FR 80/COMp 80
MONITOR SYSTEM

PROPRIETARY INFORMATION OF
INFORMATION INTERNATIONAL, INC.

PUB. NO. 90441 COPY N‘O._g_8

TABLE OF CONTENTS

Chapter 1 - CREATING NEW SOFTWARE, p 1

Standard Subroutines, p 1
Operating Monitor, p 2
Vector Routines (IIIl62), p 2
Character Sets, p 2

Chapter 2 - USE OF MONITOR ROUTINES, p 4
Sample Program, p 5

Chapter 3 - USE OF STANDARD SUBROUTINES ON A NON-DISK MACHINE, p 9

Sample Program, p 1l

APPENDICES
Standard Subroutine Parameters (III109), p 15
Information International MONITOR System (IIIl66), p 21
Vector Routines (IIIl62), p 31
Character Routines (III147), p 35
Character Dispatch Tables (IIIl64), p 39

Magnetic Tape Buffering Routines (III163), p 43
Disk I/O System (III1l83), p 47

Mass Storage I/0 (IIIl88), p 53

System Tape Debug (IIIl26 P), p 55

Lii

Chapter |

CREATING NEW SOFTWARE

el The Information Internstional Image Processing
Controller comes with & powerful programming
system for both tape and disk operating
configurations, The fiprst step in preparing a new
program {s the editing and updating of the source
symholics, These symbolics consist of standard
subroutines and the application package utilizinmg
all the necessary routines to perform some
specific tasks, The user prepares a symbolic file
using the Symbolic Text Editor and has either a
disk image or a paper tape of the sympolics,
depending on the machine configuration., This file
can be modified and updated using the text editor,

12 Next {s ¢the assembly process, A two-pass
macro=assembler for processing the source file angd
producing a disk or paper tape bimary program is
utilized by the system, At this point, the user
cen add the new program to his iibrary of existing
programs efther on disk or magnetic tape.

1,3 To provide the user with this programming
cepability, Information International supplies the
source to produce custom application programs,
Theae subroutines ineclude;

i, Operating monitor

2. Vector routines

5. Character seots

4, Character routines

5, Magnetic tape routines

Given these basic routines, the wuser can put
together an application package with a minimum of
programming effort, Detajled documentation of
these routines are included in the Appendices,

STANDARD SUBRQUTINES

1.4 Standard Subroutine Parameters (III109) =« Thig
file is a set of definitions, including:

1. Machine configuration
(core, tape, disk)

2, Types of cameras available

3., Special options

4, Macro definitions for standard
programming conventions

Operating

1,5

Monftor

The purpose of the MONITOR {s to {nterface between
the human operator and the application programs,
The MONITOR is comprised of 111166~series programs
and I1Iliéi~series progrems, Included in MONITOR
are the Teletype input/output routines and beasie
hardware functions which follow?
i, Beam positiening
2. Beam parameters
3. Camers advance
4, Magnetic tape 1/0
a, Density select
bs Drive select
te Space forward
de Space backward
e, Error Retry
5. Teletype command decoding
6., Error responses
7. Image rotation
8, Focus pattern
9« Program load and dump

The Disk I/0 file, 111183, contains routines to
create, read, and write files formatted within the
disk operating structure,

Vector Routines (IlI162)

1,7

Character

1,8

1.9

This file contains a general set of vector drawing
routines, After calling the subroutine which sets
head and tai{l coordinates of a vector, onre of
three vector routines may be called!

i1, Solid vector

2. Dotted vector

3. Dashed vector

Sets

Character Dispatch Tables (II1464) = This file
contains dispatch tables for individual character
sets. The set {8 defined by using conditional
assembly features, Some of the getas avaflable
are!

1, III master set

2. BCD

3. EBCDIC (i{meluding lower case)

Character Descriptors (III164 FILM) =« This file
containg the character descriptors faor the
character generator hardware, There are two othep

1,18

1,11

fonts available frem Information International:
the NMA Microfont (111164 MICRO) and OCR=B (IIIté4
OCR=B) «

Character Routines (I]I1347) - This file containg
routines to accept magnetic tape charscters and
convert them into FR 80 internal codes by using
111164 the routine then performs the 1/0
instruction to start the character generator
plotting the specified character,

Magnetic Tape Routines (III163) =« This file
contains routines to read 7= or 9=track tape in
bimnary or character data, The data on tape can
also be accessed {in bit or word formats, This
file also centains routimes to reposition the tape
for processing nested repeats of data,

2.1

2,8

2.3

Chapter 2
USE OF MONITOR ROUTINES

Basically, applications programs consist of¢

1. Assembly parameters

2. Macro Definitions

3. MONITOR

4, Funmctional subroutines as required by
specifiec programs (vectors, mag tape
170, ete,)

S5 Coding required for the specific
application

6, Buffers, (disk, tape) = may include
expendable code,

The sample program which follows demonstrates the
use of MONITOR routimnes as well as the structure
of a typical application program. The use of
INSERT files and allocation of buffer area is alse
demonatrated,

The program reads a 9=track core dump tape
containing vector end points (XHD,YHD,XTL,YTL) and
frame advance information, A record consists of
256, words, If the first 4 bits of anm 18 bit
data word are all zeros, the low order 14 bits are
XHD, The next 3 words contain YHD,XTL, and YTL {n
the same format, If the first & bits are all
ones, then the word {s a frame advance command,

/SAMPLE

MUMBLE==S{

FONT==0

ITISET==

BIGBUF==

«INSERT 111109

«IFD DISC,DSKMON==Y
+IFND DISC,TAPMON==}
MTPTR==16

« INSERT JII166

MDSEND/
-ASCITI /SET SIZE?/
+ASCII1 /X,Y OFFSET?/

MDSEND=s=, @
«INSERT 11164
» INSERT IIIlé2
«INSERT 111163
¢ INSERT 111147

HEREIS==$,
DATCOM/160200

~TEXT 306

PGNAME/,ASCII /SAMPLE?Z/

MTTBUF/
«TEXT 106
+ASCII "/SAMPLE"

¢
HEREIS/

BEGIN,

27 MAR 1974

/ENABLES TTY OUTPUYT OF HARDWARE

/AND SOFTWARE CONFIGURATIONS

/DURING ASSEMBLY

/USE FILM FONT

/USE TI1 CHARACTER SET

/BIGBUF=al GIVES LARGER BUFFER BUT FEWER
/FEATURES

/INSERT STANDARD SUBROUTINE PARAMETERS

/USE AUTOINDEX REGISTER IN MAG TAPE
/ROUTINES

/MONITOR ROUTINES

/SETS LOCATION COUNTER TO THE END
/0F THE MONITOR COMMAND TABLE

JMP T SCALIN

JMP I SETOFS

/END OF MONITOR DISPATCH TABLE
/CHARACTER SET AND FONT

/VECTOR ROUTINES

/MAG TAPE ROUTINES

/CHARACTER PLOTTER

/% 18 EXTENDED ADDRESS INDICATOR
/SAVES PROGRAM COUNTER

/MAG TAPE COMMAND WOURD (TAPE
ZNVPE ETC)

/SETS UP MODE FOR ,ASCII
/PROGRAM NAME

/NAME TO BE USED ON SYSTEM
/TAPE INDEX

+IFNZ BIGBUF,DZM PDSTRT LAC ($PROGND=1) /MAKE EXPENDABLE

/0PERATOR COMMANDS INACCESSABLE

+IFZ BIGBUF,LAC (SEXPND=1)

+IFND TWOBUF,DAC MTAREA
«IFD TWOBUF,DAC CURBUF#

CMA
DAC PBUFSZ

«IFD TWOBUF,CMA ADD CURBUF

JMS MTRINI
CLC
DAC DRWVEC

/8INGLE BUFFER MONITOR CELL
/DOQUBLE BUFFER MONITOR CELL

/SET UP DATA BUFFER SIZE
DAC NEXBUF# /SET
/UP BUFFER POINTERS

/INITIALIZE MAG TAPE ROUTINES (IIl163)
/FORCE FIRST PAGE EJECT (III162)

GET1,

DOHDS,

GET2,

NXADV,

ENTRY MAP

XOFF,

ENTRY MAP

YOFF,

ENTRY MAP
MAPSW,

JMS
JMS
DAC
LMG
LLS
SNA
JMP
SAD
JMP
JMP

KYBLIS
MTLAC
XHD#

1004

DOHDS
(17)
NXADV
FORMAT

LAC XHD
MAPX

DAC XHD
JMS MTLAC
MAPY
DAC
JMS

YHD#
SETHDS

LAC
LAC

XHD
YHD

JMS
MAPX
DAC XTL#

JMS MTLAC
MAPY

DAC YTL#
SETTL XTL,YTL
JMS DRWVEC
JMP GET!

