSLOG was designed and implemented by top down, disciplined

rogramming techunigues, Flowcharts of the program weve produced at

successive levels of detail using the method of Step Wise Refinement [7].
FE4

Lo !

-3 © T

The final flowchart was sufficiently detailed for FR80 Assembler code
to be produced almost mechanically. During the design of SYSLOG
several inadequacies of conventional flowcharting were encountered:-

(1) they are difficult to draw and lay out as thev spread out in
2]l directions from a given starting point. This makes formatting
on a page a problem, often requiring redrawing.

(2) they have complex syrbols which are hard to draw neatly freehand.

(3) 1if a template is used then fitting text into the boxes is a grave
problem,

(4) they cannot be drawn 'naturally'; programming language source is
easier because it follows the normal lexical 'directions' of
English.

(5) they are difficult to convert to a machine readable form.
(6) they are difficult to draw 'automatically'.

(7) they are usually drawn on A4 paper which is too small to convey
the logic of & complex module. Arbitrary, redundant branches
are caused by page boundaries making a disjointed flowchart that
ig hard to visualise overall,

(8) they fail to represent such properties as parallelism because
sequential actions are spread out over both dimensions of the page.

(9) they positively encourage undisciplined branches and 'cluttered'
logic because it is so easy to draw branches in all directions.

(10) they fail completely to show how the final detailed design has been
achieved through Step Wise Refinement (SWR).

The above problems were overcome by developing a variant of flowcharting
called Dimensional Flowcharting, described below. The final design of
SYSLOG was actually represented by this method.

2.2 Dimensional Flowcharting

Consider the CASE statement

i

<>

W

figure 2.1 Conventional CASE statement

This is a well-disciplined construct having one entry point and one exit
point. It shows how the conventional direction of sequential control is
from the top to the bottom of a flowchart. It also reveals that the
executable code blocks e, ey, eq exit as parallel alternatives,

although only one is executed to the exclusion of the others. This

is the selective CASE statement, the most common form, In a generalised
CASE statement whose semantics are that each and every true case is
executed, then the parallelism is more obvious [3]. (Note that
IF-THEN-ELSE is a simple CASE statement, the cases being 'boolean
expression is true' and 'boolean expression is false'.)

From this example we can postulate that the 'dimensiong' of a flowchart
are sequential control flow (SCF) and parallel execution (P), figure 2.2.

N
dJ

v »
frf
Hh

e

g}

=

3]

0]

N

[N

]
i

=

8]

»

®

w

2.2.1 Sequential Statements

For the flow of control to be always top to hottom we must impose a
discipline on braach instructions. Every prvogram must be a sequence
of statements, having only one entry and one exit point, such as
IF~THEN-ELSE, CASE and LOOP., Hence in Dimensional Flowcharting a
sequence of statements 51,52.,.,...,,5n is shown as

Si
I
J/ S2
SCF { :
Sn figure 2.3 Serial Sequential Statements

of an action depending on the level of ahstraction of Si. There i
now no need to draw a box around the statements.

input input data
perform computation perform computation
on data on data
output results output results
(a) (b)

figure 2.4 Contrasting Representations of Sequential Statements

- b -

2.2.2 CASE

The CASE statement.is drawn as

previous statement

CASE — - ———
boolexp—1 boolexp—2 boolexp—n
action-l action—2 action—n

’

next statement

figure 2.5 Dimensional CASE Statement

The selection mechanism is controlled by the Conditionsl statement
3

<E%oolean expression>

] figure 2.6 Synchronisation Mechanism

Its semantics are that if <boolean expression> is true then control
passes on down the vertical line (crosses the bridge [12]). If <boolean
expression> is false then control is prevented from continuing aLong

the vertical branch. This is a general mechanism which is used in
other constructs.

Returning specifically to the CASE statement, its action is that if

one or more vertical branches have true <boolexp—1>s then the corresponding
<action-i>s are executed. Control orfly passes to the statement after

the CASE when all of these have finished execution. This shows the

" parallel dimension of the flowchart to its full advantage as control

can be imagined to instantaneously flow aleng a horizontal line and

down into each vertical line as though an infinite number of parallel
processors were available to execute the statement. If all vertical

is terminated and control passes tc the next sequential statement.

The simple boolean blocking statement described above is good enough to

represent purely serial algorithms. If a designer were to use this
flowcharting method for comstructing real parallel algorithms it is
likely that he would add his own synchronisation devices. he main

point being made in this section is that the rigorous use of the two
dimensional page elegantlv represents parallel code and sequential
ordering. :

2.2-3 IF=THENELSE

o o o e B T

e

Using the above scheme, IF-THEN-ELSE is

previous statement

if

bool not bool

\‘ :

<then code> <else ccde>

next statement

figure 2.7 Dimensional IF-THEN-ELSE

Note that now, because of the explicit parallelism, the <then code>
and <else code> blocks must both be conditionally executed. This
forces the programmer to consider fully =211 the implications of the
<else code> operating on the (usually) large set of possibilities
<not bool>, and is put forward as an advantage of the 'parailel' way
of thinking.

Obviously for normal, serial programming languages, the flowchart

will be encoded using the conventional 'jump to <else code> if boolean
is false' technique.

25245 MEIOOP

previous statement previous statement
LooP =
Sl
S1
boolean @b
1
S
S2
next statement Sadinain, |
. e

next statement

{a) ‘ (b)

figure 2.8 Contrasting Loops

- -

In the LOOP statement, figure 2.8a, the loop body (S1, conditional exit, 52

is repeated while <boolean> is true. Loops are discussed further in
section 3.4. To help diffcrentiate between a sequence of statements

)

which is repeated (loop body) and cne which is not (bleck body, section 3.5)

it is sometimes helpful to use the sywbols '#' and 'F' which indicate

repetition and termination respectively. However they are usuzlly
omitted. Figure 2.9 demonstrates their use.

previous statement

Tl

bool not bool

S1 LOOP”"‘—-—1

L 4 82
|
bool
S3
|

next statement

figure 2.9 Repetition and Termination Svrbols

/) Brangg

Dimensional Flowcharting can encompass direct branches but it cleariy
shows how they spoil the elegance and discipline of the design, and how
their occurrence, in practice, seems unnatural and unnecessary. This
feeling grows after using the disciplined Dimensional Flowcharting method;
one quickly forgets that GOTOs ever existed. The FR80 SYSLOG design

was free from direct GOTOs, and it was greatly improved by thinking more
deeply about the reliability of the control flow. ‘

If an explicit GOTO must be used, it can be shown as figure 2.10.

Statement ' label:Statementz
% !
|
i
label

figure 2.10 Branch

The resemblance between the GOTO notation and the Devil's tail is not
coincidental.

2.3 Step Wise Refinement

A property of Step Wise Kefinesment (SWR) is that the most up-to-date
i Al

design is expressed in terms of the lowest level reached so far. This
means that, at worst, the derivation of large parts of the design are
'lost' as they ara refined, or a2t best, can only be deduced from a

1

study of separate flowch
2l s there a uni
what amounts teo a record cof tha des

»

rte ¢of the various intermediate stages (figure
) £ representation which will preserve
gner’s thoughts?

solve cquadratic egqumn. level |1

Sty s

input data

perform computation on data level 2

output results

N
read A
read B;
read C;
if descriminant <O then print (imaginaxry roots);posroot:=negroot:=0;
N) Y level
else posrooti=(-b+/b2-4ac)/2a;
- ‘| ne O —b- i a) .
negroct:=(~b~/b“~4ac) /2a;
print Aj
B;
*H
posroots
NORLVO TS |
stops ‘ L
~

figure 2,11 SWR Txample

By using the Algol-like rule that every program is a single (compcunt)
statement which can be recursively split into sequences of statements
(the process cof refinement) we can formally recognise a SWR design

(see section 2.3). hese separate stages of refinement can be connected
if the flowchart is given a third dimension, called the Refinement(R).

N/ .
2 (P). Parallelisi
T\;‘\
<& "X (R) Refinement
{8CT)

Sequential
Control Flow

figure 2,12 3-D Axes

- 8 -

The example given in figure 2.11 now becomes figure 2.13.

solve guad equn

B

input data

=N

read B

Fead €

perform computation

(Eescrim<0 descrim=0

i
print (imagroots)

posroot=0

| negrcot:=(—b~/b2w43c)/2a
negroot=0

i
posroot:=(-b+Vb2-4ac) /2a

output results

—

print A,B,C
print posroot,negroot

stop

figure 2.13 3~-D Flowchart

Now one can study the program's design at any desired level of abstraction;
one may study the design at varying stages of refinement as the area of
interest changes, digging deeper down into the details of, say, 'input
data' to see exactly what is happening. Having once undersfood the

action of the input phasc one need never again go deeper than the 'input
data' level to recall the program's action at this point.

If one regards the higher levels of abstraction as comments about the

lowest level, then this hierarchy of comments may be 'folded' or 'linearised'
into the source code text, whence the correspondence between the flowchart
and the source code is exact in the refinement sense and the source program-
~flowchart couple becomes much easier to read and understand. This

proposal was followed with FR80 SYSLOG and works well in practice (see
example DRIL program, section 4.2).

2.4 Design and Construction

Tackling a problem by creating a 3-D flowchart via SWR produces a
model of a logical solution, not a working program. This result is
analogous to the hardware engineers' Logic Diagram. Actually
constructing a prozram from thne logical solution introduces a new
selt of practical probiems which vary with the peculiarities of
particular source languagesz, compilers and machines. Considerations
such as page-bank addressing boundzries, core sizes, macros being
defined before being called, and separate compilation for individual
subroutines cause a working source program to vary considerably from
the neat order of the abstract logical solution. Thus a second
'engineering drawing' should be made, again using the 3-D SWR
technique, which is a map of the way the source code is physically
constructed. (SBee figures 2.15 and 4.4.) This is exactly
analogous to the way hardware engineers must produce a circuit

board component and wiring layout from the Logic Diagram.

(If the program is non-trivial then the two flowcharts are unlikely

to fit onto single A4 pages; do not split them up into several pages,
making them disconnected and hard to visualise = draw them on larger
pieces of paper. Regard the flowcharts as engineering drawings. No
engineer builds bridges with A4!)

