

A manual
of the
Atlas
Fortran V
Language

by C. F. Schofield

University of London
Atlas Computing Service

rdon Square, London WC1. Euston 3421 (01-387 3421)
May 1967

CONTENTS

CHAPTERS
1. INTRODUCTION
2. PUNCHING THE PROGRAM

2.1 Card layout

2r2) Character set

2.3 Conditional compilation (X cards)
CONSTANTS

3.1 Integer constants

3.2 Real constants

3.3 Double precision constants
3.4 Complex constants

3.5 Text constants

3.6 Logical constants

3.7 Boolean constants

VARIABLES AND ARRAYS

4.1 Variable names
4.2 Arrays
4.2.1 The DIMENSION statement
*4.2.2 Array storage
4.3 Implicit type assignment
45351 The IMPLICIT statement

4.4 The type statements
4.5 The EQUIVALENCE statement
4.6 The DATA statement

EXPRESSIONS and REPLACEMENT STATEMENTS

5.1 Arithmetic expressions
S I | Subscripted variables
o2 Evaluation of arithmetic expressions
5:1.3 Truncation
5.1.4 The TRUNCATION statement
25 LD Type of expressions
5.1.6 Masking operations
5.2 Logical expressions
S | Relational expressmns
S)eiliar2 Logical expressions

w Ut
[V I L]

The arithmetic replacement statement
The logical replacement statement
The CLEAR statement

THE CONTROL STATEMENTS

[3« N« Ne Je N
N U W N

NN OO
= \0 00

Labels (statement numbers)
6.1.1 Label variables

The ASSIGN statement

The GO TO statement

The computed GO TO statement
The arithmetic [F statement

The logical IF statement

6.6.1 The Fortran IV logical IF
6.6.2 The Hartran logical IF
The DO statement

The CONTINUE statement

The PAUSE statement

The STOP statement

INPUT AND OUTPUT

Tl
TAY:

~ N
oW

LD

7.6

Introduction

Symbolic I/O designation

7.2.1 Output

7.2.2 Input

7.2.3 Magnetic tapes

Records

The 1/0 list

7.4.1 Definition

7.4.2 Examples of I/0 lists
7.4.3 Examples of output lists
Unformatted (binary) I/O statements

TesStal The unformatted READ statement
7.5.2 The unformatted WRITE statement

The FORMAT statement
7.6.1 Definition

75102 Carriage control
7.6.3

The non -numeric field specification

gl A conversion
B conversion

K conversion
L conversion

NN N NN
[« < W N« We N
Ut N

h

®

D conversion

E conversion

F conversion

G conversion

I conversion

O conversion
control specifications

[« N e N e N o We N e N
N U W W N

h

[}

S specification

X specification

T and Y specification
Z specification
'Format Free" input

Zero field widths

~
[= W= o)W« s N
U W N =

N o

H and primed conversion

numeric field specification

P, Q and R specification

71658 Variable formats
*7.6.9 Special features of paper tape input

7.7 The formatted READ statements
7«8 The formatted WRITE, PRINT and PUNCH statements
7.9 The magnetic tape manipulation statements
7.9.1 The REWIND statement
7.9.2 The BACKSPACE statement
7.9:.8 The UNLOAD statement
7.9.4 The ENDFILE statement
710 The use of magnetic tapes
7 I The OUTPUT statement

SIMPLE PROGRAM STRUCTURE

Bl The END statement

8.2 Main programs and subprograms 2
82 . Main programs
8122 Subprograms

8.3 Arguments (parameters)
8.4 Function subprograms
8.4.1 Intrinsic and basic external functions
8.4.2 Names of intrinsic and basic external functions
8.5 Statement functions
8.6 The FUNCTION statement
8.7 The SUBROUTINE statement
8.8 Adjustable dimensions
8.9 The EXTERNAL statement
8.10 The CALL statement
8.11 The RETURN statement
8.12 The PUBLIC statement
8.13 The COMMON statement
8.13.1 Arrangement of COMMON
8.13.2 COMMON/EQUIVALENCE interaction
8.14 The BLLOCK DATA statement

PROGRAM BLOCK STRUCTURE AND DYNAMIC ARRAYS

Ion Introduction to block structure
9t An example of block structure
Ol ;2 Use of block structure

92 Block structure definitions

9.2.1 Program blocks
9.2.2 The BEGIN statement
9.2.3 Entering and leaving blocks
9.3 Global and local items
931 Variables
9.3.2 Labels (statement numbers)
*9.3.3 Assigned GO TO statements
9.3.4 Procedures
Compound logical IF statements
Dynamic arrays
Miscellaneous statements and block structure
9.6.1 COMMON and PUBLIC
9.6.2 EQUIVALENCE
9.6.3 EXTERNAL
9.6.4 IMPLICIT
9.7, Summary of block structure

O O O
N U

10.

LEs

12.

13.

TRACING AND EXECUTION ERRORS

10.1 The TRACE statement
10.2 The TRACE PATH statement
10.3 Execution errors

10.3.1 List of execution errors
10.3.2 Supervisor detected errors
10.3.3 Interpretation of error output
10.4 The error statements
10.4.1 To continue execution
10.4.2 To terminate execution
10.4.3 To take special action
*10.4.4 Advanced features of AFTERR
*10.4.5 Miscellaneous error routines

MACHINE LANGUAGE INSTRUCTIONS

o 18 B Description of machine language

THE COMPILER DIRECTIVES

12.1 The *RUN directive

12.2 The *FORTRAN directive

12.3 The *ENTER directive

12.4 The *END directive

12.5 The *INPUT directive
*12.6 The SAVE PROGRAM instruction
#0027, Making a private library

i 1)l | The *MAKE LIBRARY directive
N2 2 The *LBEND directive
%) Dhsil i The *LIBRARY TAPE directive

OBJECT (BAS) CARDS (and arrangement of decks)

1351 Object cards
13.2 Arrangement of routines
*¥13w3 Details of object cards

*Sections marked with an asterisk contain information which is not normally

necessary, but may be useful for specialised applications.

APPENDICES

1.

PROGRAMS ON PAPER TAPE

2. THE CHARACTER SET
3. SOURCE STATEMENTS AND SEQUENCING
4. TABLE OF SYSTEM FUNCTIONS
5. NOTES ON EFFICIENCY
6. SOURCE PROGRAM ERRORS
7. LIBRARY SUBPROGRAMS
8. THE JOB DESCRIPTION
AB8.1 The Document title
A8.2 The Document heading
A8.3 The job description
) A8.3.1 The OUTPUT section
A8.3.2 The INPUT section
A8.3.3 Magnetic tapes
A8.3.4 COMPUTING time
A8.3.5 EXECUTION time
A8.3.6 STORE requirements
A8.3.7 Examples
REFERENCES

INDEX

9

CHAPTER 1 INTRODUCTION

Fortran is the most extensively used programming language in the world. Compilers
exist for most machines - usually with variations in the language. Fortran is often
considered to be an evolving language, with many dialects. Some of these dialects
contain useful facilities which later become common to the language. The most
common dialects are Fortran II, and, more recently Fortran IV.

Recently, the American Standards Association, (A.S.A) have proposed a standard
subset of Fortran (see Ref.1). ASA Fortran is very similar to Fortran IV as
implemented on many computers. Extensions to the language are explicitly allowed
by the ASA report, so long as the ASA Fortran is included as a compatible subset.

The Fortran V compiler was developed by Atlas Computing Service in order to provide: -

(i) A subset compatible with ASA Fortran; and good compatibility with
System/360 Fortran IV, and with Atlas Fortran (Hartran), whilst
retaining as much compatibility as possible with Fortran II.

(ii) Efficient compilations using a reasonable amount of storage.

(iii) Good testing facilities for development work.

(iv) Extend the useful facilities of the Fortran Language. The useful extensions
to the language include: -

Tracing (run-time testing) statements.

Block structure (nested subprograms).

Fully dynamic arrays.

The CLEAR statement for zeroing variables and arrays.

The OUTPUT statement for simple format free output.

"Format free" input of numbers.

Negative step, and real index for DO loops and I/O lists.

Improved control in FORMAT specifications (S,Y and Z controls etc).
The use of expressions, where only simple variables were normally
allowed e.g. expressions may be used in I/O lists, as parameters of
DO statements, and as subscripts, etc.

The use of in-line machine instructions.

The use of PUBLIC (name dependent) global variables.

Many other extensions will be found in the text.

Some of the facilities described above are also available in Atlas Fortran (Hartran).

We are indebted to the Science Research Council, and in particular to Mr. E. B. Fossey,
and Miss B. Stokoe of the Atlas Computer Laboratory at Harwell, for permission to use
the Hartran system library including routines for dealing with input and output.

This publication is a definitive reference manual of the Fortran V language, and is not
intended to be a Fortran primer; however, the presentation of material is such that no
previous knowledge of Fortran is required.

24

252

CHAPTER 2

CARD LAYOUT

Fortran V programs may be presented on 80 column cards, or 5 or 7-track paper tape.

The rules for punching paper tape are given in Appendix 1. When punching cards, the
following rules must be observed.

(1)

(i)

(iii)

(iv)

(v)

(vi)

(vii)

Columns 1 - 5 of the first line of a statement may contain a label
(statement number) to identify the statement.

Column 6 of the first line of a statement must be left blank or punched
with a zero.

Columns 7 - 72 contain the actual Fortran statement. Blanks are
ignored, except in TEXT constants, or in an S field in a FORMAT
statement.

Columns 73 - 80 are not processed by Fortran V, and may be used for
identification.

Lines punched with the character C (or =) in column 1 are not processed
by Fortran V, and may be used for comments.

If it is required to extend a statement over more than one line, then all
lines except the first must have a standard Fortran character other than
blank or zero in column 6. The statement is then continued in columns

7 - 72. Such lines are called continuation lines. Any one statement may
not extend over more than 34 continuation lines (i.e. 35 cards in all).

Blank lines appearing between two statements will be ignored by Fortran V.

Blank lines should not appear between a statement and its continuation.

CHARACTER SET

A program is written using the following standard characters:

Alphabetic: A By C s eaesiamans 5 N £
Numeric: O il 25 1y lofisiiatond 5 5 (8519
Special: Character Character Name

Blank (space)
Equals

Plus

Minus

Asterisk

Slash

Left parenthesis
Right parenthesis

VA*|+"

11

PUNCHING THE PROGRAM

12

23

p Comma

3 Point

7 (or $) Pi (or Dollar)

' Apostrophe (or Prime)

Other special characters may be used, and these are described in Appendix 2.

An alphanumeric character is any alphabetic or numeric character.

CONDITIONAL COMPILATION (X CARDS)

Fortran V provides means for ignoring certain statements when compiling. All
statements which contain an X in column one are treated as comments unless the

TEST option is specified on the *FORTRAN directive of the routine (see section 12.2 (9)).
If the TEST option is specified, then lines containing an X in column one are treated

as normal statements, the X itself being treated as blank, and not as a label or part

of a label.

This feature enables the user to include additional statements for testing purposes in

his routines, and when testing is complete, the statements do not have to be removed
from the program, since they can be turned into comments simply by removing the TEST
option.

A normal statement may have continuation lines, which are X lines (see below). If an
X line has continuation cards, then these cards should also be X cards.

Example: X PRINT 10
X 10 FORMAT ('"TEST PRINT')
PRINT 11,A,B
X 1 5D

11 FORMAT (5X, F10.6)

3.1

3.2

13

CHAPTER 3 CONSTANTS

Seven types of constants are permitted in a Fortran V source program; integer,

double precision, complex, text, logical and Boolean.

INTEGER CONSTANTS

real,

Definition +n

an integer constant is a string of one to eleven
significant decimal digits written without a
decimal point, and optionally preceded by a +
or - sign.

An integer constant occupies one word of storage

An integer constant must lie within the range:

236>n> = 236

A string of more than 11 significant digits is set up as a double precision
constant.

Examples 0
11

+75

032

-7746

REAL CONSTANTS

Definition tn.nor+4n. or+ .nor +n.nE +nor
+ n. Etn or + «nE + n or +nE +i

a Real constant may be: -

(1) An optional + or - sign followed by one to eleven
significant decimal digits, written with a decimal
point, but without a decimal exponent.

(2) An optional + or - sign followed by one to eleven
significant decimal digits, written with or without
a decimal point, and followed by a decimal
exponent which is written as the letter E followed
by an integer constant.

A real constant occupies one word of storage.

14

3.3

3.4

The absolute value of a real constant must lie within the range

10-110< x<10105, or be zero

A real constant has precision to about eleven decimal digits.

A string containing more than eleven significant digits is set up as a double precision
constant.

Examples: 1.0

1z

0.1

)
-.73610003

3.E1 (means 3.0 x 10* i.e., 30.0)
.2E-3 (means 0.2 x 163 i.e., 0.0002)

2 EH04 (means 2.0 x lO4 i.e., 20000.)

DOUBLE PRECISION CONSTANTS

Definition

a double precision constant is an optional + or - sign followed
by a sequence of up to 22 decimal digits written with, or without,
a decimal point, and followed by a decimal exponent, which is
written as the letter D followed by an integer constant. In
addition, real or integer constants containing more than 11
significant digits are set up as double precision constants.

A double precision constant occupies two words of storage.
The absolute value of a double precision constant must lie within the range

10—110< d<10105, or be zero

A double precision constant has precision to about 22 decimal digits.
Examples: 3D0 (means 3.0 x 100 igeis S10)

-.4D+2 (means -0.4x 10° i.e., -40.0)
3.141592653736

COMPLEX CONSTANTS

Definition (real constant, real constant)

a complex constant is an ordered pair of real constants,
separated by a comma, and enclosed in parentheses.

A complex constant occupies two words of storage.

The first real constant represents the real part of the complex number; the second
real constant represents the imaginary part of the complex number,

The parentheses are required regardless of the context in which the complex constant
appears.

The magnitude and precision of each part of the complex constant obey the same rules
as for real constants.

3.5

3.6

15

Examples: Fortran V representation Complex number
(4.7,0.2) 4.7+0.21
(-8.3, -.01) -8.3-0.011i
(7.6E3,0.0) 7600. +0.01i

TEXT CONSTANTS

Definition or ‘character string'
or nH character string

a Text constant is

(1) an unsigned integer constant (n) followed by the letter H
followed by a string of n characters. This is a
Hollerith constant.

or

(2) An apostrophe followed by a string of characters followed
by a second apostrophe. This is a primed text constant,

A text constant occupies one or more words of storage, eight characters being stored
in each word.

Spaces (Blanks) are significant characters in text constants.

Both types of constant are left-adjusted and filled out with blanks to an integral
number of words, so that

2HXY is the same as 8HXYbbbbbb
and 'ABC' is the same as 'ABCbbbbb'

In the case of a primed text constant all characters (including spaces) between the
apostrophes are taken as the text constant.

The apostrophe character itself may be used in a primed text constant by punching two
apostrophes, e.g. 'DON'"T' will be stored in the machine as DON'T.

When a text constant is stored, the surrounding primes, or the nH, are not stored with
ditse
Examples: SHDON'T
"THISbISbABPRIMEDbTEXTbCONSTANT"
11H(HOLLERITH)
Note: The primed text constant is preferable to the Hollerith constant, which should

only be used in FORMAT statements.

LOGICAL CONSTANTS

Definition . TRUE. or.FALSE.

A logical constant may take either of the following forms:

.TRUE.
.FALSE.

A logical constant occupies one word of storage.

A false constant is stored internally as a word whose least significant 24 bits are all
zero.

A true constant is stored as a word whose least significant 24 bits are all ones.

16

*3.7 BOOLEAN CONSTANTS

Definition n B octal digits
or n O octal digits

A Boolean, or Octal constant is an unsigned integer constant,
(n, which must not exceed 16) followed by a string of octal
digits of length not exceeding n.

A Boolean constant occupies one word of storage,
An octal digit is
0,1,2,3,4,5,6, or 7, but not 8 or 9.
Each octal digit is converted to three bits.
If the number (m) of octal digits is less than n, then n-m leading zeros are assumed.

If n is less than 16, then 16 - n following zeros are assumed.

Examples: Boolean Constant Internal (Octal) word
1BO 0000000000000000
3B123 1230000000000000
8B123 0000012300000000
16B123 0000000000000123

160123 0000000000000123

4.1

4.2

17

CHAPTER 4 VARIABLES AND ARRAYS

A variable is defined by its name and its type. There are seven types of variables:
integer, real, double precision, complex, text, logical and Boolean.

VARIABLE NAMES

Definition

A variable name is a string of alphanumeric
characters, the first of which is alphabetic.
Only the first eight characters are significant.
Any blanks embedded in the name are ignored.

Examples: 1
L.2557X
INNERSUM

Note that the following are equivalent to INNERSUM:

INNERbSUM
INNERbSUMMATION
INNERSUMP

ARRAYS

An array is a block of successive storage locations which can be referenced by a
subscripted variable name (see 5.1.1)., Arrays may have any number of dimensions.
An array name has the same form as a variable name.

The array name and its dimensions must be declared before the name is referenced
(see Appendix 3).

An array is composed of one or more elements; each element may be referenced by the
array name followed by the appropriate subscript notation,

For Multi-dimensional arrays, Fortran V uses a special technique to access the element,
Incorrect or incompatible results are likely if any subscript used is outside the range
given by the dimensions. One-dimensional arrays (vectors) may be accessed out of
range provided that the element accessed has had its position relative to the array
defined by a COMMON or EQUIVALENCE statement (see sections 8.14 and 4.5).

For both single and multi-dimensional arrays, the (possible) error of exceeding 'array
bounds (i.e. product of subscripts greater than product of dimensions declared) is
automatically tested for in execution if the routine concerned is compiled in TEST mode

(see section 12.2 (9)).

18

4.21. The DIMENSION statement

Note: see section 8.8 for details of adjustable dimensions

Definition DIMENSION dnamel, d.namez, dname3
where
dname._, dname, ... are subscripted variable names, and the

subscripts are unsigned integer constants, which represent
the dimensions of the array(s) dname.

The DIMENSION statement is not executable, and must precede the first reference to
the array(s) being declared (see Appendix 3).

The DIMENSION statement may be used to declare the dimensions of any number of
arrays.

An array may be declared as having any number of dimensions.

The number of storage words reserved for an array is equal to the product of its
dimensions multiplied by a constant which is 2 for double precision or complex arrays
and 1 for all other arrays.

The DIMENSION statement has no effect on the types of the arrays being declared.

Examples: DIMENSION ARRAY (20, 3, 4), B(2), (1000, 3)
DIMENSION COSTS (1,2,3,4,5,6,7,8,9)

*4,2.2 Array storage

Arrays are stored by columns in ascending storage locations, so that the first subscript
varies most rapidly, and the last least rapidly. e.g. the two-dimensional array A(m,n)
is stored as follows:

A A

1,1’ A e el S0 A A A A A

2 73 i, 1Y 512 242 LT 2,n"Am,n
The second element of A is referred to as A(2,1), the third as A(3,1) and so on. Thus
for the four -dimensional array X: X(I,]J,K, L) refers to a storage location which is

greater than X(1,1,1, 1) by

C((I-1) + (]—l)dl + (K-l)dld2 + (L-l)dldzd3),

where dl’ d2, d3 and d 4 are the dimensions of X. C is a constant which is 2 for double

precision and complex arrays and 1 for all other arrays.
43 IMPLICIT TYPE ASSIGNMENT
The type of a variable name may be specified in two ways:

(i) Explicitly by a type statement (see section 4.4)
(ii) Implicitly by name

In the latter case, any variable names beginning with one of the characters I, J, K, L,
M or N are assumed to be of type integer, and any other names are of type real.

Examples: I and J17 are integer names
P6 and ALPHA are real names

4.3.1

The IMPLICIT statement

The implicit type assignment described above may be modified by using the IMPLICIT
statement.

Definition

¥ - - *
IMPLICIT type, nl(Chl’ chz, ch3 ch4. . .)typez(ch5 ch6)type3 n2ch7. el

Where

Chl’ chz. 2 .ch7. . .are any single alphabetic characters

and
typel, typez. ..are one of:

INTEGER

REAL

DOUBLE PRECISION or DOUBLE LENGTH
COMPLEX

LOGICAL

TEXT

BOOLEAN

and

n n2... are 1,2,4,8 or 16

1’
The *n may be omitted, if present they have no meaning except
that REAL *8 is taken as DOUBLE PRECISION,

The parentheses may be omitted from the list of letters
. following the last type specified.

An optional comma may follow each right parenthesis.

The dash in ch3 —ch4 etc. is a minus sign.

The IMPLICIT statement specifies that variable names beginning with certain
designated letters, or ranges of letters, are of a certain type.

DOUBLE PRECISION, DOUBLE LENGTH and REAL *8 are synonymous.

The IMPLICIT statement does not affect the types of any names which have been
declared before the appearance of the IMPLICIT statement. In particular dummy
argument names are not affected by IMPLICIT,

If more than one IMPLICIT statement is given, then the later will override the earliex
statements for any letters where the IMPLICIT statements conflict.

Examples:
a) IMPLICIT REAL I,]

Following this statement all new variable names beginning with I
or J will be assumed to be of type real (unless overridden by a
later type statement).

Names beginning with K, L, M or N will still be integer, and
names beginning with A-H or O-Z will be real.

20

b) IMPLICIT TEXT M-Q
Following this statement all new variable names beginning with M, N, c.), P or
Q will be of type text. Names beginning with I, J, K or L will still be integer,
and all other new names will be real.

c) IMPLICIT REAL (I,]) INTEGER (A-H, Z) BOOLEAN C,D

This statement has the effect:

Initial letter of new name Implicit Type
AorB Integer
CorD Boolean
E-H Integer
Ior] Real
K-N Integer
O-Y Real

Z Integer

Note that the later appearance of BOOLEAN C, D overrides the previous
declaration INTEGER A-H.

4.4 THE TYPE STATEMENTS

Note see section 8.8 for details of adjustable dimensions.

Definition

i ,i e,/data_/
type *n name, (11,12. .)/datal/,namez,nam 3/d 2/

Where
type is one of:

INTEGER
REAL
DOUBLE PRECISION or DOUBLE LENGTH
COMPLEX
LOGICAL
TEXT
BOOLEAN
and
name.,name,...are variable names, which may be subscripted.
The subscripts must be unsigned integer constants.

and

nis1,2,4,8, or 16
The *n may be omitted. If present they have no meaning, except
that REAL*8 is taken as DOUBLE PRECISION.

The /datal/ , data_/...may be omitted. If present, then
datal, dataz. ...have the form:
i) A constant of the same type as the declaration
or ii) m* constant, where m is an unsigned integer
or iii}) A series of the above two forms separated by commas.

4.4 cont

(1)

3

(4)

(5)

(6)
(7)

(8)

)]

The type statements are used to declare the types of variable names. If a variable
name is declared in a type statement, then this overrides the type implicit in the first
letter of the name.

The type statements may be used to declare the dimensions of arrays. When subscripts

appear in the list, the associated variable name is the name of an array and the
subscripts are the dimensions of the array.

The type statements are not executable, and must precede the first reference to the
variable name(s) being declared. (see Appendix 3).

The type statements may be used to assign initial data values to variables or arrays.
A list of constants of the form /m*c/ is equivalent to the list
/c,c,c. ../ where ¢ is written m times.

The constants in the list are loaded into the storage location(s) given by the preceding
variable or array name. In the case of an array, the constants are loaded from left to
right starting at the first location in the array. See also sections 4.6(3), and 4.6(9).

When initial data values are to be assigned by means of a type statement, the type of
constant stored is determined by the structure of the constant, rather than by the
variable type (i.e. by the type of the type statement).

e.g. REAL X /3/

An integer 3 is stored in X, and not a real 3.0 as may be expected from the type of X.
Care should thus be taken to ensure that the type of the constant(s) is the same as the
type of the type statement.

DOUBLE PRECISION, DOUBLE LENGTH, and REAL*8 are synonymous.

If a variable name is declared in two or more type statements, then the first type holds
until the second is read, the second holds until the third is read, and so on. Note,
however, that the type of a variable cannot be changed once the variable has been
referenced. (see Appendix 3).

Dimension information should be given once only, but the type of an array name may be
declared in a type statement and its dimensions declared in a DIMENSION or COMMON
or PUBLIC (see sections 8.13 and 8.14) statement. If this is done, and an array is to
have values assigned in its type statement then its DIMENSION statement must come
first, otherwise the order is immaterial.

Variables which are given in an EQUIVALENCE statement and variables which are
PUBLIC or in COMMON cannot be assigned initial data values by means of the type
statements, except in a BLOCK DATA subprogram. (see section 8.15).

Function names may be declared in type statements, but they must not have initial data
values assigned to them.

Examples:
a) REAL I, JARRAY (2, 5)

The name I now represents a real variable, and JARRAY is a real
array of length 10 words. Note that JARRAY could also be declared
as follows;

DIMENSION JARRAY (2, 5)
REAL JARRAY
or

REAL JARRAY
DIMENSION JARRAY (2, 5)

21

22

4.5

(1)

(2)

(3)

(4)
(5)

(6)

)

Since the DIMENSION statement is redundant in such cases, the single
declaration

REAL JARRAY (2,5)
is preferred. Note that:

REAL JARRAY (2,5)
DIMENSION JARRAY (2, 5)

would be in error.

b) INTEGER X/0/,Y (10), Z(2, 3)/3*0, 2*1, 3/
The name X now represents an integer whose initial value is zero. The
name Y represents an integer array of length 10 words, whose initial
values are undefined. The name Z represents an integer array of length

6 words whose initial values are:

Z(1, 1)=0, Z(2, 1)=0, Z(1,2)=0, Z(2,2)=1, Z(1,3)=1, Z(2,3)=3

THE EQUIVALENCE STATEMENT

Definition

EQUIVALENCE (name,, name,_, ...), (names, name ,, name

1 9 4 5...)..

Where name_ , name,_... are variable names which may be subscripted.
Any subscripts mustzbe unsigned integer constants.

The EQUIVALENCE statement specifies that variables with different names are to share
the same storage location(s). Each pair of parentheses in the list encloses the names of
two or more different variables (or array elements) which are to be stored in the same
location. Any number of equivalences (sets of parentheses) may be specified.

The EQUIVALENCE statement is not used to declare the dimensions of arrays. When
subscripts appear in the list these indicate that particular element of an array which
is to be made equivalent to the other items within the parentheses surrounding those
names.

The dimensions of any arrays specified must be declared before the EQUIVALENCE
statement appears.

If the number of subscripts appended to an array name is less than the number of
dimensions which have been declared for it, then the missing subscripts are taken to
be 1. The number of subscripts must not be greater than the number of dimensions
declared (see section 5.1.1).

The EQUIVALENCE statement is not executable.

No two variables which have been referenced may be made equivalent to each other
(see Appendix 3).

Dummy arguments, and COMMON or PUBLIC variables may be equivalenced to
variables which have not been referenced.

For each equivalence (set of parentheses) there is always one variable name to which
the others are made equivalent. If one of the variable names has been referenced,
then that name is the name to which the others are made equivalent. If none of the
variables have been referenced, then the variable in the list which occupies the most
storage is the one to which the others are made equivalent. (e.g. the longest array).

4.6

(8)

)

(10)

(11)

The EQUIVALENCE statement must not contradict itself, or any previously established
equivalence. No two elements of any one array may be made equivalent to each other.
Adjustable arrays may not be equivalenced.

In Fortran V, the EQUIVALENCE statement does not re-order COMMON. See
section 8.13.2.
There is no restriction on the types of variables which may be made equivalent;
however, errors may occur in execution if apparently real variables in fact contain
integer values:
Example: EQUIVALENCE (I, X)
I1=3
Y= 80
Z=Y/X
would cause an execution error, because X contains an integer value (I = 3).
This also applies to other mixtures of types which are made equivalent by means of
EQUIVALENCE or COMMON statements. (see section 8.13.2).
Variables which have been assigned initial data values by means of a type statement,
should not appear in any EQUIVALENCE statement.
Examples: Assume REAL A(5), B(10), C(10, 2)
a) EQUIVALENCE (A, B, C(5,1),X)
A(1), B(1), C(5,1) and X now refer to the same storage location.
Note that: A(2), B(2) and C(6, 1) will also be equivalent, and so on.
b) EQUIVALENCE (A(2), C(4)), (B(4), C(5,1))
A(2) and C(4, 1) now refer to the same storage location similarly with
B(4) and C(5,1). This means that A(1), C(3,1) and B(2) all share the
same location.
c) EQUIVALENCE (C(5,1),B,C)
This is illegal, because C(1, 1) and C(5, 1) cannot be made equivalent.
d) EQUIVALENCE (A, B(2), C(4, 2)), (A(3), B(4))
This is illegal, because the first equivalence establishes that A(1)
is equivalent to B(2) and hence A(3) is equivalent to B(5); and the
second equivalence is not permitted to contradict this.
e) Given COMPLEX CP(10)
EQUIVALENCE (A,CP)
A(1) and CP(1) are now equivalent. Since each element of CP occupies two
words, A(2) and the imaginary part of CP(1) are equivalent. Similarly,
A(3) and the real part of CP(2) are equivalent, and so on.
THE DATA STATEMENT

Initial values of variables (data) may be compiled into the object program by means of
the type statements. An alternative and more flexible way of doing this is provided by
the DATA statement.

et S

24

4.6
cont Definition DATA listl/datal/, listz/dataz/, il
Where
list,, list.... are input lists with the

restrictions given in (1), below.
and
datal, dataz. . .are of the form:
i) a constant (of any type)
or ii) m * constant where m is an unsigned integer
or iii) a series of the above two forms separated by commas.
The commas following the slashes may be omitted.

(1) The input list is defined in section 7.4.
The DATA statement variable list is of the same form as the input list with the
following restrictions: -

(1) Implied DO parameters must be unsigned integers.

(ii) If a subscripted variable appears in the list, then the subscripts must be
integers or variable names.

(iii) If any subscript is a variable name, then this name must be under the control

of (i.e. used as the index of) a current implied DO.

(2) The DATA statement is used to assign initial data values to the variables or arrays
which appear in its list.

A list of constants of the form /m*c/ is equivalent to the list /C,C,C, .../, where C
is written m times.

The constants are loaded, from left t6 right, into the list of variable names, any
implied DO loops being taken into account. If a non-subscripted array name appears
in the list, then the whole of the array will be loaded with the constants. This method
i.e. the Short List, is preferred when data is to be compiled into an entire array.

(3) There should be a one to one correspondence between the variables in the list and the
constants. Each constant corresponds to one undimensioned variable or subscripted
array reference. Note If it is desired to define a text constant of (say) 20 characters
starting at B(1), then B must be dimensioned to cover at least three locations. If the
constant is 'ISPTWENTYbCHARACTERS', then this is one constant which corresponds
to three variables; B(1l), B(2) and B(3). To this extent the one to one correspondence
rule is modified.

(4) All variables referred to in the list must have their properties (i.e. types etc.)
declared before the DATA statement appears.

(5) The DATA statement is not executable and does not define the value of any implied DO
index present in the variable list,

(6) The type of the constant stored is determined by the structure of the constant itself
rather than by the variable type in the statement,

g DATA X/3/ (X is real)

An integer 3 is stored in X, and not a real 3.0 as may be expected from the type of X.
Care should thus be taken to ensure that the type of the constant is the same as the type
of the variable into which it is to be loaded.

(7) The DATA statement only initialises the values of the variables. DATA defined
variables that are redefined during execution of the program will assume their new
values regardless of the DATA statement.