MTLAC

LAC DRWVEC
SZA

NEXPIC

DZM DRWVEC
JMP GET!

X

MAP

ADD XOFF
EXIT MAPX
e

MAP
ADD YOFF
EXIT MAPY

e

NOP

/LISTEN FOR KEYBOARD INTERRUPT (IIIl166)
/RETURN 18«BIT WORD IN AC (III1é3)
/# ASSIGNS STORAGE LOCATION

/HEAD & TAIL INFORMATION?
/FRAME ADVANCE?
/FORMAT ERROR ROUTINE (IIlfe66)

/GET Y COORD

/STORE Y COORD
/SUBROUTINE TO SET HEAD AND TAIL
/COORDINATES (II]1é2)

/SET TAIL COORDINATES
/PRODUCE SOLID VECTOR

/ADVANCE CAMERA TO NEXT PAGE

/CONVERT TO III SCOPE COORDS

/SET INITIAL VALUE TO ZERO

/SCALE X & Y

MAPMUL ,

MAPDIV,

MAPQOFF,

EXIT
MUL
1638
DIV
1638
LACGQ
ADD
EXIT
@

MAP
I
b,

4o

MAPOFF
MAP

« IFNZ BIGBUF ,CONSTANTS

PROGND,

« INSERT JIIl61 GO

«IFNZ BIGBUF,CONSTANTS

GOND,

o INSERT IIIl61

SCALIN,

TYPSCL,

SETQFS,

TYPOFsS,

DAC
JMS

LAC
DAC
CLL
SAD
STL
LAC
SZL
LAC
DAC
LAC
TAD
TCA
LRSS
DAC
JMP

XX

LAC
JMS
JMP
DAC
JMS

DAC
JMS
DAC
JMP

XX
LAC

TYPSCL
GETNUM

DECNUM
MAPMUL

(16384,)
SKPCON

OPRCON
MAPSW
(1=16384,)
MAPMUL

1
MAPOFF
MDONE

MAPMUL
MDOUT

I TYPSCL
TYPOFS
GETANM

XOFF
GETINM
YOFF
MDONE

OPRCON

/SET SIZE

VARIABLES /ASSIGNS CURRENTLY
/UNASSIGNED CONSTANTS AND VARIABLES
/REQUIRED LABEL = "END OF PROGRAM"®

VARIABLES
/REQUIRED LABEL = "END OF GO
/EXPENDABLES"

/POINT TO PARAMETER TYPER
/CONVERT DECIMAL NUMBER FROM
/TELETYPE TO BINARY (II1166)
/DECIMAL NUMBER IN AC

/WAIT FOR NEXT OPERATOR COMMAND
/(I11166)

/0UTPUT AC IN DECIMAL

/POINT TO PARAMETER TYPER

/GETS NUMBERS SEPARATED BY
/COMMAS

/MONITOR ROUTINE (III161)

JM8 TYPOUT /MONITOR ROUTINE (III166)
LAC XOFF

LAC YOFF

JMP 1 TYPOFS

CONSTANTS VARTABLES

EXPND, /REQUIRED LABEL =~ "END OF ALL
/EXPENDABLES"

o IFM 8192,=%.,.ERROR /TOO MUCH CODE FUR FIRST 8K

/

IFZ BIGBUF,HEREIS==BUFFND=EXPND=1 /BUFFND IS DEFINED
/BY MONITOR TO BE THE END OF
/AVAILABLE CORE

.IFNZ BIGBUF ,HEREISs=BUFFND=PROGND=1

.IFD TWOBUF ,HEREIS=sHEREIS12

PBUFSZ/=HEREIS+1{

.IFD MUMBLE, !

.PRINT /BUFFER SIZE IS /

+ VALD HEREIS, /HEREIS I8 EQUAL TO COMPUTED
/BUFFER SIZE
+PRINT 7/ WORDS (/ /(SEE ASSEMBLER DOCUMENTATION

/FOR (PRINT PSEUDO=OP)
+VALD HEREIS#3
«PRINT /7 OR /
+VALD HEREIS®2
+PRINT 7/ BYTES)
/
d

START

Chapter 3

USE OF STANDARD SUBROUTINES
ON A NON=DISK MACHINE

The use of standard subroutines greatly simplifies
the writing of programs for non=disk machines,
However, im symbolic ferm, these routines are too
lengthy for paper tape, The uysual practice
therefore, is to use the host computer to build o
magnetic tape for the paper tape assembler = the
binary tape which vresults i{s not unreasonably
long,

SYSTEM TAPE DEBUG has been assembled incorporating
MONITOR subroutines, The symbols for these
routines are available and may be utilized ¢to
create new System Tape programs, This Debug and
Mon{tor system has a dump command to enable the
user to dump his program on the System Tape after
debugging {t,

In order to write the sample program which
follows, f{t is firast necessary to determime the
value of the MONITOR symbols required by the
program, These values are determined by loading
DEBUG from the System Tepe and typing the symhol
name followed by a colon (See DEBUG
documentation), The value is returned omn the
teletype and a 1ist of symbols {s thereby created
which may be i{ncorporated in the user program
through use of the Editor,

Upon completion of editing, a paper tape of the
symbolic program is punched (See EDITOR
documentation), The program may now be assembled
by loading the Assembler from the System tape and
following the instructions for Paper Tape Assembly
(See ASSEMBLER documentation), Errors detected
during the assembly process may be corrected by
returning to the Editor and revising the symbolie
program (this necessitates the punching of a new
symbolic tape) or by patching the program directly
using the commands available te DEBUG,

The bimnary produced by the Assembler may be)oaded
and run by DEBUG or the program dumped on the end
of the System Tape and run in the uUsua)l manner,

3.6

10

Simce DEBUG can process symbolic instructions
(including calls to MONITOR routines), it s
feasible to type small programs directly into
core, The ¢first locatfon available for use by a
user program is AVAIL, Use may be made of DEBUG's
symbol definition capability to handle the forward
reference problem,

/SAMPLE

MUMBLE==}

/MONITOR SYMBOLS

BIGBUF==
MONTOR==40
MDONE==57
SKPCON==346
OPRCON==743
MTAREA==1030
PRUFSZ==1032
DATCOM==31033
PGNAME==1037
MTYTBUF==1865
MDUUT==1356
GETNUM==21433
FORMAT==1517
TYPOUT==1526

ADVAN=JIMS 1672

KYBLIS==2043
PSTART==2234

APRIL 2, 1974

/STARTING ADDRESS FOR MONITOR
/RETURN POINT FOR CORRECT PARAMETER ENTRY

/CONTAINS POINTER TO TAPE BUFFER AREA

/CONTAINS TWO'S COMPLEMENT OF BUFFER LENGTH
/CONTAINS MAG TAPE SELECT WORD

/STARTING ADDRESS OF ASCII PROGRAM NAME
/STARTING ADDRESS OF ASCII PROGRAM NAME ON TAPE
/NUMBER OUTPUT ROUTINE

/PARAMETER NUMBER INPUT ROUTINE

/RETURN POINT FOR BAD PARAMETER ENTRY

/FILM ADVANCE ROUTINE
/KEYBOARD LISTEN ROUTINE
/HHERE CONTROL GOES WHEN "GO/" IS8 TYPED TO MONITOR

DECNUM==2304

PDSTRT=22460

MDSEND==2511 /730, CELLS ARE PROVIDED FOR USER DISPATCHES
GETINM==2550 /ROUTINE TO GET EXACTLY ONE PARAMETER
GETANM==2555 /ROUTINE TO GET A PARAMETER IF IT EXISTS
AVAIL==2108042 /LOWEST LOCATION FOR USER PRUOGRAM
DEBUG==20000~1~100 /ENTRY POINT FOR DEBUG
MEMEND==DEBUG=400A2 /ALLOW RQOM FOR SOME SYMBOLS