A simple example will show the working relationship between the Logic
Diagram and the physical layout. Consider a typical program which
contains a recursive binary tc decimal conversion and print subroutine,
BIOTDS, stolen from [11. In figure 2.14 see how easy it is to spot

and understand the recursive actior of ITOS when the subroutine

definition is 'refined' from its call., 1In the program's source

text Physical Construction, figure 2.15, the call and subrocutine bodies are
separated, obscuring their Jogical connection, just because of the

way the compiler is written.

BITODS (n)

—

n<0

print(-)
call ITOS (zbs(n))

~—
= e

call ITOS (n/10)

print (mod(n,10))
L :

add 'character base' to integer

print char so formed on TTY

figure 2.14 Recursive Binary Integer to Decimal String Conversion

...ll.-

typical program
t
\

\\7

compiler params
macro defins
storage allocation

subroutine definitions

N
some subroutine bodies

ITOS (n)

more bodies

|
BITODS (n)

some code

l

call BITODS (n)

more code

error handlers

figure 2.15 Physical Construction of Typical Program

Using the Logic Design flowchart in conjunction with the Physical
Construction flowchart and the source text with its 'folded' SWR
comments greatly simplifies the problem of relating the physical
program code to ite logical design and action. Again, this
observation is based on the experience gained from FR80 SYSLOG.

2.5 Flowchart Syntax

A direct benefit of introducing discipline into the design methodology
is that a context free grammar can be defined which will generate 3-D

flowcharts. Figure 2.16 is the TREE-META (9] definition of such .a grammar.

This property means a flowchart can be sheown to conform to the design
methodology and to the project standards which should be built into
the grammar.

.META FLOW

FLOW & 4 JUAVE BT 2 NODE Y.ENDY ~ID "3"§%

NODE = SERAL $(SERAL) ‘#' ;

SERAL = '!' STMT (NEXTLEV / EMPTY) $(PARAL) ;

PARAL = '-' NODE : .
NEXTLEV = 'L' NODE ; .

SIEME = 1 ACESE. 78 B) 3

ACTIST = '=' ,SR ;
EXSIT = '?' .SR ;
.END

figure 2.16 3~D Flowchart Svntax

2.6 Automated Drafting

It can be shown from the grammar (figure 2.16) that a flowchart is a
tree. A simple tree-walk will produce a linear machine-readabie
version if the various straight lines and flowcharting symbols are
encoded as unique identifiers. Such a tree-walk is similar to
unparsing [2]. This human process is quick and easy, and the output
matches the original drawing (figure 2.17).

The linear tree-walk can be fed into a syntax analyser (figure 2.1§)
for validation, and a straightforward recursive graphical algorithm
can be constructed to produce high quality output on a plotting
device by expleiting the grammar rules to draw the flowchart left

to right, top to bottom, which makes the formatting very easy (it is
'context free'). The ease with which drafting may be automated is
another major advantage of Dimensional Flowcharting.

In figure 2.17
! represents a vertical line, the SCF direction
- vepresents a horizontal line, the P direction
L represents an angled line, the R direction

represents the 'F' symbol indicating the end of a series of
sequential statements

R R I L LT F LR Ry S S S R e P g R R P S S S R I S P T T TR R R P R Y e Y E X T TR R F PR E PR X RS

ddddédddiddd
deddddddddddddddddddddddddddddddddddedd
jucdd
uauaamuaamaaraaam&auaaaaaanaamammmaaanumaaaamaaaaaxmnaqmaaamoamammmmoamaammauaaa&aaamaaaaamaaammaamamaaaaeaaaaa
deiddddddddedddiddd
jdddddddddddddddddddddddddddddddddddd aaamaaaomamaaaoaaaaaaomaammamn&muaaaaaamaaaamuamommmaaamammacmmaaaoaaaaama
ddd

-~

[&
.’.‘.

& LA

5.
E.\.

ool ol
; : . Y b

Im¢3 spxn €
i 2t
3 visIL N 1L
% . A qAY , . # ¢fMfl: = ot
g S fw . HOHHKG = 16 m
M m #, 1999 =} & Q o~
= DN L - ¥ #oadddy o= I 43330 = » ¢ _
k- , G g 4 # 130C; = 1 9
m W m rfl!llJ . #3335 -2} §
‘.Mx AR -y . . . : J 0\
= LA&A«N@ 1888 = |- ¢
m IIIIJ 1 ¢
M - mwm) _ W YYY s =2 1L
= ﬁpliﬂ!!d . PTIVLSIL JHYN' O .
= “raisaL
K . T1¥L1834. LNHHR20G
W 082002 LV S2LI0%L NO ¥WMOTI4*L2NISHI 801 A GLN LIANN OACEBRD YO 248 NGO LBdLnoO#
= €96 bz LY S2L04 NO Q3JnA0¥d (/L)IIVASIL] LZNTSOY 40 SNILSITY

Jddiddddddddddddddddddddddddddddddddddddddcdddddddddddddidd
ddaedddddddd
“ahx¢ma ddddddddddddddddddddddddddddddddddcdddddddd

dddd .x;a;anaamauacaaaana&aaa&aaaaaamaa&aqoaaaaaaaa‘ YHod®ie znmo.

ddiddd
didddddddddddddddaddddd ma&ammaaaam«aaaaaaaaaaum&qau _
dddadddddddddddddddddddddddddddddddddddddddaddddddddddddddddddddddddiddd

2.7

10.

11.

12,

13.

14,

IS)s

16.

Vi,

18.

Summary of Advantages of Dimensional Flowcharting

Quick and easy to draw, by hand or machine, because drawn left
to right, top to bottom, i.e. naturally.

Grammar ensures flowcharts are well-formed.
Grammar provides a mechanism for enforcing project standards.

Easy to convert to machine readable form via simple 'tree-walk'
method.

Crammar makes automatic drafting very easy.

Statements may be any length.

Statements are not constrained to fit into boxes.

No need for templates.

sacad.

Few special symbols.
Adaptable to any source code and machine.

Easy to introduce new features such as control constructs and
synchronisation devices.

Shows inherent parallelism which is often not obvious from the
source code.

Recursion easier to represent and understand.

'Automatically' ensures will disciplined program design. Cluttered
logic is prevented.

Encourages and facilitates SWR design.

Makes it easy for a 3rd party to understand how the design arrived
at because SWR explicit.

One flowchart shows all 3 dimensions at once, making it possible

(and easy) to visualise the whole program at varying levels of
abstraction.

When both the logical design and the physical construction diagrams
are drawn as large size 'engineering drawings' and when all the
levels of abstraction are 'folded' into the source code as comments
then the 3 documents work in unison to greatly improve the speed

and understanding of the program by a 3rd party (and the designer
himself).

s DRIL

3.1 Introduction

'R80 SYSLOG was designed using high level control comstructs, The
FR80 only has an assembler so these control constructs had to be hand-
compiled = a tedious, error-prone process. As DRIVER will be a much
larger program than SYSLOG, it was decided to create a simple
implementation language (DRIL), based on theze control constructs,
which could be easily translated into FR80 Assembler source code.

DRIL is an aid to assembler programming, similar to but more powerful
than macros, rather than a full scale high level language. =~ A DRIL
program should therefore be the easiest, fastest way to produce a
correct FR80 Assembler program.

The aims of DRIL are

(1) a reduction in coding errors.

Cases, Loops and Boolean Expressions are difficult to hand-
compile accurately first time, every time.

(2) an improvement in the 'readability' of the code.
Assembler versions of control censtructs, es
boolean expressions, are not easy to underst
free format helps to highlight loop bodies.

ecially their
nd. DRIL's

n
4
a

(3) an improvement in the consistency of construction.
The tendency to locally optimise assembler code in SYSLOG
caused a lack of uniformity which made 3rd party understanding
more difficult.

(4) that the DRIL statements should reilect the 3-D flowcharting
system (section 2) making SWR and veliable control flow easier
to achieve so that DRIL, the Logic Design and Physical Construction
flowcharts all work in harmony.

The object program produced by the DRIL translator (section 4) is an
FR80 Assembler source code program because

(1) this simplifies the process of translation; the work of the
assembler is not duplicated by the DRIL tramnslator.

(2) the DRIVER program will be ftransportable to other sites in socurce
' form [8]. This is one reason why the DRIL translator attempts

to produce an object program which looks like a hand written
assembler program.

-

(3) this simplifies checking the translator.

(4) this allows incorporation of non~DRIL produced code at the assembler

source level.

(5) macro—15 programs can alsc be produced from DRIL source programs.

f
(&)
!

A translator writing system is used to produce the DRIL translator

because

(1) it is the fastest method of implementation; the effort is put
into defining DRIL, not into producing a syntax analyser etc.

(2) it is the easiest method as it builds on existing work.

(3) it is the most reliable way as an already proven system is being
used (Tree-Meta on the I1ICL 1906A [91).

(4) it is the most flexible; DRIL and DRIVER are likely to evolve
together and Tree—-Meta allows DRIL to be modified easily.

(5) it allows software development to explecit the power of the
ICL 1906A, freeing the TR80 for production work.

(6) Tree—Meta's flezible code generation system makes it possible

to produce translator-commented code, neatly laid out with the
source code comments retained, so that a DRIL cbject program

is an FR80 Assembler source code progrem indistinguishable from
a well written hand-coded equivalent.

An example showing the full range of DRIL source statements, their
flowcharts and the code they produce is given in section 3.2. An
actual DRIL module producing valid FR80 code is shown in section 4.2.
The individual DRIL statements are explained below.

3.2 DRIL Statements

progname

Zahn joop = termination guaranteced

\
loop————1

loop bedy
exit iff boolA=boolB

loop body %

| . .

& (:éxit iff done 779 times

loop body
& -
779 ' boolA=boolB

too many repts good exit

selective case statement

case +
” VAR1=VAR2 3 VARI=VAR2 & VAR2<#4D &
AT AL
VARI#VARZ VAR?2> #40 VAR3=0 not other 3
actionA actionk actionC default

integer case statement

case

| B

INVAL=1 INVAL=2 (INVALﬂ3 INVAL#(1,2,3)
ey '
l |
actionl action2 action3 default
-

if then else

S

if

(;Lg boolean (got big boolean

= 1
l !
then code else code

figure 3.1 3-D Flowchart of all DRIL Statements

- 18 -

3.3 Boolean Expressions

Control constructs neced powerful boolean exprescions to be really
effective. DRIL has a comprehensive implementation of boolean
expressions to encourage clear and exhaustive handling of 2ll
eventualities. This should reduce errors of omission and default,
and should improve the clarity of programs. Boolean expressions
coded in assembler are never obvious. The speed and accuracy of
-automatic encoding is a great improvement over the hand compilation
technique. DRIL has the usual boolean operators and a syntax which
copes with the lack of formal boolean variables; see section 4 for
the syntax and section 3.8 for a summary of the boolean operators.