25
4.6 cont
(8) The DATA statement cannot be used to enter data into blank COMMON. The BLOCK
DATA subprogram may be used to compile data into labelled COMMON or PUBLIC
(see section 8.15).

(9) If a variable is present in the list of more than one DATA statement, or is given more
than once in the list of one DATA statement, then only the last value assigned to the
variable will be effective, and all of the previous values are lost. Note also that the
DATA statement may override any values assigned by a previous type statement
(or vice versa).

Examples:
a) DATA X,1,Q/1.0, 1, 1.0/
b) DIMENSION A(10, 10)

DATA A/100%*1.0/

every element of A is set to 1.0. This form is preferable to:
DATA((A(L), I=1, 10), J=1,10)/100*1.0/

c) DIMENSION A(10), B(20)
DATA A, (B(), I=1,20,2)/3.6,10%4.8,8%6.0, .0/

A (1) is set to 3.6, A(2) to A(10) are set to

4.8, B(1) is set to 4.8,B(3),

B(5)...B(17) are set to 6.0 and B(19) is set to 0.0.
The even numbered elements of B are not defined.

d) COMPLEX C
TEXT A, B(2), Al
DATA C, A, A1,B/(1.0,0.0), 'XYZbbbbbABC', 'P', 'Q'/

Cis setto 1.0+ 0.0i, A is set to 'XYZbbbbb', Al is set
to 'ABC', B(1) is set to 'P', B(2) is set to 'Q’,

5.1

s ¥

CHAPTER 5 EXPRESSIONS AND
REPLACEMENT STATEMENTS

Fortran V accepts two types of expressions: arithmetic and logical. These
expressions form integral parts of Fortran V statements.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of operators, operands and parentheses,
assembled according to the rules given below.

An operator is:-

+ meaning addition

= o subtraction

¥ " multiplication
/ 4 division

g exponentiation

An operand is: -

a constant

a simple variable

a subscripted variable

a function reference (see section 8.4)

Rules: -

(i) Any operand is an expression.

(ii) If X is an expression, then (X) is also an expression.

(iii) If X and Y are both expressions then the following are also expressions:

X ¥ X -Y
X Y X/Y
X**Y and -X (but see below)

Anything which results from repeated applications of these rules is also an expression.
For example, rule (ii) implies that ((X)) and (((X))) etc. are expressions.

(iv) The sequence "operator operator” is not permitted.

e.g. A* - B must be written as A* (-B).

Examples of arithmetic expressions:

A

1-76

(A)

4.3

B -7.3 + X - (A+4.0)*6.3

28

5.1.1

5.1.2

Subscripted variables

In Fortran, subscripts may be written following the name of an array in order to
access a particular element of the array. The subscripts must be enclosed in

parentheses.
In Fortran V a subscript is any arithmetic expression.

If a subscript is not of type integer, then it will be truncated according to the kind of
truncation in force when the statement is compiled. (see section 5.1.3).

An array must not be referred to as having more subscripts than the number of
dimensions in its array declaration, so that if A is declared as DIMENSION A(12, 10),
then any reference to A(l, J, K) would be illegal.

If an array is referred to as having less subscripts than dimensions, then the missing
subscripts are assumed to be 1: So that after DIMENSION ARRAY (2,3,10) a

reference to:

ARRAY (M, N) would mean ARRAY (M, N, 1)

and ARRAY (M) " " ARRAY (M, 1,1)

and ARRAY " " ARRAY (1,1,1)
in addition ARRAY (M,,N) " ARRAY (M, 1,N)
and so on.

Examples of arithmetic expressions containing subscripts are:
A(12)
I(74]*4-6*K)
~A(JROW)+4.2
ARRAY2 (IARRAY(]))
In this case the value of the Jth element of the array IARRAY is the subscript of
ARRAY2,
Evaluation of arithmetic expressions
The expression
A +B/C
might be evaluated as:
(A +B)/C
or as:
A +(B/C)
Actually, the latter form is correct. However, it is necessary to formulate rules for
evaluation so that such ambiguities do not occur. In general these rules correspond to
the ordinary rules of algebra.
(i) A subexpression is an expression which is enclosed in parentheses.
e.g. (I+]/K)is a subexpression.

Subexpressions by be nested to any level.

e.g. I*A+B*(C+D/(H-])+K)+L)

In this case (H-]) is referred to as the innermost subexpression;
(C+D/(H-])+K) is the next innermost subexpression, and so on.

(ii) The order of evaluation is: first the innermost subexpression followed by
the next innermost subexpression until all subexpressions have been
evaluated.

(iii) Within a subexpression, (or if no subexpressions are present), the
operations are done in the following order:

h (first) :class 1
* and / :class 2
+ and - (last) :class 3
(iv) In expressions where operators of like classes appear, evaluation proceeds
from left to right,
e.g. A**B**C is evaluated
as (A**B)**C
and A*B/C is evaluated as (A*B)/C
(v) Functions are evaluated before being used as operands.
51.3 Truncation

In Fortran, the quotient resulting from a division of two integers (or integer

expressions) is always an integer. This property leads to ambiguity as to the result

of a division such as 3/4. This result could be 1 or 0 depending on the kind of truncation
employed.

In Fortran V, this ambiguity is resolved by use of the TRUNCATION statement.

544 The TRUNCATION statement

Definition TRUNCATION t

Where t is IFIX, or IFIXF
or INT, or INTF
or NINT, or NINTF

(1) The TRUNCATION statement specifies the kind of truncation to be performed when
dividing integers or integer expressions, or in replacement statements (see section 5.3).

(2) If X is the exact quotient resulting from the division of two integers (or integer

expressions) then the integer result I, of the division is as follows: -

(i) If TRUNCATION IFIX (or IFIXF) has been specified, or if there
is no TRUNCATION specification: - I is equal to the sign of X
multiplied by the largest integer which is less than, or equal to the
modulus of X.

The result of
3/4 would be 0

C.8.

15/16
17/16 "
—8/3 (24

" O
(1] .1
1" _2

i.e. rounding towards zero.

30

(3)

(4)

(6))

(6)

(7)

*5.1.5

(ii) If TRUNCATION INT (or INTF) has been specified, I is equal to the
largest integer less than or equal to X.

e.g. The result of
3/4 would be 0

15/16 " " 0
1™ =1
_8/3 1" " _3

Note that INT is the same as IFIX, except for negative numbers.

(iii) If TRUNCATION NINT (or NINTF) has been specified:
I is equal to the nearest integer to X.

e.g. The result of
3/4 would be 1

ISHG & %
/e ¥ & j
_8/3 1" (1] _3

In the absence of a TRUNCATION statement, (or *RUN option - see (6)), the IFIX

truncation will be performed.

The TRUNCATION statement is not executable, and should be placed before any
statement which involves arithmetic expressions where a non-standard (i.e. NINT or
INT) kind of truncation is required.

If more than one TRUNCATION statement is given, then the first holds until the second
is read, the second holds until the third is read, and so on.

The kind of TRUNCATION to be performed (for a whole job) may be specified in the
*RUN directive (see section 12.1(8)).

It is important to note that I*]J/K may yield a different result from J/K*I.

e.g. under IFIX truncation:
4*3/2 = 12/2 = 6
but
3/2%4 = 1*4 = 4

Note that non-integer subscripts and DO, or implied DO parameters are also truncated
using the truncation in force when the statement concerned is compiled.

Type of expressions
An arithmetic expression may contain operands of different types: -

Class 1: Integer, real, double precision, and complex, operands may be
present in one arithmetic expression.

Class 2: Text, Boolean, and logical operands may be present in one
expression.

Expressions which contain types of different classes are invalid.

The type of the result of an expression is the same as the type of the dominant operand.

5.16

The order of dominance of the Class 1 operand types is:

Complex

Double precision
Real

Integer

In expressions containing Class 2 operands, the only permitted arithmetic operation
is subtraction.

For expressions of the form X**Y the following table shows the relationship between
the type of X**Y and the types of X and Y.

Type of Type of Y

X Integer Real Double Complex
Integer I R D C
Real R R D C
Double D D D C
Complex C C G C

If X and Y are not Complex the value of X may be negative only if Y is of type integer.

In mixed arithmetic operations, division will be taken as integer division (i.e. division
with truncation) if the expressions divided are of type integer, otherwise the division
corresponds to the type of the dominant expression in the division.

For example, suppose I,] and K are integers and X is real, then, according to the
rules given in 5.1.2,

Expression Type of division
X +1/] Integer

(X+D)/] real

X*1/] real

I*J/X*K real

I*J/K*X integer

Examples of arithmetic expressions; .
a) T = "Xy
Where T is of type TEXT (or Boolean)
b) (X-2)/((I+7.6)*3.6)
<) (1:242->*1
Where (1.2,2.4) is the complex constant 1.2+2.4i, and I is an
integer variable. Note that a complex variable cannot be written
as (A,B) where A and B are real variables.
Masking operations
Masking (or Boolean) and shifting operations may be performed on Boolean or Text values
(constants or variables) by means of the following special intrinsic (built-in) functions;

they are not available when HARTRAN FUNCTIONS, or F2 FUNCTIONS (or OLD
FUNCTIONS) is specified (see section 8.4.2).

32

5.2

5.2.1

Function Type of Type of | Properties
Name | Arguments Arguments result of Function
AND 2 Text or Boolean | Boolean | See below
OR 2 Text or Boolean | Boolean | See below
NOT 1 Text or Boolean | Boolean | See below
ER 2 Text or Boolean | Boolean | See below
SHIFTR 2 First Text or Shifts first argument
Boolean.Second | Boolean | right by n bits
Integer (n) (circular shift).
SHIFTL 2 First Text or Shifts first argument
Boolean.Second | Boolean | left by n bits
Integer (n) (circular shift).

The properties of these functions may be explained by assuming that each argument
consists of one bit only. Each pair of bits is treated in the same manner as
described below.

First Second RESULT
Argument Argument
(a) (b) AND (a,b) | OR (a,b) | ER (a,b) | NOT (a)
1 0 0] 1 s 0
0 1 0 1 1 |
1 1 | 1 0 0
0 0 0 0 0 1

i.e. NOT (a) produces a bit string with 1's where a has 0's, and 0's where a has
1's.
AND (a, b) produces a bit string with 1's where both a and b have 1's, and
0's elsewhere.
OR (a, b) produces a bit string with 1's where there are 1's in a or b or both,
and 0's elsewhere.
ER (a, b) produces a bit string with 1's where a and b differ, and 0's
elsewhere.

LOGICAL EXPRESSIONS

Logical expressions have values which are either true or false. They can be used to

express the relationships between quantities.

Relational expressions

A relational expression is a sequence of arithmetic expressions separated by relational
operators.

A relational operator is:

.EQ. or = meaning Equal to

.NE. " Not equal to
HGE. of > " Greater than
LaTe oF 'S Y Less than

.GE. or .NL. " Not less than
.LE. or .NG. " Not greater than

5.2.2

No two relational operators may be adjacent.

A relational expression has the value . TRUE. if the arithmetic expressions satisfy
the relationship specified by the relational operators; otherwise it has the value
.FALSE,

Examples of relational expressions:
a) I[.EQ.]J-1 (or I=]-1)

The result is true if I is equal to J-1, if not the result is false.
The expression is equivalent to I[+1.EQ.] (or I+1=])

b) +3.EQ.J*2-K.GT.K/I (or [+3=]*2-K >K/I)
The result of this expression is true if:
I+3 is equal to J*2-K and J*2-K is greater than K/I.

If either, or both of the above conditions is not true, then the result of
the expression is false,

Logical expressions
A logical expression is:
a logical constant
a logical variable or function reference.
a relational expression
or a sequence of the above separated by logical operators.
Where a logical operator is
.NOT. meaning negation
or LAND, " logical and

or .OR. = logical inclusive or

Two logical operators may be adjacent only if the second such operator is .NOT.. Note,
however, that the sequence .NOT..NOT. is invalid, but .NOT. (.NOT. ...) is accepted.

If L is a logical expression, then (L) is a logical expression.
A logical expression may be preceded by the operator .NOT,
A logical expression has the value . TRUE. or .FALSE.

The properties of the logical operators are as follows:

.NOT. L. is false only if L. is true

Ll.AND.]L is true only if L., L_, are both true
Ll.OR.L2 is false only if Ll’ L2 are both false.

Where L. L

B are logical expressions.

In a manner similar to that discussed for arithmetic expressions, parentheses are
used to explicitly define the sequence of evaluation.

Ekig% A,AND,.B.OR.C.NE.D
does not have the same meaning as

A.AND.(B.OR.C.NE.D)

Where (B.OR.C.NE.D) may be described as a logical subexpression.

34

5.3

The order of evaluation of logical expressions is:

(i) Arithmetic expressions
(ii) Relational expressions (the relational operators are all of equal
precedence).
(iii) The innermost logical subexpression, followed by the next innermost
logical subexpression, and so on.
(iv) The logical operators in the following order
.NOT. (first)
.AND.,
.OR. (last)
Examples:
a) A.EQ.B.AND.B.EQ.C

(or A=B.AND.B=C)
This is equivalent to the relational expression A=B=C.

b) A=B.AND.C=D.OR.K="TEXTA'
(K being of type TEXT); this expression is true if A is equal to B and C
is equal to D. It is also true if K is equal to 'TEXTA'. Otherwise it
is false.

c) .NOT.D.OR.X=4.,2
D being of type LOGICAL and X of type REAL.
The expression is true if D is .FALSE. The expression is also true if X
is equal to 4.2, Otherwise it is false.

THE ARITHMETIC REPLACEMENT STATEMENT

initi ¥ -5 Vs Vo gnigas = aex
Definition 1 Vo V3 p
Where
T V2’ v3 are simple or subscripted variable names
and
aexp is any arithmetic expression

The arithmetic replacement statement causes the values of the variables on the left hand
side of the statement, to be replaced by the value of the arithmetic expression.

The generalised replacement statement defined above is equivalent to the following
series of simple replacement statements.

v, = aexp
v, = aexp
v, = aexp

3

The generalised form is useful in cases where several variables are to be set to
the same value.

The variables v, need not all be of the same type.
When the type of the expression aexp is not the same as the type(s) of the variables
(vi), the variables are assigned types as shown below:

35

Type of Type of Expression

variable | Integer Real Double Complex Text Boolean Logical
Integer X I e CI* N N N
Real F X P CR* N N N
Double E* P & @D N N N
Complex R* R R* X* N N N
Text X X N N X X DG
Boolean X X N N X X X*
Logical N N N N N N X

Where the symbols mean: -

X The variable is assigned the exact value of the expression

I The variable is assigned the value of the expression truncated to give
an integer value (see section 5.1.3).

F The variable is assigned the real or double precision approximation
of the value of the expression.

P The variable is assigned the value of the expression with the
precision associated with the variable type.

R The real part of the variable is assigned the value of the expression
with real precision. The imaginary part of the variable is assigned
the value zero (0.0)

N This combination of type of expression and variable type is not
permitted.

CI The variable is assigned the truncated value of the real part of the
expression.

CR The variable is assigned the exact value of the real part of the
expression

CD The variable is assigned the exact value of the real part of the
expression. The least significant half of the variable is set to zero.

* Allowed only in simple form: v = aexp

For statements of the form:
Double precision variable = real expression,

the evaluation of the expression is carried out in double precision mode (except for
functions which do not have a double precision form).

e.g. SIN would be acceptable, but TAN would not be because DTAN is not
available.

For statements of the form:
text variable = text constant

only the first eight characters of the constant are stored in the variable.

The word "FORMAT" must not appear as the first name on the L. H, S. of the
replacement statement.

Examples:
a) I=A(]) (I integer, A real)

Replaces the value of I, by the truncated value of the Ith element of A.
b) I=1+1

The value of I is increased by 1.

36

5.4

c)

d)

e)

f)

g)

A()=]*] (A real,] integer). The Ith element of A is replaced by the
value of J*] after this has been converted to type real.

C=[**] + D (C complex, Iand J integer, and D double precision)

I is raised to the power of J and the result converted to double precision,
D is added. The most significant half of the result is stored in the real
part of C, the imaginary part of C is set to zero.

1,J(3), K(1,3) =2
[and J(3) are set to 2 Since I is now set, K(2, 3) is set to 2.
If the statement is written
K(I, 3),1,]J(3)=2, I and J(3) are set to 2, and K(I, 3) is set to 2
where I has the value set before the statement is reached.

T = 'SbORDbT"
T being of type text

B = 4B1477
B being of type Boolean

THE LOGICAL REPLACEMENT STATEMENT

Definition 1 1 srmss =ileXp

2" =3

Where
1., 1,,...are simple, or subscripted variable names,
]h' 2 ;
which are of type logical, or Boolean.
and
lexp is any logical expression.

The logical replacement statement causes the values of the variables on the left hand
side to be replaced by the value of the logical expression.

The generalised replacement statement defined above is equivalent to the following
series of simple statements

The word "FORMAT" must not appear as the first word on the L. H. S. of the statement.

Examples:
a)

b)

c)

d)

L = ALAND.B.OR.C where L, A,B and C are logical (or Boolean).
AL =1-].EQ.4.0R..NOT..3.EQ.X

or

AL =1-] =4.0R..NOT..3=X

G = .TRUE.

H= .NOT.G

5.5

37
THE CLEAR STATEMENT

» Voseeno

Definition CLEAR Vl, v2 3

Where

vy v2, Vg .are simple or subscripted variable names.

The CLEAR statement is used to set variables, entire arrays, or individual elements
of arrays to zero. The statement is preferred to the use of DO loops for clearing
entire arrays.

Variables of any type may be cleared, and the variables v, need not be all of the
same type. The different types are set as follows:

Type of v Value after CLEAR v
Integer 0

Real 0.0

Double precision 0.0 (2 woxds)
Complex (0.0,0.0)

Text Blanks ('bbbbbbbb')
Logical .FALSE. (or 1 BO)
Boolean 1 BO (or .FALSE.)

If an unsubscripted array name appears in the list, the entire array will be cleared.

Examples:
a) TEXT X(6, 6) Y(5)

CLEAR X, Y(2)

All 36 locations of X, and the second location of Y are set to blanks.
b) REAL R(5),K

CLEAR R(I),K
K, and the Ith location of R are set to 0.0

6.1

CHAPTER 6 THE CONTROL STATEMENTS

Normally, Fortran statements are executed sequentially. The control statements
may be used to control and alter this normal sequence of execution of statements in
the program. This is done by referring to a label or statement number.

Fortran V labels may be names as well as statement numbers; and labels may be
variable: i.e. Fortran V labels may assume different values.

LABELS (STATEMENT NUMBERS)

Definition

A label is a sequence of 1 to 5 alphanumeric characters.

If the first character is numeric, then all of the characters
must be numeric. The name of a variable (assigned) label
has the same definition as a variable name (see section 4.1)

A label is punched in columns 1 to 5 of a statement, and may be referred to by other
statements.

A statement number is a label consisting only of numeric characters. Other labels

are named labels.

Blanks may be present in a label; if present they are ignored.

If a label begins with the characters C or X, then the C (or X) must not be punched
in column 1.

No two statements may have the same label, (unless one (only) of them is a FORMAT
statement).

Any leading zeros punched in a statement number (or named label) are ignored.

Examples: 1
99999
X
Y127]
ZbbZ (same as ZZ)
0ABCD (same as ABCD)
01 (same as 1)

Label variables
The value of a label is defined by the following rules:

(i) If a label is attached to a statement (i.e. appears in columns 1 through 5
of that statement), then the value of the label is the location of that

40

6.2

(1)

(2)

(3)

(4)

(5)

statement. If no label is attached to a statement, then the location of the
statement is not defined. A label with more than 5 characters in its name
cannot be attached to a statement.

(ii) At any given time during execution, the value of a label is equal to the
value of the last label ASSIGNed to it.

Label variable names are distinct from ordinary (data) variable names (see section
6.2 (5)). This means that labels (or assigned labels) cannot be used as arguments

(see section 8.3).

THE ASSIGN STATEMENT

Definition ASSIGN ll TO 1 9

where 1. is a label (or a label
variablé), and 12 is a label
variable.

If l1 is not a statement number, then it must be enclosed in parentheses.
e.g. ASSIGN (11) TO l2

If 1. is a label, and 1, is a label variable, the ASSIGN statement sets the value of 1, in
suclll a way that future control statements which refer to 12 will actually be referring
to the label 1 i

Labels may be indirectly assigned by writing statements of the form:

ASSIGN label. TO var
ASSIGN (var]) TO var

ASSIGN (Varz) TO var,

ASSIGN (var) TO var
n-1 n

In this case future control statements which refer to the label variable vaJ:n will
actually be referring to the label, labell.

Statement numbers which are attached to FORMAT statements must not appear in an
ASSIGN statement.

Note that ASSIGN statements only set the values of label variables. If the same name
is used for a data variable and a label or label variable, then these two uses of the
name are never confused by Fortran V; the actual meaning of the name is determined
by the context in which it appears.

e.g. ASSIGN 761 TO IK
A=1K/3
where the value of A is not defined, because the value of the arithmetic variable IK is
not defined.
Similarly:

M=5
cannot be substituted for

ASSIGN 5 TO M
and vice versa.

41

6.3 THE GO TO STATEMENT

Definition GO TO i, (11, L 1

9’ 3....)

where

iis a label or a label variable
and

1., 1_...are labels
The comma preceding the left parenthesis may be omitted.
The part of the statement which follows i may be omitted:
if present it is ignored.

If i is a label, the GO TO statement causes control to be transferred to the statement to
which that label is attached.

If i is a label variable, the GO TO statement passes control to the statement whose
label was last directly or indirectly assigned to i.

Examples: (where ILABEL and JLABEL are label variables)

a) GO TO 10
10 X=3
b) ASSIGN 10 TO ILABEL
GO TO ILABEL
10 X=3
c) ASSIGN 10 TO ILABEL

ASSIGN (ILABEL) TO JLABEL
GO TO JLABEL, (10, 20, 30)
10 X =2

In this case both ILABEL and JLABEL are set to label 10.

6.4 THE COMPUTED GO TO STATEMENT

Definition GO TO (ll, 12, 13, ln), aexp
where
1.,1., 1, are labels or label variables
1 32 .
Any of ll, 12, 55 00 OF ln may be omitted

and

aexp is an arithmetic expression whose value should lie within the
range 1 < aexp < n. aexp should be of type integer.

The comma preceding aexp may be omitted.

This statement causes control to be transferred to the statement whose label is
1,, 1., 1, .., or 1 , depending on whether the value of aexpis 1, 2, 3orn
respectively, Ifanyofl., 1 g+ OF 1n are label variables, then gontrol will be
passed to the statement wﬁose label was directly or indirectly assigned to

11, l2 i (O ln.

42
If the value of aexp is less than 1, or greater than n, then the transfer of control is
undefined. This error is automatically tested for in execution, if the routine is
compiled in TEST mode. See sections 12.2 and 10.3.1 (error 11).
Null (or omitted) labels have the value "next statement’,
e.g. GO TO(ll,,lz,)anp
If the value of aexp is 1, control is passed to 1
If the value of aexp is 2, control is passed to the next statement.
If the value of aexp is 3, control is passed to 1
If the value of aexp is 4, control is passed to the next statement.
Examples:

a) GO TO (10,X%,5),1

Control is passed to the statement whose label is 10, X, or 5
depending on whether the value of I is 1, 2 or 3.

b) ASSIGN 10 TO ILABEL
GOTO (ILABEL, , 15)K+5-J(3)

Control is passed to the statement whose label is 10 or 15
depending on whether the value of K+5-J(3) is 1 or 3.

If the value of K+5-J(3) is 2, control is passed to the statement
which follows the computed GOTO statement.

6.5 THE ARITHMETIC IF STATEMENT

1

. a4 . l
Definition IF (aexp) 1 Uy 1g

where
aexp is any arithmetic expression
and
ll’ 1_and l3 are labels or label variables.
Any o% s s OF-] 3 may be omitted., The two commas

1
must alwayszbe present.

The statement causes control to be transferred to the statement whose label is

1 I i 9 or 1, when the value of the arithmetic expression is less than zero, equal to
Z€ro, or greater than zero respectively.

Ifanyof 1., 1 9? or 1, are label variables, then control will be passed to the statement
whose labe!l was last directly or indirectly assignedto 1., 1, or 1,,.

17 2 3
If the expression is of type complex, then only the real part is tested for zero.
Null (or omitted) labels have the value "next statement" .

€lag: IF (aexp), 11,

If the value of aexp is zero, control is passed to the statement whose label is 1_:
otherwise control is passed to the statement which follows the IF statement.

Care should be taken when 1_ is a named label (or a label variable) that the sequence
1, 1_, 1, does not satisfy tI%e syntax of any Fortran statement. If this occurs, the
arithmetic IF may be taken as a logical IF, which has a different meaning.

e.g. IF(X) READ!L, A,B

may be taken as a logical IF.

6.6.1

(1)

(2)

3)

Examples:
a) IF(I1**3 - K(N)1,,X

The value of I**3 - K(N) is computed. If this value is zero, control
is passed to the next statement; if the value is negative control is
passed to the statement whose label is 1; if it is positive control is
passed to label X.

b) ASSIGN 10 to L
ASSIGN (L) to X
IF (T - 'AB') 10, 11, X
If the text variable T is equal to 'AB', control is passed to label 11,
if it is not equal to 'AB’, control is passed to label 10.

THE LOGICAL IF STATEMENT

The logical IF statement has two forms. These are defined below.

The Fortran IV logical IF

Definition IF (lexp) stat

where
lexp is any logical expression

and
stat is any executable Fortran V statement except a DO
statement or Fortran IV type logical IF statement.

If the value of the logical expression lexp is . TRUE. the statement stat is executed,
and control is then passed to the next statement (unless stat is a control statement

which has altered this normal path of control).
If the value of lexp is . FALSE., the statement stat is ignored and control is passed to

the next statement.

Care should be taken when testing real quantities for strict equality, since rounding
errors may give an unexpected result.

e.g. I=3

IF (I.EQ.3) GOTO 6
is preferable to

X =3.0

IF(X.EQ.3.0) GOTO 6

If the statement stat is a BEGIN statement (see Chapter 9), then the logical IF statement
may be used to jump round, or execute, a whole block of statements, instead of just one

statement.

If this facility is used, then, (if the logical expression lexp is false), control is passed
to the first executable statement following the END statement which corresponds to the

BEGIN.

If the logical expression is true then the block of statements following the BEGIN are
executed.

44

6.6.2

6.7

The block of statements contained between the BEGIN and its END is subject to the same
rules as a normal block, these rules are described in Chapter 9.

Examples:

2) IF (LEQ.4) 1=5

b) IF(I=4) [=5

& IF (A.GT.B.AND.C.EQ.'S'.AND.L)X = 3
d) IF(=]=K=1) IF (X - 3.0)1,2,3

The Hartran logical IF

Definition IF (lexp) 1 1’ 1 9

where
lexp is any logical expression
and
1. and 1_ are labels or label variables.
1l or 1_"may be omitted. The comma must always
be present.

If the value of the logical expression lexp is .TRUE., control is passed to the
statement whose label is 1_; if the value is .FALSE. control is passed to the

statement whose label is 1 9

If 1l or 1_ are label variables, then control will be passed to the statement whose label
was last 02.”1rect1y or indirectly assigned to l1 or 1 9

Null (or omitted) labels have the value "next statement'.

If 1 is a named label (or a label variable), care should be taken that the sequence 1_, 1
does not satisfy the syntax of any Fortran V statement. If this occurs the Hartran
logical IF statement may be taken as a Fortran IV logical IF, which has a different
meaning (see section 6,6.1).

Examples:
a) IF (I.EQ.0) 12,
This has the same effect as
IF (I.EQ.0) GOTO 12
b) IF (J.LT.X) 10,20
If J is less than X control is passed to label 10, if not, control is passed to
label 20.
c) ASSIGN(X) TO I

IF (K=I.OR.Z<Y),I

If K is equal to I or Z is less than Y, then control is passed to the next
statement; if not, control is passed to the statement whose label is X.

THE DO STATEMENT

This statement provides a means of repeating groups of statements (looping), and
changing the value of a variable during the loop.

6.7
cont

Definition DO1 v = aexpl, aexpz, aexp3
where

1 is a label or a label variable
and

v is a nonsubscripted variable of type integer, or real
and

aexp,, aexp, and aexp, are any arithmetic expressions which
are of type integer or real.
aexp, and its preceding comma may be omitted. If they are omitted
aexp, is taken to be 1.
aexp_, aexp, must always be present
An optional comma may be inserted between 1 and v.

If 1 is a named label then it must be enclosed in parentheses, or followed by a comma.

€k DO () v= aexp,, aexp,, aexp,
or DO1, v= aexp, aexpz, aexp3

The DO statement causes the statements which follow it, up to and including the
statement labelled 1, to be executed repeatedly. These statements are said to be
within the range of the DO.

The variable v is the index of the DO loop, and aexp,, aexp,, and aexp, are the loop
parameters. aexp, is the first limit, aexp, is the second Iimit, and aexpg is the loop
step.

At the start of the loop, the iridex is set to the value of the first limit, and the loop is
entered.

At the end of the loop, the step is added to the index. If the step is positive, the loop is
re-entered so long as the index is less than, or equal to the second limit. If the step is
negative, the loop is re-entered so long as the index is greater than, or equal to, the
second limit.

Upon completion of the DO, control is passed to the statement which follows the statement
labelled I, When this occurs the value of the index v is not defined.

The statements within the range of the DO are always executed at least once. Thus,
the number of times the range is executed is given by: -

aexp,, - aexp
N=1+ -—_2_—1'.
aexp3

where the brackets indicate the largest non-negative integral value not exceeding the
value of the expression within those brackets.
If the step (aexps) is zero, the loop may be executed an infinite number of times,

If any of the expressions aexp., aexp,, aexp, are real, and the index (v) is an

. 2rs : =

integer, then the value(s) of the expréssion(s) will be truncated to give integer values
for the purpose of computing the number of times the loop is to be executed. See
sections 5.1,3 and 5.1.4.

If the index of the DO is of type real, then care should be exercised when choosing the
limits,

e.g. in the case of

DO2X=1.0,2.0,0.1

the execution with X equal to 2.0 may be lost due to rounding errors. A better
choice of limits would be

DO 2X =1.0, 2.001, 0.1

46

6.7
cont

The label, 1, must appear in the text of the program after the DO statement.

The label, 1 must not be attached to any non-executable statement (see Appendix 3)
or to any DO statement.

If 1 is attached to any IF or computed GOTO statement which contains a null (omitted)
label, then the null label represents the end of the DO loop. Execution of the loop is
thus continued normally, if control is passed to the null label.

1 should not be attached to a statement which causes a transfer of control back into the
range of the DO.

The values of any variables contained in aexp, or aexp, should not be changed by
statements in the range of the DO. If this is"done, the execution of the loop may be
affected.

The value of the index (v) must not be changed by statements contained within the range
of the DO,

The index (v) may be changed by statements outside the range of a DO, only if no
transfer is made back into the range of the DO which uses that index.

A transfer of control out of the range of a DO is permitted at any time.

Control may be transferred into the range of a DO only when control has at some
previous time been transferred out of it.

Subprograms may be called, from, and returned to, within the range of a DO.

There may be other DO statements within the range of a DO. All statements within
the range of the inner DO must also be within the range of the outer DO. A set of DO
statements which satisfy this rule is called a nest of DO's.

Nesting may be to any level. The index of an inner DO must not be the same as the
index of any DO containing it.