/MAG TAPE ROUTINE SYMBOLS

MTRINI==3573 /INITIALIZE MAG TAPE INPUT

MTLACe=4013 /GET A WORD FROM MAG TAPE

/VECTOR ROUTINE SYMBOLS

DRWVEC==3536 /ROUTINE TO DRAW A VECTOR

SETHDS=33464

SETTLS==3511

/VECTOR MACROS
+DEF SETHD X,Y

JMS SETHDS
LAC X
LAC Y
+ TERM

+DEF SETTL X,Y

JMS SETTLS
LAC X
LAC Y

11

o TERM

MDSEND/

+TEXT 306

<ASCII /SET SIZE?/
JASCII /X,Y OFFSET?/

MDSEND==,

@

PSTART/JMP BEGIN
DATCOM/160200

/SETS LOCATION COUNTER TO THE
/END OF THE MONITOR COMMAND TABLE

/SETS UP MODE FOR ,ASCII
JMP 1 SCALIN
JMP I SETOFS
/END OF MONITOR DISPATCH TABLE

/MAG TAPE COMMAND WORD (TAPE
LYYRE ETCY

PGNAME/.ASCII /SAMPLE?/ /PROGRAM NAME

MTTBUF/
+TEXT 106

+ASCII "/SAMPLE"

2
AVAIL/

BEGIN,

/NAME TO BE USED ON SYSTEM
/TAPE INDEX

/FIRST LOCATION USED BY DEBUG
/FOR USER PROGRAM

«IFNZ BIGBUF,DZM PDSTRT LAC (SPROGND=1) /MAKE EXPENDABLE

/0PERATOR COMMANDDS INACCESSABLE

o IFZ BIGHUF,LAC (SEXPNDe1)

DAC
CMA
DAC
JMS
182
GET1, JMS
JMS
DAC
LM@
LLS
SNA
JMP
SAD
JMP
JMP

DOHDS,
LAC

MAPX

DAC
JMS

MAPY

DAC
JMS8

1:2

MTAREA

PBUFSZ
MTRINI
DRKWVEC
KYBLIS
MTLAC
XHD#

1824
DOHDS
(17)
NXADV
FORMAT
XHD

XHD
MTLAC

YHD#
SETHDS

/SINGLE BUFFER MONITOR CELL
/SET UP DATA BUFFER SIZE
/INITIALIZE MAG TAPE ROUTINES
/FIRST PAGE EJECT

/LISTEN FOR KEYBOARD INTERRUPT

/RETURN 18«BIT WORD IN AC
/# ASSIGNS STORAGE LOCATION

/HEAD AND TAIL INFORMATION?

/FRAME ADVANCE?
/FORMAT ERROR ROUTINE

/GET Y COORD

/STORE Y COORD
/SUBROUTINE TO SET HEAD AND TAIL

GETZ,

NXADY,

LAC XHD
LAC YHD

JMS MTLAC
MAPX

DAC XTL#®

JMS MTLAC
MAPY

DAC YTL#*
SETTL XTL,YTL
JMS DRWVEC
JMP GET!

LAC DRWVEC
SZA

ADVAN

DZM DRWVEC
JMP GET1

ENTRY MAPX

XQFF,

MAP

ADD XOFF
EXIT MAPX
¢

ENTRY MAPY

YOFF,

MAP

ADD YOFF
EXIT MAPY
)

ENTRY MAP

MAPSW,

MAPMUL,

MAPD1vV,

MAPOFF,

«IFNZ BIGBUF ,CONSTANTS

PROGND,

«.1FNZ BIGBUF,CONSTANTS

GOND,

NOP

EXIT MAP
MUL I
16384,

DIV

16384,
LACQ

ADD MAPOFF
EXIT MAP

2

/COORDINATES

/8ET TAIL COORDINATES
/PRODUCE SOLID VECTOR

/ADVANCE CAMERA TO NEXT PAGE

/CONVERT TO III SCOPE COORDS

/SET INITIAL VALUE TO ZEROD
/SCALE X AND Y

/SET SIZE

VARIABLES /ASSIGNS CURRENTLY
/UNASSIGNED CONSTANTS AND VARIABLES
/REQUIRED LABEL = "END OF PROGRAM"

VARIABLES

/REQUIRED LABEL = "END OF GO
/EXPENDABLES"

13

SCALIN, DAC TYPSCL /POINT TO PARAMETER TYPER
JMS GETNUM /CONVERT DECIMAL NUMBER FROM
/TELETYPE TO BINARY (III166)
LAC DECNUM /DECIMAL NUMBER IN AC
DAC MAPMUL
cLL
SAD (16384,)
STL
LAC SKPCON
SZL
LAC OPRCON
DAC MAPSW
LAC (1=16384,)
TAD MAPMUL
CMA
TAD (1)
LRSS 1
DAC MAPOFF
JMP MDONE /WAIT FOR NEXT OPERATOR COMMAND (IIIgé6)
TYPSCL, XX
LAC MAPMUL
JM8 MDOUT /0UTPUT AC IN DECIMAL
JMP T TYPSCL
SETOFS, DAC TYPOFS /POINT TO PARAMETER TYPER
JMS8 GETANM /GETS NUMBERS SEPARATED BY COMMAS
DAC XOFF
JM8 GETINM /MONITOR ROUTINE (IIIf61)
DAC YOFF
JMP MDONE

TYPOFS, XX
LAC OPRCON
JMS TYPOUT /MONITOR ROUTINE (III166)
LAC XOFF
LAC YOFF
JMP T TYPOFS

CONSTANTS VARIABLES

EXPND, /REQUIRED LABEL = "END OF ALL
/EXPENDABLES"

o IFM MEMEND=,$, .ERROR /TOD MUCH CODE FOR FIRST 8K

/

BUFFND==MEMEND

+IFZ BIGBUF ,HEREIS®=2BUFFND=EXPND=}
+IFNZ BIGBUF ,HEREIS==BUFFND=PROGNDe1
PBUFSZ/=HERE1S+1}

START MONTOR

14

STANDARD SUBRUUTINE PARAMETERS (III119)

Mapch 27, 1974

Published by
Information International
12435 West Ulympic Boulevard
Los Angeles, Californtia 20064

13

STANDARD SUBROUTINE PARAMETERS (11110@9)

ABSTRACT

III149 contains subroutine parameters that specify the
hardware and software configuration at assembly time,

USAGE

The first page of 111109 contains symbol definitions for all
hardware configurations, e.g., processor type, memory size,
peripheral 1/0 devices, vector and character generators, and
camerase. A desired configuration is selected by choosing
which symbols to define and their value.

The remainder of III109 consists of software configuration
definitions, €eQe, location of DEBUG swapper, macro
definitions, definitions for 10T instructions, most of which
are dependent upon the hardware configuration selected on
the first page,

The set of symbol and macro definitions that result from
IT1189 are used in other standard Information International
subroutines to make them independent of configuration,
Applications programs then should insert III1VU9 before any
other subroutine inserts; common practice is to insert it
before the first executable coding, to allow full use of the
macros.

The symbol definitions on the first page of IIIlu9 are

organjzed into groups according to the feature they
describe. All symbols for machine types, e.g., PDP15,
T LS, are grouped together with only one adefinition

allowed; the others are preceded by a slash (/), causing the
assembler to {gnore the line, Changing the machine tvpe,
then, can be accomplished by inserting a slash tefore the
previously selected option, and removing a slash from the
definition for the required option.

Some symbols are always defined, and their value is selected
according to configuration, The BANKS parameter, for
example, is used to select memory sijze,

HARDWARE CONFIGURATION

MACHINE
FR8U© If defined, machine is an FR 82
COMp8@ If defined, machine is a COMp 80
PFR If defined, machine is a PFR
EYE If defined, machine is a COMPUTER EYE
PFS If defined, machine is a PFS

16

\‘\--._

STANDAKD SUBROUTINE PARAMETERS (II1109)
Hardware Configuration

CPU TYPE
PDP?7
PDP9
PDPIL
PDP15
11115

MEMORY SIZE
BANKS

PERIPHERALS

7TRACK

9TRACK

DECTAP
DISC

LPRNTR
CARDRD

If defined, assemble for PDP=7?
If defined, assemble for PDP=9
1t defined, assemble for PDP=9L
1t defined, assemble for PDP=15
If defined, assemble for I1I=15

Number of 4K memory banks present.

A value of zero means a 7-track tape drive ig
not available; a value of one means 7=track
is avai{labie,

A velue of zero means 9=-track drive is not
avatiable; one means available.

If defined, micro tapes available,

If defined, disc available; set equal to
number of discs (1 or 2).

If defined, line printer avajlable,

It defined, card reader available.