-

T4 e/ 40021t 12080t tu 12840PC0avoratditaraniesn

O R e R N

BARa v fudea p haq s 1R aagga iRaagann e apagadagriai0Be3aus0gnan

S TN JHETR

R

gapiagr il
(B LU S H T R R
Busgn yu g
Bandpangayany
0038032974480
ganage sgyaup

DONL ARG TANAGBEL ABBIIRGNGRUARGEFINAIHB 1003838 5038033084 5N00AR 23138

S ERRAT]
COTIR AR SV

BOG1ENT

C L e O AR P A - L

P YR VAT
T S

- -
~NC

a

-
T

o+ 5

SRC 0% 6332vy Uk11

ALLDRIL

sPRUG PRIGHAYE:

Y ZAwN LaoR. =

SSEU2T ALLDRILCZY) paOOnLlED

uts sy 498

Jh 1 AROVTS

“ITH GUARASTFED TYERMINATIOWNY;

fMAKLOIP REPTL(H I 779
2Loub
U LGIP Bagy!;
JEXIT E1 _IFF BuoLA _EC 300L8;
b LO3P aEEYY
«ENIT 2 JHFF . DusE s JTIHES T
y L3232 338Y°;)
REPEAT
w1 B (GAuSESs: 9 GOCD EXIT (Q0E?
w1 82 o GANRSiES) T TCC MANY REPEAT

sEHOLY

Y7 END QF Zany rede!

47’ SIEUEEHTVE

CASE STATEMENT?;

JBLOCK 91Ty JEXITS CA,C8,CC,0F0
sEREY A FF VAR awE VAERZS
JEXIT L8 L UFF VARZ .6Y 240
$EXIT CC (IBF VaAR3 . ZERG:
JEXIT nEg [
LEPLLGS '
sSET €A ,CAUSES ¢ ACTIONAT:. JENDS
syl 6B CALSES o ACTIGNEY: LJENDS
+BLT BE G EAESES ¢ ACTIGNE® ! SENDS
«51T DF LCALSES BEFALLTT: LENDS
SHENPBE
Y/ END OF SELECTIVE-CASE STATEMENT':

Blagaey DOGOLEANR

+OF 61462:C3 .JEEARULY
AT IENIY JENES
ACTICKE': LENDS
ACTICN3': (ENTS
CEFALLT'Y LENJS

CeU A 30 4 L 0B AN

Y7 INTEGSEY DRIVEN CASE
23LuCK
ENIY GCASE THTYAL
CJEPLLOS
ST C1 JGRUSES U
3T €2 CNLEES T
+SIT 3 ,CAUSES 0
$SUT CF JCAVSES
L8}
Yy gag g JAMEGER SRYVIEN
[e 3 T U
i StOWS Lnagy anp
al® GO geR BZTY R
(yAR2 (LE 96C) AN
YAy H02ERY)
o TSIk
' THEN CA0E RODY'y
JELSE
g ELSE COCE supy';
2201
/A < U AR R (T L B

JENIR PHOANAME]

XX

Gisgea et 0 i alei: S gl e
SRR LR

IRER G AARTNGE T

R TR R E TR FIR P A R

'
H
H
.
J

TEUTINQY (RETAY

o:

Y SR, 5

figure 3.2

saa

1R
ARG
(U
TR
¥ 50
By X
VB

t2s et eia

AhOn aanga,
(R UL TR T SRR
IRTE FTSCR L RN SO R)

R R IR (AN B R |

C LR RTT T AR B

VRN e atan:
Pbud ey (g5

0% 218CV?3 AT 18,49,59

TeracAasab AT e s At

R R S |

LB ELTETECEUS R TR BIRE IR O T P
s el 5ty S paRay 2y
VHIHBBRUBAY 1y a1 RS L P 5
PHOBLORULES 123)Y 8P nuiER VG
LAAPRLABIEB I AANI AN IRR AT RRA G AR
IEBroROhpY 1501 s R unkipi) g
MYBLOAdert 15BN IR 0 BPR IR

Example DRIL Prog Source

R R T U S B DR ST RO

- 20 —_

e

AT A T I |

R A R Y O TR F T ST S TR S TR L T TR R %)

R O R R R R R I O e I W I SRR

GREECHECCOLLEBLEEEn T T L GITCCCTTE
it SREETIGTLACCECLRiGTER SO CERACET
€760 COMBOMCREEMGH ¢ T 00 TRECIGE L 6C
CCLEOLC UL " Sraaue "ol #Actoctce
e CCCCCLOEEToTLtCT -TACNEToCetT
U T O CEGIthE S
(ol of el et o W o e ot ot o af ol S (o el o el ol el oG (ool ol e e el & (e e ol of o o e ol o SR =(T ot o G Wl S 2 (G CL MR o Ll PR o o o ROl et el o @ B (AR

L% AL o O o o o o el o o o o o ok ' o o o oo o ol o o o o o o o o o o o o R R o o Wt o M A O
S R T

COTLECLuereiaag olice

1GSIN2T MITA A O A

COCST B0T o Ch
CCX - CITC @WECIe 6TR e

-

ey

BLISTING OF 365162V, 800 0BI(5/7) PROBLCEDR ON 29%JIV?S AT 18, 3G,1%
IVPAT 0N FRC 04 6432v3 UNIT U1 BY QOB *30STN21,METAL ON 294CV75 AT 18,40,59

OOCIIENT ALLVsy

fU3J0R]L PRCGNAME OBJECT FROGNAME

™
P
.
.
.

LW NG VNP AN O

DRIL ACRQ DEFINITIONS
INSERT RIBFLRIL MACROS

En0 JF DRIL FACROS

e
.
ae
as

DRIL FATAL ERRCR HANDLER

INSERT FATAL ERRCR HANDLER CGOE . X s
INSERT RIBIDAIL FATAL i figure 3.3 Example DRIL Prog Obiec

FATAL EQRCORS ARE:=

-
~
e e e T e R N S N

37 / FALLURE TOQ EXIT FROM BLOCKX
38 BLKERK, FATAL {DRIL3-d1T BLCCK BOTTIN AT=,BLKERR

END OF FATAL EQRCR MANDLER

/
/
{
{
!
/
/
!
/
/
/
/
51 / BEGIN USER CCDE
/
/
/
/
/
i
!/
/ a
JOZAMY LDIP = WITH GUARAMTEFRE TEQMINATI Y
!
/
!
i/

SET L9032 LIMIT CCUNTER VARIABLE . 4
A5 LaC (779,) . &
) TS

a7 DAC AREPTLIM

LX))

/
73/ STARY L)IOP
71 oL,
7¢ Lud? ag¢oy

~
~ e e

E£!1T?

74 SKPEUL BOCLA,BOOLB

r7 SkP / SKP 1P FALSE
74 1P €1 /I Xty E4

49 Luae BeoY

ExT Y
SYER & TEST Loy LINTY efwntha, (4490 [xi19)

1%
134]
s/
18
iy
iy
21
02
35
¢
XY
f)°
oy
(),’
9
120
1
142
113
134
15
10
a7

199
110
S
Nid
$13
154
) RS
116
Aie.
1138
149
120
121
124

152 WERTL N
gxp { S¥P TF fFALSE

SHUIN ¥ 7 oExtr €2
(f

LGP BeoY
‘
/

] REPEAT LOap
31 oLey

SITUATTIN &1
Ve

GaQd ExtY CJICE
FRLINY: ¥ / LEAVE ALCCK,LOCF

TYZ MANY QEPEATS
132, I ENU CF LLOCK,LOOF
END LUOP

END OF ZAMN LOLP

CSTART 2LuCx

/

!

/

{

/

/

!

/

{ SELECTIVE CASE STATEMENT
/

/

!

i/

! JHITR EXIYS CA,-CE. CE, BF
!

7

i

ExITY
SKPVE VAR1,YAR2
skp / SXP If FALSE
JHP CA VEXTE €A
!
/
7
I eI 2
SKPGT VARZ,(40)
sk / SKP IF FALSE
RE T 1 EXYT CB)
/
A
!
{ e
SKPZE VYARZ
SKP / SKP 1F FALSE
J1P CC A BTy 1GIG
i
JeP G# !/ EXIT DF
/ .
J4S BLKERR !/ SHOULL HAVE EXITED BY NOW
7
/
I S1TRUATION CA
ca,
ACTIONA
p JHp Le3 / LEAVE BLCCX,LCOP
/
I STTUATEAN G2
ca,
ACTiOnNB
3P LB / LEAVE BLCCK,LCGP
) 5
/
I SITUARE S S
(o)
ACTIONC
NP Les / LEAVE BLCCK,LCGP
/
/
/ S1TuUATION OF
DF,
DEFAULT
L339, # e EIF BULeIC Y. EORE
Lig, / ENC CF BLOCK,LONF
LA, /7 ENpCF §LOCK LOGF
/ &40 BLOCK
/
/
I B0 2F SECECTRVE CASE ST AHEITaRY
/
/
/
/
/
/O IHMTEGER DRIVEN CASE STATEMENT
A
/
/
] STARYT RLNCy
&
f SERSE AT GlGE

figure 3.3 cont'd

117
134
14y
199
§I1
teé
all
194
195
§0¢6
107
i0d
joy
2
2N
22
293
214
20
26
21?7
20
219
210
an
r
2!

245
260
- ¥
248
LY
250
251
252
253
256
103
256
2517
2538
259
cal

252
253
24b
245
hEY)
2417
A%
2AY

279

i 4

275
274
225
276
radig
2?3

T

skeaf 1Nt
JH2 1 L1
LAE e
TCA
TaD CRLN?
TAD INTVA
$'1A
Ny L o(ne
PAX

VAL (1)
fOTAKE LEFAULY JF X3
)

)
A / GFFSEY«DEFAULT <3 Fda 0K

/O YAXE DEsAULT »x9

me i CpElxR ¢ IXDEX REG DESTROVED aY CASE
/ TABLE OF ADORESSES OF ,SITLATICNS

(87, JHe LR
=)
£¢2

/) JERAULY SITL
\30, €C0
! EN0 JF LEXIT
/
4
V.
!
/ SITUATION (1
[R5,
ACTIONY
JMP LRE
/
/
/7 SITUATION €2
c2,
ACTIONZ

JHP LBY
/

/
!/ SITUATIIN (3
c3.
ATTICNS
JMP LBYD
/
/
/ STTUATION (3
CD:
DEFAULT

JM§ BLKERR

/ §ROULE NEVER DJE EXECUTED

ATICN

LCASE

/ SHOULD MAVE EXITED 3y NOW

/ LEAVE BLCCK,LOQP

/ LEAVE BLCCX,LOCP

/ LEAVE BLCCX,L0Q¢9

LB10, / END JF BLOCK,LCCP

L89, / END
L83, / END
/ END BLICK

1F=TREN-ELSE

NN NN NSNS NN NN .