Examples:
a) 2 =il
DO2I=1,6
2 X =X*5
When the DO loop is completed, X is equal to 5 to the power 6,
b) REAL INNER (60)

DO 3114 =1, 60
3 INNER (II4) = 3.2
All elements of INNER are set to 3.2

c) REAL INTER (10, 20)
DO 41=1,20
DO 4]=1,10

4 INTER (J,1) = 3.2
All elements of INTER are set to 3.2

d) INTEGER ARRAY (40)
DO 5 INDEX42 = 1,40,2
5 ARRAY (INDEX42) = INDEX42*2

ARRAY (1) is 2, ARRAY (3) is 6,
and so on. Even numbered elements of ARRAY are undefined.
This could also be accomplished by:

DO 5 INDEX42 = 39, 1, -2
5 ARRAY (INDEX42) = INDEX42*2

6.8

6.9

e) DO 61=1,N
6 IF(A(D), 8,

GOTO 7

8 A(I)=1.0

7 _________
If statement 8 is reached, then A(I) is zero.
Thus the first zero element of A is setto 1.0. If none of the first N
elements of A are zero, statement 8 is not executed.

f) DO10I=1, 10 diltes

DO (X)J =1, 10 } inner

X C+1) = A(LD DO DO

10 AD=0
The inner DO is executed for J =1 to 10, then statement 10 is executed;
then the inner DO is executed for | = 2 to 10; then statement 10 is
executed again. This continues until the last execution for which I is
equal to 10.

THE CONTINUE STATEMENT

Because of the restriction on the kinds of statements which can end the range of a DO,
it is convenient to have a statement to which a label may be attached, but which
otherwise has no effect on the execution of the program.

Definition

CONTINUE

The CONTINUE statement may be placed anywhere in a source program.

No instructions are compiled for the CONTINUE statement, although it is considered to
be executable.

Examples:

a) DO 151=1,20
5 IF (A(D) - B(D) 10, 15,15
10 AQD) = A(D+L
B(I) = B(I)-2
GOTO 5
15 CONTINUE

The CONTINUE provides a means of avoiding ending the DO with GOTO 5

b) DO (X) I=1, 10
IF (A()-BQ) Y,Z,Z
Y A(D) = B()
GOTO X
Z A()=0

X CONTINUE

The CONTINUE provides a means of bypassing statement Z.

THE PAUSE STATEMENT

Definition PAUSE x

where
x is an unsigned integer constant or a primed text

constant or may be omitted.

X/

48

6.10

In other versions of Fortran, the PAUSE statement is often used to halt the machine and
wait for operator intervention. Since this is not possible on Atlas the PAUSE
statement is treated as a CONTINUE in Fortran V.

The constant x is not printed in Fortran V.

THE STOP STATEMENT

Definition STOP n

where
n is an unsigned integer constant or may be omitted.

The STOP statement is executable, and terminates execution of the compiled (object)
program.

In Fortran V, n (if present) is not printed.

71

12

7.21

CHAPTER 7 INPUT AND OUTPUT

INTRODUCTION

The input and output (I/O) statements provide a means of transferring data between 1/0
devices and internal storage. On Atlas, the available input devices are:

(i) Magnetic tape units (1" or 3" tape)

(ii) 80 - column card readers.

(iii) 5,7, or 8 - track paper tape readers.

and the output devices are:

i) Magnetic tape units (1" or 3" tape)

(ii) 80 - column card punches.

(iii) 5,7, or 8 - track paper tape punches.

(iv) Line printers (120 printable characters per line).

Some of these devices may be remote from Atlas and connected to it by means of a
data - link.

There are four standard I/O statements: READ, which causes data to be transferred
from an input device to internal storage, PRINT, PUNCH, and WRITE, which cause
data to be transferred from internal storage to an output device. g

The manner in which I/O devices are specified is described in section 7.2. The
FORMAT statement, which is not executable, may be used in conjunction with the above

I/0 statements in order to specify the precise manner in which data is to be transferred.

In addition, in Fortran V there is a special I/O statement, which does not reference a
FORMAT statement:

OUTPUT
which causes data to be transferred from internal storage to an output device.

In addition to the above I/O statements, there are four statements which are used to
manipulate magnetic tape units. These are

REWIND, BACKSPACE, ENDFILE, and UNLOAD.

SYMBOLIC 1/0 DESIGNATION

Atlas provides for a very powerful and generalised means of referring to its
peripheral (I/O) devices. The way in which this is done is described below.

Output

The particular device which is accessed by any given output statement is dependent upon:

50

7.2.2

723

(i) The logical device number, (or stream number) which is referred to by
the statement.

(ii) The way in which this stream number is described in the job description.

Full details of the job description are given in Appendix 8. For every different .
stream number referred to, the job description will contain a line (statement) which
relates the stream number to the name of the type of output device to be used for that

stream.
e.g. If stream number 6 is referred to by a statement such as:
WRITE (6, f) list

and it is desired that this statement is to prodﬁce output on a line printer, then the job
description will contain the line:

OUTPUT 6 LINEPRINTER....

Alternatively, if the output is to be produced on cards, then the job description will
contain a line

OUTPUT 6 CARDS........

In this way, the output statements in the program are independent of the device used.

Input

The input statements also refer to stream numbers, and for each different stream
number, a descriptive line must appear in the job description. For input, this line does
not describe the type of input device to be used, since this must already be fixed by the
time the program is ready to be run. Instead, the line relates the stream number to

a document name. This name is, in fact, the name of the document to be input on

that stream and, in addition to being given in the job description, must also be

declared at the start of the input itself.

e.g. for a statement of the form
READ (5, 1) list

which refers to input stream 5, the job description will contain the line:
INPUT 5 name of document five

and the data to be read on input stream 5 will be preceded by the two lines:

DATA
name of document five

In this way, the job description and the input statements in the program, are independent
of the type of input device used.

Magnetic tapes

Most of the I/O devices cannot be used for both input and output (e.g. output cannot be
produced on a card reader), This is not true of magnetic tapes, however, since the
same tape can be written to and read from in one program. As a result, the words
INPUT and OUTPUT in the job description described above are not meaningful when a
magnetic tape is to be used as the I/O device; and the word TAPE is used instead.

€185 WRITE (6) list

13

14

7.4.1
(1)
(2)

(3)

(4)

would require a job description line of

TAPE 6 label on tape
and)
READ (5) list
would require

TAPE 5 label on tape.

A maximum of 6 one inch magnetic tape units, and/or two 4 inch (IBM-compatible)
units may be used by any one job.

Tape numbers must not conflict with input or output stream numbers.

Tape numbers for one inch tapes must be in the range 0 through 99,

Tape numbers for } inch tapes must be in the range 0 through 15.

RECORDS

Note: this section does not apply to the Fortran V statement OUTPUT,

In Fortran, input and output is done by records, and not one value at a time. An I/O
statement will transfer one (or more) records to or from storage, and this record may

contain many different values.

In general, a record is:

(i) a card
or (ii) a length of paper tape contained between new line characters.
or (iii) a length of magnetic tape contained between end-of-record markers.
or (iv) one line as printed by a lineprinter.

THE 1/O LIST

When transferring information to or from internal storage, it is necessary to know
which parts of storage (i.e. which variables) are involved.

When variables (or arrays) are transmitted by means of an I/O statement, an ordered
list of the quantities to be transmitted must be included in that statement. The order of
this 1/0 list must be the same as the order in which the information exists in the I/O

medium.

A list used in an input statement (input list) has a slightly more restricted definition
than an output list (or I/O list).

Definition
A simple I/O list is a simple input list or a simple output list,

A simple input list is a series of simple or subscripted variable names separated by
commas.

A simple output list is a series of arithmetic expressions separated by commas.
Note that logical expressions are not allowed, but simple or subscripted logical
variables or logical constants are allowed.

If X is a simple I/O list, then an I/O list (under the control of an "implied DO") is:

X, v= aexp,, aexp,, aexpg)

52

7.4.1
cont

)

(6)
(7
(8)

9)

Where
v is a non-subscripted variable name, of type integer, or real,

v is the index of the implied DO. .
and aexp. , aexp,, and aexp, are arithmetic expressions of type integer, or

real. They are the parameters of the inflpl'ied DO, aexpg and its .
preceding comma may be omitted. If this is done the value of aexp, is

taken as one (integer 1).

If Y is any I/O list, then (Y, v = aexpl, aexp,,, aexps) is an I/O list, where
v, aexp,, aexp,, and aexp, are defined in rufe (4).

If Y is an I/O list, then (Y) is an I/O list, the parentheses being redundant.
If X and Y are 1/0 lists then X, Y is an I/0 list.
The execution of a list of the form

X, v= aexp,, aexp,, aexp3)
is exactly that of DO loop, as though each left parenthesis (except subscripting or
redundant parentheses) were a DO statement with the indexing information given before
the matching right parenthesis, and with the DO range extending up to that information.
That is: -

DO 10 v=aexp, aexp,, aexp

transfer information to or from the list X

(allowing for the changing value of the index v)

10 CONTINUE

The above list is also equivalent to the list

(allowing for the changing value of the index v).

Where the number of times that X is repeated is determined by the values of aexp,, a€xp,
and aexp, in the same way as for a DO statement (see section 6.7).

Note, however, that (for example)

DO21=1,10
2 READ 20, A(D)

will read at least ten records, since each execution of the READ statement brings in a
new record.
Whereas:

READ 20, (A(D), I=1, 10)
may read more, or less, than 10 records, depending on FORMAT number 20.
For a list of the form

K, AK)
or
K, (A(1),1=1,K)

Where the definition of a subscript or an indexing parameter appears earlier in the list
of an input statement than its use, the indexing (or subscripting) will be carried out
with the newly read-in value.

(10) If the input or output of an entire array is desired, then only the name of the array need

(11)

(12)

74.2

53

be given in the I/O list, and the indexing information may be omitted.
e.g. If A has previously been declared to be an array (i.e. has been given dimension
information), then the following statement is sufficient to read in all of the elements of
A;

READ (5,10) A
If A has not previously been dimensioned then only one value will be read in. The
elements transmitted by this notation are stored (or output) in accordance with the

description of the arrangement of arrays in storage. (see section 4.2.2)

This notation, which is sometimes called a "short list" is more efficient, both in
compilation and execution than the form:

READ (5,10) (A(I), I=1,N)
where N is the number of elements contained in A.

The 1/0 list controls the quantity of data that is transmitted. On input, if more
quantities are present in the external record, than are in the list, then only the number
specified in the list are transmitted, and the remaining quantities are ignored.

Conversely, if a list contains more quantities than are given in one input record, then
more records(s) are read.

If an I/O statement contains a list with an implied DO, and this I/O statement is within
the range of a DO statement, then the index of the implied DO must not be the same as
the index of the DO statement.
e.g. DO 20 1=1,6
READ (5,10) (A1), 1=1,20)
20 CONTINUE

would be illegal since the READ statement changes the value of I (the index of the DO
statement) within the range of the DO statement (see section 6.7)

Similarly, if a list contains nested implied DO's then none of these implied DO's may
share the same index.

e.g. READ (5, 10) ((A(1), I=1, 10), B(I), I=1, 10)

would be illegal.

Examples of 1/O lists

Examples of I/0 lists which may be used in conjunction with input or output statements.
The variables may be of any type.

a) I

The value of I is transmitted to an output device, or a value obtained from
an input device is transferred into Lz

b) I,], A(K+3)

Values are transferred to or from the variables I and J and the element
A(K+3), where K has been set previously.

54

743

c) (A, 1=1, 6)

For output, the value(s) of A is output 6 times. For input, 6 values are
read into location A, all values being overwritten except the last one.

d) (A1), I=1,6)

Values are transferred to or from the elements A1), A(2)e . oneinnia A(6),
in order.

This list is equivalent to the list:

A1), A(2), A(3), A(4), A(5), A(6)

If A has been declared as
DIMENSION A(6)
then the list is also equivalent to the list: A

e) (A(I), I=6s s, 'l)
This is the same as d), except that values are transferred in the reverse
order.
i.e. A(6), A(B),....... A1)
f) A, K, ((AR(I,), B(D), I=1, 20), C(J), J=1, 5), X
This is equivalent to the following pseudo statements (but see section
7.4.1(8)): -
transfer value to or from location A
" " " " " " K
DO 10 J=1,5
DO 20 I=1, 20

transfer value to or from location AR(I, J)
" " 1 " " 1" B(I)

20 CONTINUE
transfer value to or from location C(J)
10 CONTINUE
transfer value to or from location X
Examples of output lists
Examples of lists which may be used only in conjunction with output statements.
a) 1
the number 1 is written
b) 'OUTPUTbTABLE'
the characters OUTPUTbTABLE are written
c) X+Y**3
the value of X plus the cube of Y is computed, and this value is written,
d) (A(I)*B(D), I=1, 20)

The value of A(1) times B(1l) is computed and written; then A(2) times
B(2), and so on, up to A(20) times B(20)

1.5

1541

55
e) (SIN(X)**3, X=0, PI/2, P1/180)

This outputs the cubes of the sines of angles from 0 degrees to 90 degrees
in steps of 1 degree. (Functions are described in section 8.4). PI (if it
means 7) would previously have been sett0 3.14159

f) LOG, .TRUE.

This writes the values .FALSE..TRUE. or .TRUE..TRUE. depending on
the value of the logical variable.

UNFORMATTED (BINARY) I/O STATEMENTS

As mentioned in section 7.1 certain of the I/O statements may be used in conjunction
with a FORMAT statement which gives details of how information is to be transferred.
Sometimes, however, this information may not be required, and it may be adequate to
transfer data to or from internal storage with no intermediate conversion (e.g. from
decimal to binary or internal (binary) code to text, and so on). When this is the case,
no FORMAT statement need be referred to: any output produced will be in the form of
a string of binary digits, and any input presented must be in the same form.

Unformatted I/O statements are meaningful only when the I/O device is a one-inch
magnetic tape unit.

The unformatted READ statement

Definition

READ (1dn), input list

or
READ TAPE ldn, input list

where
1dn is any arithmetic expression of type integer, whose value is
in the range 0 < ldn <99

and

input list is defined in section 7.4.1. In either definition,
the comma preceding the input list may be omitted,

The two definitions given above are equivalent, but READ is preferred to READ TAPE.

The unformatted READ statement causes one record to be transferred to internal storage
from the input device whose logical number is equal to the value of expression ldn.

The recoxd is assumed to be in binary form. If the input list contains more items
(words) than are present in the record read, then an error will occur (execution error
10 - see section 10.3). If the list contains less items than are present in the first
record read, then the remaining items in the record are ignored.

The input list (with any preceding comma) may be omitted from either form of the
unformatted READ statement. If this is done, then one record on tape number ldn
will be skipped (i.e. a record is read, but no information is transmitted to internal

storage).
Example: READ (10) A, (B(I), I=1, 3)
The values obtained from the record read from tape 10 are loaded into

A, B(1), B(2), and B(3)
in order.

56

1.5.2 The unformatted WRITE statement

Definition

WRITE (ldn), I/O list

or
WRITE TAPE 1dn, [/O list

where
1dn is any arithmetic expression, of type integer,
whose value is in the range 0 <ldn< 99

and

1/0 list is defined in section 7.4.1
In either definition the comma preceding the
1/0 list may be omitted.

The two definitions are equivalent, but WRITE is preferred to WRITE TAPE,

The unformatted WRITE statement causes one record to be written by means of the
output device whose logical number is given by the value of 1dn.
The ' record is written in binary form.

The 1/0 list (with any preceding comma) may be omitted from either form of the
unformatted WRITE statement. If this is done, then one record of zero length
(i.e. a record containing no information) is written on to tape number idn.

Example: WRITE (ITAPE + 6) A, (B(), I=1,3)

The values contained in A, B(1), B(2), and B(3) are written, in order, on to the tape
whose logical number is equal to the value of ITAPE + 6.

1.6 THE FORMAT STATEMENT

The FORMAT statement is used in conjunction with certain (formatted) I/O statements
in order to specify the precise manner in which values are to be transferred.

A format specification can be thought of as a piece of program in a special language,
which is executed interpretively, when the corresponding [/O statement is obeyed.
The various characters which can occur in the format specification correspond to
"instructions" which are obeyed by the computer when the I/O statement is executed,

A summary of the conversion and control specifications available in Fortran V is
given below:

Code Used For
An Character information
Bn* ~ Octal digits
D n.m Double precision numbers
E n.m Real numbers
F n.m Real numbers
G n** Real numbers
nH Text
In Decimal integers
Kn* Treats characters as integers
Ln Logical values (true/false)
On Octal integers
nP Scale Factor (D, E and F)
nQ* Scale Factor (D and E only)
nR* Scale Factor (F only)

continued

7.6.1

S*

Tn
nX
nY*
nzZ*
‘chars’

Sign control

Position on line

Skips columns

Position on line

Prints or suppresses leading zeros
Text

* These codes are not usually present in other versions of Fortran (they are all in

Hartran).

** This code is usually written in the form G n.m,

Definition

Definition

FORMAT (format specification)

Where format specification is written as series of field
specifications and/or control specifications which are
normally separated by commas or slashes.

These specifications may be: -

(i) A text constant (primed or Hollerith)
(ii) S followed by two characters.

Note The characters following S, and the characters in a text
constant may be chosen from the entire character set (see
Appendix 2), and blanks are significant. Elsewhere, blanks

are not significant and only the following characters may be used:

ABDEFGIKLOPQRSTXY?Z
0123456789

()/, i

(iii) Any of ABG I K L or O (owe) followed by an unsigned

(iv) D or E or F followed by an unsigned or negative real

(v) Y or Z preceded by an unsigned integer.

(vi) Any of P Q R or X preceded by a signed or unsigned

(vii) T followed by an unsigned integer.

(viii)A sequence of specifications may be enclosed in

or negative integer and optionally preceded by an
unsigned integer.

constant of the form n.m or -n.m, and optionally
preceded by an unsigned integer.

integer (of the form n or 4+ n or -n)

parentheses and be optionally preceded by an
unsigned integer. This constitutes a specification
which may itself by included in a sequence enclosed
in further parentheses, and so on up to depth eight.
Note Field specifications with negative or zero
field widths are described in section 7.6.6, and
74607

S

58

7.6.1 cont

8))

(2)

(3)
(4)

(5)

(6)

(7

(8)

Every FORMAT statement must have a statement number (as opposed to a named label)

attached to it.
The statement numbers attached to FORMAT statements are treated separately from

normal labels, and a FORMAT statement may have the same statement number as
another (executable) statement. If this statement number is referred to by a control
statement, then the executable statement will be referenced, and not the FORMAT

statement.

The FORMAT statement is not executable, and may appear anywhere in the program
except as the last statement in the range of a DO,

One FORMAT statement may be referred to by any number of formatted I/O statements.

A sequence of characters to be input or output which are processed together is called
a field.

The field width is the number of consecutive characters concerned, and must be
specified in all field specifications.

In Fortran V, the specified field width may be negative in order to allow for a
"format free" input of values. Full details of this facility are given in section 7.6.6.

By preceding it with an unsigned integer constant, a field specification may be
repeated as many times as desired.

An integer preceding a conversion code A, B, D, E, F, G, I, K, L or O specifies
that the conversion is to be applied to the specified number of consecutive items in
the I/0 list.

e.g. The specification

4 F 10.6
is equivalent to

F 10.6, F 10.6, F 10.6, F 10.6

A group of field specifications enclosed in parentheses and preceded by an unsigned
integer is repeated the specified number of times. If no integer is specified, the
group is scanned once only.

A parenthetical group is itself a specification and may occur within another group;
and so on to depth eight.

R 3(12, F3.1)
is equivalent to:

12, F3.1, 12, F3.1, 12, F3.1
and

2(14, 3(12, A8), 16)
is equivalent to:

14,12, A8,12, A8,12, A8,16,14,12, A8,12,A8,12,A8,16

When a formatted I/O statement is executed, the relevant FORMAT statement is scanned.
Whenever a field specification is reached which refers to an I/O list item, the next item

in the list is processed and transmitted.

Execution of the I/0O statement is ended when all list items have been transmitted and either
another item is called for by a format specification, or when the end (i.e. last

right parenthesis) of the format specification is reached. -

If the end of a format specification is reached, and items still remain to be processed
in the I/O list, then the format specification is re-scanned from the last nest of
repeated field specifications (due regard being paid to any associated count).

59

7.6.1 If there are no repeated groups of field specifications, the format specification is
cont re-scanned from the beginning (first left parenthesis).

(9) A FORMAT statement may define Fortran records as follows:

(i) If no slashes or additional parentheses appear within a format
specification, then a Fortran record is defined by the beginning of
the specification (left parenthesis) to the end of the specification
(right parenthesis). Thus, on input, a new record is read when the
format control is initiated (left parenthesis). On output, a new
record is written when the format control is terminated (right
parenthesis).

(ii) If slashes appear within a format specification, then Fortran records
are defined by the beginning of the format specification to the first slash
in the specification; from one slash to the next slash; or from the last
slash to the end of the format specification.

Thus, on input, a new record is read when the format control is initiated,
and thereafter a new record is read upon encountering each slash. On
output, a new record is written upon encountering a slash or when the
format control is terminated.

Thus, both a slash, and the final right parenthesis of a format specification
indicates the termination of a record.

(iii) If more than one level of parentheses appears within a format specification,
then a record is defined by the beginning of the format specification to the
end of the specification; and thereafter records are defined from the
beginning of the last nest of repeated field specifications to the end of the
format specification.

Example:
a) (A2, (14, 18))
If the I/0O list were long enough to induce repeated scanning this
specification would define records as follows:
A2, 14, I8
14, I8
14, 18
14, 18
14, 18
b) (A2, 3(14,18))

This defines records as follows:

A2,14, 18, 14, I8, I4, I8
14, 18, 14, 18, I4, I8
14, 18, 14, 18, 14, I8

(10) Blank output records may be introduced, or input recoxrds skipped, by using consecutive

60

1.6.1 slashes in a format specification. If there are n consecutive slashes at the beginning,

cont or end, of a format specification, n input records are skipped, or n blank records are
inserted between output records, respectively. If n consecutive slashes appear anywhere
else in a format specification, then the number of records skipped or blank records

inserted isn-1.

(11) During repeated scanning of a format specification, the scaling factors P, Q, and R,
the zero suppression control Z, and the sign control S, are not reset, but have the
values as at the end of the previous scan. They are re-set (to normal if not
specified) at each execution of any formatted I/O statement,

(12) In Fortran V, all records to be input or output are passed through a buffer. The
maximum number of characters which this buffer can hold is 160. Thus, no attempt
should be made to input or output a record containing more than 160 characters by
means of a formatted I/O statement.

This limitation does not apply to the unformatted (binary) I/O statements,

If more than 160 characters are fed to the buffer then only the first 159 and the last 1
will be retained, and all of the other characters will be lost.

gz 10F20.10

The characters corresponding to the last two conversions are lost and the last
character of the 8th conversion is overwritten.

(13) In addition to the above limitation on record length, some of the I/O devices have their
own limitations.

The maximum number of characters which can be printed on one line by a lineprinter
is 120 characters (121 with carriage control character - see section 7.6.2).

The maximum number of characters which can be read from (or punched on) one card
by a card reader (or punch) is 80 characters.

If an attempt is made to print a record of (say) 130 characters, then two lines will be
printed, and the 122nd character will be taken as the carriage control of the second
line.

Similarly, if a record of (say) 90 characters is read from a card reader, then 2 cards
will be read.

(14) When transmitting values on input, the type of conversion code, type of data, and type
of variable in the input list should correspond.
When transmitting values on output, the type of the output value will correspond to the
conversion code used; and this code need not be of the same type as the variable in the
output list.
It is not normally useful to output text information using numeric conversion codes
(or vice versa), but it may be useful to output a numervric value of type real as an
integer, or an integer as real, and so on.

(15) Complex numbers must be input as two real numbers (using F or E conversion).
Complex numbers must be output as two values using two conversions (normally F or
E or I).

(16) Commas must be used to separate field specifications in cases where ambiguities
would arise if the specifications were not separated.

e.g. F15.1, 3I8

Would be ambiguous without the comma. Commas need not be inserted after H or
primed text constants, after slashes, or after any of the control specifications
(section 7.6.5).

7.6.2

7.6.3

7.6.3.1

01

Carriage control

When records written under format control are prepared for printing, the first
character of the output record is treated as a carriage control character and not
printed. The table below shows the effect of various characters on the line spacing.
Note that on all I/O devices other than the lineprinter the first character in a record
is treated as normal data.

Carriage Advance

First Character Before Printing

blank One line
0 (zero) (or A) Two lines
1 First line of next page

(skip to channel 1)

2 Skip to channel 2
3 "o " 3
4 " " 4
5 i a S
6 VL a 6
7k e N 7
ot No advance (overprinting)
B Three lines

C Four lines

D Five lines

E Six lines

F

Seven lines

If any other character appears as the first character of a print record, then the carriage
is advanced by one line, and the record is then printed. In this case the (illegal)
carriage control character is printed and all other characters in the line are shifted
right by one place.

The channel skips allow the line to be printed at a standard position on the page,

regardless of the current position. The position skipped to is dependent upon the way
in which the printer is set up, and may be found by enquiring at the installation where

the program is to be run.
The non-numeric field specification
In this section it is assumed that all field widths specified are positive. The properties

of negative and zero field widths are described in sections 7.6.6, and 7.6.7.

A conversion

Form An

where n is an unsigned integer

A conversion is used to transmit data in character (text) form. On input each
character read is converted into internal code and stored. On output each internal
code number (of 6 bits) is converted to a character and output. The Atlas internal
code is described in Appendix 2.

On input, n (of An) characters are read. o
If n is less than 8, then the characters read will be left adjusted within a word, and

filled out with blanks.

e.g. READ 10, CHAR
10 FORMAT (A1)

62

7.6.3.2

will read one character, if this character is X (say), then the variable CHAR will have
the value 'X' or "Xbbbbbbb'.

If n is greater than 8, then only the first eight characters are stored, and the next
n-8 input characters are ignored.

Example: -

If one whole card is to be read in and stored, then at least 10 words must be allowed
in the list:

TEXT CARDA (10)
READ 5, CARDA
5 FORMAT (10A8)

80 characters are read, and stored 8 characters per word in the 10 elements of CARDA.
If FORMAT (A80) had been used, then the first 8 characters read in would be stored

in CARDA(1) and the next 72 input characters would be ignored; so that CARDA(2) to
CARDA(10) would be undefined. If FORMAT (80A1) had been used, then CARDA

would have been dimensioned: - TEXT CARDA (80), and each character would have

been stored in one element of CARDA.

On output, n characters are written. If n is less than or equal to 8, then the output
field will consist of the n left-most characters of the word.

If n is greater than 8, then the field will be output as above (with n=8) but will be
preceded by n - 8 blanks.

e.g. PRINT 1, '"ABCDEFGH'
1 FORMAT ('b', A8)

will print ABCDEFGH.

If the FORMAT is ('b’, A12), then bbbbABCDEFGH is printed.

B conversion

Form Bn

Where n is an unsigned integer constant.

B conversion is used to transmit octal digits between I/O devices and internal storage.

On input, n (of Bn) octal digits are read.

Any characters read under B conversion should be 0,1, 2, 3, 4,5, 6,7, or blank,

An error (see section 10.3) will occur if any other character is read. Any blanks
(leading, trailing, or embedded) are taken as zero.

If n is less than, or equal to 16, then n characters are stored left-adjusted within a
word. The last 16-n octal digits of the word are set to zero (00).

If n is greater than 16 the first 16 characters are read and stored, and the next n-16
characters of the input record are ignored.

Erigh BOOLEAN DIG

READ 10, DIG
10 FORMAT (BS)

If a card (say) has its first 8 columns punched 0123b4b0 and is read as above, then DIG
will have the (octal) value 0123040000000000.

On output, n octal digits are transmitted to the external record.
Each 3 bits of the word (starting from the left), are converted to an octal digit and

7.6.3.3

7.6.3.4

63

written. Zeros are written as zero, and not as blank. If n is less than 16, then the n
left -most digits of the word are written and the remaining digits are ignored,

If n is greater than (or equal to) 16, then all 16 digits of the word are written followed
by n-16 zeros (not blanks).

H and primed conversion

Forms nHcharacter string
or

‘character string’.

Where n is an unsigned integer constant (not zero).

Blanks are significant in the character string. In the H form, n must be equal to the
number of characters contained in the string.

In the primed form, an apostrophe cannot be included within the string.
€k '‘DON""T' must be written as SHDON'T

H or primed conversion is used to transmit data in character form. Both forms of
conversion have the same effect.

On input, the n characters in the string are replaced by the next n characters read.
This facility can be used to change titles, dates, column headings, etc., which are to
appear on an output record generated by the H or primed specification.

On output, the n characters in the string are transmitted to the external record.
Examples:

a) PRINT 20
20 FORMAT ('TABLEb2")

b) READ 10
10 FORMAT (80H <eighty blanks>)
PRINT 10

The READ instruction reads one card (say), and the 80 characters contained on this
card replace the 80 blanks of the H specification.

The PRINT instruction prints the characters contained in the H string, and thus the

card read is printed. The character in the first column of the card is treated as a
carriage control character for the printed line.

K conversion

Form Kn

where n is an unsigned integexr constant

K conversion provides a means of treating characters as integers, and is most useful
on input, with the value of n equal to 1%

On input, n (of Kn) characters are read. If nis greater than 6, then the firstn - 6
characters are ignored, and only the last six are processed. I n is less than, or

equal to 6, then n characters are processed.

64

71.6.3.4 The characters are stored (in Atlas internal code form) in a word in such a way that
cont the word can be treated as a Fortran V integer. The corresponding list item should be

of type integer.

If the specification is K1 (n=1), then the value of the integer will be equal to the
internal code number of the character read (see Appendix 2).

e.g. READ 1,1
1 FORMAT (K1)

If the character read is a blank, then I will have the value 1 (one), since the internal
code for blank is 01. If the character read is A, then I will have the value 33, the
internal code for A being 41 (octal), which is equal to 33 decimal.

If n is greater than one, then the n characters read are converted so that the first
character forms the most significant part of the integer, and the last character the
least significant part. Note that leading blanks (except on K1) are stored as binary
zero (internal code 00).

Example: READ 1,I
1 FORMAT (K2)

If the 2 characters read are both blank, then the value of I will be 0001 (octal),
i.e. 1 in decimal.

If the characters read are "1A" then the value of I will be 2141 (octal)
i.e. 1121 in decimal,

On output, n characters are written. The word to be output (i.e. the list item)
should be of type integer. If n is less than, or equal to 6, then the 2Zn least
significant octal digits of the integer part of the word are converted into n characters
and output., (This is exactly the reverse of the procedure for input), Non-printable
characters are printed as a decimal point, except that leading zeros (internal code 00)
are printed as blanks.

If n is greater than 6, then the output field is as described above, (with n = 6) but is
preceded by n - 6 blanks.

.

Examples:

a) PRINT 10, I
10 FORMAT (K1)

If I is equal to 14, then * is printed (internal code = 16 octal).

If I is equal to 2761 (=5311 octal), then) is printed (internal code
= 11 octal).

b) PRINT 10,1
10 FORMAT (K2)

If 1 is equal to 97 (=0141 octal) then bA is printed.

If I is equal to 1 (=0001 octal), then bb is printed, the leading
zero (00) being printed as a blank.

If I is equal to 2761 (=5311 octal) then K) is printed.

7.6.3.5 L conversion

Form Ln

where n is an integer constant

L conversion is used to transmit logical values (true or false) between I/O devices
and internal storage.