CHARACTER GENERATORS

HSCHAR
GACHAR

HRSPAC

CAMERAS

CAMNUM

If defined, high=speed character optien
present
If defined, graphic arts character generator
present
If defined, high=resolution spacina option
present

Indicetes type of camera to be used:

1 35UN

2 {6UN

3 358P

4 16SP

5 16mm Strip Fiche

I4 Fiche (Mod | Controller)

8 iémm Fiche (Mod | Controller)

9 Fiche (Mod 2 Controller)

18 16mm Fiche (Mod 2 Controller)
11 Hardecopy

13 Hardcopy Without Vacuum Control
14 S5 Ingh

15 70mm

16 Full Size Hardcopy 1.7

STANDARD SUBROUTINE PARAMETERS (I1I11@9)
Hardware Configuration

NUMCAM Indicates number of cameras to be Used, T¢
zero, no camera will be used; if greater than
one, define alternate cameras with CAM macrog

CAM h,m,O,.oo
when n, m, o, etc., are alternate camera
numbers

SOFTWARE CONFIGURATION

111199 defines a set of symbols for software configuration
based on the hardwere configuration chosen on the first
page. These symbols can be used by programs to make them
machine independent,

DISK DEBUG

MEMSIZ Memory size in 18=bit words.

DEBUG Memory location of entry point for DEBUG
swapper,

SWAPSZ Number of words reserved for the DEBUG
swapper (at top of memory).

MEMEND Memory location of the last free word before
the beginning of the DEBUG swapper.

DBGINT Defimed as a jump to the appropriate location

to enter the DEBUG swapper,
MULTIPLE CORE CONVENTIONS

Standard subroutines use bank mode addressing, with 3
13=bit address for memory reference instructions, This
allows direct reference to a maximum of 8192 locations:
locations beyond this range must be referenced
indirectly, For programs written to assemble for both
16K and 8K memory sizes, any indirect addressing used
for the 16K version {s unnecessary for 8K, A set of
symbols are permanently defined in the assembler which
use indirect addressing only if the instruction and the
memory cell are referenced are in different core banks,

LACI XORI TADI JMPI
ADDI DACI 1821 JMS1
ANDI DZMI SADI XCTI

Each of ¢the above represents a memory reference
instruction code with an "I" appended, For memory
sizes of 8K or less, they are defined identically to
their counterpartsy otherwise they are defined as
pseudo=ops that accomplish the same result throuah
indirect addressing, For example:

18

STANDARD SUBROUTINE PARAMETERS (III109)
Software Configuration

LACI X becomes LAC X for 8K or less
LAC I (fif X in different core bank

Two other instructions are supplied simjlarly in two
versions?

LACA X = LAW X 8K or less
= LAC (X more thanrn 8K
SADA X SAD (LAW X 8K or less

SAD (X more than 8K
NUMBER PRINTING MACROS

The following macros will print the value of an
expression on the Teletype during program assemblys

VAL X = Pprint the value of X in octal
«VALD X = Ppint the value of X in decimal,
followed by a period (.)

ASSEMBLY TYPEOUTS

If the symbol "MUMBLE" is defined, IIIiv9 will type to

the Teletype, during program assembly, a description of
the hardware and software configuration chosen,

MACHINE IO0TS

111109 defines symbols for all those Input-0Output
Transfer (I0T) instructions that are not machine
independent,

19

INFUORMATION INTERNATIONAL MONITOR SYSTEM (1IIl66)

August 7, 1973

Published by

Informational International
12435 West UOlympic Boulevard
Los Angeles, California 90064

21

MONITOR SYSTEM

INTRODUCTION

The MONITUR is normally @& part of application programs, It
creates the monjtor display of commands, communicates with
the operator, and executes routines after interpreting valid
operator commands, Also included in the Monitor are general
purpose routines that simplify FR 80 application programming
and handle special functions.

The files IIIfé1, III161 GO, ITI166, III166 INVAR, TIII1éé
SPEC, III166 ADVAN, and 111166 TABLE make up the tota]
MONITOR. The only files that require insertion by the
application program are IIIié6l eana 1III161 GO. 111161
inserts 111166 and 111166 inserts the other files, These
files may be inserted at other points in the application
program 1f assembly parameters are to be changed during
assembly or any of the files are expendable at the time of
program execution,

The ugser should verify the first file to be inserted s
II1199 and the second s III166, The first cell of
executable user code should be at Jocation BEGIN as the

MONITOR jumps ¢to this locatien after recognizing a "GOV
command.,

22

MONITOR SYSTEM

USAGE
ADDIT

i1,

2,

ION OF MONITUR OPERATOR COMMANDS

Set the location counter to the address of cell
MUDSEND (located in I1I1166).

Fack the characters to appear in the command three to
a word, terminated by a questfiom mark, Typically
this can be accomplished with the use of either the &
macro or the ,ASClI pseudo=op,

Follow the text with a JMP to the appropriate command
handler, The indirect bit in this JMP, if on, is a
flag to MONITUR to also process the subroutine whosa
address is contained in the first cell of the command
handler, Typically this second subroutine is used tpn
display the command parameters on the monitor screer,

Each command handler routine is terminated by a

"JMp

MDONEX™, If the JUMP to the Commano Handler was

flegged by double "I"s (i,e., JMP Il===) then

the

command parameters will appear only if the assembly
parameter BIGBUF is defimed as being equal to zero.

4, Terminate the new command list with a 2zero word

and

set the parameter MDSEND equal to the current

location,

The following are subroutines included in ¢the monitor
are avaflable to the user to simplify programming:

GETNUM:

and

Converts octal and decimal numbers from the teletype

pbuffer to bifnary. Address 11(octal) contains

the

address of the teletype buffer =i, The characterp

stream up to a non~numeric {8 converted and

the

subroutine exits with the non=numeric that terminateg
conversion {in the AC and MQ; the binmnary representation
of the octal numpber is {in cell QCTNUM, the decimal

number §fn cell DECNUM,
calling sequence = JMS GETNUM

GETANM:

GETANM can be used for MONITOR command handling
routines, It uses GETNUM to retrieve decimal numbers

separated by commas, After the last number

is

retrieved, the 1{instruction following the "JMS GETANM"

is executed unless nothing was typed for the last
entrye.
Calling sequence = JMS GETANM etres e o AC

Any instruction

23

MONITOR SYSTEM
USAGE cont.

24

MTTOUTS

Displays the character whose teletype code is contained
in the AC on efither the monitor screen or the teletype
depending omn the mode,

Calling sequence = JMS MTTOUT

MCRLF

Qutputs a carriage return and line feed to either the
monitor sereen or the teletype depending on the mode,
Calling sequence == JMS MCRLF

MMESSG

Qutputs a message to ejther the monitor Screen or
teletype depending on the mode, The message should be
packed three é=bjt ASCII characters to a word ard
terminated by a question mark, The subroutine is
entered with the address of the message =1 in the AC,
Calling sequence = JMS MMESSG

PSTLLS

Remains in a two instruction loop until the <character,
vector and point plotting generators are not busy,
Calling sequence = PSTLL

LROTAT:

Executes an LROYT instruction using the value contained
{n the AC plus the value of FONTYP,
Calling sequence = LROTAT

MNLSIZ:

Executes an LSIZ jnstruction using the <character s8ize
value contained in the AC,
Calling sequence = MNLSIZ

MNBRIT:

Executes an LBRT instruction using the value contained
in the AC,

Calling sequence = MNBRIT
MNLSPS?

Loads the spot size register by executing an LSPS
instruction using the value contained in the low order
three bits of the AC,

falling sequence = MNLSPS

MONITQOR SYSTEM
USAGE cont.

MNSPOT

Calls subroutine MNLSPS and if the PLS is on and the
spot size is changed, a fifty millisecond delay is
inftiated,

Calling sequence = MNSPOT

MNSCOL @

This subroutine is used to select a color filter, ﬁits
14 = 17 of the AC specify the filter code:

BLIT ADDITIVE SYSTEM SUBTRACTIVE SYSTEM
L CLEAR CLEAR

16 RED MAGENTA

15 GREEN YELLOW

14 BLUE CYAN

Any "on" bits cause the corresponding filters to be
inserted; "off" bits remove the filters.
Calling sequence =~ LACC n (filter code)

MNSCOL

MNLCDY?