‘CF BLOCK,L00F
CF BLOCK,LOOF

END OF INTEGER ORIVEN CASE STATEMENT

$4OWS UNARY AND BI%ArY BOOLEAN QPERATORS

SKPEN VARY,(77)

SK?

{ FALSE =~ TRY NEXT

JHP LB11+1 ! YRUE
SKPLE VAR2,(999,) :

Jith 1812

/ JHuP 1§ FALSE

SKF{L VAR3Z

L81¢,

/ JAND 1§ FALSE

L3311, / L8111 IF TRUF

JiP LB13
! THEN
Ty CLE
JE LBt
/ ELSIE
L8958
BUSE WCRIE
B4,
EYMD OF [F

”
]
P
Laad
A2
<
o
<
~

€¢0 OF PROG P

AN S NN N NN N NN ON NN NN N NN NN e

-
b
3
=]

/ IMP IF FALSE

8J0Y

BJDY

END OF 1FP=THENSELIE

ONSTANTS VARIARLES

PCINANE

= 28 =

figure 3.3 cont'd

3.4 LOOP

The LOOP is illustrated b? lines 7-21 of figure 3.2, and by the flowchart
equivalent in figure 3. Loops are infinite unless the loop body
contains one or more exit statements (scction 3. 7 nen 2 LOCP 1s
terminated by an exit _the program 1s said to be in a particular q1tuat100
determined by which e evlf caused the terminatiom. The occurrence of a
particular situation causes the execution of a list of statements,
the epilog code, associated with that situation by the <sit name causes>
statement. This mechanism facilitates the handling of multiple exits
from a LOOP and is called the Zahn construction, see section 3.4.1.

3.4.1 The W} Times Problem

Why does DRIL not use the conventional DO-WHILE and REPEAT-UNTIL
statements? To cope with the Ni times problem [6] and to guarantee
termination (section 3.4.2) are the answers. The N} times problem is
illustrated by figure 3.4. The routine prints a string terminated

by '>' on the teletype. To use a DO~WHILE comstruct would require
repetition of the 'get byte' code, figure 3.4a. To overcome this
overhead a more general form of loop is required, figure 3.4b. (See
section 4 for the DRIL version of this routine.)

get byte loop......._.5
00 l %et byte
while byted'>' exit if byte='>'

print byte print byte

get byte
exit exit
figure 3.4a figure 3.4b

Ni Times Problem

o

3.4.2 Proof of Termination of Zahn Loops

In a reliable program, all loops of finite design must be shown to
termincte. The only way to guarantee this is to include a maxloop
construction, lines 9 and 14 of figure 3.2, which limits the number

of iterations performed. This mechanism not only guarantees termination
but, with sensible repetition maxima, is a valuable error-checking
facility. The telastype printing routine, figure 4.3, shows this
reliable loop construction, aund SYSLOG had cause to be thankful for

At An amendment to SYSLOG, enrelated to TTYOUT, erroneously set the
«ASCII operator to 6-bit instead of 8-bit mode. The end of string

was not detected as GTSIGN held an impossible value. Instead of looping
infinitely, wearing out the teletype, SYSLOG stopped gracefully after 72

P L

characters and printed out a meaningful error message. The error was
spotted immediately because the only way a valid string could cause such
an error was by TTYOUT failing to recognise '>'.

The actual SYSLOG version of TTYCUT looked like figure 3.5.
100p------—~—-~--—I

get byte

et ig. b

exit if 73rd time

]
print byte

1f=
exited 73rd time

€YYor message

next

figure 3.5 SYSLOG Loop Construction

Figure 3.5 shows how the general LOOP allows multiple loop exits
(impossible with DO-WHILE), but it is inefficient and tedious to

follow each loop with a CASE statement to determine the exact cause of

termination. The Zahn loop [4,5,6] is a construction in which the

CASE statement is made an integral part of the LOOP, forming a loop
epilog. The flowcharting symbol '#*' now defines the end of the loop
body and the start of the epilog CASE statement, see section 3.10 and
figure 3.1, The Zahn loop greatly simplifies the representation of
a reiiable loop and this encourages its use. DRIL insists con an

e?ilog for every loop. See figure 3.2 for the source code form and
figure 3.3 for the FR80 Assembler implementation.

3.5 Block & Cas

v

A block is a 1ist of statements which are executed once. Blocks are
simplified loops and must have exit stateme nt(s) and epilog code.
A fatal run-time errotr occurs if control reaches the epilog word. A

major use of the conditional block is to program the selective and
integer CASE statements. Thece ave shown in lines 26-40 and lines
46~57 respectively in the exarple program, figure 3.2.

Note the difference between the flowchart of the CASE statement,

figure 3.1, which shows the paraliel CASE, and the serial zelective

CASE [3) encoded in lines 26-40. The parallel flewchart forces the
omplete and mutually exclusive conditions to be specified. The

LRLL coding, though efficient, implicitly defines the cases and is

more prone to errors of omission and default. This neatly demonstrates

the advantage of parallel thinking.

3.6 IF-THEN~ELSE

Although IF~THEN-ELSE is a simple form cf the CASE statement, it is
implemented specifically because it is such a natural mode of expression.
As long as it is not nested, the J-T-E is clean and easy to understand.
Nested I-T-Es breed errors and obscurity [3]. They should be replaced
Ly CASE statements whose boolean expressions clearly define the
conditions which allew a given action to proceed. The IF~THEN form

is not allowed as a failure to appreciate the implied ELSE can lead

to errors. Null ELSE clauses must be explicitly coded using the

null or ok statements which generate no code but give greater clarity

to the source program and encourage exhaustive analysis. See figure 3.2,
iines 26-33.

3.7 Bt

The EXIT statement causes loop termination and the execution of it
associated epilog code. There are four variants of this statement.

s EXIT <situation name>;

2 <
2 EXIT <sitname> IFF <boolean exp true>;
3. EXIT <sitname> 1¥T DONE <var> TIMES;

4, EXIT CASE <INTVAR> OF <sitnamel>,<sitname2>,...DEFAULT <sitname>;

?

This comprehensive range should encourage the construction of reliable

loops whose terminatien is guaranteed, and of CASE statements with clear
and comprehensive boolean expressions governing their actions.

2bypss

3.8 String

FR80 Assembler directives and statements, including comments, are
enclosed by string quotes. The reason for the quotes is that they
allow free fermat input of DRIL programs. The advantages of indenting
source statements are well known. Careful use of the space character
will produce a2 neat DRIL source program and a neat object program, see
figmee 3.0, 3.2, 4.1, 4.2, -

3.9 DRIL Summary

Figure 3.9 is an informal summary of the present DRIL statements.
Reserved words are typed as in Algol but are input as <dot><upper
case reserved word>.

prog <ID>;
maxlo;p <ID> :=<num>;
Loop
exit <ID>;
exit <ID> iff <BOOLEXP>;
exit <ID> iff dome <ID> times;
xrepeat
8it <ID> causes <LIST OF STATEMENTS> ends;
endl;
' /THIS IS A COMMENT';
' LAC VAR / FR80 ASM STATEMENT';

block with exits <LIST OF IDS>;

exit case <ID> of <LIST OF IDS> default <ID>;
null; :
ok; |

epilog

sit <ID> causes ok;ends;

endb;

if <BOOLEXP> then <LIST OF STATEMENTS>
else <LIST OF STATEMENTS> endi;

endp <ID>;

figure 3.6
= P =

3.9.1 DRIL Boclean Operators

bhinary
unary
&t 1t
Z8Y0
ge le
- norzero
eg ne
and
or

<decimal number> ::= <string of digits>

<pctal number> ::= fi<string of digits 0-7>

3.10 Tlowchart Equivalents of DRIL Statements

; =
o~ l -
repetition termination conditicnal
exit
51 loop
| N
Bl S1
! bl
. b2
|
Sn S2 :
Sequence g
b1 b2
S3 i MSS

Zahn 1ooR

...28....

statement

action

C a8 € —rrm st e - = - Statell

S

D2 < P State2l
S1 S2 Sn State22
L_huh“
CASE/IF ' Ttate3l
State32
State 23
REFINEMENT

- 29 -

4. TREE~META PRODUCED DRII. TRANSLATOR

4.1 Tree-Meta Implementation of DRIL

The DRIL translator is produced by the Tree-Meta compiler—compiler

for the reasons given in section 3.1. The Tree-Meta definition of

the DRIL language is shown in figure 4.6. This definition is a prototype
which is being used to develop DRIL and the cross—compilation system.

To date several small programs have been written in DRIL, translated

in the ICL 1906A and successfully moved to and run on the FR80. The
prototype definition does not take advantage of such Tree-Meta features

as semantic checking and ohject code optimisation. The checking by

the TR80 Assembler and sympathetic use of the source language respectively
make up for these gaps in the implementation, which can be plugged at

a later date. Priority has been given to demonstrating the feasibility
of the DRIL philcsophy advocated in this paper.

4.2 TTIYOUT - A Working Example

TTYOUT is an FR80 routine to print a string of characters on the
teletype. Hopefully this example demenstrates all the points mentioned
in this paper, and in particular

1. the harmony between the Logic Design, figure 4.1, the Physical
Construction, figure 4.2, and the DRIL source program, figure 4.3,
plus the smooth transition through to the DRIL object program,
figures 4.4, 4.5, which should resemble a hand-written program.
The smallness of the example makes the Physical Constructiou seem
rather artifiecial.

2. how the refinement in the Logic Diagram is 'folded' to produce the
source and object programs' comments, lines 24, 26, 36 of figure 4.3
and lines 98, 100, 122 of figure 4.5.

3. that this nodule is an exampie of the N} times problem (section 3.4.1).

&4, how every statement and module has one entry point and one exit
point.

Sk that all DRIL loops are Zahn loops, which make error handling and
proof of terminatiocn easy.