On input n (of Ln)characters are read. If n is greater than 5 only the first 5
characters are processed, and the nextn - 5 are ignored.

If n is less than, or equal to 5, the input field should consist of the n left-most
character(s) of the words.

TRUED
or
FALSE

the result stored being the logical value .TRUE. or ,FALSE. respectively. Leading,
and embedded blanks are illegal. All illegal fields (including an all-blank field) are
read in as false, but a data error occurs (see error 5, section 10.3.1.)

On output, n characters are transmitted to the external record. If n is less than or
equal to 5, then the output characters will be the n left-most characters of the words

TRUEDb
or
FALSE

depending on whether the value of the corresponding list item is . TRUE. or .FALSE..

If n is greater than 5, the output field will be as above (with n = 5), but is followed by
n - 5 blanks.

7.6.4 The numeric field specification

The numeric conversions I, F, E,G,D and O are used to specify input/output of integer,
real, double precision, complex or octal ~integer data.

With all numeric input conversions, in the field read, leading blanks are not significant,
and trailing blanks are taken as zero. Embedded blanks (i.e. within numbers) are
taken as zero, but an input error (error 5) occurs. This error can be avoided (see
section 10.4). A field of all blanks is taken as zero. See also section 7.6.6.

With F, E,G and D conversion, a decimal point appearing in the input field overrides
the decimal point position implicit in the field specification.

With all input conversions a plus sign may precede a positive value, and a minus sign
must precede a negative value. If no sign is given, the value is taken as positive.

With all numeric output conversions, the written number is right adjusted. If the
number of characters produced by the conversion is less than the field width specified,
then leading blanks are inserted in the output field (leading zeros, or blank fields, may
be obtained by use of the Z control specification - see section 7+5655a5) ¢

If the field width (n) specified is less than the number of characters produced by the
conversion, then only the n right-most (i.e. least significant) characters are
transmitted to the output record.

66

7.6.41

7.6.4.2

With all numeric output conversions a minus sign is output for negative values, and no
sign (i.e. a blank sign) is output for positive values. These conventions may be
overidden by means of the S control specification (see section 7.6.5.2).

For the real number conversions, E, F and G, accuracy is maintained to about

eleven decimal digits. If fields containing more than eleven digits are transferred,
then the least significant digits are lost (on input) or inaccurate (on output).

D conversion

Form Dn.m

where n and m are unsigned integer constants

D conversion is used to transmit double precision values between internal storage and
I/0 devices.

D conversion is similar to E conversion with the following exceptions: -

(1) For input, the character D may be present instead of E. As for E
conversion the D character may be omitted altogether. Values punched
with an E are also accepted by D conversion.

(ii) For output, the character D will be present instead of E.

e.g. for D12.5
-66,334 is converted to -6.63340D+01

As for E conversion, if the exponent exceeds 99, the D character is not
written.

For double precision values, accuracy is maintained to about 20 decimal digits. If

fields containing more than 20 digits are transferred, then the least significant digits
will be lost (on input), or inaccurate (on output).

E conversion

Form En.m

where n and m are unsigned integer constants

E conversion is used to transmit real numbers between internal storage and an 1/O
device. Either part of a complex number may be processed using this conversion.

If double precision values are processed using E conversion, then accuracy is to
single precision. In En.m, m is the number of digits present in the fractional part
of the field. (See also section 7.6.4).

On input, n (of En.m) characters are read, and converted to a real number. The
field read must be in one of the following forms:

+xE+k
or +x+k
or w38 =K

where:

+ is an optional plus or minus sign

X is an unsigned real or integer constant
and

k is an unsigned integer constant.

67

7.6.4.2 The exponent k is the power of 10 by which the number x is to be multiplied.

cont

If a decimal point is present in x, then it overrides the implicit decimal point given by
the value of m in En.m.

Note that trailing blanks on an exponent are taken as zeros - they are not ignored.
e.g for conversion E6.0 and the input field
bl.EO1
the result is 10.0, but if the input field were 1.EO0Lb then the result would be 1.0 x 1010

An all blank field is read as zero, but an input error occurs (execution error 5 - see
section 10. 3).

Examples:
Input characters Specification Internal Value
bb-113409E2 Ell.6 -11.340900
+b471316-03 Ell.6 .000471316
bb1234+5 E8.0 123400000.0
bl.36E01 E8.4 13.6 10
1.36E01b E8.4 1.36x10

First, the decimal point (if not present in the input field) is positioned according to the
specification; then the value of the exponent is applied to determine the actual position
of the decimal point. In the first example - 113409E2 is interpreted as - .113409E02,
which when evaluated (i.e. -.113409 x 10™) becomes -11.340900.

On output, n characters are transferred. Internal values are converted to real
constants of the form: -

d.ddd ... dE+tee

d.ddd ... dE-ee

d.ddddEeee
or d.dddd-eee
where .dddd represents m (of En.m) decimal digits, and + ee and + eee

are interpreted as multipliers of the form

IOiee and loteee

These forms of output may be modified by using a scale factor (see section 7.6.5.1).

Internal values are rounded to m+1 digits, and negative values are preceded by a
minus sign.

The field width is counted from the right and includes the exponent digits, the exponent
sign (minus or plus), the letter E, the magnitude digits, the decimal point, and the
sign of the value (minus or blank). If the width n is not sufficient to allow expression
of an entire value, then only the n right-most digits will appear. This is not an
error condition. To prevent a loss of this nature it is necessary to ensure that

(in En.m)

n>m + 7

Note that this feature can be used intentionally (in conjunction with a scale factor) to
obtain the multiplier field, which is an indication of the order of magnitude of the

internal value.

e.g. for E3.0
60255.334 is converted to -+04
0.0000072 is converted to -06

68

Examples:
Value E10.3 E8.3 E6.3
-2013.55 -2.014E+03 .014E+03 14E+03
.361887 3.619E-01 .619E-01 19E -01
.0001 1.000E -04 .000E -04 00E -04
7.6.4.3 F conversion
Form Fn.m

where n and m are unsigned integer constants

F conversion is used to transmit real numbers between internal storage and an I/O
device. Either part of a complex number may be processed using F conversion. If
double precision values are processed using this conversion, then accuracy will be to
single precision only.

In Fn.m, n is the field width, and m is the number digits present in the fractional part
of the field. (see also section 7.6.4).

On input, n (of Fn.m) characters are read, and converted to a real number. The
field read in must be in one of the following forms:

1

I+ it

It

i.
i]
or blank

where: + is an optional plus or minus sign
and iandj are unsigned integer constants,

An all blank field is taken as zero.

If a decimal point is present, then its position overrides the implicit position given by
the value of m in Fn.m. If m is greater than n, then the implicit position of the decimal
point is m-n places to the left of the first digit of the field read in.

Examples: for the specification F7.3:-

bbbbb33 is converted to 0.033
1234567 is converted to 1234.567
33bbbbb is converted to 3300.000
-1.63bb is converted to -1.630
bb-1.63 is converted to -1.630

On output, n characters are transferred. Internal values are converted to real
constants, rounded to m decimal places, with an overall field width of n, (m should not
be greater than n).

If a value requires more positions than are provided by the magnitude of n then only the

n right-most characters are printed. This is not an error condition. In order to ensure
that a loss of sign or digits does not occur, the following relation must hold true

(in Fn.m)

n > m+2+d
where d is the number of digits to the left of the decimal point.

Examples:
Internal Value Specification Output Field
273.4 F9.4 b273.4000
273.4 F4.4 4000
-442.306 E7.:2 -442.31
63 F5.1 b63.0
62.7 F3.0 63.
7.6.44 G conversion
Form Gn

where n is an unsigned integer constant

G conversion is used to transfer real numbers between internal storage and an I/O
device. It combines the properties of E and F type conversions. Either part of

a complex number may be transferred using G conversion. If double precision values
are transferred by means of G conversion, then accuracy will be to single precision
only. See also section 7.6.4.

On input, n (of Gn) characters are read, and converted to a real constant. The field
read in may take any of the forms accepted by E and F type conversions, and is
processed in the same way.

If a decimal point is not explicitly provided in the input field, the position of the
decimal point will be assumed to be at the right-hand end of the magnitude part of the
field.

If read on G6:
bbl1277 is converted to
1277bb is converted to

b-25E3 is converted to
-.25E3 is converted to

e.g.
127
127700.
-25000.
-250.

On output, n characters are transferred. Internal values are converted to real
constants. The form of the constant is dependent on the magnitude of the data, and
conversion is either E type or F type according to the following rule:

The F form is used if the value can be expressed without either leading zeros or an
exponent, otherwise the E form is used. The conversion chosen is the one which
allows for the maximum number of significant digits; i.e. the maximum accuracy
compatible with the field width, n. The following rules also apply for output G

conversions.,
(i) If n (of Gn) is less than 7, then the F form is always used.
(ii) A maximum of 13 significant decimal digits will be printed, whatever

the value of n. (The 13 does not include sign, decimal point, or exponent.)
If n is greater than 6, and if the number is such that the F form is used,
then four blanks are printed at the right hand end of the output field

(i.e. in the place where an exponent would otherwise appear). In

general for Gn, where 6<n<20 the number of significant digits printed

isn - 6.

(iii)

Examples: If the specification G10 is used

Internal Value

Output Field

10 b1.000bbbb
-1 -1.000bbbb
1.000606 bl1.001bbbb continued

69

70

7.6.4.5

*7.6.4.6

57.9999 b58.00bbbb
(Sl b1.000E -01
0.00123 bl.230E-03
1234567881.0 bl.235E+09

-6666666 -6.667E+06
1.7E+10 bl.700E+10

| conversion
Form In

where n is an unsigned integer constant

I conversion is used to transfer decimal integer values between internal storage and an
I/O device. Double precision values and either part of complex values should not be
input using I conversion; but may be output by this means. (see also section 7.6.4.)

On input, n (of In) characters are read and converted to a decimal integer. The
input field may contain a signed or unsigned integer constant, or may be blank, If
the field is blank, its value is taken as zero. Any values read in should lie within
the range for an integer constant (see 3.1).

The input field must not contain a decimal point or an exponent.

Examples: if specification 16 is used

Input Field Internal Value
bbbb10 10

b-bblb -10

1bbbbb 100000
776543 776543
b-~11bb -1100
+bl1bb 1100

On output, n characters are written. Internal values are converted to integer
constants. Real and double precision values are truncated to give the nearest
integer (NINT) and then output.

If the field width n is not sufficient to contain the output field, then only the n
right-most characters of the field are output.

Examples: if specification IS5 is used

Internal Value Output Field
10 bbb10

-1001 -1001

100000 00000
7.53 bbbb8

-113.7653 b-114

O conversion
Form On

where n is an unsigned integer constant

O conversion is used to transmit octal integers between internal storage and an I/O
device. Real, doukle precision, and complex values may not be processed using
O conversion.

1.6.5

*7.6.5.1

7

On input, n (of On) characters are read and converted to a decimal integer. The input
field should be a signed or unsigned octal constant, or be blank. If the field is blank,
its value is assumed to be zero. An octal constant is a combination of the digits,
0,1, 2, 3, 4,5, 6or 7 butnot 8 or 9.

Examples: if specification O6 is used

Input field Internal Value (decimal)
bbbbb7)

bbbbl0 8

bbbblb 8

1bbbbb 32768

b+6001 3073

-bb333 -219

On output, n characters are written. An internal value, which should be in INTEGER
form, is converted to an octal integer. If the field width n is not sufficient to contain
the number, then only the n right-most characters are printed.

Examples: if specification OS is used

Internal Value (decimal) Output Field
1 bbbb1l
8 bbb10
-64 b-100
1100 b2114
32769 00001

The control specifications

The control specifications are used to modify the input or output of the format
specifications described above.

Leading zeros may be printed, or blank fields obtained, by means of Z; plus signs etc.
(normally suppressed) may be printed by means of S; spacing may be controlled by means
of X, Y and T; and the magnitudes of numbers may be controlled by means of the

scale factors P, Q and R.

P, Q and R specification

Forms iP iQ and iR

where i is a signed or unsigned integer constant

Two scale factors: Q (for E and D type conversion), and R (for F type conversion)
are maintained during processing of a FORMAT statement.

These specifications cause the scale factor to be set to i, where the scale factor is
treated as a multiplier of the form:

i
10, for output
and 10 ‘for input

at the beginning of each formatted I/O operation, before any processing occurs, the
scale factor Q has the value 1 and R has the value 0.

These values may be altered by means of the specifications iR and iQ. The
specification iP sets them both to the same value (i).

42

If the specification iQ is used, then for E and D type output, the mantissa is normalised
to the range

i- i
10t] < mantissa < 10

(so that there are i integer places), and the decimal exponent is reduced by i.
Q is also effective for E type output of output G conversions. On input, Q is not
effective.

If the specification iR is used, then for F type output (and F type output of output G
conversions), the number written has the value of 10 times the value of the ,
corresponding list item. On input the number read is multiplied by the 10 ! before
assignment to the list item.

Scale factors are effective only within: -

Output D or E conversions

Output E type G conversions

Input and output F conversions

Input and output F type G conversions.

Any number of P, Q or R specifications may be present in one FORMAT statement,
thereby causing the value(s) of the scale factor(s) to be changed several times
during aformatted I/O operation. If a FORMAT is restarted within a single I/0O
operation due to the number of items in the I/O list, then the scale factors are not
re-set to their standard values.

The scale factors do not affect I conversions.

Examples:
a) Input
Internal Value
External | p7 3 | 2rF7.3 | -2RF7.3 | E10.3 2QE10.3 -3QE10.3
Value
14.633 14.633 0.14633 | 1463.3 14,633 14.633 14.633
-0.234 -0.234 | -0.00234 -23.4 -0.234 -0.234 -0.234
b) Output
Output Field
Internal
Value F8.3 2RF8.3 2RF8.3 E11.3 2QE11.3 20E11,.:3
14.633 | bb14.633 | 1463.300 | bbb0.146 | bbl.463E+01 | b14.633E+00 | bb0.001E+04
-0.234 | bb-0.234 | b-23.400 | bb-0.002 | b-2.340E-01 | ~23.400E-02 | b-0.002E+02
*7.6.5.2 S specification
Form Sclc2
where ¢ 1 and ¢, are any characters, blanks being significant.

S control is used to modify the output of numerical information (i.e. information
written using D, E, F, G, I, or O conversions).

The character to be output immediately to the left of the left-most digit is specified

to be: -

7.6.5.3

< for zero or positive numbers

<, for negative numbers

In the absence of the S specification, cl is blank and 02 S =%

If a FORMAT is re-started within a single I/O operation due to the number of items in
the I/O list, then ¢, and ¢, are not reset to the standard values., Several S specif-
ications may appeat in the same FORMAT statement.

The S specification has no effect on input conversions.

Examples:
Internal Value Specification Output Field
il S-b, 12 =1,
-1 S-b, 12 bl
-76.3 S**, F6.2 *76.30
.001 S00,E10.3 01.000E -03

X specification

Form | nX

where n is a signed or unsigned integer constant

X specification is used to adjust the position in the line where the next character is to be
output, or the position in an input record from where the next input character is to be
taken. The position of the next character of the line in the external medium to be
processed is identified by a pointer. This pointer is advanced automatically when
fields of specified widths are processed. It can also be explicitly adjusted by means of
X control. nX moves the pointer n places relative to its present position. The

value of n must not be such as to move the pointer outside the record.

On input, if n is positive, then the next n input characters are ignored. Ifn is
negative, then the previous n characters are "re-read".

e.g. with F5.2, 6X,13

and the input string
32.6345AB12366

the characters 45AB12 are not processed, and the numbers read will be 32.63 and 366.
The negative specification is useful since it enables the same characters to be read two
(or more) times under different conversions. Zero fields can thus be distinguished
from blank fields (see example b)).
Examples: -
a) READ 10,],A

10 FORMAT (I3, -3X, F3.0)

The same value is now available as a real number (A) and as an integer (J).

b) TEXT T
READ 20, K, T
20 FORMAT (14, -4X,A4)

The same value is now available as an integer (K) and as a sequence of characters (T).
The value of K is zero both if zero(s) are punched and if the field is left blank. Which

74

7.6.5.4

7.6.5.5

characters are actually present can be determined by testing the value of T.

e.g. IF (T='bbbb') GO TO 25
if statement 25 is executed then blanks were read, and not zeros.

On output, if n is positive, then n blanks are inserted into the output record, Ifnis
negative, then the previous n characters in the output string are deleted and further
output creation begins at the left-most position of those n characters.
e.g. The specifications

'"FORMULA’, -4X, '"TRANSLATING'
will create

FORTRANSLATING
as the output string.

T and Y specification

Forms Tn or nY

where n is an unsigned integer constant

T or Y specification adjusts the record pointer in the same way as X specification, but
instead of being a relative adjustment, T or Y adjusts the pointer to the specified
absolute character or column position (n).

Tn has exactly the same effect as nY.
The value of n should be less than 160 (see section 7.6.1.(12)).

Example: On output, the specifications
60Y, 4H****, -4¥X,6S*-,14
will cause an integer to be output in columns 60 to 63 with preceding asterisks instead
of blanks.
The pointer may be "backspaced"” in a similar way to X specification, but the value of n

is again absolute rather than relative.

Z specitication

Form nZz

where n is an unsigned integer constant

Z specification is used to obtain or suppress leading zeros in numeric output conversions.
It has no effect on input conversions.

nZ specifies that not less than n digits are to be output in I or O type fields; and that a
minimum of n digits are to be output before the decimal point in E, D, F and G type
fields.

It applies to all numeric conversions after the Z control is processed, and is not
re-set to the standard value of 1Z if the FORMAT is re-scanned. Several Z
specifications may appear in the same FORMAT statement. Note that the specification
0Z provides a very simple means of printing blank fields for zero values, without
affecting the output of non-zero values.

In the absence of a Z specification, 1Z is assumed so that all leading zeros are
suppressed, except a single zero for a zero integer, or for a zero integer part of a
real number. The field width(s) specified in the numeric conversions must be

1.6.6

75

sufficient to allow for the n digits output under nZ.

Examples:
Internal Value Specification Output Field

1 3Z,16 bbb001

0 6Z,16 000000

3.2 3Z,F6.2 003.20

-4.1 375 EilQ 1 -004. 1Eb0OO
0 0Z,16 6 blanks

0.0 0Z,F8.4 8 blanks

‘‘Format free’ input

The use of fixed field widths as described above is not always convenient, as data is
sometimes provided as numbers of variable lengths which are separated by spaces.
(This is often the case when the data is punched on paper tape - see section 7.6.9).

In order to deal with this kind of data, Fortran V allows the field widths (n) of all of
the numeric conversions described in section 7.6.4 (i.e. D, E, F, G, I and O) to be
negative (i.e. preceded by a minus sign).

The number of characters accepted by a numeric input conversion (with a negative

field width) is dependent on the data presented, and not on the format specification.

The value of the negative field width is irrelevant so long as it is not zero (see 7.6.7).
Thus, both F-1.3, and F-6.3 have the same effect. The rules for the input of numbers
in free format are

(i) spaces before digits are ignored.

(ii) a space after digits terminates the number.

(iii) End of record (e.g. newline) is treated as space.
(iv) A number is started by any non-blank character.

If a blank, or end of record is read then reading of the number is terminated at that
point and the characters read in so far are presented for conversion:

The characters which terminate reading of a number are;

blank (or space)

tab (see section 7.6.9)
newline (7 track tape)

line feed (S track tape)

End of card

End of magnetic tape record.

If an’ end of record is found when the input list is not satisfied, then a new record is read
and processing continues until all values in the list have been read in. If the list is
satisfied and characters remain to be processed in the input record, then these
characters are lost.

If numbers having exponents (for D, E, or G conversion) are to read, then no blanks
may appear between the exponent and its mantissa (since this would terminate the read).
Similarly, zero values must be explicitly punched, and cannot be left blank. It will be
seen that completely blank records are ignored.

If a real number is read, and no explicit decimal point is punched in the input field,
then the (implicit) position of the decimal point is decided as for normal (positive
field width) conversion,

€.g. if 51234b is read on F-8.2, then the result stored is 512.34. The blank
terminates the read, and the decimal point is two digits from the right-hand end.

76

*7.6.7

If a negative field width is attached to a non-numeric input conversion (i.e. A,B,K or L),
then the buffer pointer is moved back by the number of columns given by the field width,
and the corresponding list item is assigned one of the following values

A conversion : 'bbbbbbbb'

B conversion : 16BO

K conversion : O

L conversion : .FALSE.
e.g. A -8 is equivalent to -8X, A0

(see section 7.6.7)

If a negative field width is attached to any output conversion, then the corresponding
list item is ignored (skipped), and the buffer pointer is moved back by the number of
columns given by the field width.

e.g. on output
F-10.6
is equivalent to
-10X, F0.0
Examples:

READ 10,L], X,Y
10 FORMAT (2I-3,F-3.1,F-6.2)

If the input string is
2b34b7.6b885b.
Then

I will be 2

J will be 34

X will be 7.6

Y will be 8.85

The .2 of F6.2 specifies the position of the decimal point. With the same instructions,
if the input string is

bbbl123bb4b-6.7bbb34b.
Then I will be 123

J will be 4

X will be -6.7

Y will be 0.34

Zero field widths

In all of the conversions dealt with in sections 7.6.3 and 7. 6.4, the field width specified
may be zero. On input conversions, a field of width zero does not take any characters
from the input string and is effectively the same as reading an all blank field.

The actual values assigned are:

AQ conversion : 'bbbbbbbb'
BO conversion : 16BO
KO conversion : 0

LO conversion : .FALSE,
D0.0, E0.0, F0.0, GO conversions : 0.0
10,00 conversions : O

For output conversions a zero field width means "ignore the next item in the output
list'". No characters are output.

7.6.8

77

Examples:

a) READ 10,K,]
10 FORMAT (10, 13)
with an input string of
128 rexens

K would be zero and] would be 123.

b) PRINT 10,K,X,]J
10 FORMAT (12, F0.0, I3)
If K were equal to 12 and J were equal to 345 the output string produced
would be
12345

Variable formats

Format specifications may be specified at the time of program execution. The
specification must include its surrounding parentheses but not a statement label nor the
word FORMAT, The specification should be stored into a TEXT array or (if the
specification is less than 9 characters long), into a single TEXT variable. H and
primed fields may be included.

The specification may be stored in one of three ways

(i) by reading it in under A conversion
(ii) by setting it up in DATA statement or in a TEXT type statement.
(iii) by setting it up by one or more arithmetic replacement statements.

The name of the array or variable is then used in I/O statements in place of the usual
FORMAT statement number. If a TEXT array is used’'then only its name should be
given in the I/O statements which refer to it, this name should not be subscripted.

Example: Assume that the following characters are punched on a card:

(F6.2,10X,18,E13.4)
This card could be read in as follows:

TEXT F(3)
READ 10, (F(1),1=1, 3)
10 FORMAT (3A8)

Subsequent I/O statements can now refer to the array F as though it were a FORMAT
statement.

e.g. READ F,A,K, X
or
WRITE (6, F)A,K, X
and these statements would be equivalent to:

READ 10,A,K,X
or
WRITE (6, 10)A,K, X
with
10 FORMAT (F6.2,10X, 18,E13.4)

The specification could also be stored in the array F as follows:-
a) TEXT F(3)/' (F6.2,10X,18,E13.4)"/

b) TEXT F(3)
DATA F/' (F6.2,10X,18,E13.4)"/

78

*7.6.9

or

c) TEXT F(3)
F(1)='(F6.2, 10'
F(2)='X, 18, E13'
F(3)=".4)'

Special features of paper tape input

In addition to the “format free" input described in section 7.6.6, the following features
facilitate data input from paper tape. This section does not apply for input from cards
or magnetic tape.

All erases, and redundant upper and lower case characters are always ignored, and
the characters tab, backspace, query, and inner and outer set shift are treated
specially (see below).

Other characters are stored until a maximum of 160 characters is reached, any
further characters in the record are then ignored.

Inner and outer set shifts are stored only when there is actually a character of that set
to store. Since space appears in both sets, the sequence A erase space space B,
which appears in internal code as A shiftout er sp sp shiftin B, would actually be
stored as A sp sp B.

The effect of tab depends on the number of characters which have been stored from the
record. If there are 6 or more, then tab is treated as space. If there are less than 6,
then the number of stored characters is increased to 6, by planting the appropriate
number of spaces.

Note that a record containing tab is not a null record.

The character backspace has the effect it would have on a Flexowriter print-out, so
that the character preceding the backspace is overwritten by the character which
follows it. Compound characters (e.g.<) are not constructed. Backspace is ignored
if it would cause characters to be planted before column one.

If the character ? (query) is punched in a line of paper tape input, then the whole of that
line (up to the ?) is ignored, and input is begun again at the character which follows the
query. This provides a convenient method of deleting mis -punched lines.

The character (normally ?) which causes lines to be ignored can be changed by the user
by calling the library subroutine SKIPCH(C).

The argument C must be set to 64s+K; where s is O for inner set, and 1 for outer set
characters; and K is equal to the internal code of the desired character stored as a
Fortran V integer.

e.g. CALL SKIPCH(33)
causes paper tape records to be ignored when A appears.

If s is set to 2 (e.g. CALL SKIPCH (128)) then the facility for ignoring records can be
removed. The standard behaviour is as though CALL SKIPCH(12) were executed on
entry to the main program.

Records containing no characters other than backspace, erases, run-out, and lower
case are ignored. Such records are null records.

The library subroutine NULSET(N) can be used to cause null records to be accepted,
and not ignored. If the argument N is not zero, then null records will not be ignored,
but will be treated as a blank card image. The standard action is as though CALL
NULSET(0) were obeyed on entry to the main program.

1.7

THE FORMATTED READ STATEMENTS

Definition

READ (ldn, fn), input list

or

READ INPUT TAPE ldn, fn, input list
or

READ fn, input list

Where
ldn is any arithmetic expression of type integer, whose value
is in the range 0<Ind <15 (or 99 - see below)

and
fn is a statement number attached to a FORMAT statement,
or the name of a TEXT array or variable in which a format
specification has been stored.

and

input list is defined in section 7.4.1
The comma following the right parenthesis in the first
definition is normally omitted.

The first two definitions are equivalent, but READ (idn, fn) is preferred to READ
INPUT TAPE.

The third form is equivalent to:
READ (0, fn) input list
i.e. it reads from input stream number zero (logical input device number zero).

The formatted READ statements cause one (or more) records to be transferred to
internal storage from the input device whose logical number is equal to the value of the
expression ldn. If the input device is a one inch magnetic tape then the value of ldn
should be less than 99, for other devices, the value should be less than 16.

If the input list contains more items than are present in the first record read, then
further records will be read until the list is satisfied provided that the associated
FORMAT statement is such as to cause extra records to be read, e.g. the specification
(2015) should not be used to read 80 column cards, as the last 4 (of 20) list items would
be undefined. (see 7.6.1 (9)). The FORMAT statement referred to may also cause
extra records to be transferred (see section 7.6).

If the list contains less items than are present in the first record read, then the
remaining items in the record are ignored.

The input list may be omitted from any form of the formatted read statements. If this
is done then one record on device number ldn will be skipped (i.e. a record is read, but
no information is transferred to internal storage). There is an exception to this rule
which is described in section 7.6.3.3. More than one record may be read if slashes
are present in the FORMAT statement.

Records containing more than 512 words (4096 characters) cannot be read from half-inch
magnetic tape. This limitation does not apply to one inch (Ampex) tape.

All reference to the format number fn may be omitted from the formatted READ
statements, (Except READ INPUT TAPE)

80

7.8

eugi READ (1dn,) input list
and READ, input list

the commas must be present.
If this is done the format specification

(6G20)

is referenced.
Examples:

a) READ 10, A,B,C
10 FORMAT (3F10. 6)

b) READ (I+4, 10)A,B, C
10 FORMAT (3F10.6)

a record is read from the device whose logical number is equal to I+4.
c) READ (5, VF) (A(]),B()),]J=1, 6)
where VF is a TEXT variable or array containing a format specification.

d) READ (I/J+1, X)C, V, K, (A(]), J=K*2, -1, -1)

THE FORMATTED WRITE, PRINT AND PUNCH STATEMENTS

Definition

WRITE (ldn, fn),1/O list

or

WRITE OUTPUT TAPE Idn, fn, I/O list
or

PRINT fn, 1/0 list

or

PUNCH fn, I/O list

where
ldn is any arithmetic expression of type integer, whose value
is in the range 0 <1dn <15 (or 99 - see below)

and
fn is a statement number attached to a FORMAT statement, or
the name of a TEXT array or simple variable in which a format
specification has been stored.

and

I/0 list is defined in section 7.4.1
In the first definition, the comma following the right
parenthesis is normally omitted.

The first two definitions are equivalent, but WRITE (ldn, fn) is preferred to WRITE
OUTPUT TAPE.

The third form (PRINT) is equivalent to
WRITE (0, fn) /0 list

i.e. it writes to output stream zero (logical device number zero), which is normally the
line printer (see Appendix 8). Similarly, the fourth form (PUNCH) is equivalent to

WRITE (15, fn)I/O list

7.9

7.91

81

In the Fortran V system, output stream 15 is normally reserved for the 80 column card
punch, so that cards are normally produced by the PUNCH instruction. See Appendix 8.
The formatted WRITE or PRINT or PUNCH statements cause one (or more) record(s) to
be transferred from internal storage to the output device whose logical number is equal
to the value of the expression ldn. If the output device is a one-inch magnetic tape

unit, then the value of ldn should be less than 99, for other devices, the value should be
less than 16. The number of records written is dependent on the FORMAT statement
referenced.

The I/0 list may be omitted from any form of the formatted WRITE or PRINT or PUNCH
statements. If this is done, the record(s) created are dependent on the corresponding
FORMAT statement.

I PRINT 10
10 FORMAT (6HbTITLE/)

All reference to the format number fn may be omitted from the formatted WRITE or
PRINT or PUNCH statements, {except WRITE OUTPUT TAPE).

e.g. WRITE (Idn,)I/O list
PRINT, I/O list
and
PUNCH, 1/0 list
the commas must be present. If this is done, then the format specification
(6G20)
is referenced.

If half inch tapes are used, then any records written should not contain more than 512
words (4096 characters). This limitation does not apply to one inch (Ampex) tapes.

Examples:

a) PRINT 10, A,B,C
10 FORMAT (3F10.3)

b) WRITE (ITAPE, 10) A,B,C
10 FORMAT (3F10.3)

One record is written to the device whose logical number is equal to the value of ITAPE.

c) WRITE (6,R) X,Y, (A(D),I=1, 3)
where R is a TEXT variable or array containing a format specification.

d) WRITE (I*2, FMT) X+Y,2.7, (K,A(K)**2,K=10,]-3)
THE MAGNETIC TAPE MANIPULATION STATEMENTS
The following statements enable magnetic tapes to be manipulated. They should not be

used to control other devices.

The REWIND statement

Definition REWIND ldnl, ldnz, ldn3, ldn4. C R

where
1dn It 1dn g are arithmetic expressions of type integer

The REWIND statement causes the magnetic tapes whose logical unit numbers are
equal to the values of the expressions ldn, to be rewound i.e. to be positioned so that
the next record read or written is the first record on the tape.

82

1.9.2

7.9.3

7.9.4

7.10

Examples:
a) REWIND 1
b) REWIND 1, 2, ITAP+7,J*2

The BACKSPACE statement

Definition BACKSPACE 1@1,].d112, 1d113’ NN

where

ldnl, ldn,...are arithmetic expressions of type integer

2

The BACKSPACE statement causes the magnetic tapes whose logical unit numbers are
equal to the values of the expressions ldn, to be backspaced by one logical record,
i.e. the tape is moved backwards by one record.