Loads the character delta=~Y by eXxecuting a LCDY
instruction using the value contained in the AC,
Calling sequence = MNLCDY

MNLCDX:

Loads the character delta=X by executing an LCDX
instruction using the value contained in the AC.,
Calling seguence = MNLCDX

ROTTST:

Executes the instruction immediately following the call
to ROTTST if the recording mode is comic (upright). T1f¥f
the recording mode {8 cine the second instruction
following ¢the call to ROTTST is executed, Proecessina
is continued with the third instruction following the
call to ROTTST.
Calling sequence = JMS ROTTST

Any Instpuction

Any Instruction

EXAMPLES 'JMS ROTTST
LAC XDELTA (Execute if fn comic mode)
LAC YDELTA (Execute if {n cine mode)
DAC DELTA (Processing continues here)

25

MONITOR SYSTEM
USAGE cont.,

26

ROTATE®

Rotates the image depending on the value
(@=33counterclockwise = @Bsuprght) contained in the AC,
The corresponding value (20=comic, 12=cine) is stored
in cell CHRRQOT (for charscter rotation).
Calling sequence = LACC n

JMS ROTATE

SETPLS:

This subroutine calls SETUMU and wunblanks the high
precisfon CRT if PLSON contains a NOP (MAKE FILM = 1),
Calling sequence = SETPLS

SETOMU

Calls subroutine PSTLL, executes a RST instruction and
using the values contafned {in the following cells
either calls the corresponding subroutine or executes
the corresponding i{nstruction to Yoad a particular FR
82 register,

Calling sequence = SETOMU

CELL = INSTRUCTION/SUBROUTINE

LRAWRD LRA
HSLBWD HSLB
RECSPT MNSPOT
RECPIN MNBRIT
CHRROT LROTAT
CHRSIZ MNLSIZ
CHDELX MNLCDX
CHDELY MNLCDY
RECCOL MNSCOL

SETXY, SETXYF, SETXYS!

These routines load the X and Y DACs using the values
obtained by executing the i{instruction immediately
following the subroutine call for the X value and the
next instruction for the Y value., SETXY issues no
delay after setting the DACs, SETXYF issues a 32
microsecond delay while SETXYS allows a 120 microsecond
delay, The routines perform the coordinate
tranasformation for the selected rotation so the
programmer §s only required to supply the values for
comic mode regardless of actual rotation,
Calliing sequence = JMS SETXY or SETXYF or SETXYS

Any instruction

Any instruction

EXAMPLES JMS SETXY

MONITOR SYSTEM
USAGE cont.,

LAC XVALUE
LAC YVALUE

INTENS:

Calls subroutine PSTLL and executes an INTS instruction
causing intensification of ¢the current point on the
monitor anmd on the PLS if enabled, The current values
for spot sfze and intensity are wused and the ones
complement of the number of hits {§s stored in cel]
PTHITS,

Calling sequence = INTENS

MNOUT ¢

Converts the contents of the AC to the specified radiy
and outputs the number to the tejetype, If BIGBUF = 0,
the next {nstruction must be a LACC n where n is the
radix number,

The maximum number of digits that may be output s &
and if leading 2zeros are to be printed, MDOUT4+3 should
be changed to NOP, Further, {f an unsigned number is
to be output, MNOUT+i should be changed to CLL,
Calling seguence = JMS MNOUT
LAC XXXX (this instruction

should load the

accumulator with

the radix {f

BIGBUF = ©)

MOOUT:

Calls MNQUT to output the contents of the AC in octal,
Calling sequence = JMS MOOUT

MDOUT:

Calls MNOUT to output the contents of the AC in
decimal,
calling sequence = JMS MDOUT

TYPOUT:

This subroutine is used to type a list of parameters,
separated by commas, to either the monitor or teletype
depending on the mode, The routine is entered with an
instruction {n the AC to "massage" each number of the
parameter l1ist, A LAC "parameter" {nstruction should
follow the call to TYPUOUT; one LAC {nstruction for each
parameter to be typed out. The 1ist should be
terminated with an exit instruction.

Calling sequence = LAC (instruction) 27

MONITOR SYSTEM
USAGE cont,

28

e / \ "\\)

JMS TYPOUUT

LAC "parameter" ’

° k222
. F7
Exit instruction

KYBLIS:

This routine {8 normally inserted within a program loop
as it l{stens for a teletype interrupt, If there is no
interrupt, processing continues, otherwise if the
following characters are typed, the corresponding
action takes place = any other character causes
processing to continue with the character code in the
AC and the link set, The routine also checks for clock
overflow and {f it has occurred, will inecrement
focation six,

CODE ACTION

Control D(2084=~0ctal) Exit to Debug
Control I(2i1-octal) Exit to MONITOR
Control A(28i~o0ctal) Exit to MONITOR
next frame advance
Calling sequence = JMS KYBLIS

ADVSYS:

Advances the camera the number of increments contained
in the AC, If the number of increments is larger than
the number of increments allowable for one camera
advance for a specified camera (PULMAX), the camera 1is
advanced PULMAX number of increments per advance until
the desi{red number of increments has been reached. The
last advance may or may not be PULMAX {ncrements,
Calling sequence: LACC n

ADVSYS

ADVANN:

Advances the camera the number of increments contained
in the AC by calling ADVSYS., Prior to advancing, the
routine verifies that more than ten feet of film {8 in
the supply magezine; if nmnot, the routine executes a JMP
to MONITOR to wait for further ocperator instructions.
Calling sequence: LACC n

ADVANN

ADVANF:

Keeps track of the number of frames recorded; aliso
increments cell NUMFRM (negative number of frames to bhe

MONITOR SYSTEM
USAGE cont,

done) and {f zero, outputs the message #FRAMES DUNE and
executes a JMP to MONITOR, Further, if a <CNTRL>A(2411
octal) hed been recognfzed, a JIMP to MONITOR s
executed,

Calling sequence: ADVANF

ADVAN?

Calls ADVANN using the value contained in cell PULLNO;
cell PICNUM is incremented {f MANYUP is not defined and
ADVANF {s called,

Calling sequence: ADVAN

CLEAR:

Calis ADVSYS to advance all exposed film into the
take=up magazine. The number of i{ncrements to be
advanced {s stored in cell MCMCLV,

Calling sequence: CLEAR

MVDATA:

Performs basic mag tape operatjons, The cell DATCNOM
contains the complete mag tape controller command word
with the exception of the operation field, The mag
tape operation must be in the AC when MVDATA is called,
The data channel word count (32) and current address
(33) cells must be get before calling MVDATA, Symbols
for the mag tape operations are:

REWCOM « rewind

RDCOM =« pread

WRCOM = write

EOFCOM = write EOF
SKPCOM = skip forward
BCKCOM = skip backward

Calling sequence: LAC (operation)
JMS MVDATA

ASSEMBLY PARAMETERS

BIGBUF &

This parameter must always be defined, A value of zero
causes the MONITUR to be assembled with a maximum of
features, none of which are expendable, A value of one
causes fewer features to be assembled and allows for a
program organfzetion with expendable code,

29

MONITOR SYSTEM
ASSEMBLY PARAMETERS cont,

30

DSKMON:

The definition of this parameter causes the assemblv of
the "LOAD" command and subroutines for form loading
from disk,

TAPMON:

The definition of this parameter causes the assembly of
code for a mag tape MONITOR system,

NODISP:

The definition of this parameter eliminates the display
of operator commands, A BIGBUG=! system automatically
defines NODISP, '

NOFQOCS:

The definition of this parameter eliminates the code
for generating the focus pattern,

NOHITS:

The defimftion of this parameter eliminates the code
for specifying multiple hits.

VECTOR ROUTINES (IIIté2)

August 23,1973

Published by

Information International
12435 West Ulympic Boulevard
Los Angeles, California 90064

51

VECTOR ROUTINES (III162)

ABSTRACT

111162 provides subroutines for drawing solid vectors,
dashed vectors, and dotted vectors,

REQUIREMENTS

The insert file 111162 MACRU contains macro definitions and
must be inserted before the SETHD and SET1L macros are used,

USAGE

The starting point of a vector is referred to as the "heaa":
the end point is called the "tail", The macro SETHD is used
to set the coordinates of the heady the macro SETTL sets the
coordinates of the tail, Specification of a nuli
(zero=length) veetor results in the intensification of a
single point,

For a vector from (XHD, YHD) to (XTL, YTL) the macro codinng
should be:

SETHD XHD, YHD
SETTL XTL, YTL

The following subroutines assume that the head and taiil
coordinates have been set with the SETHD, SETTL macros:

SOLID VECTORS

Subroutine DRWVEC uses the hardware vector generator to
produce solid vectors. Location VECHIT contains the
1's compliement of the number of hits for each vector,
Calling sequence: JMS DRWVEC

DASHED VECTORS

Subroutine DRWVDS uses the hardware vector generator to
produce dashed vectors, Dashes are made by blankina
and unblanking the PLS while the vector generator is
drawing. The aashed line format is specified by a call
to COMDSH before calling DRWVDS,
Calling sequence: STL or CLL

JMS COMDSH (compile dashed code)

LAC "SMALLER LENGTH" (arg. 1)

LAC "LARGER LENGTH" (arg. 2)

If the Link {s zero, then argument | refers to the
length of the dash and argument 2 refers to the lengthn
of the space,

32

VECTOR ROUTINES (IIIié2)

USAGE

If the Link is one, then argument | refers to the
length of the space and argument 2 refers to the length
Of the da.h.