Gis how the number of loop repetitions is gcverned by lines 12, 22
figure 4.3

7 that the loop can be proved to terminate, and hence the module itself
can be shown to always exit correctly.

8. how the free format of DRIL source programs allows indentation of
loop bodies, lines 14-46 of figure 4.3. Compare the source and
object programs; see how the free format and the string statement
are used to produce a neat object program as well as a clear
source program.

9. how much clearer is the source program's IF-THEN-ELSE (iines 27-34,
1

figure 4.3) thar its assembler equivalent at lines 103-119 of figure 4.5.

..30.-.

10. how source comments are passed to the object program.
11. how the exit statement and its associated situation are implcmented.

12. how assembler statements are passed from source to object programs
via the string statement.

With the aid of the Tree-Meta manual [9] it should not be too difficult

to follow the translation from source (figure 4.3) to object code
(figure 4.5) according to the DRIL definition (figure 4.6).

4.3 Output from the DRIL Translator

The DRIL translator is run by a George Job Description, parameters to
which allow the various output listings to be on paper or microfiche.
A large DRIL program can generate over 100 pages of source program,
object program (figure 4.4, 4.5), DRIL macros, fatal error handler and
current Tree-Meta definition listings, all cof which occupies less than
half a microfiche. Microfiche are the key to a manageable project
history (section 5.2).

The object program file has appended to it the scurce program, the

DRIL macros and fatal error handler in such a format that RET's program
[101 can be used to create an FR80 readable magnetic tape with cach of
these items as a separate file, Creation of such a tape is parametrically
controlled in the Job Description.

I
(€8]
—

i

TTYOUT

.

(;xit if 73rd repeat

print byte
L\\j
check valid character

l\

print byte on TTY

step buffer pointer

5 , I -
(‘yte='>' (%Srd repeat

o Yoree
3\

il}*J

exit to caller

3 . ,
figure 4.1 TELYOUT Logic Diagram

'line too long'
error message

not (0<byte<177)

i
if : |
(ngyteSI77 (A
] L3
OK

change byte to a
'?' as invalid char

suspend program till I/0 complete

TTYOUT

entry point

code to print string on TTY

exit point

local storage

comments on global
variables referenced

figure 4.2 TTYOUT Physical Construction

= 38 -

A A AT MM MMM T e MR BTN M PO MM A MO PN MMM 43
0T 1l At Ar R MM SEA R AT R MALE SALM AU MALATAL M A RIAL S P ACLE M M A 1R 0 e

BOAACMAC M AN e pop b B
M R Y b e
MM MM MMM A R R AR N
16SIN2T, TTYOLT R 3TN 3 TS SN 0 M AT LR AL M AR M AT ARG v M A MR M MM MY M AL AR M A e B

Mppmnap MAEMMMA A A S AL M A MA VM M A M M MM A MRS M M M b B et e M P MM i

DML P U AA YA M M R MM U B
BEA M AL A MMM MM MM MM MMM MMM A GAALMMAAIY WA MEA MM MMUMMMMAMAM Y UE MMM Y
MMM M A A MY M A MM MM A MRS MMM MM MMM AR MM MMM MMM A SO TR R RN AR M M
ngnunyphyﬂmyyyyqpMqﬂqppumHuHMNHﬂsﬂﬂﬂunvanuuqugyn#xMHHMHM?HvﬁhMVM“HNNuMMHFHHMMMHNMMMNHHnvwNMMHMMHHnMMMMMMMyMMNPNMHNMMN

SLISTING 0F 1GSIN23.7TY0UT(Y/Y FRODUCED ON Y7NOY2Y AT §3,40,23

EQUYPUT ON SRC &4 S832vA UNIT U164 BY JCB *3oSINZY,TTYOUTY oM t5HOVYS AT 21,13,28

POCURENRTY TYvour

0 .PROG TTYOQUT:

1

2 Y/ ROUYINE 10 PRINT STRING ON TTV':

3 07 SIRING FOINTED TO BY T3UGE®?

4 Y/ St1aING TERMINAYED HY > '3

§ Y/ ONE CHaR PER wOAD':

6 Y7 INVALID CHARS PRINTED AS ? *;

7

3

9 'ITYQUT, XX / RCUTINE ENTRY PCEIXRT'S .

10

11 ¢/ LOGP THRU THE BYFFER, MAX 73 SO NOT OfF END OF LINE'?
12 JHAXLO0P MAYT?3 gz 73

13 .L00P

14 JHITH JEXITS EQSTR,TMNYS

15 :

16 Y] GET BYTE':

17 LAC ! TBUFF';

18 ! TAC 8YTE':

40

20 JEXIT EOSTR JIFF B8YTE _EQ GTSICNI
21

22 JEXUT RNy (UED QONE BAXT?E [TUMES:
23 -

24 Y/ PRINT BYTE':

Z5 .

26 Y/ CHECK vALID Cdar':

27 wBF CBYTE G FUT 0R CBYITE LT [0 E
28 JTHEN A

29 Y/ CHANGE 7O ? f3

30 4 LAC QMARY?;

31 ¢ DAC BYTE":

32 +ELSE

33 .0K; |

34 ENDIS |

35 ,

5 g 1T 0N mTYes -X3 ~rp T DR
L ' Lﬁc’;”e.? figure 4.3 TIYOUT ‘n}(L Scurce
zg L TLS': Prog Listing
&0 V/ SUSPEND UNTIL 170 FINISHED';

48 ¢ TSF':

ad * e =T

63

A '/ STEP POINTER®:

45 ! 1§27 TBUSF';

[NGP*'Y

L7

43 REPEAT

69 51T EOSTR ,CAUSES ,0K: ,ENDS?

50 +EIT THNY CAuUSES ! JMS TCOLNGH: LENDSS

S1 LENDL;

52

58, JHp 1 TTYQUT / EXIT TO CALLER":

5S4

55

54

57 t/ LOCAL STORAGE': -
53 tBYTE, 05

5% YGTSIGN, ASE BN VS

60 1GMRY, <ASETEIVE v

&1

62

63 '/ GLOZAL REFE2E%CES':

66 */ TRUFE - 2OINTS Y0 5TART OF SYRING, CHANGED BY TH1G nmCUTINE'S
&s 1/ TOOLHG = PRINTS E20C0 MeSSAGE, LIME YOO LONG';

&6 .
47 ,' .
£3 _ENDP YTYCUT;

59

70 eanes

71

nppuynyyqannMpuMuquppvu.-uqq
PteMongs o

e
et

MMM NN MU MMMY MMM MMMMM MMM YA RM A MUY MU A MMM BN Y MM MMM VMMY N MMMV MMM MY MM MMM MMM MY
TEORRO P MIACS O R PAN 2N KPS SE MM IS A PR D AP M A M L MM UM g MM VM VMMM MUY MMYMMY MM MY UAMIAM MMV SR M MMM MY M
PM MMM SRS L h MOMUP M N AU E Y M UME PN MM N R MY
MMM B 0 00 00K MM NI S B2 001800 P T MMAMY MM M2 " MMIBMNMIPY N R RMME MM MMM RO SN MMMM R WM
LS B O AL ApRUAM AN, v 5 3 MR AN MBI B MR AR EMUN N AR N U MNR AN MMMV MM MM e v b i MR M b
HMMMY e p) quuvnuuuA“nqnu4uuxqunv‘uup»q,uupqu»uuuuuuuunquudpuuyuvvqm vuvmmuypnpyypMNMUMUuuyppuvkuuynvpunvuuuy,a.vu N
PMMMY MR AMMMMMM M P A M A MM M L e MM P RN MU A MMMMM MMM MRS M NS N VMM VUMM MMM MM MMV VY MMM MMMM MMM PSRN PN e)

R R R L

MMM AN M2 u Mg A gy

AR A0 N I A

ooy T R Y I R R Y]

f.tga.agnoaﬁnoatan.cawn.qc.-ta»tut».,taﬁ\toy«uavtQ"-ta'01010t9&ntu00a90ﬁ0¢.~vOtattouutﬁntn&ti0aottwanoa‘oaao'aoﬁ'cian1

’#Othonbbﬁléftitbh.lhtic.A.:k‘lhlwbbo.th.lskeﬁab.lﬁloaﬁloﬁlbataﬁb.hﬁ.l“ai‘.a.ﬁlkeﬂiié‘n(..‘QQQ.OO‘QOQﬁoQSQiQdﬁtﬁﬁﬁﬂdﬂi?

~ 34

DRIL EffthOG
—

object FR80 ASM prog

Ty

DRIL macros inserted here from file

DRIL FATAL error handler inserted from file

run time errors

user code from DRIL source

constants, variables space allocated

appended is DRIL source so gets passed to
FR80 for microfiche production

listing of DRIL macros passed to FR80
for microfiche and incorporation

listing of fatal error handler

TTYOUT DRIL Object Prog Physical Construction

figure 4.4

L

ANKENNUNSRNNN AR NN HRNNNERN NN NS R N R S RN N B R AN BRI RSN AN RA R INA N RN RN AN AN RN N A L AN NS AR R R A NN AN O NN RN X
MARNNELGHNA L RN A SN TN WL SR NN S NN TN RS v SN AR S s
k'\nnhxNw\uunhwknnﬁhuh\\\u\;\\gashﬁ~&\~%h\n\\\\n&\u,\\N&hn\\

tGSIN2Y, tTyOuT A ENSRANNANANAS S AN SN A SR NS AN NN NAN L S A NN A SN N Y

: . HANNKNENALRNNRNE NS NANNANRNA LA SN NA YL SNANNNR NS NAA LA NN A NNEAARN

ENAARALEAN SR AN ANA N EA NN S AAN L AN U N ARNINNRNARRA LA SN VMG S NN NS
NNNH\VNNNNNhH\NVﬂ\NN¥NNHNNN\NUNNN\N“\NNRNNNNNHHNhNhﬁNMNNhH\hﬁ\N#HHNSNﬁshhhhNMNNNN&NMNNNHNNNNNNNN&NNN&NBNNNH%\&RNHNNnh\au

FLISTING OF $CSIN21,.TTYQUTCBJ(IT/) PPCDUCED ON 13HOVZY AT 29.06,%2

SOUTPUT 0% SRC AR GB32VS UKIT UG BY JOB 13GSERAT.TITYOUT! ON 41800V7S Ay 2%,13.36

DOCUNENT TTYOUTOAJ

0 /0BJi0RiIL TIYOUY QBJECT TTyYouY

1

2 .
3

:‘ v

S) 3 .
[:
? Sl R R A RS P R R Rl A SRR A R R 1 5 R

g 5

Q s

10 DRIy MACRO DEFINITIONS -

1

12 LINSERT ROBJORIL MACRUS i

13

i¢ END OF DRIL XACROS
59

DRIL FATAL ERROR HANDLER

-
o
O R e L

3C / INSERT FATAL ZRPCR HANDLER CCEE
31 JINSERY RCBIDRIL FATAL

32 4 :

33/ |

34 / FATAL ERRORS ARE:~ .
354 : :

6 7 figure 4.5 TITYOUT DRIL Object Prog
37 7 FAILUFE TO EXIT FROM 3L0CK

TSt
3% BLEERR, FATAL (ORIL)=HIT BLOCK BOTTOM AT=,BLKERR Listing

END OF FATAL ERAQR HANDLER

BEGIN USER CO0E

ROUTINE TG PRINT STRING ON TTY
§1014h6 pOlnNTED TO BY TBUFF
STRING TERMINATED EY > &
OKE T=a® ©fe wged

INVALID C4ARS PRINTED 4S5 ?