If a tape is currently positioned at the "rewound" position, then the BACKSPACE
statement has no effect.

The UNLOAD statement

Definition UNLOAD ldnl, ldnz, ldns...

where

ldnl, ldnz. . .are arithmetic expressions of type integer.

The UNLOAD statement causes the magnetic tapes whose logical unit numbers are
equal to the values of the expressions ldn, to be:

(i) Rewound
(ii) Dis -engaged

Once a tape is dis-engaged it cannot be accessed again by the program, and it may be
physically removed from the tape unit. The most efficient use of Atlas is obtained if a
tape is dis-engaged (or UNLOADed) as soon as it is known that it will not be needed
again by the program.

The ENDFILE statement

Definition ENDFILE ld.nl, ldnz, ldn

grereeee

where
1dn 1 ldnz. .are arithmetic expressions of type integer

The ENDFILE statement causes end-of -file marks to be written on the tapes whose
logical numbers are equal to the values of the expressions ldn.

When an end -of -file mark is encountered by a READ operation, reading is terminated
and an error message is printed. It is, however, possible to override this feature and
to take special action upon encountering an end of file. (see section 10.4). It is not
possible to read past (i.e. beyond) an end-of -file marker.

THE USE OF MAGNETIC TAPES

In Fortran, the practice of over-writing records on magnetic tape is definitely not
recommended in cases where later records on the same tape are to be preserved.

If it is desired to modify one or more records on a magnetic tape, then the tape should

7.1

be “copied" to a new tape, the changes being made in the process of copying.

THE OUTPUT STATEMENT

Definition | OUTPUT (idn, n)list

where
Idn is any arithmetic expression of type integer whose
value is in the range 0 < ldn < 15

and
n is an unsigned integer constant

and
list is a series of arithmetic expressions, or slashes,
separated by commas. (see below).

ldn may be omitted. If omitted its value is taken as zero.
The comma must still be present. n may be omitted (with

the comma omitted). If omitted, the value of n is taken as 12.
If both n and ldn are omitted the OUTPUT statement is

written as:

OUTPUT list
which is equivalent to

OUTPUT (0, 12) list

The OUTPUT statement differs from the other Fortran V output instructions in that it is
not record-oriented. A new record is not always started when the OUTPUT statement

is executed and a record is not terminated by the ending of the OUTPUT statement.

If new records are required to be started, then this is explicitly stated by the introduction
of slashes into the list, (this is similar to the slashes in a FORMAT statement).

The OUTPUT statement causes the values of the arithmetic expressions in its list to be
written on to the output device whose logical number is equal to the value of the
expression ldn. The output device must not be a magnetic tape.

The field width allowed for each value is equal to n columns (or 12 if n is not specified).
Integer values are written in the same manner as for the conversion In-1, 1X (see
section 7.6.4.5). If the value of the integer is too large to fit into n-1 columns, then
an asterisk (*) is printed to indicate the overflow.

Real values are written in the same manner as for the conversions Gn-1, 1X (see
section 7.6.4.4). The mantissa is normalised to the range 1.0 ¢ mantissa < 10.0
i.e. an exponent is printed if the mantissa would otherwise lie outside this range.

Text variables are written in the same manner as for the conversion A8,n-8X. Text
constants (e.g. OUTPUT 'XYZ TABLE') are written out in full, so that every character
(including blanks) in the constant is printed. Note that the field width (n) is ignored
for text constants.

A double precision value is output as a real number to single precision only; and only
the real part of a complex value is output (the imaginary part is not printed).

Logical and Boolean values should not be present in the list of an OUTPUT statement.

84

711
cont

Note that if a nonstandard value for the field width n is chosen, the OUTPUT statement
may cause some numbers to be split across the end of one line and the start of the next
line. This will be the case when 120 is not exactly divisible by n. (120 is the number
of printable characters per line). It could also occur when text constants are present

in the list (see above).

In addition, it should be noted that the OUTPUT statement, may cause values to be
printed on the same line as previously executed PRINT or formatted WRITE statements.

The first character of each line printed by means of an OUTPUT statement is always
printed, and is not treated as a carriage control character.

The presence of K consecutive slashes in the list causes K-1 blank lines to be written.

Each list item (including slashes) should be separated from the next item by a comma.
If this is not done then the meaning of the list may be ambiguous: -

SRR OUTPUT X, /Y
prints two values, (X then on a new line Y)
but
OUTPUT X/Y
prints one value i.e. the value of X/Y.
However, OUTPUT X//Y
would not be ambiguous, since X//Y is not a legal arithmetic expression.

If an apparently real variable in fact contains an integer (unstandardised) value, then
the OUTPUT statement prints the variable as a real number, followed by the character /.

e.g. -3.0000E03/
This situation could arise as follows:

REAL X
EQUIVALENCE (I, X)
I=6

OUTPUT X

The variable X, although real, contains an integer value (6), and is pfinted as
6.0000/

Other ways in which this situation could arise are described in sections 4.5(10),
4.6 (6), 8.3 (9), and 8.13.2 (5).

If an unsubscripted array name is given in the list then every element of the array is
output in the same way as for a 'short list' (see 7.4.1 (10)).

8.1

8.2

8.2.1

CHAPTER 8 SIMPLE PROGRAM STRUCTURE

A Fortran V program consists of one main program together with any number (or none)
of subprograms.

The main program and subprograms may communicate with each other by means of
arguments (parameters) and by COMMON or PUBLIC variables.

The main program and its subprograms may call other subprograms provided that the
calls are non-recursive. That is, a program may not call itself, directly or indirectly,
e.g. If program A calls subprogram B, then subprogram B may not call subprogram A,
or any subprogram which calls A.

There are two kinds of subprograms: subroutine and function; in the following discussion
the term subprogram refers to both.

Subprograms may be compiled independently of the main program and independently of
each other. When the program is to be executed, one main program and all of its
associated subprograms (if any) must be present.

Subprograms may be defined by the user, or may be pre-programmed and contained in
the system library.

In Fortran V, a powerful new facility has been introduced which enables subprograms
to be nested i.e. one program may contain other subprograms. This facility is known
as block structure, and is described in Chapter 9. A subprogram which is not nested
in another is also called a segment.

THE END STATEMENT

Definition

END

An END statement must be the physically last statement of all programs or subprograms
(including nested subprograms).

The END statement is not executable, but in Fortran V the END statement will effect
termination of the program or subprogram in the absence of a RETURN statement.

.

MAIN PROGRAMS AND SUBPROGRAMS

Main programs

A main program is comprised of a set of Fortran V statements, the first of which
(other than comment lines) is not a subprogram definition statement, namely: -

86

a FUNCTION statement
or a SUBROUTINE statement
or a BLOCK DATA statement

and the last of which is an END statement. Main programs are also referred to as
programs in this manual, and main programs or subprograms are also referred to as

routines.

Main programs may contain any Fortran V statements (including FUNCTION and
SUBROUTINE statements) except a BLOCK DATA statement. See also Chapter 9.
8.2.2 Subprograms

Subprograms are program units which may be called by other programs and may be in
any of the following categories:

(i) Intrinsic (or built -in) function subprograms
(ii) Basic external function subprograms

(iii) Statement function subprograms

(iv) FUNCTION subprograms

42) SUBROUTINE subprograms

(vi) Library subprograms

Some library subprograms are described in Appendix 7.

8.3 ARGUMENTS (PARAMETERS)

(1) Arguments provide a means of passing information between a subprogram and the
program or subprogram which called it.
There are two kinds of arguments:

Actual Arguments, and
Dummy Arguments (or Formal Parameters)

Actual arguments are used in the statement which calls the subprogram (CALL or
function reference), whilst dummy arguments are used in the statement which defines
the called subprogram (SUBROUTINE, FUNCTION, or statement function).

Dummy arguments are merely "formal" argument definitions and are used to indicate
in the called subprogram, the number, the order and the types of the actual arguments
being used in the calling program. ‘

(2) Dummy arguments do not actually exist, i.e. no storage is reserved for them, but they
do identify to the called subprogram the actual arguments used the calling program or
subprogram,

(3) The actual arguments defined by the calling program or subprogram to which a dummy
may correspond are:

simple (scalar) variables
array elements (subscripted)
non -subscripted array names
any arithmetic expressions
logical variables or constants
subprogram names

Labels (or assigned labels), may not be given as arguments.

If a subprogram name appears as an argument, then it must be declared in an EXTERNAL

8.3
cont

(4)

(5)

(6)

87

stdtement (see section 8.9) unless the subprogram name has already been defined in
the same segment.

An actual argument list is a series of actual arguments separated by commas and
enclosed in parentheses.

A dummy argument itself may be classified within the called subprogram as: -
a scalar variable
an array

a subprogram

A dummy argument list is a series of dummy arguments separated by commas, and
enclosed in parentheses.

The table below shows the permissable correspondences between actual and dummy
arguments.

DUMMY
ACTUAL Scalar Array Subpragsam
name

Scalar or Array yes yes* No
Element

Array name yes* yes No
Expression yes No No
Subprogram name No No yes

*See paragraphs (7) and (8) below.

Within a subprogram, its dummy arguments may be used in the same way as any other
scalar, array, or subprogram names, with certain restrictions, namely, dummies may
not appear in the following kinds of statements

COMMON
PUBLIC
DATA
and they may not have values assigned in a Type statement.

(Since dummies do not actually exist, the reason for the above restrictions is clear).
Furthermore, classification of a dummy as a simple (scalar) variable, an array, or a
subprogram name, occurs in the same manner as for other (actual) names, in both
implicit and explicit classifications.

Dummy arguments should agree in number and type with the actual arguments to which
they correspond.

When a dummy corresponds to a variable in the calling argument list, any reference to
the dummy (in the called subprogram) is really a reference to the actual argument (in
the calling program or subprogram).

Thus, not only will the dummy have the value which the actual argument had at the
time of the call, but any value subsequently assigned to the dummy will actually be
assigned to the actual argument, thus effectively returning a result through the argument

list.

On the other hand, when a dummy corresponds to an expression or a constant in the
actual argument list, the expression merely serves to initialize the value of the
dummy, and the value of the dummy should not be changed within the called subprogram.

This is particularly important when the dummy corresponds to an actual argument

88

8.3
cont

(7)

(3)

%)

which is a simple constant. If the dummy to which the constant corresponds is
assigned a new value, then the value of the constant may also be changed.

Dummy scalars (i.e. simple variables) are single valued entities which have the
values of the calling arguments to which they correspond.

Dummies which are not explicitly declared to be arrays or subprograms are treated as
scalars.

A dummy argument may be declared to be an array by the presence of its name in an
array declaration within the called subprogram.

Since a subprogram may be compiled separately from its calling program, the fact that
a calling argument is an array does not of itself define the corresponding dummy to be
an array. As with all dummies, a dummy array does not actually occupy any storage;
instead, the calling subprogram assumes that the actual argument supplied in the
calling statement defines the first (or base) element of an actual array and calculates
subscripts based on that location.

Normally, a dummy array should be given the same dimensions as the actual array (or
it may be a simple variable) to which it corresponds. This is not necessary, however
and sometimes useful operations can be performed by defining different dimensions for
the dummy and calling arguments.

e.g. DIMENSION A(10, 10) SUBROUTINE PART (B)
CALL PART(A(L, 6)) DIMENSION B (50)
END

In this case, the one dimensional array B corresponds to the last half of the two
dimensional array A (i.e. elements A(1, 6) through A(10, 10)).

However, since the subprogram assumes that the calling argument defines the first
element of an array, if the calling statement were

CALL OUT (A)
or CALL OUT (A(l, 1))

the dummy array B would correspond to the first half of the array A.

Similarly, if an array corresponds to something other than an array, then the latter
will correspond to the first element of the array. This is true whether the dummy is
an array and the calling argument is not, or vice versa.

Thus, if the calling argument is a scalar, and the dummy is an array, any reference in
the subprogram to elements of the array other than the first, will access whatever
happens to the stored near the scalar.

Care should be taken when creating correspondences of this nature.

If a dummy has a different type from its corresponding actual argument, then an
execution error may occur.

e.g. REAL X SUBROUTINE S(I)
CALL S (X) .
A =B/X

84

RETURN
END

Would cause a division error, because, on return to the calling program, X contains an
integer value (3), although X is a real variable.

FUNCTION SUBPROGRAMS

Function subprograms are programmed procedures which are often used to provide
solutions to mathematical functions and are used in a manner similar to that of normal
mathematical notation. For example, there is an intrinsic cosine function whose name
is COS; thus allowing

y = cos X
to be written

Y = COS (X)
All kinds of function subprograms are referenced in this way.

Function references may be used in the same manner as variable references in any
expression.

e.g. X = (-B+SQRT (B**2 - 4*A*C)) / (2*A)

Where SQRT is the name of the square root function, and (B*¥*2 - 4*A*C) is the calling
argument list.

Associated with each function reference is one value which is returned for the function.
Consequently in order that the value returned for a function is of the proper data type
the following conventions have been established.

The intrinsic (built-in) and basic external functions are typed
automatically by the Fortran V compiler. Tables giving details of
these functions are given in Appendix 4.

Functions whose names are not declared to be of any particular type are
typed implicitly according to the first letter of the function name (in the
same way as for variables) (see 4.3). The IMPLICIT statement is also
effective for function names.

Functions defined external to the program or subprogram in which they are
defined, which are to be typed other than implicitly (as above), must be
explicitly typed; that is, their names must appear in a Type statement in
all of the programs or subprograms in which they are referenced.

Statement functions which are not to be typed implicitly must be explicitly
typed by the appearance of their names in Type statements in all of the
programs or subprograms in which they are defined.

FUNCTION subprograms which are to be typed explicitly must have their
type declared in the FUNCTION statements which define them (see section
8.6), or by the appearance of their names in Type statements within the
FUNCTION subprograms themselves.

90

8.4.1

8.4.2

Intrinsic and basic external functions

Intrinsic functions are used to evaluate commonly used mathematical functions, and
are supplied by the Fortran V compiler.

Everytime an intrinsic function reference appears, the machine instructions required
to evaluate the function are compiled in-line with the instructions for the expression in
which the reference was made.

Basic external functions are subprograms which are supplied from the system library
and are accessed by standard calling sequences (see Chapter 11). In the source
program, basic external functions are referenced in the same way as intrinsic functions.

All other subprograms are called using standard calling sequences including:

FUNCTION subprograms
Statement function subprograms
SUBROUTINE subprograms
Library subprograms

When intrinsic or basic external functions are referenced, the number and type of the
arguments must correspond to the table given in Appendix 4.

Names of intrinsic and basic external functions

As will be seen from the above comments, intrinsic functions provide for more efficient
execution than external functions.

Many Fortran V functions are available as both intrinsic and basic external functions;
and the same function may have several different names.

These different names have been introduced into Fortran V in order to improve compat-
ability with other versions of Fortran. A complete list of available functions is given
in Appendix 4.

Three sets of function names are available in Fortran V. These sets of names
correspond to the names used in:

Atlas Fortran (Harfran), (see ref. 2)
A.S.A. Fortran (Fortran IV) (see ref. 1)
Fortran II (see ref. 4)

The standard set of names used in Fortran V is the Fortran IV (or A.S.A.) set. The
other sets of names may be made standard for any main program or subprogram by
insertion of one of the following statements in that main program or subprogram.

Definition

F4 FUNCTIONS
ASA FUNCTIONS
F2 FUNCTIONS
OLD FUNCTIONS
HARTRAN FUNCTIONS

ASA FUNCTIONS, and F4 FUNCTIONS are equivalent statements.

The inclusion of one of these statements in a program or subprogram causes the compiler
to recognise only ASA (or Fortran IV) function names in those statements which follow
the FUNCTIONS statement. Other function names will either be recognised as basic
external functions or, if not available in this form, a function with the corresponding
name must be supplied by the user. (see Appendix 4 for a table of available intrinsic

8.5

7L

and basic external functions).

OLD FUNCTIONS, and F2 FUNCTIONS are equivalent statements. Their use, and
effect, is the same as for the above paragraph, except that Fortran Il names are
recognised, and not ASA or Hartran names.

The use and effect of HARTRAN FUNCTIONS is the same as in two paragraphs previous
except that Atlas Fortran (Hartran) names are recognised and not ASA or Fortran II
names.

Some of the Hartran names are the same as the Fortran II names, but most of the ASA
names are different from the other two sets. Most of the external names are the same
as the ASA names.

In the absence of a FUNCTIONS statement in any main or subprogram, ASA FUNCTIONS
is assumed. Once a FUNCTIONS statement has been given in a main or subprogram it

remains effective for all later statements in the program.

The FUNCTIONS statement should appear in the text of the program before any
references to system functions.

The type of FUNCTIONS to be used for a whole job may be specified on the *RUN
directive (see section 12.1 (9)).

STATEMENT FUNCTIONS

Statement functions are function subprograms, which are defined in a single expression.

Definition fname (namel, name,, namen) = exp

where

fname, and namel, name
are variable names
and

exp is any logical or arithmetic expression.

fname is the name of the function and must not be the same as the name of any other
function,subprogram, or variable of the program or subprogram containing the
statement function.

The name, are the dummy arguments of the statement function, and must be dummy
scalars; they must not be dummy arrays or subprograms.

The expression exp should contain at least one reference to each of the name,. Other
references in the expression are unrestricted, with the exception that the idelntifier of
the function (fname) may not appear. For example, any other statement function
already defined may appear, and subscripted array names may appear.

Examples: G(X,1) = X * B(l, [+7, 3)+4.2
F(X) = A*X**2 + B*X+C
EX (THETA) = CMPLX (COS(THETA), SIN(THETA))
TRUFAL (A, B, C) = A=B=C. OR.A<B<C

Since each name, is a dummy and does not actually exist, the name, may be the same
names as other names in the main or subprogram (except those referenced in the
expression exp), without conflict. However, if a dummy is explicitly typed by the
presence of its name in a type statement, any other use of that name will have the same

data type.

If a statement function is to be explicitly typed, then its name (fname) must appear in a

92

8.6

type statement before the statement function appears.

A statement function may be referenced only in the main or subprogram in which it
appears unless its name (fname) is given as an actual argument after the function has
been defined. In this case the function name should not appear in an EXTERNAL

statement.

Statement function definitions must precede all references to the functions in executable
statements in the main or subprogram in which they appear.

THE FUNCTION STATEMENT

Functions which cannot be defined in a single statement may be defined as FUNCTION
subprograms. These programs begin (other than comment lines) with a FUNCTION
statement.

Definition

type FUNCTION fname (namel, namez. 3 .namen)

where

type is either not present or is one of: -
INTEGER

REAL

DOUBLE PRECISION or DOUBLE LENGTH
COMPLEX

LOGICAL

TEXT

BOOLEAN

and

fname, namel, namez, are variable names

fname is the name of the function and must not be the same as the name of any other
function, subprogram, or variable of any main or subprogram in the same job. The
function name (fname), is public, and may be referenced by any main or subprogram.

The name, are the dummy arguments of the function and may take any of the forms
described'in section 8.3.(4). If a dummy argument is a subprogram name, then the
corresponding actual argument must be declared in an EXTERNAL statement within the
calling program.

The dummy arguments, name,, may be used for any purpose within the FUNCTION
subprogram, with the exception described in section 8.3.(5).

A FUNCTION subprogram must have at least one dummy argument; and must contain at
least one RETURN statement.

Within the FUNCTION, the name (fname) is treated as though it were a scalar variable,
and may be used like any other scalar, but fname should normally be assigned a value
for each execution of the FUNCTION. The value returned for a FUNCTION is the last
value assigned to its name (fname) prior to the execution of a RETURN statement.

Example: 2 FUNCTION MAXIMUM (L, M)
. MAXIMUM = L

I = MAXIMUM (J,K) IF (L>M)GOTO 2

8.7

93

MAXIMUM =M
2 RETURN
END

Where I is set to the larger value of J or K. The IF statement could also take the form
IF (MAXIMUM>M) GO TO 2

The data type of the FUNCTION fname may be explicitly declared in the FUNCTION
statement itself, or may be declared in a type statement within the subprogram. If the
latter form is used, the type statement must precede the first reference to the name
(fname) in any executable statement within the subprogram.

e.g. LOGICAL FUNCTION T(A)
is equivalent to

FUNCTION T (A)
LOGICAL T

If the type of fname is not explicitly declared, then it will be implicitly typed as described
in section 8.4.

The type of a FUNCTION subprogram should correspond to its use in any calling
programs.

A FUNCTION subprogram may include any Fortran V statements (including other
FUNCTION and SUBROUTINE statements), except a BLOCK DATA statement. See also
Chapter 9.

A FUNCTION subprogram may change the values of its argument(s), or of variables
contained within PUBLIC or COMMON storage. This is known as a side-effect of the
function.

Warning: In the evaluation of expressions, no attempt is made to provide for side-
effects of functions. Therefore, functions called in an expression should not change the
values of any variables appearing in the expression.

Note: care should be taken to ensure that the type of the function is the same in the
function itself, and in its call.

e.g. REAL X INTEGER FUNCTION X(])

A = B/X()) END

would cause an error, since an integer value would be returned for X, although it is
declared as real in the calling program.

THE SUBROUTINE STATEMENT

SUBROUTINE subprograms, like furictions, are self contained programmed procedures.
However, unlike functions, subroutines do not have values (and hence not types) associated
with their names, and they are not referenced in expressions. Instead, subroutines

are accessed by means of CALL statements (see section 8. 10.)

Subroutine subprograms begin (other than comment lines) with a SUBROUTINE
statement.

94

Definition

SUBROUTINE sname (namel, name2 namen)

or
SUBROUTINE sname

where
sname is a variable name, which is the name of

the subroutine
and

name_, name,_... name
1 2 n

are variable names.

sname is the name of the subroutine, and the name, (if any) are its dummy arguments.
The dummy arguments may take any of the forms described in section 8.3.(4). Ifa
dummy argument is a subprogram name, then the corresponding actual argument must
be declared in an EXTERNAL statement within the calling program.

The dummy arguments may be used for any purpose within the subroutine, with the
restrictions described in section 8.3.(5).
If the SUBROUTINE has no arguments, then the second definition is used.

A subroutine subprogram should normally contain at least one RETURN statement,
unless execution is to be terminated within the subroutine. The RETURN statement(s)
should be positioned so that it is the last statement executed for each execution of the
subroutine.

Subroutine subprograms may return values to the calling program or subprogram(s) by
assigning values to the name,, or by changing the values of COMMON or PUBLIC
variables. !

Subroutine subprograms may contain any Fortran V statements (including other
SUBROUTINE or FUNCTION statements), except a BLOCK DATA statement. See also
Chapter 9.

Examples:
a) SUBROUTINE PRINT
b) SUBROUTINE READ ARRAY (A,B, C)
c) SUBROUTINE OUTPUT (A)
DIMENSION A (100)
PRINT 1, A
1 FORMAT (9H1TABLEDb2., 10(1X, F6.3))
RETURN
END

Which prints the array corresponding to A, starting on a new page, with a heading, and
with 10 numbers to a line.

ADJUSTABLE DIMENSIONS

Note: Dynamic Arrays are described in Chapter 9.

Since a dummy array does not actually occupy any storage, its dimensions are used only
to locate its elements, and not to allocate storage for them. Therefore, the dimensions

of a dummy array need not be defined in the called program in the normal way. Instead
any (or all) of the dimensions of a dummy array may be specified by means of scalar

8.8
cont

variables rather than by constants. This permits the calling program to supply the
(adjustable, or variable) dimensions of the dummy array each time the subprogram is
called.

The absolute dimensions of an array must be declared in a calling program. The
magnitudes of the adjustable dimensions of an array, declared in the called subprogram,
should be less than or equal to the absolute dimensions of that array, as declared in the
calling program. Adjustable dimensions cannot be used in a main program.

The adjustable dimensions may be passed to the called subprogram as

(i) an argument
or (ii) a COMMON variable
or (iii) a PUBLIC variable

The adjustable dimensions declared in the called program may be arithmetic expressions
comprised of integer constants and scalar variables whose values are defined as in (i),
(ii), and (iii), above. All specifications for variables used in the dimensions must
precede the dimensioning statement.

The name of the adjustable dummy array itself must be a dummy argument, and must
not be in COMMON or PUBLIC.

Note that the last dimension of a multi-dimensional dummy array is not arbitrary in
Fortran V.

The last dimension of a multi-dimensional array must be as large as the largest
value used for the subscript.

The use of adjustable dimensions means that the definition of the DIMENSION statement
given in section 4.2.1 has to be extended to allow the dimensions to be any arithmetic
expressions of type integer, rather than merely integer constants. Any variables used
in such expressions must be previously defined as above.

The definitions of the type statements given in section 4.4 are similarly extended, but
when adjustable arrays are declared in type statements, no initial data values may be
assigned to the array by means of the type statement.

Adjustable arrays must not appear in any EQUIVALENCE, COMMON, PUBLIC, or DATA
statements.

Adjustable dimension specifications of an array must appear after other specifications
for the array. In no case can the length of the array be changed after its dimensions
have been specified as adjustable.

e.g. DIMENSION D(M, N)

COMPLEX D
would be in error.

It should be specified as

COMPLEX D
DIMENSION D(M, N)

or (preferably) as

COMPLEX D(M, N)

96

Examples:
a) INTEGER A(10, 10) SUBROUTINE S(B, L, M)
INTEGER B(L, M)
I1=9
J=2
CALL S(A,L]) RETURN
. END
b) DIMENSION X(5, 6) FUNCTION SUM (X, L, M)
DIMENSION X(L, M+2)
I=4
RETURN
. END
A =SUM (X,4,1)
c) DIMENSION A(10, 10) SUBROUTINE X(A)
PUBLIC I PUBLIC I
COMMON] COMMON]
: DIMENSION A (1/3,]*4 - 6)
I =
J =
CALL X (A) RETURN
END

8.9 THE EXTERNAL STATEMENT

As described in section 8.3.(3) (see also Chapter 9) "actual” arguments which are
subprogram names must be declared in an EXTERNAL statement,

Definition

EXTERNAL namel, namez, namen

where

name., name,_ name
i 2 n

are variable names.

Each name appearing in an EXTERNAL statement is explicitly defined to be the name of
a subprogram.

Intrinsic function names which appear in EXTERNAL statements cause the names to be
treated as external function references rather than instrinsic function references.

Specifically, intrinsic function names which appear in an EXTERNAL statement, may be
passed as subprogram arguments. Not all of the intrinsic functions are available as
external functions (see Appendix 4). In such cases the user must provide his own
function of that name.

EXTERNAL statements are not executable, and must appear in the text of the program
before any reference to the names which are to be treated as external.

Examples:
a) EXTERNAL SUM, SUBX, SIN, COS
b) EXTERNAL COPY SUBROUTINE S(J, DUM)
CALL S (I, COPY) CALL DUM (A,B,C)
. RETURN
g END

In Subroutine S the CALL statement will, in fact, call subprogram COPY.

c) g SUBROUTINE SUBR (P, Q, R)
EXTERNAL Z)
; C =Q(P,R*3)
CALL SUBR (A, Z,B)
RETURN
END

The replacement statement C = Q(P, R*3) actually accesses function Z.
If the CALL statement were (say)
CALL SUBR (A, Z(S, T),B)
then the EXTERNAL statement would be incorrect, because function Z is not now an

argument: it is executed first, and the result becomes the argument. Also, Q could not
now be used as a function.

8.10 THE CALL STATEMENT

Definition
ALL sname (a,, a., @,y cc0..
CALL sname (al, 2, g an)
or
CALL sname
where
sname is a variable name, which
is the name of a subroutine.
and
al, az, a3, @ .an

are each arithmetic or logical expressions,
or subprogram names.

The CALL statement causes control to be transferred to the first executable instruction
of the SUBROUTINE whose name is sname.

The a. are the actual arguments to be passed to the called subroutine, and are described
in section 8.3. If the called subroutine requires no arguments then the argument list
is omitted, as in the second definition above.

Arguments appearing in a CALL statement may be

98

constants (of any type)
simple (scalar) variables
array elements (subscripted)
Array names (non-subscripted)
Arithmetic expressions
or subprogram names (excluding statement names)

If a subprogram name is used as an argument, then this name is not followed by an
argument list, since this argument form is only used to provide the called subroutine
with a subprogram reference. In this sense, the subprogram reference is merely d
name, and as such, has no value associated with it. (But see the note in example c)
above).

Furthermore, when a subprogram name is used in this manner, it must appear in an
EXTERNAL statement which is given in the text of the program before the CALL
statement(s) in which it is used, (unless the subprogram is a sub-block or statement
function which has already been defined in the segment: (see Chapter 9).

Examples:

a) CALL MATRIX (A,B, C/D+43.2)

b) CALL S47T (1, 2,X*Y)

c) CALL OUTPUT ARRAYS (A(4), B(I+]), 'TABLE 47")

8.1 THE RETURN STATEMENT

Definition

RETURN

The RETURN statement causes control to be transferred from a subprogram back to the
main or subprogram which called it.

If the called program is a SUBROUTINE, then the RETURN statement causes control to
be transferred back to the first executable statement following the corresponding CALL
statement.

In the case of a function subprogram a return occurs to the evaluation of the expression
in which the function was referenced.

8.12 THE PUBLIC STATEMENT

Normally, except for external or subprogram names, any names of variables used in a
program or subprogram have no connection with names used in other subprograms.
i.e. the same name does not mean the same variable.

Use of the PUBLIC statement enables variables to be referenced by name in more than
one program or subprogram.

Definition

PUBLIC name, (11, i3 @) name, (13), name

9 300

where
namel, namez,are variable names
and
i (el |

1 Lprdgs e .are unsigned integer constants.

When a variable name is placed in PUBLIC statements in more than one program or
subprogram, all references to that name in those programs or subprograms will access
the identical data item.

The variable name should be classified identically, in those programs or subprograms,
in respect of dimensions and type.

The dimensions (not adjustable) of arrays may be declared in the PUBLIC statement;
when subscripts appear in the list, the associated name is the name of array, and the

subscripts (i) are the dimensions of the array.

A public variable is only public to those main or subprograms which contain a PUBLIC
statement containing the name of that variable.

Within one main or subprogram, a PUBLIC statement must not contain any names which

are:
(i) Declared in a COMMON statement
(if) Labelled COMMON block names
(iii) The same as other (different) variables or function names appearing in
the same program. '
(iv) Declared in an EXTERNAL statement.
8% Assigned initial data values by means of DATA or type statements, unless
these statements appear in a BLOCK DATA subprogram. See section 8.14.
(vi) In the dummy argunient list (if any) of the subprogram.

The PUBLIC statement is not executable, and must appear in the text of the program
before any reference to names contained in the statement. (See Appendix 3)

If a public variable is also declared in a DIMENSION and/or a Type statement, then the
order of the PUBLIC/DIMENSION/Type statements is immaterial. If a public variable
also appears in an EQUIVALENCE statement, then the PUBLIC statement must appear
first.

Example: PUBLIC MATX (3, 6,7), THETA, A(4)

8.13 THE COMMON STATEMENT

The COMMON statement is used to assign data to a particular region of storage called
COMMON storage. Since this area of storage is fixed, the COMMON statement provides
a means by which more than one program or subprogram may reference the same data.

Definition COMMON ¢, €5 €.y c5..C
: 1 27 =8 n

where each ci is of the form

/bname/, Vi Vs VgeooV

or //> vy Vo Vgerens v

or Ve ¥

and
bname is a variable name

and
each v, is a subscripted or non-subscripted variable name.