It is necessary to call COMDSH only once for a
particular dashed line format,

Any change in format requires another call to CUMDSH,

A call to DRWVDS utilizes the output of COMDSH and
draws the dashed vector, Location VECHIT contains the
1's compiement of the number of hits for each vector,
Calling sequence: JMS DRWVDS

DOTTED VECTORS

Subroutine DRWDOT produces dotted vectors without the
use of the hardware vector generator, The assembly
parameter DSH determines the spacing between dots. The
number of scope points between dots, as measured on the
axis of the 1larger component, {s 2#%DSH, Location
DOTHIT contains the 1's complement of the number of
hits for each vector,

CALLING segquence: JMS DRWDUT

ASSEMBLY PARAMETERS

DASHED = When DASHED is defined, routines will
be assembled to produce dashed vectors,

DOTVEC= When DOTVEC is defined, routines will
be assembled to produced dotted vectors.

DSH = When DOTVEC is defined, DSH determines
the number of scope points, X,
between dots, as measured on the
axis of the larger component,
X = 2%#DSH

33

CHARACTER ROUTINES (IIIl47)
March 27, 1974

Published by
Information International
12435 West Ulympic Boulevard
l.os Angeles, California 90ubé4

35

CHARACTER ROUTINES (III147)

ABSTRACT

111147 provides subroutines for drawing characters, with
mono or proportional spacing, adding extra character/word
space for Justification, measuring the width of characters,
and computing character size from scope points of height.

REQUIREMENTS

The insert file 111147 SPEC contains the subroutines forp
proportional 8pacing, Justification, and character width
measuring,

USAGE

The character plotting subroutine VCHAR draws a single
character whose <character code is fn the accumulator. The
character will be plotted with its lower left=hand corner at
the current beam position,

Calling sequence:

LAC "Character Code"
JMS VCHAR

Subroutine VCHAR uses a pointer table at VCHTAB to find the
strokimng information for the requested character code, The
word at VCHTAB + Character (ode is used as the address of
the first word of stroking data.

CHARACTER SPACING

After drawing the character, VCHAR will move the beam one
character space. The direction of movement is dependent
upon the current character rotation; upright characters are
spaced from left to right,

Monospaced Characters

Monospaced characters are drawn as is, without any
initial beam movement. The beam position returns to
the origin after completing the character, whereupon
the beam {8 moved one character space, This distance
is determined by the last value Jloaded with LCDX orp
LCDY instruction, depending upon rotation,

Proportional Spaced Characters

Before beginning a proportional spaced character, the
beam position s moved forward or back to ensure that
the leftmost light of the character will begin at the
origin. After the character {s completed, beanm
position {is moved to the rightmost 1light of the
character, then fuprther by one character space, This

36

CHARACTER ROUTINES (IIIlé7)

distance is specified in scope points by the cell
VCHSPC.

If proportional spacing is required of VCHAR, the cell
VCPROP must contain an OPR instruction, For monospacing,
VCPROP must contain a SKP (aefault),

JUSTIFICATION

Justification allows the addition of extra (positive or
negative) character spacing, treating a space character (4¢
octal) differently from other characters,

The subroutine JUSTIN sets up VCHAR to add spacing for
subsequent character plotting as follows:

JUSTC{ = Additional spacing (positive or negative) for
non=space characters,

JUSTWY = Number of non=«spaced characters to receive one
additional scope point of character space after
JUSTC1.

JUSTCZ2 = Additional spacing (positive or negative) for space
characters (40 octal).

JUSTW2 = Number of sapace characters to recejve one
additional scope point of space after JUSTCZ2,

Once these values have been initialized with JUSTIN, placing
a SKP instruction at JUSTSW will cause spacing to be added
for subsequent calls to VCHAR., Placing an UPR instruction
at JUSTSW wfll plot characters normally,

MEASURING

VCHAR may also be used to measure a character without
plotting. To accomplish this, place an OPR instruction at
VCMEAS before calling VCHAR., The width, including character
spacing, will be added to the value of CHWID, and the resu'lt
placed in CHWID, Repeatea calls without clearing CHWID wil)}
thus sum up the width of a character strinag,

If Jugtification i{s being used and JUSTSW <contains a SKP
fnstruction, Justify spacing will be added into the width
calculation, In this cese, JUSTIN should be used to
fnitialize the justification routimes before beginning the
measure,

For character plotting, VCMEAS should contain a SKPpP
fnstryction,

. %)

CHARACTER ROUTINES (III147)

CHARACTER SIZE

The subroutime VCHSIZ will convert a scope point character
height from the character baseline, to a character size
number between @ and 63, This computation assumes the
characters are designed with a cap height equal to box
height, and chooses the next highest size available, The
box height in strokes should be stored in CHBUXH.

Calling Sequence:

LAC "Character Height"
JMS VCHSIZ /8ize number returned in AC

The subroutine VCINIT and VCIN scale the character width and
offset values, used by VCHAR, for a given character height,
Calling sequence?

LAC "Character Height"
JMS VCINIT
JMS VCIN

The subroutine VCINIT stores the character height ang
initializes VCIN ¢to scale when called, VCIN does the
measuping and sets itself to ignore further calls unti]
VCINIT 1is called again, Thus, {f VCINIT is called when
character size 1is changed, and VCIN s <called before
plotting characters, scaling will occur only when necessary,

ASSEMBLY PARAMETERS

COMPOZ =« When defined, width measuring routines will be
assembled,

COMPRP = wWhen defined, proportional spacing routines will be
assembled.

COMJUS = When defined, justification routines will be
assembled,

38

CHARACTER DISPATCH TABLES (III164)
March 27, 1974

Published by
Information International
12435 West Ulympic Boulevard
Los Angeles, California 90064

39

CHARACTER DISPATCH TABLES (I1I164)

ABSTRACT

111164 provides standard character dispatch tablies to relate
character codes to character descriptors. UDispatch tables
are sgupplied for Information International standard
(IIISET), BCD, and EBCDIC, and others tailored to specific
applications, III164 defines the ZZ macro used in
optionally reserving extra words between characterp
descriptors in a font,

REQUIREMENTS

The insert file III164 SPEC contains dispatch tables
tailored for specific applications., The insert file III164
MACRO defines the ZZ macro,

USAGE

A character dispatch table is a series of 18=bit worg
addresses pointing to the character descriptors to be used
for plotting characters, These addresses are in order of
the character code; that is, the first address points to the
. desired descriptor for character code zero, the second
address for code one, and so forth, This table can be used
by the hardware to plot characters from character codes,

The symbolic font format for the FR 84 and CUMp 8@ includes
a unique symbol! assigned to the starting address of each
character descriptor, This symbol is "CCnnnn", where "nnnn"
{is a four=digit octal character identification code. All
characters are assigned a unique character ID code; those
characters having an Information International standard
character code are assigned that character code as theirp
character ID number; for example, the Information
International character code for an upper case "A" s 101
(octal), so the sympol defined as the starting aadress for
the "A" in a font s C(CCR1di. The symbol "CC7777" s
reserved for a "null" or non=printing character,

The file 111164, then, defines a series of these symbolic
addresses as a table beginning at location VCHTAB. For
ITIISET, this table is simply {in order of character ID code:

VCHTAB, CC7777
CCo0o1
cCope2

A1l dispatch table positions for unused character codes are
filled with the dispatch for the null character, "CC7777."

40

CHARACTER DISPATCH TABLES (III164)

To provide a dispatch table for other character sets, III164
defines the symbolic addresses in a different order. For
example, the EBCDIC code for the letter "A" is a 3C1 octaly
for an EBCDIC dispatch table, then, II1164 would defire a
CCo1B1 at VCHTAB+30@1 octal, rather than VCHTAB+1@1 octal for
a IIISET dispatch table,

The file 111164 may thus be asgembled with a font in a
program, and it will provide a dispatch table, according to
assembly parameters, that refergnces the absolute addresses
of character descriptions in the fonts. The symbolic font
files are set up with conditional assembly statements around
each <character description directing it to be assembled §f
the character ID symbol for it has been referenced, Thus,
I1I164 must be inserted iin the user program prior to the
font; the assembly parameter FONT {s provided for this
purpose, and may direct automatic insertijon of the required
font at the end of JII1é4,

The length of the dispatch tablie depends upon the number of
bits to be used for a character code, BCD is a é6=bit code,
therefore the BCD dispatch table is 64 words long; the
dispatch table for 8=bit EBCDIC is 256 words long, etc.