TYO0UT, XX / RUUTIKE ENTRY POINT

LGOP THRU THE BUFFER, MAX 73 SO NOT OFF END UF LINE

w
(v
R e T R R R

SET LOOP LIMIT COUNTER VARIABLE . N
LY LA (73,9

49 TCa

70 DAC ¥¥AL73

/
d
! STARPY LGOP

B L1V
/ LHITH JEXITS BOSTRs THMRY
/
/ GEY AvTE

78 LAC 1 TBUFF
79 DAC BVYTE ’ d -

Extr?
X S¥prQ BYTF,GTRIUN
L} Srp ! Skp IF fFALSE

- - eeaen 4 wwe? pasen

- 36 -

R?
AR

9
o1
02
o
o4
o5
94
°?
Q8

100
169
102
103
104
108
106
107
108
109
110
RIS
112
A3
194
T4iS
114
117
118
119
120
121
122
R
124
125
126
127
128
129
130
1311
132
133
134
135
136
13%
123
139
149
141
142
143
14
145
146
147
148
149
159
'1Sh
WS
153
154
55!
156
N5
1538
159
140
161
142
143
154
145
146
147
148
149
170
171
e
"y
174
175
176
V27
175
s
186
131
182
143
1R4
1A%
1r4
tn7

V34

Extr?
152 MAX73
Skp /i Skp IF EALSE
JHp THNY I EXTIY TMNY
PRINT 8YTE

CHECK VALID CHAR

- LN N NN N

iF
SKPGT SYTE,(177)
Skp / FALSE - TRY NEXY
JMp L8241 ! TRUE
SKPLY BYTF,(0,)
182, / L8241 IF TRVE
JHp LR3 / J¥P 1F FALSE
/ THEN
/ CHANGE 10 ?
LAC QMARK
DAC BYTE
NP B4
7 ELSE

Le3,

/ OK,NULL STATEMENT
L8B4, z
/ END OF IF
/
/
/ PRINT OGN TTV
LAC 8vTE

YL S

N

SUSPEND UNTIL 1/0 FINISHED
1SF
IMp =1

-~ -

SYEP POINTER
182 TBUFF
NP

REPEAT L00P
Jug L8l

/ OK.NULL STATEMENT
. JMP LBS ./ LEAVE BLOCK,LOOP
V. .
/
/ SITUATION THNY
TMNY,
JMS TOOLNG
L85, !/ END OF BLOCK,L00P
/ END LOOP
/
/
JMD 1 TTYOUT / EXIY 10 CALLER
/)
/
Y
/ LCCAL STORAGE
8YTE, 0
GTSIGN, JASCIL/S/
AvEK, +MCE PV

GLORAL REFERENCES

ONSTA4NTS VARIAALES

END USEDQ CCDE

N, RN N MM MM OSSN NS M N NN N .

/ END OF PROG TTYOUTY

/

!

START

/$RCIDRYL TYYOUT SQURCE TTYQUTY
/

/

LPROG TIYCUTS

/

P/ ORQUT LN TH PRAINT STHRING ON

i dh

STEP + TEST (O0P LIMJT COUNTER, (AND EXITT

TBUFF = SCINTS TO START GF STRING, CHANGED BY THIS ROUTINE
TOCLNG = PRINTS ERRQR MESSAGE, LINE TOO LONG g

37

figure 4.5 cont'd

s 2 Lhalidre SANED NE 9V wotieFan
Vg W STRING TERAYVATRER U¥ w0 9
tay 3¢ oxg (23 Pra wnapt)
102 ¢/ INVALLO CHARS PRINTED AS ? *;
W2
tei /
8% TITeeUY. XX /7 ROUTINE ENTRY 20INTY} .
1498 7
107 1) LCOP THRU THE BUFFER, MAX 73 50 40T QfF ZIND OF LINE®)
108 ,MAXLOO0P NAX?3 3w 7%
199 ,1C0p
239 JUITH O LEXITS EOSTR,TMNYS
&N/
202 Y/ GET BVYTE':
2a3 v LAC 1 TAUFE';
200 ¢ DAC BYTE!;
s 7
294 JEXIT EOSTR (IFF BYVE EG GVSIGN}
297 /1
298 JEXIT TMNY ,IFF ,DONE MAX?3 ,TIMES:
209 ¢
210 '/ PRINY BYTE'?
213 2
e Y/ CHECX VALID CHaa®;
213 +1F CBYTE G ¥N7P) JOR GRYTE LY @) .
214 CTHEN
218 '/ CHANGE 1O ? ¢
216 L LAC QMARK'Y;
1 ’ DAC BYTE'} =
238 o AT
249 .0%3
220 JENDYS
28 ¥ :
222 ¥/ PRINT OH TTY'}
25 ¢ LAC BYTE®;
226 LUSYs
&k 7
£€zé P GUSRCRY UNTIL TG Srplomensy
227 Y TS 3
28 JMp =17}
229 /
230 Y/ STEP SOINTER?;
22y o 182 TBUFF';
a3 NOP':
&34,
234 .REPEAT
235 = LSIT £0STR .CAUSES .OK: LENDES
234 JSIT THMNY _CAUSES * S4MS TOOLNG'; ENDS:
237 LENDL;
LAY
238 ¢ INE 1 TEYOUT / EXIT 70 CA{LER';
26l 7 : o
26y /
a2
243 7] LOCAL STORAGE':
248 18YTE, 0§
245 YETSIGH, cABIC Lo 45
46 1QMRYK, AT %
L7 7
248. 7
249 Y/ GLCBAL REFERENCES'S
250 v/ TOUEF - DOINTS 710 START OF 5TriNG, CHRANGED BY THIS ROUTINE'S
T R TOOLNG = ORINTS EARCR MESSAGE, LINE 100 LONG'}
262 ¢
53
2564 LENDP TTYOUTS
eIy !
29¢ erwe
Sl
258 START
256G [e08:0RIL MACECS
A0 4
241 4 &
é62 / CItL MACRO DEFINITIONS
253 7
244 /

265 1 COMPUTE A«8
2A4 ,DEF MIWuS 4,8

247 Lwg B

248 (AL}) =
249 TAD A

270 TERM

2L I

27 W

2?73 / SxIP jf A>3
274 LEF SKpGY ¢,

Jny “INus 2,8

276 $PA I SuA

277 resy

27% /

279 f

IRO J Selp iR A»=d

231 ,DEF SHPGE 4,4

232 MInys A.8

231 1Y

2Ry ,TERm : = '
2na §) : figure 4.5 cont'd
224

287 | Se{d 1P kel
2AR ,0EF S¥afqQ A,D
JEY Lag &

Ju0 SAD R

s 20y Sxp
262 ,Teav
vy /
204 /
295 4 Skip 1F aslcw0
Ve JEEF SKPZE A
oy Lag 4
Jva $2a
290, TERV
Ing 4
SN
- 332 7 SK1P 15 A NONZERO
)3 .DEF S«pNZ A

3ng LaC A
s SNA
306 ,TERM

a7 ¢

308 ¢

3N0 / Sxip 1F A HE B
310 ,DEF SKDNE A,8

ST LAC A

312 SAD B

313 TEaM

314 ¢ ¢
345" 7

316 /1 SKiP 1§ A<sS

317 .DEF SKPLE AsB .

318 MINUS A,8 . .
319 SMA 1 SZA

320 .YERM

321 / . . :
322 ¢/

323 / SKIP 1§ AcB

324 .DEF SKpLY A,B

325 MINUS A/B

324 SMA

327 .TERM

328 ¢/

329 ¢

336 ¢
/
s

m
x
<
o
k<]
—
-
z
2
(2l
b5
o
w

331
332

NNNNNVNVNNNNNWNNNHNHNNNNNNNNNNNNNNVNHVNNNN*VNVNNHNNNNNNNNNNNNNNNNNNNNNNNNNSNNNNNNNNNNNNNVHNNNHNNNNNNNNNNNNNVN"NNNNNNﬁNﬁN
NNNEANSNVENYNNMRE NN N GNSNA YL SN AN NS A A NNV NANNNNEN NN RGN NUNANS NN SAN YN NNN NN AN NN NN NN NNNNNNN NN U RO NN S IS NAN
NNHANNNNNNNNNN NN NN AN TSN GNN SN N NN GO NN AN NS NN NN S SN NN VNN AN NN NN NN NN NN NN TSN URNSN NN NN NN ANNA NSNS NN N
HENNKNNNNHYRNYNNNNNV NN NN SNNNEES NN AN N NANSN U NNNNANNN S YRR N NAS NN NN NN NN AN AN NN NN NN N YUNNNGNNN AN NN RN YN
NNNANNNENUNN NNV NNV UNRNA L uN TN N LSS NUANNNNANNNNAN S ONMNNNN NS NN NGNS NN VRSN ANSAN SN NNAN NN NN YN NN NANS SN VAR NN NA A
NNNAR NNV N G NESN U N NN Y NSNS N RS O NINY VNN SN S AR S NN AN EA VNN RN N AN NN S SN YN SN YN YNNN NN NN N AN RGN N N NN
ﬂNNNNVﬁVﬂHNVMVVVNNNNWHﬁNUNNNNNN?\ﬂNHN?&NNNN\M&NNNGhNﬂV\NNNNNNHN&HNNNNNNNNN~\NMNVNNH”NN\NNNNVNHN%NVHNNVNNNNN&NNNQNNHNNNNH

figure 4.5 cont'd

.-

W

R RN AN BRI D RGO RBRRD LA AL IR BTG R UBEHDTAI T MR DI B IeFATS PAE ¢ TEY oY eXaveda EEFeRUR EARSEAE 3 EVARE A ALV ERTARARLE SN RATARRE SR TR ER T N ReR et of of tF AT PREATAAN EI0 o FATAR PATRIA NS
CAGQDRECCENOLCCLOCOCELANICNNAQACCANN0NACIAGACOIANAT AN