Any su]bscripts must be unsigned integer constants.
The commas following the second slash of each pair of
slashes are optional.

100

8.13
cont

(1)

(2)

()

(4)

(5)

(6)

(7)

Examples:

a) COMMON A, B(4,5), MAT2

b) COMMON TA, B3/XX/C(5),D//E, F(6)
c) COMMON /NB5/X, Y/XX/K

The dimensions (not adjustable) of arrays may be declared in the COMMON statement.
When subscripts appear in the list, the associated name is the name of an array, and
the subscripts are the dimensions of the array.

The COMMON statement is not executable, and must appear in the text of the program
before any reference to the variables in its list. (See Appendix 3).

If a COMMON variable appears in a DIMENSION and/or a Type statement, then the order
of the COMMON/DIMENSION/Type statements is immaterial.

If a COMMON variable also appears in an EQUIVALENCE statement, then the COMMON
statement must appear first.

Each bname is the name of a labelled COMMON block, and the list of names that follows
it contains the names of variables or arrays which are to be placed in that block. If no
bname is specified (as in example a), or if a blank name is specified (as in example b)
the variables in the following list are placed in blank (or unlabelled) COMMON storage.

Labelled COMMON blocks are discrete sections of the COMMON region, and are thus
independent of each other, and of unlabelled COMMON.

In the examples above, A,B, MAT2,TA,B3,E and F are in unlabelled COMMON; C,D
and K are in COMMON block XX; and X and Y are in COMMON block NBS.

A COMMON variable may not appear in:

A PUBLIC statement
A dummy argument list

A labelled COMMON variable may only appear in a DATA statement (or have initial data
values assigned in a type statement), when these statements are contained within a
BLOCK DATA subprogram. (See 8.14.)

A variable which is in unlabelled COMMON may not have initial data values assigned in a
Type statement, and may not appear in a DATA statement.

Any labelled COMMON block may be referenced by any number of programs or
subprograms. References are made by block names (bname), which must be identical
if it is desired to reference the same COMMON block (i.e. bname is effectively a
public name).

All labelled COMMON blocks need not be defined in any one program or subprogram;
only those blocks containing data required by the program or subprogram need be
defined.

The variables defined as being in a particular COMMON block do not necessarily have
to correspond in type or in number between the programs or subprograms in which the
block is referenced. This is also true of unlabelled COMMON. See also section
8.13.2(5).

However, the definition of the overall length of a COMMON block must be the same in all
of the programs or subprograms in which it is defined.

(8)

%)

101

Example: FUNCTION F(I) SUBROUTINE X
DOUBLE LENGTH P(20)
COMMON /BB/ A(40) COMMON /BB/ P

Both references to block BB correspond in size. The array A (not being explicitly
declared) is of type real and hence is 40 words in length. The array P being of type
double precision, is also 40 words in length.

Reference may be made to the name of a labelled COMMON block more than once in any
program or subprogram. Multiple references may occur in the same COMMON
statement; or the block name may be specified in any number of individual COMMON

statements.

In both cases, the compiler links together all variables defined as being in the block into
a single labelled COMMON block of the appropriate name.

The variables are linked together in the order in which they appear.
Block names (bname) must not be the same as: -

names which are contained in PUBLIC statements.
or subprogram names.

Block names do not conflict with names other than the above.

(10) Blank, or unlabelled COMMON is an area of COMMON storage which is not discrete,

(11)

8.13.1

although it is separate from the block region; i.e. there is only one such area, and
empty block name specifications always refer to it.

In addition, as opposed to labelled COMMON, blank COMMON areas defined in various
programs and subprograms need not correspond in size.

Example:

The following two subprograms define blank COMMON areas of different lengths, and
yet both may be portions of the same executable program.,

FUNCTION Z(B) SUBROUTINE K
COMMON A (50), E, F COMMON TT (100)

Subprogram Z defines a COMMON length of 52 words, and a length of 100 words is
defined in K.

Reference may be made to blank COMMON any number of times within a program or
subprogram. The multiple references may occur in a single COMMON statement, or

in several individual COMMON statements. In both cases, all variables defined as being
in blank COMMON, are linked together and placed in the blank COMMON area. The
variables are linked together in the order in which they appear.

Arrangement of COMMON

Each separate COMMON block, and the unlabelled COMMON area, contain, in the order
of their appearance, the variables declared to be in that block, or area.

The variables in each section of the COMMON region are arranged from low-address
storage towards high-address storage. The first variable declared as being in a
particular section is placed the low-address word(s) of that section; succeeding.
variables are placed in higher addresses; until the last variable declared to be in the

102

8.13.1 section is placed in the highest address word(s) of the section.

cont Array variables are stored in the normal manner (see section 4.2.2) within the COMMON
region.
Examples:
a) The statements

COMMON A, B/XX/C(4)
COMMON /XX/E(2, 2)//D(3, 2)

produce the following arrangement of COMMON storage,

Item Block Unlabelled
XX COMMON
il Cc@) A
2) C(2) B
3 C(3) D(1,1)
4 C(4) D(2,1)
S E(1,1) D(3,1)
6 E(2,1) D(1, 2)
7 EQ,2) D(2,2)
8 E(2, 2) D(3, 2)
b) The statements:

SUBROUTINE BSUB
COMPLEX T (2)
REAL Q (8), I
COMMON Q/BB/T,1

SUBROUTINE ASUB
REAL I, K(4), PI
COMPLEX Z (4), ROOT
COMMON Z/BB/I
COMMON/BB/K//PI
Produce the following arrangement:

Block BB Unlabelled COMMON
Item in ASUB in BSUB in ASUB in BSUB
(word)
1 i T(1) Z(1) Q1)
2 K(1) T(1) Z(1) Q(2)
3 K(2) T(2) Z(2) Q(3)
4 K(3) T(2) Z(2) Q(4)
5 K(4) I Z(3) . Q(5)
6 Z(3) Q(6)
7 7(4) Q)
8 Z(4) Q(8)
9 PI

Each COMPLEX item requires two words.

In BSUB a reference to T(1) will access the words in which I and K(1) are stored;
similarly, a reference to I will access K(4).

Putting item 9 (PI) into COMMON is not useful unless another program or subprogram
exists which defines at least 9 words of blank COMMON.,

Note: Each labelled COMMON area begins at the start of an Atlas block of 512 words.
Use of many short (less than 512 words) labelled common blocks may waste store on
Atlas.

8.13.2

(1)

(2)

3)

(4)

(5)

103
COMMON /EQUIVALENCE interaction

The EQUIVALENCE statement is described in section 4.5.
No storage allocation declaration is permitted to cause conflict in the arrangement of
storage.

Each COMMON, PUBLIC and EQUIVALENCE statement determines the allocation of the
variables declared in them. Therefore, no EQUIVALENCE set may contain references
to more than one variable (or more than one element of one array) which has been
previously allocated (or referenced). Similarly, COMMON or PUBLIC statements
should not contain the names of any variables which have previously been declared to be
PUBLIC or in COMMON.

When the above rule is violated Fortran V accepts the first reference, and rejects (with
an error message) all later (illegal) references.

It is sometimes permissable for an EQUIVALENCE statement to cause a segment of the
COMMON region to be lengthened beyond the last item defined to be in that segment.

It is not, however, permissable for an EQUIVALENCE statement to cause a segment to
be extended beyond the first item declared to be in that segment.

Example: COMMON/AB/I(5),]/BB/K(4), L
DIMENSION P(8), Q(5)
EQUIVALENCE (I, P), (Q(4), K(2))

The first EQUIVALENCE set is a permissable extension of the block AB; the second set
illegally defines an extension of block BB. If the illegal extension were carried out (it
would not be), the storage arrangement would be: -

Item AB BB
: : 88;)) illegal
il 1(1)=P(1) K(1)=Q(3)
2 1(2)=P(2) K(2)=Q(4)
3 1(3)=P(3) K(3)=Q(5)
4 1(4)=P(4) K(4)
5 1(5)=P(5) I
6 J=P(6)
7/ P(7)
8 P(8)

The fact that COMMON blocks may be lengthened by EQUIVALENCE declarations in no
way nullifies the requirement that labelled COMMON blocks of the same name must be
of the same length in all of the programs or subprograms in which they are defined.

Note: care should be exercised when variables of different types are made equivalent
either by EQUIVALENCE or by COMMON or PUBLIC statements. For example, if a
variable, which appears to be of type REAL, in fact contains an INTEGER value, then
the wrong instructions may be compiled.

e SUBROUTINE A SUBROUTINE B
COMMON I COMMON X
1=4 Y =1/X
CALL B g

would cause an execution error is SUBROUTINE B, since a floating point division
would be compiled, and the value contained in X is, in fact, an integer.

104

8.14

THE BLOCK DATA STATEMENT

As mentioned in sections 8.12, and 8.13.(5), initial data values may be assigned (b'y
means of DATA or Type statements) to PUBLIC or block COMMON variables, only in a

BLOCK DATA subprogram.

Definition

BLOCK DATA

The BLOCK DATA statement is the first statement (other than comment lines) of a
BLOCK DATA subprogram.

The BLOCK DATA subprogram may contain only the following kinds of statements

IMPLICIT

DIMENSION

any Type Statements (in which values may be assigned)
PUBLIC

COMMON

DATA

Comment Lines,

and the last statement of the subprogram must be an END statement.

Since the BLOCK DATA subprogram has no name, it may not be called by any other
program or subprogram; it is not executable, and may not contain any executable
statements.

The only purpose of the subprogram is to assign initial data values to block COMMON
or PUBLIC variables.

Data may not be assigned to variables which are in blank common.

All items in a COMMON block must be given, even though they might not appear in the
type or DATA statement(s).

Data may be entered into any number of COMMON blocks, or PUBLIC variables, in one
BLOCK DATA subprogram.

Any number of BLOCK DATA subprograms may appear in one job, although there is
never need for more than one.

Example: BLOCK DATA
COMMON/X/A, B(10),C, D, I(5)
INTEGER B
PUBLIC P,Q, R(3)

REAL I(5)/5*1.0/
DATA (B(K), K=1,10),C,P,Q, R/10%0, 6*1.0/
END

The values of A and D are not defined.

9.1

105

CHAPTER 9 PROGRAM BLOCK STRUCTURE
AND DYNAMIC ARRAYS

INTRODUCTION TO BLOCK STRUCTURE

Fortran V program block structure is a generalisation of ordinary Fortran subprogram
structure (see Chapter 8). It is very similar to the program block structure of
languages like Algol or PL/1.

Normally, Fortran programs are broken up into segments, consisting of a main
program,- and function or subroutine procedures. Compilation of each segment
proceeds independently. Names of variables and labels are private to each routine,
and do not conflict with use of the same names or statement numbers in other segments.
Communication between segments is effected by the COMMON and PUBLIC statements
for variables, and by special provision for making procedure names public.

This segmental structure is very convenient for dividing a large program into
manageable pieces, but it does have certain disadvantages:

(i) Tedious book-keeping may be required, such as the repetition of long COMMON
declarations in many segments.

(ii) Names are either private or fully public causing difficulties in segmenting
routines designed for general use.

(iii) Entry of subsections must take the form of procedure calls.
These disadvantages may be overcome by the use of block structure.

In Fortran V, outer segments are still compiled separately. However, within such a
segment, program blocks may be written which contain variables and labels (statement
numbers) that are private or local, to the block.

Since the entire segment is compiled as a unit, information about variables and labels
of the outer block is available when compiling the inner block. These variables or
labels are global to the sub-block (or inner block).

An example of block structure

FUNCTION or SUBROUTINE statements can appear within a routine, and indicate the
start of a procedure sub-block. Consider the following example:
SUBROUTINE OUTER]
DIMENSION A (10)
INTEGER N

FUNCTION POLY (X)
INTEGER I

POLY = A(1)

IF (N.EQ.1) GO TO 2

106

9.1.2

9.2

9.2.1

(1)

{2)

(3

DO 11 = 2:N
1 POLY = X*POLY + A(D)
2 RETURN

END

DO 11 =110

Y = POLY (Z)
1 CONTINUE

2 Z=7-1
IF (Z) 2,3,2
3 RETURN
END

The inner procedure POLY is a sub-block function for evaluating the polynomial with
coefficients stored in A. Note that A and N are global to POLY, but I is local to POLY,
and has no connection with the variable I used in the DO loop after the first END. This
statement is the first executable statement of OUTER. The statement numbers 1 and 2
of POLY are also local to it.

Use of block structure

Block structure is particularly useful for large programs, or for writing sections of
programs to be inserted into other programs. It will frequently be found that the use of
block structure economises on storage space, without loss of running time.

The compound logical IF statement (9.4) is of general use, and provides some of the
flexibility of Algol compound IF statements. When storage space requirements are
crucial, or difficult to estimate, dynamic arrays (9.5) may be. found useful.

A brief summary of block structure is given in 9.7.

BLOCK STRUCTURE DEFINITIONS

Program blocks
A block heading is one of the following:

(i) a SUBROUTINE statement
(ii) a FUNCTION statement
(iii) a BEGIN statement (see 9.2.2)

A program block consists of all statements between a block heading and a matching END
statement. Block headings and END statements match up in the same way as left and
right brackets do in arithmetic expressions. When an END statement is encountered in
compilation, it is matched with the last block heading not already matched by an END
statement. (See example 9.1.1.)

The block heading is not considered as part of the program block (9.3.2).

A program block with a FUNCTION or SUBROUTINE heading is a procedure block.

It follows from the definition that two program blocks are either disjoint, that is, do not
overlap, or that one is contained (i.e. nested) within the other. Program blocks may

be nested to any depth. If a program block A is contained in a program block B, then A
is called an inner block of B, and B is called an outer block of A.

107

(4) A program block not contained in another block is called a program segment, or

9.2.2

9.2.3

subprogram (or main program - see Chapter 8). Program segments are compiled
independently. Object cards, when specified, are produced only for program segments,
including cards for any inner blocks of the segment, (i.e. cards cannot be produced for
an inner block without its containing block(s)).

Program segments can be subroutines, functions, or a main program.
Note: A main program which contains any inner blocks must start with a BEGIN

statement. Otherwise, the first END statement encountered will terminate the program
segment.

The BEGIN statement

Definition

BEGIN

The BEGIN statement is an executable statement, and can be labelled. It serves as the
block heading for a BEGIN block. BEGIN blocks are terminated by an END statement
which matches the BEGIN statement.

BEGIN blocks differ from procedure blocks only in the way the block is entered and left.

Entering and leaving blocks

BEGIN blocks are entered when control reaches the BEGIN statement, and left when
control reaches the END statement. A RETURN statement in a BEGIN block means a
return from the procedure block containing the BEGIN block.

A procedure block is entered by a call, i.e. a CALL statement for a subroutine block,

or use in an expression for a function block. Procedure blocks are left by a RETURN
statement. Control in a procedure block should normally never reach the END statement,
but in Fortran V procedures, if control reaches the END statement, a RETURN is
executed.

A procedure block cannot be entered by control reaching the block heading. If control
apparently reaches the heading, then the first executable statement after the END
statement of the procedure block will be executed.

Transfers into any block are not allowed.

Transfers out of a block are permitted (see 9.3.2).

Differences between Procedure and BEGIN blocks

Procedure BEGIN
Block entered by: CALL or use in expression control reaching BEGIN
If control reaches go to statement after end enter block
heading: of block
Block left by RETURN control reaching END
Effect of RETURN return from block return from outer
procedure.

108
9.3 GLOBAL AND LOCAL ITEMS
Privacy for variables, labels and procedures is provided by block structure.

Essentially, a block cannot refer to items that are local to an inner block, or local to a
completely separate block. On the other hand, a block can refer to entities of a block
in which it is embedded (or nested).

Definition

An item (variable, label or procedure) is local to a
program block if it is declared within the block,
i.e. inside the block, but not inside an inner block.

An item is global to a program block if it is not
local to the block but is local to an outer block.

Global and local are relative terms. An item is local to the block in which it is
declared, but global to an inner block.

The definition of a declaration depends on whether the item is a variable, a label, or a
procedure; these definitions are given below.

9.3.1 Variables

(1) A variable is (explicitly) declared in a block when it appears in a specification statement
(see Appendix 3), or is a dummy argument of the block.

Example: SUBROUTINE SUBA (W)
REAL X, Y (100)
INTEGER I,N
DIMENSION A(5), B(10)
COMMON C, D, E
SUBROUTINE SUBB(X)
DIMENSION C(10)
INTEGER B
] =1
V=X

X
= ¥
TURN

END
INTEGER]

= O

END

The variables B and C are local to SUBB, and are therefore quite different from the
variables B and C of SUBA. Note that none of the properties of a variable in an outer
block apply to a local variable of the same name in an inner block. In the example, the
integer variable B of SUBB is not an array, although the real variable B of SUBA, is
dimensioned. The variable X is also local to SUBB, since it is a dummy argument.

The variables I, D, W and Y are global to SUBB, since they are not explicitly declared
in SUBB.

(2) In Fortran V, the order in which declarations appear is important. The scope of a
declaration extends over the program text from the line in which it appears to the end
of the program block.

(3)

(4)

9.3.2

107

Thus, in the example above, the variable J is not global to SUBB, since SUBB does not
lie within the scope of the declaration.

Fortran allows the use of implicit variables, that is, variables which do not appear
explicitly in a declaration. In Fortran V an implicit variable is considered to be
implicitly declared when it is used in any executable or DATA statement. The scope of
an implicit declaration extends over the program text, from the first executable or
DATA statement in which the variable is used, to the end of the block containing the
statement.

Thus, in the example above, the variable V will be considered to be local to SUBB,
since it is implicitly declared in the statement

W=

Note, however, that if a variable with the name V had been used in the text before the
statement SUBROUTINE SUBB(X) this statement would have been taken as a reference to
the global V.

In order to avoid confusion, variables that are desired to be local to a block should be
explicitly declared before any executable or DATA statements in the block.

Local variables that are not dynamic-arrays (9.5) are assigned fixed storage locations.
Values given to the variables are still available when the block is re-entered.

Example: BEGIN
INTEGER N
DATA N/0O/
N = N+l

END

N is increased by one each time the block is entered.

Labels (statement numbers)

Labels are declared in a block if the label is attached to a statement, i.e. appears in
columns 1 through 5 of a statement. The scope of the label declaration extends over
the whole block.

If a global label, i.e. a label not declared in the block, is referred to in a control
statement (in an inner block), then control jumps out of the block. Control will jump

to a label with the same name or number (as that in the control statement) in the nearest
outer block in which the label is declared.

Example: DO 3 I = 1,100

IF (A(D) 4,5,2
2 BEGIN
B = A(D)
3 C = B/A()
21 IF(ABS(A(I) - C) -1.0E-7)5,5,2
2 A() = 0.5*(A(I)+C)

GO TO 3
END
4 AQ) =0

5 --- (Example continued overleaf)

110

*9.3.3

3 CONTINUE
This example illustrates several aspects of label declarations.

(i) The range of the DO loop includes the BEGIN block and terminates on the
second statement number 3 (i.e. CONTINUE). The DO loop does not
terminate on the first statement number 3 since that statement is in the
inner block.

(ii) DO loops starting in an inner block must terminate before the END
statement for that block.

(iii) The first statement number 2 is local to the outer block, although it is
attached to the BEGIN statement for the inner block. This illustrates
the point raised in 9.2.1 that a block heading is not inside the program
block it heads.

(iv) Transfer statements may be written before or after the declaration of

the label. In statement number 21, the transfer to statement number 2

goes to the next statement, which has the statement number 2 that is

local for the inner block. Similarly, the statement

GO TO 3

transfers to the first statement number 3.
Labels attached to FORMAT statements follow the same declaration rules as other labels.
An input/output statement may refer to a FORMAT in an outer block, provided there is
no FORMAT with the same statement number in the inner block.

Assigned GO TO statements

Assigned GOTO statements can be used to cause a transfer out of a program block.
They cannot cause a transfer into a program block. A statement of the form

1
ASSIGN 11 TO 2

is treated as a declaration for 12, which is therefore local to the block.

Examples:
a)
FUNCTION SQT(X)
IF (X) 1,2,2
1 GO TON
2 SQT = SQRT (X)
RETURN
END

ASSIGN 2 TO N
Z = -B+SQT(DISC)

9.34

(1) Example: SUBROUTINE A

(2)

111

2 PRINT 121
12 FORMAT (13H Z IS COMPLEX)

If DISC is negative, control transfers out of the function to the outer block statement
number 2 (PRINT).

b) ASSIGN 1 TO L

ASSIGN 2 TO M
BEGIN
IF (I) 21, 22, 23

21 GO TO L

22 GO TO M

23 ASSIGN 3 TO L
END

2 GO TO L

Since an ASSIGN statement for L has appeared in the inner block, L is a local label for
the inner block, and is not the same as the label L of the outer block.

At statement 21, L is unassigned and the GOTO will cause an error. At statement 2,
the GOTO refers to the outer L, which is still set to jump to statement number 1, even
if statement 23 has been executed.

Procedures

A subroutine or function procedure is declared in a block by the appearance of a
SUBROUTINE or FUNCTION statement in the block. From the definition in 9.2.1
the SUBROUTINE or FUNCTION statement starts an inner block, but is itself in the
outer block.

The scope of the procedure declaration extends over the entire block in which it appears.

SUBROUTINE B

SUBROUTINE C

Cc 1 B A
END
END
SUBROUTINE C —
C2
END
END

Subroutine B is local to A, and can be called anywhere in block A. Inside block B, a
CALL statement for C results in a call to the first subroutine C, which is local to G.
Outside block B, a CALL statement for C will result in a call to the second C.

If a procedure block is a program segment, that is, it is not contained in another block,
then the procedure name is public. The procedure, is in fact, an ordinary Fortran
subprogram (Chapter 8). Procedure names for inner blocks cannot be made public

112

9.4

(3)

(4)

even by use of EXTERNAL or PUBLIC declarations. However, inner block procedure
names can be used as arguments, and can therefore be called from other blocks.

Example:

A trapping routine for zero division. Division by zero is trapped by Atlas (section 10.3).
By use of the library routine AFTERR, a procedure can be called when a trap occurs.
A return from the trap procedure may however cause erratic results.

The computation in the example computes the column average of a table. If the column
is all zero, the trap routine sets the average to zero.

DIMENSION TABLE (50, 10) AV(50, 10)
INTEGER 1,]
SUBROUTINE TRAP
INTEGER I
DO 2 I=1, 50
2 AV(@,])=0.0
GOTO 4
END

CALL AFTERR (1, TRAP)
DO 4 J=1, 10
SUM=0.0
DO 2 1=1,50
2 SUM = SUM + TABLE (1,])
Do 3 1=1,50
3 AV(L,]) = TABLE (1,])/SUM
4 CONTINUE

If SUM is zero, an error trap occurs in statement 3, calling the TRAP subroutine.
This clears the column, and transfers to continue the loop.

The location of a procedure in a block is not crucial. If the procedure has been
written using local implicit variables, then it is preferable to put the procedure at
the start of a block.

Fortran V procedures must not be used recursively (see Chapter 8).

COMPOUND LOGICAL IF STATEMENTS

The BEGIN statement (9.2.2) can be used as the successor statement in a Fortran IV
type logical IF (6.6.1(3)). In this case the entire BEGIN block is effectively a compound
successor statement,

If the logical expression is true, control enters the BEGIN block. Otherwise, none of
the statements of the BEGIN block are executed.

Example:
A compound statement which interchanges X and Y if X is greater than Y.

IF (X.GT.Y) BEGIN
REAL Z
Z=X
X=Y
Y=12
END

The declaration REAL Z ensures that any variables called Z in block(s) containing the

9.5

(1)

compound IF, will not be overwritten.

Any legal Fortran statements can be written in the BEGIN block, including simple or
compound logical IF statements. Transfers out of the block are permitted.

Example: A compound statement which finds the first non-zero element of an array.

1=0

2 IF(L.LT.N) BEGIN
I=1+1
IF (A(D).EQ.0.0) GO TO 2
END

The transfer to statement number 2 is a jump out of the block.

The following rules, which are essentially re-statements of block structure
properties will minimise the possibility of errors.

(i) If compound logical IF statements are used in a main program, then the
main program must start with a BEGIN statement.

(ii) - Variables and labels that are explicitly declared in the BEGIN block are
local to the block, and have no connection with variables or labels of the
same name outside the block.

(iii) Variables that are not declared in the BEGIN block will be the same as
variables with the same name outside the block only if they are declared or
used before the BEGIN block.

DYNAMIC ARRAYS

Dynamic arrays can be used to set up a variable amount of storage at run time, and can
effect a considerable saving in store requirements.

A dynamic array is an array which is declared in a DIMENSION or type statement with
adjustable dimensions (8.8) where the array name is not a dummy argument. The array
is local to the block or subprogram in which it is declared.

The amount of storage required for the array is set up when the block or subprogram is
entered. All variables used in the dimensions must be declared before the declaration,
for the array appears, and their values must be known when the block is entered. This
means that the variables must be one of (or combinations of) the following:

(i) a dummy argument

(ii) a COMMON or PUBLIC variable
(iii) a global variable

(iv) a function

If functions are used in the adjustable dimensions, side-effects should be avoided.
Example: A program which reads in the storage requirements for several arrays.

BEGIN

READ 101, M, N

BEGIN

DIMENSION A(M, N), B(N, M), C(M*N)

END
END

114

9.5 The first BEGIN is needed because this is a main program with inner blocks. The
cont second BEGIN heads the block in which the dynamic arrays are defined. Within this
block the arrays can be referred to by ordinary Fortran V statements.

The amount of store used is precisely that needed for the individual run and can be
specified accordingly in the Job Description. If the arrays were not dyngmic, the
maximum amount of store ever used would have to be specified. Thus, in many

circumstances, the use of dynamic arrays can reduce the store required for a job.

(2) A dynamic array remains available until control leaves the block. It is available if
control enters inner blocks. A dynamic array can be passed as an argument to a
procedure block or subprogram, which may use adjustable dimension statements for the
array.

(3) When control leaves the block, by means of a RETURN statement, or by reaching the end
of a BEGIN block, or by a transfer out of the block, the store for the dynamic array is
returned to an area of available store.

This area is known as a stack.

On a re-entry to the block, a different area of store may be assigned to the dynamic
array. Therefore, the initial values of the array are unpredictable and values stored
in the array are lost when the block is left.

(4) Different routines or blocks can use the same storage area for dynamic arrays. This
occurs automatically if the blocks are disjoint (see 9.2.1(3)), and one does not call the
other; since the space is returned to the stack when the block is left, and taken by the
next block requiring space for dynamic arrays.

Example: A routine for computing the square of a matrix, and storing the result over
the original matrix.

SUBROUTINE SQMAT (A, N)
DIMENSION A(N, N), B(N, N)
DO 2 I=1, N**2

2 B(1) = AQD)
CLEAR A
DO 31=1,N
DO 3 J=1,N
DO 3 K=1,N

3 A(L]) = AL, IHB(I, K)*B(K,])
RETURN
END

A is an argument array with adjustable dimensions, and B is a dynamic array. The
space used temporarily by B is available for dynamic arrays of other routines after the
return from SQMAT.

(5) The following points apply to the use of dynamic arrays:
(i) Dynamic arrays can be dimensioned in Type statements or DIMENSION
statements. All specifications for the array must precede the

dimensioning.

(ii) Dynamic arrays should not be specified as COMMON or PUBLIC nor
should they appear in EQUIVALENCE statements.

(iii) Specifications for variables used in the dimensions must precede the
dimensioning statement.

(iv) The variable dimensions themselves must be in the form described in
section 9.5.(1).

9.6

9.6.1

9.6.2

9.6.3

110

MISCELLANEOUS STATEMENTS AND BLOCK STRUCTURE

COMMON and PUBLIC

COMMON and PUBLIC statements are not normally needed in inner blocks. COMMON
and PUBLIC statements are often used to declare variables at the start of a program
segment, and can then be referred to as global variables by statements in the inner
blocks.

Labelled and unlabelled common areas start from their beginning at the start of every
block.

Example. COMMON A, B
BEGIN
COMMON C,D

The variables A and C refer to the same common store location, as do B and D.

A COMMON statement is a declaration, so that the variables contained in its list are
local. However, COMMON statements may result in variables in the outer block being
overwritten. Thus, in the example above C is not the same as a variable C of the
outer block, but assignment to C will overwrite A.

The usual case of identical COMMON statements will result in variables with the same
name using the same store locations.

PUBLIC statements in an inner block have the same effect as PUBLIC statements in a
program segment provided that no procedure block is declared with the same name as a
PUBLIC variable. These variables are, in fact, public in the sense described in
9.3.4(2).

Because of the way Fortran V handles multi-dimensional arrays, considerable store
saving may be made by re-compiling as a program block a program which has a number
of routines using the same COMMON and PUBLIC variable declarations. The suggested
procedure is:

(i) Remove all *FORTRAN lines.

(ii) Remove the specifications (including dimensioning statements) from all
routines.

(iii) Place at the head of the program a *FORTRAN line followed by a BEGIN
statement, and one set of the specifications.

(iv) The main routine should be the last routine in the source deck. It should
be followed by the *ENTER line. An additional END statement is not
necessary.

EQUIVALENCE

EQUIVALENCE statements cannot be used to set up equivalence between local variables
of an inner block and global variables. Effectively, an EQUIVALENCE statement is a
declaration for all variables appearing in it.

Dynamic arrays must not appear in EQUIVALENCE statements.

EXTERNAL

An EXTERNAL statement informs the Compiler that a name, is, in fact, the name of a
procedure. It is not a declaration for the procedure. The EXTERNAL statement is

not needed if the pﬁ:edure block has already appeared, or if a CALL statement has

116

appeared, or if the function name (with arguments) has appeared in an expression.

9.6.4 IMPLICIT

The effect of an IMPLICIT statement extends over all statements after the appearance
of the IMPLICIT statement until the end of the program segment.

9.7 SUMMARY OF BLOCK STRUCTURE

Program block structure is a new concept in Fortran. The detailed definitions given in
this chapter may seem strange at first, even to experienced Fortran programmers.
The following summary and simplified rules may be helpful.

Program blocks can be subroutines or functions (procedure blocks) or BEGIN blocks.
Procedure blocks are called, either by CALL statements or by appearance in an
expression. BEGIN blocks are essentially 'compound statements’ that is, they are
used as if they were single statements; for example in a (Fortran IV) logical IF.

-Both kinds of program blocks can be embedded as sub-blocks (inner blocks) to any depth.
Variables and labels that are explicitly declared in a program block are local i.e.
private, to the block, and have no connection with variables or labels of the same name
outside the block. Procedures embedded in a block are also local to the block, and
cannot interfere with user or library sub-programs.

Variables that are not declared in a program block will be the same as variables with
the same name outside the block only if these are declared or used before the
appearance of the block.

Transfers out of a block are legitimate, but transfers into the body of a block are not
allowed.

Fortran V combines block structure and ordinary Fortran sub-program segmentation.
A program segment is a block which is not contained in another block.

A main program which contains any sub-blocks must start with a BEGIN statement. In
other words, a main program is a BEGIN block, but for compatibility with ordinary
Fortran, the BEGIN statement need not appear if there is only one END statement.

10.1

(1)

(2)

117

CHAPTER 10 TRACING AND EXECUTION ERRORS

In Fortran V, some powerful instructions have been introduced which greatly facilitate
the checking and correction (debugging) of programs.