SPCTAB

A table {is included 1in III1é64 at location SPCTAB for
conversion of character sizes between scope points of height
and character size number (¥=63), The table consists of 64
words representing the scope points of height for a
t4=stroke=high character, for character sizes (=63,

ASSEMBLY PARAMETERS

IIISET = If defined, assemble a dispatch table for
Information International standard character codes,

EBCDIC

If defined, assemble an EBCDIC dispatch table,

BCD = If{ detined, assemble a BCD dispatch table,

COMPRP = If defined, causes ZZ macro to reserve two words
between character descriptors for character width
and offset, Necessary for plotting characters in
proportional=-gpaced mode.

LOCASE =~ 1f definad, include lower case characters {n the

character set; otherwise upper case only,

41

CHARACTER DISPATCH TABLES (1II164)

FONT

42

= Mugst be defined to direct the
at the end of [II164,

FONT

VNP UWN =R

FILM
MICRO
ocnB
BELL
BELLZ2
MICRQZ2
MICRO1!
FILM1
COUR
JCRBZ
BELLX
BELLZ2S
IBMALD
NDFILM
0OCRB3
NEW

inclusion of

a

font

MAGNETIC TAPE BUFFERING ROUTINES (III163)

March 26, 1974

Published by
Information International
12435 West Ulympic Boulevard
Los Angeles, California 90064

43

MAGNETIC TAPE BUFFERING ROUTINES (III163)

ABSTRACT

I1I1163 provides subroutines for initialization, reading, and
repositioning of single or multiple tape units,

REQUIREMENTS

The Information International MONITUOR system is required.

USAGE
READ ROUTINES

Subroutine MTRINI performs buffer initialization, The
two's complement buffer size in FR 82 worads must be in
the MONITOR cell PBUFSZ. For single-buffered input,
the buffer address minus one must be in the MONITOR
cell MTAREA; for double~=pbuffered input, CURBUF and
NEXBUF must contain buffer pointers, Each pointer is a
buffer address minus one,

Calling sequence for single buffered:

LAC (BUFBEG=1} /buffer adaress =|

DAC MTAREA

LAC (1=«BUFSIZ /two's complement buffer sijze
DAC PBUFSZ

JMS MTRINI

Calling sequence for double buffered:
LAC (BUFBEG=}
DAC CURBUF#
LAC (1=BUFSIZ
DAC PBUFSZ
TCA
ADD CURBUF
DAC NEXBUF#
JM8 MTRINI

If multiple tape units are allowed (MTMANYDQ), <calling
sequence {8 as follows:

LAC UNIT

JMS MTRINI /unit number in AC

LAC (1=~BUFSIZ /two's complement buffer size

LAC (BUFONE=1 /buffer address =1

LAC (BUFTWO=1 /2nd buffer (only necessary

/if double buffered)

Subroutine MTLAC will return (in the AC) 18«bit words
sequentially from the buffer, Each buffer is filled
automatically as it becomes empty,

Calling sequence: JMS MTLAC

44

MAGNETIC TAPE BUFFERING ROUTINES (III1é3)

Subroutine MTBYTE will return (in the AC) a requesteq
number of data bits. The number of bits requested is
{in the AC when MTBYTE is called, If data is known to
cross record boundaries, MTBYSW should contain a SKP,
If not, MTBYSW should contain a NOP and the partiaj
word at the end of the record will be ignored,
NOTE: calle to the MTBYTE and MTLAC routines cannot be
intermixed,
Calling sequence: LAW n

JMS MTBYTE

AND (mask appropriate to n bits)
Alternate calling sequence: GETT n

WRITE ROUTINES

Subroutine MTWINI performs buffer initialization,
record size {s speci{fied by the buffer sjze.
Calling sequence: Same as MTRIN]

Subroutine MTDAC will put the 18 bit AC into the next
position in the output buffer,
Calling sequencet JMS MTDAC

Subroutine MTPUT will write a number of bits (the
number specified by the cell BYTE) from the AC. The
number specified refers to the low order AC bits,

MULTIPLE TAPE UNITS (MTMANY>Q)

Subroutine MTSEL will select a tape unit for reading or
writing. The AC must contain a unft number previously
used with a MTRINI or MTWINI,
Celling sequence: LAC UNIT /tape unit #

JMS8 MTSEL

REPUSITIONING ROUTINES

These routines consist of a pushdown 1ist and backup
routines to process nested repeats of data from mag
tape,

i. Save current mag tape pointers,
Calling sequence: JMS MTPUSH

2« Reposition the mag tape to the previous "push"
position,
Calling sequence; JMS MTREPO

3. Remove the top mag tape pointers from the pushdown

1‘Sto
Calling sequence: JMS MTPOP

45

MAGNETIC

END

TAPE BUFFERING ROUTINES (I1I163)

OF FILE PROCESSING

A jump to a user=supplied EOF processor can be stored

at
and

ASSEMBLY
TWOBUF

MTPTR

MTWRDS

MTRPT

MTMANY

MTWRIT

46

MTEOF ., Default EOF processing types *END OF FILE
returns to the MONITOR,

PARAMETERS

Definition of TWOBUF causes assembly of
double=buffered read routiness if it 1is not
defined, the read routines will be single~buffered,

If the parameter MTPTR is not defined, the read
routines will allocate a core location for indexing
through the data buffer., If the user desires a
faster access time and can afford the dedicated use
of an autoinaex register, define MTPTR=Nn where n is
12 through 7.

If data is to be accessed a word at a time (no
calls to MTBYTE), then a core savings is realized
if MTWRDS {s defined,

If the repositioning routines are needed, define
MTRPT==n where n is the maximum depth of nesting,

If defined and non=zero, allows handling of more
than 1 tape unit; & value of 1 allows units ¢ and
1, 2 allows 8, 1 and 2, etc.

If defined, mag tape write routines (MTDAC, MTPUT)
are included,

DISK I/0 SYSTEM (II1183)

March 5, 1974

Published By
Information International
12435 West Ulympic Boulevard
Los Angeles, California 90064

47

DISK I/0 ROUTINES

ABSTRACT

II[-183 is a set of subroutines which provide capability for
Disk Input/Output, A push down stack is provided for nested
reads,

USAGE

The disk organfzetion is described completely in the "Disk
Operating System" documentation, The disk has 1224 blocks
of 256 18=bit words, Resident on the disk 1is a master
directory which indexes up to 15 user directories, and a
track usage table (TUT) which §ndicates the state (used or
unused) of all blocks on the disk,

Data is read from the disk or written to the disk in blocks
of 256 18 bit words; however, the disk buffering routines
make the block structure {nvisible to the user,

A disk file is referenced by a directory name and a file
name. the subroutines in III183 assume that the directory
name is in location CKFILE and that the file name is in
Jocatjons DKFILE+1 through DKFILE+4,

SUBROUTINES
DKRINI (READ INITIALIZE):

This subroutimne initializes the system to read from the
file specified by DKFILE through DKFILE+¢
Calling sequence = DKRINI
' RETURN DKRINI preturns here if
the file doesn't exist,
RETURN+1 normal return for DKRINI

DKWINI (WRITE INITIALIZE):

This subroutine initializes the system to write on the
disk by finding an available block, setting up the
buffer, and storing the default directory and file name
{nto locations DKFILE through DKFILE+4, Control is
returned to DEBUG if the disk is full,

Calling seguence = DKWINI

48

DISK
USAGE

1/0 ROUTINES

DKREAD:

This subroutine returns to the next 9 bit byte in the
low order AC from the file opened by DKRINI,
Calling Sequence: DKREAD

SAD (EUFCHR /echeck for EOF char,

DKRDWD:

This subrotine returns the mext 18 bit word in the AC
from the file opened by DKRINI.
Calling Sequence = DKRDWD

DKWRIT:

This subroutine writes the 9 low order bits of the AC
to the disk.
Calling Sequence = DKWRIT

DKWRWD 2

This subroutine writes the contents of the AC to the
disk.
Calling Sequence = DKWRWD

DKNAME ¢

This subroutine names all disk output since the last
DKWINI, Locations DKFILE through DKFILE+4 specify the
directory name and file name.
Calling Sequence = DKNAME
RETURN /DKNAME returns here if
/there i8 no such
/directory defined,
/or {f the master
/directory is full,
RETURN+1 /DKNAME returns here if
/the user directory is
/fu”-
RETURN®+2 /normal return for
/DKNAME

DKPUSH3

This subroutine saves all relevant information about
the last file opened by DKRINI. This allows reading
from a new file and later reopening th old file by
doing & DKPOP, Extra core locatioms of intrest to the

49

DISK
USAGE

The f

50

1/0 ROUTINES

user program may be pushed onto the stack by defining
DKPNUM to be the number of extra words desired. THe
extra core locations are DKPBLK to DUKPBLK+DKPNUM, for
nonezero DKPNUM,

Calling Sequence = DKPUSH

RETURN /push down stack is
/full,
RETURN#1 /normal return for
/DKPUSH
L]
DKRINI /open a new file.