OQOCAQNQCA RO ANNCICVOCHILLR0AN0N000000QRCN0AC 0

$GSIN2Y TTyOuTY P LA AR U R CERRS TR EARR YR (Ret oa T o X SRRV EATs FeRutel ohil s Tak T aXe TnfoX YOS R TATAR S TN RURT o QTAT TR CR

i COGO0UAYOACGULTLReCORURCUdCNEESNECOI0000000000C100LD0C00TO

) ocuvoooufrgng'CCCUOUOGOOJ\JDF\000VGCQOOOCOOﬁCﬁCCC)J“C“FCG?\
000CCH00IRCOCANNR0NNNVNGVINOVTNCEOC0N000000CRLOG00LQ000CGILYNOCLQOCACCHNLYI00QLC00000C0ICCOL00000030000000000000200CCCY

ceétnenco

SLISTING OF 1GSINOY TANDEFC(AN/) PRODUCED ON 18MEV?S AT 14,27,58
FOUTPLY 04 SRC 4a G332vA UNIY 14 BY JCB Y GSINZYLTTYOUT? ON 16NOVYS 47 27,146.08

pOCUMENT TRNCEF
JRETA DRIL

DRIL = ' . 306! .10 *3f :pw
STMNT o S{ STMNT «
& N0 SN0 VY e

STENT = (LOOPS / BLCKS / IFTES / FQESS / wuL1S / 2
Exitis 7 Sihinus 7 aktis f BARGS 5 @ \

LESTS = SITMNT ¢ ULISTS sbisTCl2) /7 EMpTY spfsTCLY]) @

PP s ST G S T S e
MNCUVBELRN=DOMNYC AN S

MAXLD 2 ! NAKLOOR' L ID Yixt pRINMS tMANLC(2)

NN A
-0

Loops = ¢,1002!

5 Lists
Y REPEAT!

25 EPILS

NN
Eam iRV]

2
n

X1 EPILS = STMNT (EPILS :EPILCL2) / ,ewpTY :gp2LCL1])

35 sI1TU V.SETY gD GACANSESS iHS?S ', eN0S’ s THTE

73
L3

39 5iCkS = *,8L0CK’ . ' 53
4C LISTS 8 : e s

o W i figure 4.6 TREE-META Definition

42 EPILS | of DRIL

43 ©ov.ewss! T —
44 $BLEKC(2) §

48 TETES ¥ YUY BEXeS T rRENT crsrs VELSEY LyeTS V. ENSEY o 1ETEELI ¢
SO0 BEXPS = BANDS ¢ '.CPp' BEX>S :BEXPC(2) / .EMPTY :BEXPC{Y)) :
S2 BANDS = CONDS (*_AND' CONDS ¢BANDCI2) / LEMPTY :BANDCL1])

LETY pRIME T 2VETY uSxETC 3]
<OEL pRiMS PYGCE" wsKpTEES]
LEQF patMs ersgr SBHYFICL3)
JNEY pIIvs tINE' 1S(PTC(3)

S4 CONDS = (PRIMS (
L}
Ll
L
58 YLLE' oniMg #TLE' i5xPTC(3]
L}
'
L]
1

»

LI pigrdmst g vy $S¢PTOLY
2 ERIOHY 15xP28l1)
LNO%ZER0! 13xPN2TY)
Y* :BEAPCIVY D)

P T N

52 (Y 9Lxes
Ba
- I 4
3 & 3

A4 pRIMS = (1D sIDEN
AS « BU Ty
Y] fg' NUM sUNUY

70 FR8O0S = SR :1FRBOCLYY ;

74 NULLS ¢ (PUNULLY / 'LOKT) 4 PGRAANULL STATEMENT' gNuLLC(9) H

L]

{ S HIpEY I T 00nEY w10 Y TTNESY. nDOMECTUT oEATYCLEY
A0 agyps gExtrCcid)) /.

81 LJEMPTY gxrret1l - .

A2 F BOASS: SeXtTeety y ¢

A% BCASS W U, GAGFY 0D 1«GEY SIS LORPAULYY 10 wECASGUY)

= A =

4
Ay
@
Q0
Q1
02

C4
<5
<6

L3}

09
1990
101
2
193
104
195
106
10?7
198
199
110
11
142
113
114
115
116
117
118
119
1290
121
122
123
¢4
125
126
127
128
129
130
134
132
133
134
i
136
137
138
139
140
141
142
143
144
145
146
147
148
149
A0
151
AS12,
153
11510
193
156
157
158
159
140
141
142
143
144
148
184
147
1642
149
179
171
172
173
174
128
1786
1727
174
170
10
181
152
14%
R34
129
184
187

122

STeS = 10 ¢

UNTLS v (

tostres esiviclal /oL eNpy

Eountnet 7O Youme® Vo EXTRSY)

YorStveciyy) g

ELsts TUNTLEY) o

EL5TS & 10 C %,% ELSTS pELSTCL2Y /7 (EmPyY ELSYCI1Y) ¢

PNAMC =]

MACRQ/

$ATAL

ENAMCI=)

LISYCI-I-]
=9y

MAXLCL=,=]

LODEC(=se"]

EPILC(~,a]

-1

S5 ML= »=

">

*
v

eyt =2t =2 =38 =t =

Y708J7DRIL ¢ el ? 0BJE
mACRO()
FATALL)

.

~

PC e BE
.

2 s M
ae

/ DRIL MACR0 DEFINITIOQ

NSERT ROB;DAIL MACROS?

.
2 — ¢

/ END OF DRIL MACROS?
%

X

-
P JCTEE 4
.

.

17 DRIL FATAL ERROR HANDL

XX
Y/ INSERT FATAL ERROR HAN

(o2 U 28 (R TR

NS

ER'

DLER CODE' X

'LINSERT ROBIDRIL FaTAL' X

£ X

'/ §ATAL ERRORS ARE:-~' X
L i

*/ FAILURE YQ EXIY fFROM 8

'BLKERR, FATSL (DRILI=HIT BLOCK BOYTOM AT=,BLKERR' X

i

X %X

'/ END QF FATAL ERROR HAN
X X '

— e

=> X % X
PCONSTANTS VARIABLEST
% % X
'/ END YSER CODE' X X
X X X '/ END OF PROG ' 9
*START® ¥
Y/SRCIDRIL * «1 ' SOURC
=> «1 2
2> 1
> X X
'/ SET LOOP LIMIT COUNTER
¢ Lac ' 2 X
' TCAY ¢
. oG ¥ Tuaiy e X
H
=> % X '/ START COf' X
FE ‘s 8
o1
Y X '/ REMEAY LOCR* X
¢ J¥p ' g4 %
*2
/ END LOOP X X
> o} iy
' JMp o
.2 .
TR i / END OF
> 1 3 .

> ¥ % '/ stvyLTion T ey X

offf 0 Wyl M

Lock"' X

DLER'

X X X

S

VARIABLE' X%

/ LEAVE BLOC¥.LOCP'

BLOCK/LO0P® ¥

-— 41 -

R R R R R R N R N N I I s esst
seldsridIsvIIILIIAOIIIILIOLLILIIOLILILILILILLI R

X

figure 4.6 cont'd

149 £2

‘v

191

192

103 BiCNC{=,»} 5> X X '/ START aunCx' ¥

104 1

10% . CJMS BLYERR O 580uLD HAYE SXEYED &Y wOW' X
198 «2

197 v/ END BLOCK* % X ¢

108

109

éng

231 {FYECC=s=e=Y > X X '/ 1F ' X

292 *1

295 . Jxp ' ! { Inp 1F FALSE' X
294 V[yHENY %

25658 2

208 ’ s ABP Y @YX

207 U GLSEY IS

232 i UV |

209 3

210 2 P 4

211 t/ END OF 1F' X X 3§

212 s

213

214

21

216 SEXFCl=,=) 2> 41

21?7 t SKp' ¢ !/ FALSE = TYRY NEXT' %
218 Y JHP ' ¥1 tayr f TRUEY X

219 2

220 N " Y ¥ eV 1F TRUE' X

221 =} % e

222

2?23

224

225 SANDC{~,=) => e

226 J IMp v 21 ! P Jup IF FALSEY X
227 e2

228 gy % !/ JAND IS FALSE' X

22% E=) o = W))

230

231 SXPICI-,~, =] => ! KB & W Focuge. F2 N 5

21510

233 SKkpzsl~} => ! Skp2g + *1 %X 3}

234

235 skpnNzl-} => ! SKPNZ * #1 X 2

2346 .