These statements enable the values and names of numeric variables to be printed
automatically whenever these variables appear in a statement which could change their
value. Similarly, in order to follow the path of control through a program, a statement
exists which prints the names of labels whenever the statements attached to these labels
are executed. The tracing statements are only effective for routines compiled in TEST
mode (see section 12.2 (9)).

THE TRACE STATEMENT

Definition TRACE namel, namez, e .namen

where name_, Name,_ , «..... are nonsubscripted numeric
variable or array names.

The TRACE statement causes the names and new values of the variables in its list to be
written whenever these variables appear:

(i) in any READ statement
(ii) on the left hand side of a replacement statement
(iii) as the index of an input or output list, or of a DO statement.

Note that the TRACE statement is not effective when values are changed by means of
CLEAR, or ASSIGN, or "machine language”, statements and that label variables
cannot be traced.

The values and names are written on to output stream number zero (see Appendix 8).
The layout of the output is as follows:

columns 1to 8 : the name of the variable
columns 9 and 10: are blank

column 11 is : The character =

column 12 is : blank

columns 13 to 23 : The value of the variable
column 24 is : blank

a maximum of five of these fields may be written in one line (record). The name of the
variable is right adjusted and filled out with blanks if it contains less than eight

characters.

If the number of chafacters in the value is less than 11, then the value is preceded by
the appropriate number of blanks (spaces). Negative values are preceded by a minus
sign, positive values are not signed. Leading zeros are not printed.

If the variable is of type integer, then the output field is the same as it would be if it
were written using the specification I11. (see section 7.6.4.5).

118

10.1
cont

(3)

(4)

(5)

(6)

(7)

If the variable is of type real, then the output field is the same as it would be if it were
written using the specification G11 (see section 7.6.4.4).

Double precision variables are given to single precision only. Only the real parts of
complex variables are printed. Text, Boolean and logical variables cannot be traced,
and should not be present in the list of the TRACE statement. If a real variab}e

appears in the list of a TRACE statement, and the variable in fact contgins an integer
(unstandardised) value, then a real value with a possible exponent is printed, followed

by a slash.

€8s X =1,000 EO0/
or
X =1.000/

Each new value is not necessarily printed as a new record (line). The field is only
printed as a new record if:

S trace fields (120 characters) have already appeared in the current record.

or a combination of trace fields and fields produced by OUTPUT, PRINT, or
WRITE statements have caused the current record to exceed 120 characters
in length (on the printer).

Note that TRACE output may appear on the same line (or record) as a line produced by
a previously executed formatted PRINT or WRITE instruction.

The TRACE statement is effective only in the program, or subprogram in which it
appears and only when that program or subprogram is compiled in TEST mode;

i.e. when a TEST option appears in its *FORTRAN line. (If this is not the case, then
all TRACE statements are ignored - see section 12.2(9)).

Any number of TRACE statements may appear in a program or subprogram, all of the
variables in their lists will be traced. The TRACE statements may appear anywhere
in the program, but tracing will begin only at the point where the TRACE statement
appears; i.e. only those references which textually follow the TRACE statement will be
traced.

eqg. 2 1=6
TRACE L,]
J=4
I=]*7
GOTO 2

will cause the following line to be written

J= 4 1= 28]= 41= 28
and so on.

If the name of an array appears in the list, then trace output is produced whenever any
element (or the name of the whole array) appears in a READ, on the left hand side of a
replacement statement, of as the index of an actual or implied DO.

If the name of the array appears as a "short list" in a READ statement, then each
element of the array is traced.

When an array is traced the subscripts are not printed, only the array name itself is
output in the trace field.

Note that TRACE statements can produce a large amount of output, unless used with
discretion.

10.2

(1)

(2)

(3)

(4)

119

Example: SUBROUTINE G(I)
REAL X(10)
TRACE], K, L
DIMENSION M(3)
READ 5, (X(K),K=1,10,2)
CLEAR M
J=I*3

Assuming values for X, and I, this could produce the following output (each field would
actually occupy 24 columns).

K= 1 X= 6.0000 K= 3 X= -4.3000 K= 5 X= 1.0000E-01
K= 7 X= 7.3012 K= 9 X= 1.3006Eb02 I= 27

THE TRACE PATH STATEMENT

Definition TRACE PATH FROM labell TO label

2

where label. and label_ are statement numbers or named labels,

which are both attachea to executable statements. If label is

a named label, then it must be enclosed in parentheses. i.é.
TRACE PATH FROM (labell) TO label2

The TRACE PATH statement is used to trace the path of control through a program or
subprogram, and causes the labels of executable statements to be printed whenever
those statements are executed.

The TRACE PATH statement is effective only for programs which are compiled in TEST
mode, i.e. if a TEST option appears in the * FORTRAN line (section 12.2 (9)). (If this
is not the case, then all TRACE PATH statements are ignored).

Any number of TRACE PATH statements may appear in a program or subprogram.
Each statement must textually precede the first labelled statement in the routine.

The TRACE PATH statement is effective only for those labels which are executed
between executions of label and label, (label, is notincluded). i.e. The trace is
"switched on" when label is executed and "switched off" when label, is executed.
If a subroutine or function (not an intrinsic function) subprogram is Called between
label. and label,, then the name of the subprogram is printed on entry, and the
characters <——l%ETURN are printed on return from the subprogram.

If the called subprogram was compiled in TEST mode, then path tracing will continue
in that subprogram, even when it contains no TRACE PATH statement itself.

The trace output is written on to output stream zero. The layout of each field is: -

columns 1 to 10: are blank

columns 11 and 12: the characters —

columns 13 to 20: the name of the label (or of the called subprogram)
columns 21 to 24: are blank

The label is right adjusted within its field of eight columns, and preceded by the
appropriate number of blanks. On return from a subprogram, the characters —
RETURN are printed. Note that if a label is defined as having leading zeros, then
these zeros are not printed (see section 6.1).

Each field is not necessarily started on a new line (or record). The action taken is
described in section 10.1 (3).

120

&)

(6)

10.3

In addition to the above tracing, when any logical IF statement is encountered between
label. and label_ one of the words "TRUE" or "FALSE" are printed depending on whether

the value of the ‘associated logical expression is true or false.

TRACE and TRACE PATH statements may be used together without restriction in any
program or subprogram. Note that the TRACE PATH statement can produce a very
large amount of output when subprograms in TEST mode are being repeatedly called

when a TRACE PATH is effective.

Example:
TRACE PATH FROM 5 TO 6
5 I=4
3 IF()6,6,X
X I=1-4

IF (I.EQ.1) I=I*3
ASSIGN 6 TO |
GO TO]
will cause the following to be printed
—5—>3—>X FALSE
If the following statement were inserted before statement 5
TRACE I

then the output would be:

—5 I= 4—3—X I= 0 FALSE

EXECUTION ERRORS

Several types of program errors may occur when the program is in execution. Typical
execution errors are. division by zero, and the reading of illegal characters on a
numeric FORMAT specification. If an execution error occurs, Fortran V takes a
special action; this action consists of: -

(i) terminating execution of the program
(ii) Printing the execution error and sub-error numbers
(iii) Printing an error tracing giving the storage location where the error

occurred. If the error occurred in a subprogram, the positions of the
statements which passed control to that subprogram are also given.

(iv) The contents of the accumulator, and of all non-zero index registers
(B lines) are printed.
(v) The machine instructions in the area where the error is assumed to have

occurred are printed.

In the case of input/output errors, the contents of the I/O buffer are printed, so that the
character which caused the error can be. identified.

This error output is always printed on output stream zero. An example is given
opposite. This output could be produced by:

READ 10,X
10 FORMAT (16)

if used to read in the characters

123.45

INPUT DATA FALILTY.

OCCURRED IN THE ROUTINE /IIWD
CALLED FROM THE ROUTINE /]OH
CALLED FROM THE ROUTINE /RSI
CALLF) FROM THE ROUTINE

THE 1/0 BUFFER CONTAINS
123.45

OCTAL CONTENTS OF NON=ZERO B-REGISTERS.

_ = HARTRAN EXECUTIUN ERROR
SyB-ERROR: 00000030 B119= 34900010 FK121=

ACCUMHLATCR HIGH HALF= 03¢0060000001730

00uUUUS40

5

ACCUMULATOR LOW HALF=

AT LOCATIUN 0001247y
AT LINE ULOQOUL
AT LINE ULO0031
AT LINE OLUQO0UL

000600020
00000030

rRi=z 00012470 B83= 00003004 B84= 777776%(B85=
Bel0= 00012470 B91= 00000030 B92= 7777777% B893=
B97= 40100677
DUMP OF PRCGRAM NEAR PRESUMED CONTROL LOCATION
OCTAL FUNCTION BA BM OCTAL UCTAL
LOCATIAN CODE ADDRESS HALF WORDS
02012400 210 127 89 00011310 1043773100011310
pro12410 121 oF 0 00012470 050442L000012470
nC01p420 154, 420 0 00024341 050776L000024341
06012430 000 0 8 60006300 CO0UOUL1060G06300
pG012440 000 0 2 00013330 Co00yUL000013530
00012450 600 0 0 00013330 GOBOLLLO00GL3330
00012440 000 0 0 04000010 0nLOULLE3453U0L0
00012470 101 89 0 00006070 G406620000006C70
03012500 202 127 A9 000122490 1013775100012240
06012510 143 0 7 80012424 $0454y00L000y12424
00012520 121 &1 9 07000134 050642u00700U134
00012530 121 82 0 42453044 0506440042453044

JCB TERMINATED.

B86=
B94=

ACC EXPONENT= (1400500
g3gogcougoooceoe

0C000048
020600030

INLICATOKS=

Bugs
BY5=

e
i (BIG

M2

LoLe

5008
555¢

V4.

Y=
Bgo=

;,4i,: 5

P

5 R

¢l

IZI

122

10.3.1

List of execution errors

Error Sub- CAUSE
Number | Error
1 0 Division overflow
2 0 Exponent overflow
Argument out of range, (probably negative).
B119 usually equal to address of argument
3 0 SQRT
il ALOG, LOGF
2 ARSIN, ARCOS, ASINF, ACOSF
- — Incorrect FORMAT specification. Sub-error is
equal to the illegal character in Atlas internal
code. B119 often equal to address of I/O list item.
Input data illegal for FORMAT conversion used
1 Error character in mantissa
2 Error character in exponent
5 3 Exponent in I conversion
4 Exponent in F conversion
5 No exponent in E conversion
6 Non-octal digit in B or O conversion
6 — Input ended (e.g. 7/8 card read) Sub-error
equal to input stream number involved.
One inch (Ampex) tape error
0 End of file marker read on tape
7 1 Variable tape error. (see ref. 7)
2 Tape Fail - i.e. tape in poor condition
9 = Supervisor - detected error (see section.10.3.2).

10 - Binary (unformatted) tape record too short for input
list. B119 is equal to the address of the first list
item which cannot be filled with information from
the logical record. (Does not apply to BCD
(formatted) records).

11 = Computed GO TO out of range, i.e. the transfer
is undefined. This error is tested for only if the
routine is compiled in TEST mode. '
See section 12.2 (9).

123

Half-inch tape error. Top seven digits of
sub-error give selected tape number, and bottom
digit = 6 if selected in BCD (formatted), or =0

if selected in binary (unformatted).

B119 = 0 : End of file encountered in writing
B119 = 4 : Read parity failure

B119 = 10 : End of tape encountered in writing

12 — B119 = 14 : Bad tape on writing
B119 = 20 : No tape left: failure to detect end
of file.

B119 = 30 : Attempt to read record of more than
512 words (4096 characters).
(N.B. 2 inch tape only)

B119 = 40 : Machine error

13 0 I/0 buffer not free - "recursive" call of I/O
routine. See 10.4.3.

14 0 Excess blocks - job has run out of storage, B119
often contains address of variable requiring extra
block.

15 — Undefined tape unit: incorxect job description.
The sub-error is equal to the undefined unit
number.

Note: Error number 8 cannot occur in Fortran V jobs.

10.3.2 Supervisor detected errors

There are many different Supervisor -detected errors. In many cases, the error is due
to an incorrect, or insufficient Job Description. (see Appendix 8). Common errors are:

Error Cause, Or action to cure

OUTPUT EXCEEDED Increase allowance for this stream

C TIME EXCEEDED Increase COMPUTING time

E TIME EXCEEDED Increase EXECUTION time

EXCESS BLOCKS Increase execution STORE

(error number 14)

OUTPUT NOT DEFINED Insert missing stream number

TAPE NOT DEFINED Insert missing TAPE number

TAPE FAIL Magnetic tape in poor condition

WRONG TAPE MODE Job is trying to write to a file-protected
(inhibited) magnetic tape

ILLEGAL FUNCTION Control has been passed out of program
area:- often due to overwriting program
by exceeding array bounds.

SV OPERAND Attempt to access illegal (e.g. -ve.)
address.

Other errors may occur: if the cause and cure is not obvious, the reader should consult
Reference 7.

124
10.3.3 Interpretation of error output

The execution of a program may have produced:

END TAPE = HARTRAN EXECUTION ERROR 7
OCCURRED IN THE ROUTINE /RAT AT LOCATION 01041050
CALLED FROM THE ROUTINE AT LINE 0000025

Since /RAT has been called from a routine with a blank name, that routine must be the
main program. Inspection of the main program would show that there is an unformatted
READ statement at line 25, which caused the system routine /RAT to be called. It is
this statement which has read an end of file marker.

Similarly: COMPLEX RESULT = HARTRAN EXECUTION ERROR 3
OCCURED IN THE ROUTINE X AT LOCATION 00001600
CALLED FROM THE ROUTINE Y AT LINE 0000005
CALLED FROM THE ROUTINE AT LINE 0000050

This would indicate that a complex result has occurred in subprogram X, which was
called at line 5 of subprogram Y, whilst subprogram Y was called at line 50 of the main
program.

To locate the error more exactly, the loading map must be consulted (see Chapter 12.1(3)).
From this map we may find that the absolute entry point of routine X is at 0000171.0
(octal). In addition, the source listing of routine X must be consulted; this may show

that the relative entry point of X is located at 0000165.0 (this is the octal number of

words from the start of the routine).

This implies, therefore, that the origin (start) of routine X is at location 171 - 165 = 4
(octal).

Hence the error must have been detected at location 160.0 - 4 = 154 (octal) of X.

Using the length (given in decimal on the source listing) of X as a guide, the approximate
position of the source statement which caused the error may be found. This
approximation is usually sufficient to locate the error, but if it is not, it may be
necessary to obtain an object listing (machine instructions) by the use of *FORTRAN
LIST. (see section 12.2(7)).

Sometimes, the error information given may not be accurate: e.g. if those parts of the
program which are examined by the tracing procedure have been overwritten.

If the trace is not correct, then using the loading map, the two routines must be found,
whose entry points (absolute) are nearest to, but on either side of, the error location.
The position of the error in the source routine can them be found in the manner
described above.

It is important to realise that for many errors, control may have passed through as many
as four instructions before the error is detected. Since one of these errors may be a
jump instruction, it is clear that the dump of program printed out may not in fact

contain the instruction which caused the error.

10.4 THE ERROR STATEMENTS

Some of the errors described in section 10.3 may be considered to be relatively minor
for some applications, and it may not be desirable that execution be terminated.
Sometimes it may not even be necessary to print the error information. In oxder to
deal with this situation, the error statements (they are calls to library subprograms)
have been provided. These statements allow the user to take any action desired on
the occurrence of an execution error.

Note that the error statements are not effective for execution errors of type 9, 14,
OF 13k

10.4.1

10.4.2

10.4.3

1235
To continue execution

In order to continue execution after an execution error has occurred, the statement
CALL CONTXQ (n)

must be positioned, in any program or subprogram, in such a place that it is executed
before the execution error occurs. Once the statement has been executed, it remains
effective for all programs and subprograms until the job is finished.

n is the error number after whose occurrence it is desired to continue execution. Ifn
is zero, then execution will be continued after the occurrence of all types of errors,
except numbers 9, 14 and 15. If execution is to be continued after more than one type
of error, then the above technique (CALL CONTXQ (0)) may be used, or more than one
CALL CONTXQ statement may be given.

e.g. CALL CONTXQ (6)
CALL CONTXQ (5)

Note that once an error 6 or 7 (end of data) has occurred, it is not possible to read more
data from that stream. Provided that this is not attempted, execution continues
normally. The error output is still printed each time the error(s) occurs. As soon

as an error type (n) occurs which is not in an executed CALL CONTXQ(n) statement,
then execution of the program is terminated.

To terminate execution

In the same way that the CALL CONTXQ(n) statement is used to continue execution, the
CALL ENDXQ(n) statement may be used to "turn off" a previously executed CALL
CONTXQ(n) statement. As with CONTXQ, if n is zero, then execution will be
terminated after the occurrence of any execution error. ENDXQ is used in the same
way as CONTXQ, but it has exactly the reverse effect, i.e. it restores the normal
error action for error type n.

To take special action

In addition to continuing execution when an error occurs, it may be desired to avoid
printing the error message, and to take some special action: e.g. adding to an error
count, or printing one's own message etc. This may be done by insertion of the
statements

EXTERNAL sname
CALL AFTERR (n, sname)

in such a position that the CALL is executed before the error occurs. (i.e. usually
at the head of the main program).

sname is name of a SUBROUTINE which must be supplied by the user, and n is the error
number which will cause that subroutine to be called.

Once the CALL AFTERR statement has been executed, it remains effective for all
programs and subprograms until the job is'finished, or until a new CALL AFTERR
statement (with the same n) is executed.

The same, or different subroutines may be entered for different error numbers if the
appropriate CALL AFTERR statements are given; and the subroutine(s) sname may be
explicitly called by the user if desired. The statement CALL AFTERR (0, sname)
causes the routine sname to be entered on the occurrence of all types of errors

except numbers 9, 14 and 15.

126

*10.4.4

On occurrence of the execution error(n) the subroutine (sname) is entered, no standard
error output is printed. With certain restrictions (below) any action may be taken in
sname, which follows all the rules applying to normal subroutines. Often, an e.rror
count (which may be in COMMON) will be added to. The restrictions on the action

taken in sname are as follows:

(i) AFTERR should not be called in sname.

(ii) If sname is called for an input/output type error (numbers 4, 3, 6, 7,
12 and 13) then no input or output instructions (except the Fortran V
OUTPUT statement) may appear in sname.

Error messages may still, however, be printed by setting a PUBLIC or COMMON
indicator and testing this indicator after return from sname; or by using an OUTPUT
instruction.

The CALL AFTERR statement is not effective for execution errors of types 9, 14, or
15. If it is desired to continue execution on return from sname, then a CALL
CONTXQ(n) statement should have previously been executed. If this is not done, then
execution of a RETURN statement(s) in sname will cause execution of the program to be
terminated.

Example: PUBLIC NERRORS

DATA NERRORS/0/ SUBROUTINE BADCARD
EXTERNAL BADCARD PUBLIC NERRORS
CALL AFTERR (5, BADCARD) NERRORS=NERROR-1
. RETURN
END

READ 10, (A(D),I=1, 10)
10 FORMAT (10F8.4)

The value of NERRORS can be printed out later, in order to find the number of illegal
(mispunched) fields read in.

Advanced features of AFTERR

The rescue routine (sname) is called with two arguments (but these need not be present
as a dummy argument list if their values are not required).

e.g. after

EXTERNAL RESSUB
CALL AFTERR (1, RESSUB)

both of the following are accepted

SUBROUTINE RESSUB
and

SUBROUTINE RESSUB (11,12)
The first argument (I1) contains the execution error number, and the second (I2) is an
array containing the useful information printed in the standard monitor dump. The
array I2 contains 9 elements, so that the following statement should appear in RESSUB.

DIMENSION 12(9)

The elements of I2 contain the following information:

*10.4.4
cont

127

I12(1) Sub-error number

12(2) Accumulator contents

12(3) Accumulator exponent

12(4) B1 (return link)

12(5) Presumed control location

12(6) B119

12(7) Indicators i.e. V store line 6 (see section 7.8 of ref. 7)
12(8) Low half of accumulator

12(9) B121

Note that although many of these quantities are of type integer, some, such as 12(2),
and 12(8) may be of type real. Also, the values in the other elements may not be
strictly integral, and may contain a non-zero octal fraction digit (this is often the case
with 12(6) and 12(9)).

Since the rescue routine can contain a CALL statement, it is possible (by entering
another routine with a different setting of a parameter) to continue the program whether
or not an appropriate CALL CONTXQ(n) has occurred; but for some errors an ensuing
error will immediately terminate the job.

To illustrate the use of this technique we may consider a job which is to copy card
images from a half inch tape through a format conversion to binary records on a one
inch tape. We will give the half inch tape logical number 4, and the one inch tape
logical number 9. The following program will achieve this: -

*FORTRAN
EXTERNAL IBTRAP
CALL AFTERR (12, IBTRAP)
CALL MAIN (1)
END

*FORTRAN
SUBROUTINE MAIN (KK)
DIMENSION XX(5)
GO TO (1,10) KK

1 READ (4, 100) XX

100 FORMAT (5E16.7)
WRITE (9) XX
80/ 'T0 1

10 ENDFILE 9
~ STOP

END

*FORTRAN

SUBROUTINE IBTRAP (Ii,12)
DIMENSION 12(9)
IF (12(6)) 10,11,10

C END OF FILE MARKER

11 CALL MAIN (2)
C OTHER HALF INCH TAPE ERROR
10 CALL OFFIO
K1=12(6) + 12(6)
PRINT 100, K1
100 FORMAT ('bHALFbINCHbTAPEbERROR', 13)
STOP
END

This example also illustrates the fact that when an error occurs within an active 1/0
statement, the rescue routines provided by the user cannot use any standard Fortran
i/0O statement without causing another error (Error 13).

128

*10.4.5

Note, however, that the Fortran V OQOUTPUT statement may be used. In the above
example the statement giving rise to the error 12 is

READ (4, 100) XX

If this I/O statement is active, the subroutine IBTRAP must not initiate another 1/0
statement unless library routine OFFIO is first called. This is done at statement

number 10.

A call of OFFIO severs the linkage between an active 1/0 statement, and the library I/0
processing routines. It follows therefore, that control cannot be transferred back to
the disabled [/O statement; i.e. a RETURN statement must not be used after a CALL
OFFIO has been executed.

Errors (in I/O statements) can be dealt with after completion of the I/O statement by
using a variable or array, in COMMON or PUBLIC storage.

The example below uses such a technique to detect an error on a particular I/O statement.

*FORTRAN
COMMBON K, KK(10), I, XX(10)
EXTERNAL RESCUE
CALL CONTXQ(5)
K=0
CALL AFTERR (5, RESCUE)
15 FORMAT (10F8.2)
READ (0, 15)(XX(1), =1, 10)
IF(K) 20, 21,20

20 PRINT 200, (KK(I),1=1,K)
200 FORMAT ('bERRORSbINDELEMENTS', 10I3)
21 CONTINUE
END
*FORTRAN

SUBROUTINE RESCUE(J1,]2) (or just SUBROUTINE RESCUE)
COMMON K, KK(10), I, XX(10)

K=K+1

KK(K)=I

RETURN

END

In this way the need to record the presence of an input error (error 5) is delayed until
the input statement is completed.
Miscellaneous error routines
The statement
CALL RSTERR

Nullifies any CALL AFTERR statements which have been executed, and restores the
normal error action (for all error numbers).

The statement
CALL BDUMP

prints the numbers, and contents of all non-zero index registers on whatever output

129

stream was last selected. (This is n for WRITE (n, f); 0 for PRINT, or 15 for
PUNCH depending on the last output statement executed.)

The tracing information, which shows the path of control through the program (as
described in section 10.3) may be obtained, on output stream zero, by executing the
statement:

CALL TRACE

(This has no connection with the Fortran V TRACE statements).

The position of all magnetic tapes used by a job may be obtained (on the currently
selected output stream) by executing the statement

CALL WHTPS

The standard error printing can be obtained by the user in his own rescue routine by
calling the library routine ERRDG as follows

SUBROUTINE RESCUE (K1,K2)
CALL ERRDG (K1,K2)

Other useful library routines are described in Appendix 7.

*11.1

131

CHAPTER 11 MACHINE LANGUAGE
INSTRUCTIONS

DESCRIPTION OF MACHINE LANGUAGE

Sometimes, Fortran statements are not suitable, or not sufficient to perform certain
operations. This is not usually the case, but may be true of certain special
applications. To cope with these applications, Fortran V permits Atlas "machine
language" instructions to be written at any point in a program, or subprogram. These
instructions all start with a number, and can thus be distinguished from other Fortran
statements. This means that no special "entry" directives or column 1 punchings are
required. The instructions, as usual, are punched in columns 7 through 72 with a
label (if desired) in columns 1 through 5. Continuation cards may be used.

Definition function, ba, bm, operand
where
function is an Atlas function (operation) code, or an extracode.
and
ba and bm are both unsigned integers, less than 128; they are
the index registers (B lines) of the instruction.
and

operand is:
(i) A Fortran variable name, which may be subscripted

(ii) a decimal integer, which may be signed.

(iii) a decimal integer (which may be signed) followed by a
decimal point, followed by one octal digit (O through 7).

(iv) (i) followed by signed versions of (ii) or (iii)

(v) An octal integer, up to 8 digits in length, and preceded by
an asterisk. If there are less than 8 digits, they are
left -adjusted and filled with zeros. (e.g. *77 = *77000000).

(vi) A label (or statement number), which is enclosed in
parentheses.

(vii) Any Fortran V constant (described in Chapter 3) preceded

() TSR 1)

by the character .

The properties of the Atlas function codes are described in Reference 7. No checking
is done to see whether the machine instruction would cause an error.

The various operands are used as follows: -

(i) Variable name: The address of the variable (modified by any subscript) is
used in the instruction.

(ii) Decimal integer: The value of the integer is used in the instruction,

132

*11.1 (iii) as (ii), but octal fraction (character address) also allowed.
cont . ' N
(iv) Name modified by (ii) or (iii): The address of the variable is modified by
the constant and used in the instruction
V) octal constant: The value of the octal constant (half-word) is used in the
instruction
(vi) Label: The address of the statement to which the label is attached is used

in the instruction.

(vii) = Constant: The constant is stored by the compiler and its address is used
in the instruction.

If the operand is a subscripted variable name, then the subscripts may take any form
legal in Fortran V. Additional machine instructions will be generated if the subscripts
are not integer constants.

Additional machine instructions may also be generated if the program or subprogram is
compiled in TEST mode.

A Fortran V program or subprogram may, quite legally, contain only machine language
instructions (there must be an END statement, and if a subprogram, a SUBROUTINE or
FUNCTION statement). Normally however, the use of PUBLIC or COMMON and
RETURN statements can be useful.

The use of machine language instructions may require a knowledge of the instructions
compiled for a standard calling sequence in Fortran V. This is the same as for
Hartran, and is described below.

An instruction of the form CALL SUBR (al, a

e .an) causes compilation of the
following instructions: -

2,

121, 1, 0, AR
121, 127, 0, AS

In AL
0 An
0 An-1
0 A
2
0 Al
Where Al’ Az, 3 'An’ are the addresses of the arguments al, az. i .an.

AR is the return address.

AS is the address of the entry point of the called routine.

In is the line number of the Fortran CALL statement. This word is used for

AL is the address of a link store. } { error tracing only,
and may be omitted.

i.e. (i) Bl is loaded with the return address.
(ii) Control is transferred to SUBR.
(iii) A link word for execution tracing (this need not be present).
(iv) The addresses of the arguments in reverse order. The address being in
the low halfword. The high halfword is zero.

Use of machine language also requires a knowledge of which index registers (B lines) are

compiled into the machine language instructions generated by the compiler from standard
Fortran V statements.

The B lines which are not used by generated instructions are B81 through B89, and these
registers may be freely used in machine language instructions.,

130

Note however, that these registers (81-89) are not saved by Fortran V, and they should
therefore be used as 'working' registers only.

Examples: COMMON P(7,7)

CALL A (I3)

Note; this subprogram is not useful, it is merely intended to illustrate the facilities

described above.

SUBROUTINE A(])
COMMON Z(7,7)

101, 81, 0, J+19.4
165, 82, 82, *00000077
1066, 82, 0, Z(J+5,6)
121, 127, 0, (LABEL)
101, 127, 0, (66)
334,0,0, = 8B777
342,0,0, = 3.14159
RETURN

END

121

(1)

(2)

(3)

135

CHAPTER 12 THE COMPILER DIRECTIVES

The compiler directives are used to inform the compiler about the manner in which a
routine is to be compiled and to say whether execution of a program is desired, or
merely compilation.

There are also special directives; e.g. to permit a program or a library to be written
on to a magnetic tape.

With the exception of one (SAVE PROGRAM), the compiler directives are all written
with an asterisk in column 1 (one) of the statement, the rest of the line (columns 2
through 72 on cards) being used for the directive. Continuation cards are not permitted
and blanks are not significant (except where stated otherwise).

THE *RUN DIRECTIVE

Definition *RUN option list

where option list is a series of options separated by commas.
The permitted options are: -

NOMAP

MAP

COMPILE
GO

GO n (where n is an unsigned integer)
IFIX or INT or NINT

HARTRAN or F2 or F4

The * is in column 1.

Every Fortran V job must have a *RUN directive present as the first line following the
Job Description. This directive gives information about the job as a whole.

If no option is specified, then the standard options GO, NOMAP, IFIX, and F4 are
assumed.

1€l *RUN
is equivalent to

*RUN GO, NOMAP, IFIX, F4
and

*RUN MAP, F2
is equivalent to

*RUN MAP, GO, IFIX, F2
and so on.

If MAP is specified, then a loading map is printed on output stream zero. This map
consists of a list of the names of all routines loaded, together with the absolute storage

locations (in octal) of their entry points and their origins. In addition, the names,
origins, and lengths, of common and public blocks are listed.

136

12.1
cont

(4)
(5)

(6)

(7)

(8)

€))

(10)

The library routines loaded will also be given, so that for a typical job, the map will
comprise about 40 printed lines.

If MAP is not specified, or if NOMAP is specified, then the loading map is not printed.

If GO, or GOn is specified, then (subject to certain conditions) the compiled program
will be entered (executed) when compilation is complete. The conditions are:

(i) a *ENTER directive must be present (see section 12.3.),. and .

(ii) If GO is specified, then the program is executed only if it contains no
source errors (see Appendix 6).

(iii) If GO n is specified, then the program is executed only if it contains not

more than n source errors. (GO is equivalent to GO 0). This enables
programs to be executed even though they may contain errors. Note,
however, that the machine instructions (if any) generated for incorrect
statements, are not well defined, and will often cause execution errors.

If a statement is syntactically incorrect, then it is ignored, and the compiled program
is the same as it would be if the statement were not present.

When a program is executed, the words "PROGRAM ENTERED" are printed below the
loading map (if present); after this, at the top of a new page, are printed the words
"EXECUTION STARTED ON" followed by the time and date.

When the program is not entered the words "EXECUTION DELETED" are printed, and
the job is then terminated. The above lines always appear on output stream zero.

If COMPILE is specified, then the compiled program is not executed, even if a *ENTER
directive is given,

The use of the COMPILE option is recommended when it is not desired to execute a
program, since a considerable saving in storage used by the compiler is effected.

Since routines are not loaded when COMPILE is specified, the loading map will not
include library routines.

If IFIX (or INT or NINT) is specified, then the form of truncation assumed for all
routines of the job will be IFIX (or INT or NINT). (see sections 5.1.3 and 5.1.4).
The TRUNCATION statement (see section 5.1.4) may be used to override, for a
particular routine, the form specified in the *RUN directive. If this is done, then at
the end of the routine, the form of truncation is set back to that specified on the *RUN
directive.