DKPOP:

This subroutine reopens the last file processed by
DKPUSH, The read routines will continue where they
left off {n the file,
Calling Sequence = DKPOP
RETURN /push down stack is
/empty.,
RETURN +1 /normal return for DKPNOP

ollowing subroutines are called by those listed above:

DKRTUT This subroutine reads the track usage table
inte core and stores the default directory
reme and file name in DKFILE throuah

DKFILE+4,

DKCRUS = This subroutine creates a new drectory with
the name in DKFILE. A new master directoy is
written on the disk. The routine skips on a
normal return,

DKRDMD = This subroutine reads the master directory
into core,

DKDRFN = This subroutine searches the master directory
for the name in DKFILE, The routine skips on
a normal return,

DKFFIL = This subroutine searches the user directory
for the neme in DKFILE+! through DKFILE+4,
THe routine skips on a normal return with a
pointer {in the AC to the first block of the
file.

DKDLET = This subroutine deletes the file named in
DKFILE through DKFILE+4 from the diske.

DISK I/0 ROUTINES
USAGE

DKGET = This subroutine searches ¢the track usage
teble for an available block, Control is
returned to DEBUG {f the disk is full,

DKINIT = This subroutine initislizes to read into core
the block whose number {8 in the AC.

DKRDSK = This subroutine handles the actual data
transfer from disk to core,

DKWRBK = Thia subroutime Hhandles the actual data
transfer from core to disk,
ASSEMBLY PARAMETERS

NODKWT

When NODKWT is defimed, it is not possible tg
write on the disk,

DKNWSR = When DKNWSR 1{s defined, 1t allows new
directories to be created.

NODKRD = wWhen NODKRK is defimned, it is not possible to
read files from the disk.

DKREPL e When DKREPL {s defined, it allows file
replacement,

DKPNUM = When DKPNUM is defined, 14 allows
"pushereads," Define it as the number of
extra words (usually zero) to be pushed.

DKCHAN = When DKCHAN is defined, it allows a new TUT
to be buflt when using subroutine DKNAME,
Store a LAM (=B) {n location DKCHAN when
calling DKNAME to cause a new TUT to be
bu“t.

ADDITIONAL NOTES: F/LE NAMES LowsR CASE § hit Ascl

II1182 reads a file name and formats it correctly for use
with III183, A useful macro for producing file names in the
proper format directly st
N X, Y, Z = mecro to pack characters X, Y, Z into name
format,

.DEF N X, Y, Z

"X+40BRT7¢6 1KY +4ORTTI€6I<" 244077
« TERM

ad

MASS STORAGE I/0 (III188)

Published by
Information International
12435 West Ulympic Boulevarda
Los Angeles, California 90264

343

MASS STORAGE 1/0

ABSTRACT -

This program contains subroutines to read or write disk
blocks,

USAGE

The following routines will operate either with interrupts
enabled or not.

WDSK:
This subroutine is used to write a bloek of data,
Calling sequence = LAC (block #)

wWOSK

LAC (starting core address)

NORMAL EXIT
BLKSIZ (400octal) words will be copied from the specified
core address ¢to the specified data block on the disk, Any
error cdetected will cause retry until no error is detected,

RDSKs
This subroutine reads a block of data, =
Calling sequence = LAC (bloeck #)

RDSK

LAC (starting core address)

ERROR EXIT

NORMAL EXIT
BLKSIZ (40Boctal) words will be copied from the specified
date block into specified consecutive core locations.
The error exit will be taken if an error is cetected
trying to read the block more than a specified number
of times, The number of read attempts to be tried
before exiting is stored as a two's complement number
in RDSKMX, :

54

SYSTEM TAPE DEBUG (III126 P)

March 13, 1974

Published By
Information Internationai
12435 West Ulympic Boulevard
Los Angeles California 92064

85

SYSTEM TAPE DEBUG (IIIlcé P)

ABSTRACT

DEBUG is a general purpose symbolic debugging program,
Controls are the non=alphanumeric characters and letters
when preceded by $ or <ALT MODE> (The <ALT MODE> key prints
as $,) This version of DEBUG {s meant for use on an 8K
machine with no mass storage., It is coded very efficiently
ifn its own interpretive language which packs two commands to
a word, and hence, saves space at the expense of time,
S{nce the program 8 wusually waiting for a teletype
response, there is no noticeable loss of speed in operation,

REQUIREMENTS

Storage = approximately 200U(octal) 1locations, plus space
for program's symbol table. (When large programs are read
fn, symbols are deleted.)

USAGE

This program may be assembled to reside anywhere in memory,
Normally it resides at the end of memory and its starting
addregs (DEBUG) is 17677, Load DEBUG from the SYSTEM tape
and type GO/<CR>, To restart, START at «108. (A1)l errors
are indicated by the printing of a ? and ringing of the
be]‘-)

AVAILABLE COMMANDS

(In the following, a and b stand for any legal expression,
end 8. stands for any legal symbol,)

Initializing Commands

$K » Ki1l @11 but permanent symbols
a<$? = Zero memory from a up to symbo)l table
a<b 8z = Zero memory from a to b=l inclusive

Program Loading

$D = |_oad program and symbols from paper tape

56

SYSTEM TAPE DEBUG (IIIidé P)
Available Commands

Mode Control

$3 =
§C
$R
$0
n$R

The initial
is 8,

Arithmetic

or space

+
%
!
Examination

a/
a\

/

\
<CR>
<LF>
T

}
TAB

'Registers

SA
SL
$Q
$F
$J
$M
$M+1

#

Running

°'
n

Print words as symbolic commands

Print words as constants

Print addresses in relative symbolic

Print addresses as constants

Change output and input number base to n (n>1)
Print last quantity in current mode

Print last quantity in opposite mode

modes are S and R, and the initial output base

Plus
Minus
Times
Inclusive UR

Open a in current mode

Open a in opposite mode

Open addressed register in current mode
Open addressed register im opposite mode
Modify and close

Modify and open next

Modify and open previous

Modify and open addressed

Modify, open addressed, and change sequence

Accumulator

Link

MQ

Bottom of symbol table

Location at which program starts on !

Mask for seapches

Upper limit

Current Jlocation

Last quantity typea (by either user or DEBUG)

Go to location contained in $J

Go to a

Go to location contained in DEBUG=1}
Go to a and put a in DEBUG=1

57

SYSTEM TAPE DEBUG (III12é P)
Available Commands

$J and DEBUG=1 initially contain halts, If ' or " are used
without arguments before changing $J or DEBUG=1, an error is
1ndicetedo

When a paper tape is loaded, fts start or pause address {3
pUt 1” sJo

A running program may JMS8 to DEBUG=1 and a " will return
control to the program with the status restored.

NOTE: If it is desired that DEBUG type the return address

for such an entry, the JMS DEBUG=1 shoulao be preceded
by a DZM DEBUG=2,

$B = Remove breakpoint

a%$b = Put breakpoint at a

sp = Proceed after breakpoint stop

ns$pP = Proceed and do not break next n times
a$X - Execute the command a

If the execution of the command results in a skip, the bel}
will ring.

Symbol Definition

als> = Define the symbol s as the quantity a

s, - Define the current location as s

Searching

asw = Search for and print ail locations eaqual to a
asN = Search for locations not equal to a

58

SYSTEM TAPE DEBUG (IIIid6 P)
Available Commands

$K

$2
al$?
a<b$?

$D

COMMAND SUMMARY = DEBUG

ki1l symbols

zero memory

zero from a on
z2ero from a to b=l

load program and symbols

symbolic

constant

relative

octal

set base n

equals, current mode
equals, opposite mode

pius
minus
times
or

open, current mode
open, opposite mode
close

open next

open previous

open addressed

new sequence,addressed

$A
3L
$Q
$F
oJ
M
$M+1

#

$B
$P
X

ass?>

s,

W
&N

accumulator

link

MQ

symbol table

start address
search mask

upper limit

current address
last quantity typed

start
return

breakpoint
proceed
execute

define a as s
define current as s

word search
not=word search

59