237 IDENCI~) s> 21 ¢

238

236 ONUMCI=) RO S R U

240

241 oNUMCL-) =5 gl ey Ui ORI

242

243

244

245 §RENC(-] =2 1 K

248

247 »

248

249 EXIICIw,=] s> % %

250 v/ OERIT?Y X

251 »2

252 ! SKP / Sk IF FALSE® %

253 ’ Mo ' e g Y ey %X
254 " {ECASCl=,~,~]) 2> &% % %

285 [ED] => ¢ J¥p v ef I Lo v e, ¥eYn
256

57 BCASETl==,= =5 % % W CaEElY 4 S0

258 ' SKpl® © al VY &

259 ’ Jyp 1Y @ / TAKE OGEFAULY IfF <1 %
249 ’ LAG: s @2l 05T g

241 ' TeaYr & & =
242 U WAL (8 - e iyt X

243 ' TAD Y el L /] OFFSET=DEFALULY ¢0 FOR OK' X
284 ' sMa' %

2AS ' yMp MY a2l / TAXE DEFAULY >=0(' &
2hE Y PARY i

247 ' JMe 1 APLERRS ¥ / INDEX REG DESTROYED BY CASEY X
2hA #/ TABLE OF ADSRESSES OF LSITUATIONST® %

249 1 'y dpp o pa 0 / SHOGULD NEVER wE EYECUTED' X
279 «2

271 Y/ O DEFAULY ,SITUATIOCR® X

ir3 & 'w Y wF %

272 7 ERC OF JEXIT ,CASE* X ;

274

275

276

277 DOKWECT=] s> */ STEP + TEST LUOP LIMIT COUNTER, (AND EXITF}Y X
278 ¢ Iax * »% %

2?79 5

239

PR

282

233 TLCT=,*] 5> ! L LD I 4 . . <
2a0 It 02 y figure 4.6 cont'd
Py] {-1 =y ! . WY R F

234

287

2R3

¢Rd yNTLCl=] x> ¢/ eWpin LEXITSY e3

294

701

292

203 NULLTL=] £ v/ U * M :

294

20

2006

297 FL51CT»a=) By N Wy Y e

203 (-} ay v owy WOd

299

L

309 LEND

302 ecee

303
000CCNCO0S20000000ANCE00CO3YCUCICLCIVCTNLCCUICLCLOCCC0000000CHCCO0CAC000CCLATQ000LCR00V0000000N0000I0C0CN000CCI00COCE 000
QCCCLACARRCAQACCATTNY MOCAIINQUERCCANENENRASCAT02CEAQ00000CACCCOCON0LQCR0UCQIRCGRRCO0CCIC00000550000200CCOC000DSTL00CGA0
0CCCCACAGRACALONAIIIDITAININJUOOCTOR0oNCLee0C000Ca0000000CCC0NQrCPOLalROUCSTCOCA0LLC L U0IB0LLQUUN00000Q0C0030C TRy

0COCCARNICCINRO0NC INSIQCTTA0NCOETCEN A C0EAA00CTAENTICOCCOCCOrrauCIRrQtCeelC00CCitrCenoa000200000000CaC0000GC0ODR0C00
000CCACCUICO00Co0CANCYCOCITIVUCIVCVACUIQYICOLUQTICLIRTIVCTO0L00CcCRLICLIVCLOCOCIUNYYIa0NI00000N0LIC0C002COCTLOCI000C00
000CCNCAIR0RNNINArSANICULRINCUCCITCCOUVNINCONCCON0200CI0D0TCCSOICOCO0N0La0000TC300000CCCIC0N000C00000C0OCIQ0C0NT00CC0CTC00
6COCCO0NQIQDROVOELIVCIRLANYOYUELOC0L0NCNCLOC0C000U00000000000000000003¢C0000C0000000000000000000000004600060000CC0000C00

’QQnaootaoaoqoﬁﬁooiq0ao-aﬂnﬁttttotﬁttntﬁftthQQ'QOiaca'.ﬁ”t...taﬁoalﬁAittvit'o't'ntnntﬁfttot'!t'ttiavdoooo'ot‘«ﬂ'taoowT

?ﬂ#fﬁi*tctth'i.tt-iliiq-ttithﬁ*tt&ﬁ"oliﬁt"tg*t&t'iit..(..ﬂﬁ*ﬁ.‘iitQ’l0l*‘Qﬁﬁ*’.."ﬁ"ﬂQ000*#"t"ﬁf.ﬂ.’ﬂ"ﬁ"liﬁi'ﬁ(?f

figure 4.6 cont'd

5. PROGRAMMING STYLE AND STANDARDS
) Piscussiog.

Style is still a major ingredient in programs bgc?use they.are written
by individuals. A clear, consistent style facilitates third party
mderstanding and reliability. It is worth bearing in mind that the
third party often referred to in this paper is likely to be the program's
creator teu weeks after the code has been written!

A programmer’'s style inciudes his methods and his assumptions. When.
more than one individual works on a project these methods and assumptions
must be shared by all. This is the point where a 'style' must become

a ‘standard' if consistency is to be maintained. Only when a good style
has been developed should it be used widely and evolve into a standard.
5tandards should be a welcome feature of a project, being formal and
helpful statements of good points, not millstones.

To help the author, and anycne else who gets invoived with DRIVER,

section 5.2 outlines those practices which are currently 'common law'.
They form the nucleus of an evolving set of DRIVER standards. Section 5.
is based on a book called 'The Elements of Programming Style' [1]. It
the reader has any good tips to add to this list then RWW will be pleased
to veceive them. Hopefully the differences and similarities between

5.2 and 3.3 show the evoluticn from style to standards. Programming is
still a craft [111; let us encourage craftsmanship.

[

|

5.2 DRIVER Standards

i A Project History must be kept.
Use microfiche as much as possible.

2. A Project Diary wust be kept as part of the Project History.

w

All design must be by SWR, and documented by 3-D flowcharts.
All design decisions must be recorded in the Project History.

4. All code must be written in DRIL directly from the 3-D flowchart.
No program is to be patched at the assembler or binary level.

5 Code and flowcharts (logical and physical) must maintain their
exact correspondance. Amend all three simultaneously.

R Ylowchart refinement must be 'folded' to form source comments.
s All current versions of programs nust have a complete set of
listings filed in the Project Histery. The set must include
source; object, DRIL definition, FRSE0 listing assembler aud

cross-reference listings, preferably on microfiche.

8. All modules must have a single entry point and a single exit
point,

9, All modules must declare, as comment, these global variables
referenced within, and what happeans to them.

- &k =

(€%

1.

12.

Data, both local and global must be physically separate from the
code, because of overlaying activity.

All code must be pure, again because of overlaying.
All modules must be proven to always exit whenever they are entered;
therefore all lcops must terminate. Prove as much as possible

about the module's behaviour - document the assumptions.

All tests must be planned. The plan and results must be filed
jin the Project History.

Construction and testing must be'by the top-down, program stub
method. No test beds.

Write down '"the little things'. File them in the Project History
so they are not forgotten.

A1l modules must be designed down to the last detail before coding
commences. Good detailed design is good engineering.

Style

Alvays aim for simplicity, clarity and reliability. Gain efficiency
by good design not by ‘tricky' coding. Avoid the temptation to

make irrelevant local optimisations. Instrument the program,
determine the bottlenecks, then remove them 'hygenically'.

Do not be afraid to build a prototype module to gain an understanding

of the problem. Learn from it, scrap it and then build the
production module.

Design and re-design, rather than code and re-code. '"Polish' the
module as an author improves a paragraph. Bad programs are easy to

create; goocd programs are hard work.

Write your program as though it were going to be compiled and
tested by a complete stranger.

Write clearly, don't be too clever.

Say what you mean, simply and directly.

Use library functions.

Avoid temporary variables.

Write clearly - don't sacrifice clarity for 'efficiency'.

Let the machine do the dirty work. |

Replace repetitive expressions by calls to a common function.
Parenthesize to avoid ambiguity.

Choose variable names that won't be confused.

45

24,

25.

26.

Avoid unnecessary branches.

Don't use conditional branches as a substitute for a logieal
expression.

1f a logical expression is hard to understand, try trvansforming 1it.
Use data arrays to avoid repetitive control sequences.

Choose a data representation that makes the program simple.

Write first in an easy—~to-understand pseudo-language; then
translate into whatever language.you have to use ie 3-D flowcharts -
DRIL - FR30 ASM.

Use CASE to implement wmulti-way branches.

Modularize. Use subroutines.

n

Do not nest IF-THEN-ELSE, use a CASE.
Use GOTOs only to implement a fundamental structure such as LOOP.
Avoid GOTQs completely if you can keep the program readable.

Don't patch bad code - rewrite it.

Write and test a big program in small pieces. Plan the test. Top--down
stubs method.

Use recursive procedures for recursively-defined data structures.
Test input for plausibility and validity.

Make Sure input doesn't violate the limits of the program.

le or marker, not by count.

p=o

Terminate jinput by end-of-f
Identify bad input; recover if possible.

Make input easy to prepare and output self-explanatory.
Use uniform input formats.

Make input easy to proofread.

Use free-form input when possible.

"5

Use self-identifying input. Allow defaults, Echo both on output.

Make sure all variables are initialized before use by executable
code.

Don’t stop at one bhug.
Use debugging compilers.

Initialige constants with DATA statements or INITIAL attributes;
initialize variables with exccutable code.

..[}6..

45.
46.
47.
48.

49'

Watch ‘out for off-by-one errors.

Take care to branch the right way on equality.

Prove loop termination.

Make sure your code 'does nothing' gracefﬁlly.

Test programs at their boundary values.

Check some answers by hand.

10.0 times 0.1 is hardly eﬁer 1i2 0

Don't compare floating point numhers solely for equality.

Make it right before you make it faster.

Make it fail-safe before you make it faster.

Maké it clear bafore you make it faster.

Don't sacrifice clarity for small gains.in 'efficiency’'.

Let your compiler do the simple optimizations.

Don't strain to re-use code; reorganise instead.

Make sure special cases are truly special.

Keep it simple to make it faster.

Don't diddle code to make it faster — find a better algorithm.
Instrument your programs. Measure before making 'efficiency' changes,

Make $ure comments and code agree. Fold 3-D comment hierarchy
into program source code.

Don't just echo the code with comments - make every comment count.
Don't comment bad code - rewrite it.

Use variable names that mean something.

Use statement labels that mean something.

Format a program to help the reader understand it.

Document your data layouts.

Don't over-comment.

Make sure every loop always terminateé.

Prove termination of program.

Loops should have only one entry and one entry point.

Modules should have only one entry and one entry point.

—47-0

6. REFERENCES

1. KERNIGHEAN, PLAUSER
Elements of Prograwmming Style
McGraw HiLl

s DONZEAU~GOUGE et al
A Structure~oriented Program Editor

International Computing Symposium 1975 ed Potier
S WEINBERG et al
IP-THEN-ELSE Cousidered Harmful i

o

Sigplan August 1975

4. ZAHN
A Control Statement for Natural Top Down Structured Programming.
Lecture Notes in Computer Science
Vol 19 Paris 1974 ed Goos, Hartmanis

Dle ENUTH, ZAIE
111 Chosen Use of 'Event’
CACM Yol 186 Bo & June 75

5. IUTH
Structured Programming with goto Statements

€

Computing Surveys Vol 6 No & Dec 74

P LIJKSTRA, DAHL, HCARE
Styuctured Programming
Academic Press 72

8. FR80 Discussion Paper 15, paragraph i.9

Ol HOPGOOD
The 1206A Tree-Meta Manual
ACL

10. FRBO Technical Paper 14

11. DIJKSTRA
EWD469

12. BURROUGHS CORP
B6700 CANDE Manual

.-48...
dh