If no truncation specification appears, then IFIX is assumed.

If HARTRAN is specified, then the intrinsic (built-in) function names assumed for all
routines in the job will be the same as the names used in Atlas Fortran (Hartran). If
F2 is specified then Fortran Il names are assumed, and if F4 is specified, then Fortran
IV (A.S.A.) names are assumed. The FUNCTIONS statement (see section 8.4.2) may
be used to override, for a particular routine, the specification on the *RUN directive.

If this is done, then at the end of the routine, the kind of functions used is set back to
the kind specified on the *RUN directive. If no functions specification is given, then F4
(i.e. A.S.A.) function names are assumed.

If conflicting options are present in the *RUN directive then the last option (s) appearing
are the effective ones.

Examples: *RUN GO 5,MAP
*RUN
*RUN COMPILE, NOMAP

12.2

(1

(2)

(3)

137

THE *FORTRAN DIRECTIVE

Definition *FORTRAN .optionlist

where optionlist is a series of options separated by commas.
The permitted options are: -

SOURCE

NOSOURCE

CARDS

CARDS n (where n is an unsigned integer)
NOCARDS

LIST

NOLIST

TEST

PRODUCTION

a primed Text constant

The * must appear in column 1.

A *FORTRAN directive must precede every Fortran V program segment presented. A
program segment is either a main program, or a subprogram which is not contained
within another subprogram. The *FORTRAN options specified for the outer main or
subprogram will also apply to any (nested) subprograms which it may contain, A
*FORTRAN directive may not be inserted anywhere within a program segment. The
*FORTRAN directive is used to inform the compiler about the manner in which a
particular program segment (or routine) is to be compiled.

If no option is specified, then the standard options

NOSOURCE
NOCARDS
NOLIST
PRODUCTION

are assumed; and the value of the Text constant will be taken as the first six characters
of the name of the outer-most program (or subprogram) of the program segment. If
there are less than six characters in this name, then the constant consists of the name
left adjusted and filled out with blanks. For a main program, it will be all blanks.

If SOURCE is specified, then a source listing of the routine is printed on output stream
zero. This listing is started on a new page, and the layout is shown overleaf.

The line number is the one referred to in execution error diagnostics. (see section
10.3)

The DO LEVEL is a number showing the number of DO statements within which the
statement is contained (i.e. the depth of nesting). If the DO LEVEL is more than nine,
then an asterisk is printed (this does not imply an error).

The statements are printed exactly as they are read in, including blank lines on cards.
On paper tape consecutive newline characters do not produce blank lines; the presence
of one (at least) blank character between the newlines will cause the blank line to be
printed. Erase characters on paper tape (and all non-printable characters) are printed
as a decimal point, The tabulate character on paper tape is printed as one blank
(space), this may cause labelled statements to be printed slightly offset (see also

Appendix 1).

The "List of Identifers and Properties" (see the example overleaf) is also produced if
SOURCE is specified, except for nested subprograms (blocks); (i.e. the list is printed

for outer blocks only). This list gives details of:
continued on page 140

FORTRAN v, LISTING OF SOURCE PROGRAM,
LINE NO. DO LEVEL

»FORTRAN SOURCE

SUBROUTINE PRINT(X)

COMMON Z(%),P,QUARTS,/AA/SQUARE, THETA VALUFS(10),TOTAL
INTEGER X(%),N0OS(9),SQUARE

TEXT BOX(9)/9%* ¢/ XX/'X*/

DATA NCS/2.9,4,7,5,3,651,8/

PUBLIC YsN¥

TEST STATEMENTS AND EXAMPLE OF ERROR FOLLOW.
PRINT 11.,S0UARE

FORMAT(14H PRINT ENTERED,17)

7 PRINT 10, (Z(K)»K=1,5))

OGN =

9 |

x x
i
-

SYNTAX ERROR IN LIST
8 83 IF(Xt5).EQ.9) BEGIN

STARY BLOCK LEVEL 2

9 INTEGER 17
i0 2Z=X(5)

144 X(5)=sZ2(5)
12 2(5)=22

13 END

RETURN BLOCK LEVEL 1

14 43 DO 13 I=1,NX

15 1 DO 3,J%1,9

i6 2 IF¢(XCI)=NOS(J)) GO TO 3

17 2 BOX(J)=XX

18 2 99999 X(3)aX(J)+9

19 2 SQUARE=SQUARE/4+MON(X(3),4)

20 2 IF(SQUARE~1024) 99999,2,3

21 2 Y=Y=1000.

22 2 3 CONTINUE

23 ! 2(4)3Z2(4)+SQUARE

24 1 13 CONTINUE

25

26 2 PRINT 10.,80X

27 10 FORMAT(1HO,9%,A1,3H I ,A1,3K I ,A1/40X,9H--=~~ mem=/10X,A1,3H I ,AL
1,3H I ,AL1,/10X,9H~-=-="==< /40X, AL ,3H 1 ,A1,3H I ,A1//)

28 IF(Y=-1.E5) ,83,43

29 CALL SUMMARISE

30 ExIT RETURN

31 END

8¢€T

LOCAL STORE
NAME

NOS
I

COMMON STORE
NAME

SQUARE

TYPE DECIMAL

INTEGER ARRAY DUMMY
INTEGER ARRAY 1o

INTEGER 21
AA

TYPE DECIMAL

INTEGER 0

COMMON STORE //

NAME

z

LABELS
NAME

83
3
EXIT

TYPE DECIMAL

REAL ARRAY 0

OCTAL ADDRESS

0000 423
0000 ®66
0000 440

SUBROUYINES AND FUNCTICNS

NAME

SUMMARIS

TYPE
SUBROUTINE

ROUTINE PRINT

ENTRY 0 TWIS ROUTINE 0000 641.0

LENGTH OF THIS ROUTINE 165

LIST oF IDENTIFIERS AND PROPERTIES

NAME

BoX

NAME

THETAVAL

NAME

P

NAME

43
13

TYPE
TEXT ARRAY

REAL
INTEGER

FY/PE

REAL ARRAY

TY.RPE

REAL

DECIMAL
0

PuBLIC
22

DECIMAL

1

DECIMAL
5

OCTAL ADDRESS

0000 467
0000 604

NAME

XX
NX

NAME

TOTAL

NAME

QUARTS

NAME

99999

TYPE

TEXT
INTEGER

TYPE

REAL

TYPE

REAL

NECTMAL

9
Pt IC

RECTMAL

1t

NECIMAL

3

NCTAL ADDRESS

annn w24
anno A11

6¢1

140

12.2
cont

(4

(5)

(6)

(7

(3)

(i) The layout of local storage, dummy arguments, and PUBLIC for the routine.
The layout of COMMON storage for the routine.

(ii) The names, and locations of labels used. .

(iii) The name, relative entry point and length of the routine.

(i) The storage layouts give the names and types of all variables used followed by
their locations (in decimal) relative to the start of the routine's local data area (or
relative to the start of COMMON storage).

(ii) The list of labels comprises a list of the names of ail labels (or statement numbers)
used in the routine followed by their relative locations, in octal (i.e. relative to the
origin, or start, of the routine). FORMAT statement labels are not listed.

(iii) "ENTRY TO THIS ROUTINE" is then printed, the octal number following being the
relative location of the entry point of the routine. The entry point is usually near the
end of the routine,

The decimal number printed after "LENGTH OF THIS ROUTINE" is the number of
machine instructions which have been compiled for the routine: it does not include the
storage space used for variables and constants.

If NOSOURCE is specified, or if SOURCE is not specified, then none of the output
described under (3) is printed. Note, however, that source statements containing
errors, together with the error message, will always be printed.

If CARDS is specified, then object (BAS) cards will be punched for the routine, provided
that there are no source errors. If CARDS n is specified, then object cards will be
punched if there are not more than n errors. (CARDS is equivalent to CARDS 0). Note
that cards will not be punched if TEST is specified.

CARDS n (with n nonzero), should only be used when a source error occurs which does
not affect the execution of the routine. If cards are required, then a line OUTPUT
5=ttt must appear in the Job Description (see Appendix 8).

If NOCARDS is specified, or if CARDS (or CARDS n) is not specified, then no object
cards are punched.

If LIST is specified, then a listing of the machine instructions, and program constants,
is printed (on output stream zero).

Each instruction is preceded by its absolute octal location. Each instruction is of the
form:

function code, B,B , Address Part
a’ m
(octal) (decimal) (octal)

The positions of the various source statements may be found by comparing the addresses
in the list of statement labels with the addresses printed in the object listing.

The list of constants is a list of constant values used by the routine, preceded by their
absolute octal locations. The constants are printed as sixteen octal digits per word.
Text constants may comprise several words. FORMAT specifications (not variable
FORMAT) are contained in the constant list, as are various constants used for setting
up arrays: so that the list of constants may be considerably greater than the number
simple constants used in the routine.

If NOLIST is specified, or if LIST is not specified, then none of the output described
under (7) is printed.

LIST should only be specified if the user is expert in the use of Atlas machine language.

141

(9) If TEST is specified, then the routine is compiled in TEST mode, and any TRACE or

(10)

(11)

(12)

12.3

TRACE PATH statements it contains will be effective. Note that routines compiled in
TEST mode will usually be longer, and less efficient than if they were compiled in
PRODUCTION mode.

The use of TEST should, therefore, be restricted to routines which are being debugged,
and which contain TRACE statements.

When TEST is specified, a check is done in execution for each subscripted array
reference to see whether the value of the subscript (or the product of the subscripts if
there are more than one) is larger than the dimension (or product of the dimensions)
specified for the array.

If the dimensions are exceeded the message
#** - OUT OF RANGE

is printed on output stream zero, where *** is the name of the array. Note that each
individual subscript is not checked, but only the product of the subscripts. Note that
if TEST is specified, then object cards are not produced, even if CARDS (or CARDS n)
has been specified.

If a routine is compiled in TEST mode, a check is done in execution for each computed
GOTO statement, to see whether the value of the arithmetic expression would cause an
undefined transfer of control (see section 6.4). This error is execution error 11, and
the action taken is described in section 10.3.

When TEST is specified, lines which contain an X in column 1 are compiled, the X
itself being ignored (i.e. treated as blank). See section 2.3.

If PRODUCTION is specified, or if TEST is not specified, then any TRACE or TRACE
PATH statements contained in the routine are ignored; and no computed GOTO checks
are done in execution, so that execution error 11 cannot occur,

In addition, when in PRODUCTION mode, any lines containing an X in column 1 are
ignored, i.e. they are treated as comments. This allows for the conditional
compilation of statements, which is useful for testing purposes. This facility is
described in detail in section 2.3.

If a Text constant is specified, then its first 6 characters are punched in the identific -
ation field (columns 73 to 80) of any object cards produced for the routine. Blanks are
significant in the constant. See also (2), above.

If conflicting options (e.g. TEST and PRODUCTION) are specified, then the last one to
appear will be effective.

Examples: *FORTRAN SOURCE, CARDS, 'SUB B’

*FORTRAN SOURCE, TEST
*FORTRAN

THE *ENTER DIRECTIVE

Definition *ENTER

This must be punched in columns 1 through 6

The *ENTER directive is used to execute the program once it has been compiled. The
program is entered at the first executable statement of the main program.

The directive must appear as the last line following all source and/or object routines

142

124

12.5

*12.6

presented. Any lines following the *ENTER directive are treated as program data on
input stream zero, and are not read by the Compiler.

*ENTER is only effective if the *RUN directive satisfies the conditions described in
section 12.1 (5).

THE *END DIRECTIVE

Definition *END

This must be punched in columns 1 through 4

This directive causes execution of the program to be deleted, and is normally used with
*RUN COMPILE. When a *END directive is encountered, the Compiler does not read
any further lines, and the job is terminated.

THE *INPUT DIRECTIVE

Definition *INPUT n

Where n is an unsigned integer constant.
The * must be in column one.

When a *INPUT directive is encountered, the Compiler takes its further input from input
stream number n.

This directive is especially useful when a job contains source routines on paper tape
together with object routines on cards. Such a job would be arranged so that the last
line on the paper tape was *INPUT 1 (say), followed by ***Z. The object cards would
then be read in on input stream 1. A line

INPUT 1 name of input

would appear in the Job Description, (see Appendix 8), and the object cards would be
preceded by the cards

DATA
name of input

THE SAVE PROGRAM INSTRUCTION

Definition SAVE PROGRAM

where the S is punched in, or after column 7
(as for normal Fortran statement)

The SAVE PROGRAM instruction is used to write (i.e. save) a compiled (object) program
on to a magnetic tape.

SAVE PROGRAM is an executable statement. When the statement is encountered, the
program and all data areas which have been initialised (or referenced) are copied on to
tape. When the program is brought down from tape, as described below, execution
begins at the first executable statement after the SAVE PROGRAM. Normally, the
SAVE PROGRAM statement will be the first executable statement of the main program.

If this facility is used, then the document title of the job Description (see Appendix 8)
must be in the form:

*12.7

*12.7.1

(1)

2

(3

143
Job number, name and run name *E* program title

The "E" will cause the program to be executed as well as stored. If execution is not
required, the E is omitted, but the asterisks must always be present.

In addition the following line must be present in the job description:
TAPE 99 tape title*WRITE PERMIT

Before this facility is used the magnetic tape must be "initialised" for Compiler LOAD.
This is described in A.C.S. publication LSP9. -

After the program has been stored as described above, it may be executed at any time
by adding the following lines to the usual Job Description

TAPE 99 tape title*WRITE INHIBIT
COMPILER LOAD (replacing COMPILER FORTRAN)
file number/program title

followed by the data (if any) for input stream zero. In the usual way, other input
documents may also be present. The "file number" is that output by the writing run.
(See A.C.S. publication LSP 9; the LOAD SYSTEM).

If magnetic tapes are used in a job, the logical numbers used must be the same in both
the Job Description for the compile run, and the Job Description for the load run. The
actual magnetic tape titles need not be the same.

MAKING A PRIVATE LIBRARY

Normally, when a Fortran Job is executed, a library of routines is supplied by the
compiler. These routines include many subprograms used to deal with input and output,
etc. Sometimes, however, it may be convenient for the user to supply his own library,
which may contain routines which he often uses, but which are not sufficiently general

to be included in the compiler's own library. The following set of directives allow

such a private library to be written on to a magnetic tape, and used. If this is done,
then the private library will supplant the system library, and therefore it will be
necessary to include in the private library, copies of all system routines needed.

These routines may be obtained from Atlas Computing Service.

The *MAKE LIBRARY directive

Definition *MAKE LIBRARY TAPE n BLOCK m

where n and m are unsigned integers.
The * must appear in column one.

This directive is used to write a private library of routines on to magnetic tape number
n, starting at block number m. All routines which follow the directive must be in object
(BAS) form. These routines are written on to tape n in order, starting at block m; and
writing is terminated by the appearance of a *LBEND directive (see below).

Main routines should not be put into the library; but the library may contain any form
of subprogram except BLOCK DATA.

Several libraries may be put on to the same tape, by modifying the value of m.

Example: *MAKE LIBRARY TAPE 1 BLOCK 201

144

*12.1.2

*42.7.3

The *LBEND directive

Definition *LBEND

This is punched in column 1 through 6

This directive is used to terminate the writing of a library after a *MAKE LIBRARY
directive has been used.

The *LIBRARY TAPE directive

Definition *LIBRARY TAPE n BLOCK m

where n and m are unsigned integer constants.
The * must appear in column one.

This directive is used in order to access a private library which has previously been
made as described in section 12.7.1. When the directive is encountered, magnetic
tape number n is positioned to block number m. The start of a private library should
be in block number m: i.e. a library should have been made using *MAKE LIBRARY
TAPE i BLOCKj, where i = n and j = m.

The *LIBRARY TAPE directive may appear anywhere in the program (but not within a
routine). The directive is only useful if the program is to be executed, and should

appear somewhere before the *ENTER directive.

When the library is loaded, (immediately prior to execution) only the routines which
have been called (or indirectly called) by the job, are loaded.

Example: *LIBRARY TAPE 1 BLOCK 201

1341

13.2

145

CHAPTER 13 OBJECT (BAS) CARDS
(and Arrangement of Decks)

OBJECT CARDS

Once a program, or subprogram, has been debugged, it is wasteful to keep re-compiling
it every time the program is to be executed.

To avoid this, it is possible in Fortran to produce a "machine language" version of each
routine compiled. This version is punched on 80 column cards, which are called object
(or binary) cards. These cards contain machine instructions etc., which are in a form
close to machine language; in fact the language is Binary and Arbitrary Symbolic (BAS).
Object cards are produced for each routine which had CARDS (or CARDSn) specified in
its *FORTRAN directive, even if the source routine is punched on paper tape, but see
also section 12,2,

The object cards produced for a routine take the form:

(i) a *BAS card followed by

(ii) object cards which have the + (ox 10) position of column one punched;
followed by '

(iii) The last object card, which does not have the + position of column one
punched.

ARRANGEMENT OF ROUTINES

The arrangement of a typical job is as follows:

(i) Job Description

(ii) *RUN directive

(iii) Source routines (if any), each preceded by a *FORTRAN directive.
(iv) Object routines (if any)

) *ENTER or *END directive

(vi) Data (if any) for input stream zero

(vii) End of document marker (7/8 card, or ***Z on paper tape).

In addition, separate documents, to be read on input streams other than zero, may be
present.

If the source routines are on paper tape, and object routines (always on cards) are to be
loaded, then the *INPUT directive must be used (section 12,35)

A job may consist only of source routines, or only of object routines or a mixture of
both. If both are present, then all source routines must come first: once a *BAS card
has been read, no more source material can be processed.

If a job is to be executed, then no two routines of the same name should be presented.
If two routines of the same name are presented, then both are compiled (if source), but

146

*13.3

the first one is the one which is used in execution. For all practical purposes, there
is.no.limit on the sizes of routines which may be compiled in Fortran V, since no fixed
length tables are used in the compiler.

DETAILS OF OBJECT CARDS

Each BAS card is of the form:

Columns 1- 4 *BAS

u 9-16 Name of routine

s 17-24 Entry point relative to origin (start) of routine.

" 25-32 Length of routine.

iy 33-40 Number of auxiliary entry points defined in
routine.

R 41-48 Length of unlabelled COMMON defined in routine.

" 49-71 The time and date when the object cards were
punched is given.

" 72-78 Identification of routine (see section 12.2)

e 79-80 0 0 (start of numbering)

The contents of columns 9-16 are blank in the case of a main program; each of the next
4 fields contain an octal integer, and usually the first and last columns will be zero and
left blank. i

Following the *BAS card are one or more object cards. These cards all have the 7 and
9 positions of column one punched. They are serially numbered in columns 79 and 80.

If a routine contains more than 100 object cards, then columns 77 and 78 are also used
for the three or four digit serial numbers.

Each object card contains a checksum of all internal information. The use of this
checksum may be supressed by punching the 0 (zero) position of column one.

The object cards contain information which can be loaded into any part of storage in such
a way that the routine may operate there. Such object routines are known as relocatable,
and they may be loaded in any order.

The amount of information contained in the card is punched as a count in rows 2 to 6 of
column one. This is a binary count with the units position in row 6, and is a count of
the number of words of information on the card.

The other columns of object cards are used as follows:

Columns 2, 3 and 4; contain the relocation bits to indicate whether a particular 24 bit
half word is to be incremented by the value of the initial loading address of the routine.
The punching is described below.

Columns 5 and 6: Contain a 24 bit checksum of all information on the card.

The checksum is such that the logical sum (with end-around-carry) of the information in
columns 1 to 8, and of the information words in column 9 onwards is 77777777 octal.

Columns 7 and 8: Contain the loading address of the first information word to be
loaded, relative to the origin (start) of the routine.

Columns 9 onwards: Each word of information occupies 4 columns, the first in columns
9 to 12, the second in 13 to 16, and so on up to column 72. From a group of columns,
the lowest numbered columns represent the more significant binary digits of a word,
with the + row most significant; and the 9 row least significant,

Each word is treated for relocation as two separate 24 bit halfwords. The relocation

147

bits in column 2 refer to the halfwords in columns 9 to 32; the bits in column 3 refer to
the halfwords in columns 33 to 56, and those in column 4 to the halfwords in columns 57
to 724

The relocation bits of a column are taken in turn from the + row down to the 9 row. A
punch indicates that the 24 bit halfword it to be incremented by the initial loading
address of the routine. The + row refers to the first pair of columns, the - row to the
second, and so on.

(1)

(2)

(4)

149

APPENDIX 1 PROGRAMS ON PAPER TAPE

Fortran V programs may be punched on 5 or 7 track paper tape as well as cards.

A job consisting of a mixture of paper tape and card routines may be processed by using
the *INPUT directive (see section 12.5).

The rules for punching paper tape programs are given below, and apply to both 5 or 7
track unless otherwise specified. For the purpose of counting columns on paper tape,
all characters are significant except erases, upper case (figure shift) and lower case
(letter shift) characters, which are ignored. Spaces are significant for column
counting.

Labels (statement numbers) can be started in column 1, and must not contain more than
S characters.

Labels may be separated from the statement by a tabulate character, or alternatively
the line may be punched by inserting sufficient blanks so that the label field (+ blanks)
occupies S5 columns.

The latter method must be used on 5 track tape, since the tabulate character is not
available.

If the latter method is used, column 6 (which will normally be blank) forms part of the
statement proper, and not part of the label.

A tab appearing anywhere before column 6 causes the following character to be taken as
the first character of the statement proper.

Continuation of statements on to new lines cannot be done on paper tape. A punch in
column 6 of any paper tape line is taken as the first character of the statement punched
in that line.

The maximum number of characters which will be accepted in one paper tape line (i.e.
one statement) is 1000.

If elegant source listings are required, then no line should exceed 96 characters in
length.

There is no provision for an identification field on paper tape lines (as in columns 73 to
80 on cards) any identification field punched is taken as part of the statement proper.

With the provision given below, mis-punched characters (in statements or in labels) may
be deleted by manually back-spacing the tape, and punching an erase over the offending
character. The back-space character must not be used.

The statements where erase characters must not appear are

(i) FORMAT statements
(ii) The very first statement (line) of the program following COMPILER
FORTRAN (this should be a *RUN directive).

150

(6) In addition to the above method of deleting mispunched characters, the whole
statement may be deleted by punching a ? (query) in the line. This method must be
used for errors in the *RUN directive, or in FORMAT statements.

If a ? is punched in a line, then the whole line (from the newline preced%ng the ? to the
newline following the ?) is ignored by the compiler. Any label is also. ignored.
However, if a source listing is requested such deleted lines are also listed.

Note that if a ? is punched in a primed text constant, the ? is taken as part of the
constant, and does not cause the line to be deleted.

(7) Except in FORMAT statements and in text constants, the following characters are
always ignored by the compiler: -

space

erase

backspace

spurious upper case (figure shift) i.e. run-out
spurious lower case (letter shift).

inner, or outer set shift characters.

This means that any outer set characters (see Appendix 2) not in primed text constants
or in FORMAT statements, will be taken as their inner set equivalents.

Spaces and inner or outer set shift characters are not ignored in primed text constants.

(8) FORMAT statements are subject to more severe rules than other statements, and the
following characters must not appear in a FORMAT statement.

Erase

backspace

spurious upper case (figure shift)
spurious lower case (letter shift)

If an error is made when punching a FORMAT statement, then the whole line must be
deleted (using a ?) and repunched.

(9) If an error is made when punching a primed text constant, a manual backspace and erase
may not be successful: Such errors should be corrected by punching a' (prime-to end
the literal) and then a ? (to delete the line), and the whole statement should be re-punched.

(10) In the case of comment (C or =) or directive (*) lines, the C or = or * must appear in
column one, i.e. immediately following a newline character. These characters must
not be preceded by any erases or redundant upper or lower case characters.

e.g. If a comment line is punched with a G (say) instead of C, then the G cannot be
erased: the whole line must be deleted by punching a ?.

(11) The facility for conditional compilation of statements with an X punched in column 1 is
also available for paper tape lines. The feature works in the same way as for cards,

and is described in detail in section 2.3.

The X character is subject to the conditions described in paragraph (10) above.

1ol

APPENDIX 2 THE CHARACTER SET

The full character set of Fortran V is given below. With the exception of 3 characters,
only the standard set may be used outside of text constants, of FORMAT statements, or
comments. The standard set is given in section 2.2,

The exceptions to the above rule are:

(i) < (less than), which may be used in relational expressions
(ii) . >(greater than), which may be used in relational expressions
(iii) ? (query), which may be used to delete mispunched lines on paper tape

only (see Appendix 1).
The non standard characters should be used only in text constants for printing etc.

The inner set characters are given in the table at the end of this Appendix. If no paper
tape case is specified, then the character is available as both upper and lower case (or
figure and letter shift), and in both inner and outer sets.

In the card codes, 10 is the top (+) row of the card, and 11 is the second (-) row.

The card code is the Atlas Extended Hollerith Code. This differs from the EBCDIC
code used on System/360, and the ICT 1900 code. The paper tape codes are Atlas
codes. Paper tape punches for other computers may have incompatible codes.

The outer set characters are distinguished from the inner set characters by the presence
of an outer set shift character in the string. Once an outer set shift has appeared all
succeeding-characters are taken as outer set, until an inner set shift character appears.
Further characters are then taken as inner set, and so on.

If outer set characters are present in a text constant, then, when dealing with the
length of the constant, provision must be made for the presence of one extra character
for each change of set. The shift characters are not printed, but they are stored as
part of the constant.

e.g. PRINT 10, '{A]"

The constant in fact contains 7 characters, and not 3, since [and] are outer set, Thus
the format would be

10 FORMAT (A7)
which would print

[A]
Note that

10 FORMAT (A3)
would not print the whole constant, similarly,

152

A2
cont

3H [A]
would not be valid, it must be written as

7H[A]

The outer set characters which are available on the line printers are given below.
Non -available characters are printed as a decimal point.

Imterna] | C2Td Code 7 track tape |5 track tape
Character Code (rows c?de (ca‘se & ct')de (ca.se &
punched) binary bits) | binary bits)
£ pounds 03 = = =
: colon 157, 6,8 LCO0011.111 -
[1eft bracket 21 78 LC0110.001 -
] right bracket 22 11,6,8 LC0110.010 =
- Underline 26 10,6,8 L.C0100.110 =
| bar 27 10,7,8 LCO110.111 -
2 (as in X2) 30 : LC0101.010 .
a alpha 32 S UC0101.010 =
8 beta 33 = UCO0111.011 =
% half 34 = UC0101.100 -
10 ten (pence) 35 = & =
11 eleven (pence) 36 - - -
Erase 77 = 151 % 1 B 11.111

(prints as .)

§ is acceptable for 1
—» is acceptable for ?
; is acceptable for =
x (not ex) is acceptable for &.

In addition, on some punches, the character '(prime) is given as $or &.

Note: on most Atlas Flexowriter keyboards the characters below may be punched:

153

Internal Card Code 7 -track tape S-track tape
CHARACTER Code (rows code (case & code (case &
(octal) punched) binary bits) binary bits)
0 zero 20 0 UC0100.000 FS00.001
1 21 1 UC0110.001 FS10.000
2 22 2 UC0110.010 FS01.000
3 23 3 UC0100.011 FS11.001
4 24 4 UC0110.100 FS00.100
5 25) UC0100.101 FS10.101
6 26 6 UC0100.110 FS01.101
7 27 7 UC0110.111 FS11.100
8 30 8 UC0111.000 FS00.010
9 31 9 UC0101.001 FS10.011
A 41 10,1 UC1010.001 LS10.000
B 42 10,2 UC1010.010 LS01.000
€ 43 10, 3 UC1000.011 LS11.000
D 44 10,4 UC1010.100 1.S00.100
E 45 10,5 UC1000.101 LS10.100
F 46 10,6 UC1000.110 LS01.100
G 47 10,7 UC1010.111 LS11.100
H 50 10,8 UC1011.000 1.500.010
I)il 10,9 UC1001.001 LS10.010
d 52 i UC1001.010 Ls01.010
K 53 i1y 2 UC1011.011 LS11.010
iz 54 11,3 UC1001.100 LS00.110
M 55 11,4 UC1011.101 LS10.110
N 56 L1;5 UC1011.110 LS01.110
O (owe) 57 11,6 UC1001.111 L.S11.110
P 60 11,7 UC1110.000 1.S00.001
Q 61 11,8 UC1100.001 1.510.001
R 62 11,9 UC1100.010 LS01.001
S 63 0,2 UC1110.011 LS11.001
T 64 0,3 UC1100.100 LS00.101
u 65 0,4 UC1110.101 1.510.101
v 66 0,5 UC1110.110 LS01.101
w 67 0,6 UC1100.111 LS11.101
X 70 0,7 UCI1101.000 LS00.011
b il 0,8 UC1111.001 1.510.011
Z 72 0,9 UCI1111.010 LS01.011
blank 01 none 0010.000 FS01.110
(10 0,4,8 1.C0111.000 FS10.100
) i) 10,4, 8 LC0101.001 FS01.100
, comma 12 0,8,3 L.C0101.111 FS11.110
T pi 13 L1 8);+3 LCO0111.011 1.S01.111
? query 14 115855 L.C0101.100 LS10.111
& ampersand 15 8,5 LCO0111.101
* asterisk 16 11,8,4 LCO0111.110 FS11.000
/ slash 17 0,1 UC0011.111 FS11.101
< less than 32 0,8,5 1.C0100.011
> greater 33 10, 8,5 L.C0110.100 FS10.001
= equals 34 8,3 LC0100.101 FS01.010
+ plus 35 10 UCO0111.101 FS01.011
- minus 36 11 UCo0111.110 FS11.010
. point 37 10,8, 3 UCO0101.111 00.111
' prime 40 8,4 1.C0100.000 FS10.111
tabulate 02 0000.100
shift to O. Set 04
shift to I. Set 05
shift to LC/LS 06 0010.110 11.011
shift to UC/FS 07 0000.111 00.000

190

APPENDIX 3 SOURCE STATEMENTS
AND SEQUENCING

A complete list of Fortran V statements is given overleaf. In general, the ordering of the
statements should be such that all specifications statements appear in the text of the
program before any of the specified variables are referenced.

Variables are considered to have been referenced if they have occurred in:

(i) an executable statement, or a statement function.

(ii) a DATA statement, or Type statement in which values are assigned.
(iii) as a dummy argument

(iv) a COMMON or PUBLIC statement.

) an adjustable dimensioning statement.

(vi) an EXTERNAL statement, or otherwise used as a routine name.
(vii) or have already occurred in an EQUIVALENCE.

The specification statements are: -

Type statements
COMMON
DIMENSION
PUBLIC
EXTERNAL

If a variable appears in a specification statement and is to appear in an EQUIVALENCE
statement, then the EQUIVALENCE statement must come after the specification(s), and
before any reference to the variable. Otherwise the order of the specification statements
is not significant, except that:

(i) For adjustable dimensions, the array dimension declaration must come after
(or in the same statement as) any type declaration. It must also come after
any declarations involving the variables used in the dimensions.

(ii) If values are assigned in a Type statement, then any dimension information
must come first (or it may be in the same statement). Such variables must
not appear in an EQUIVALENCE statement.

156

A3
cont

Statement Executable or Not Position in Program

a = b (arithmetic or Executable Anywhere

logical replacement)
ASSIGN Executable Anywhere
BACKSPACE Executable Anywhere
BEGIN Non executable at start of a program block
BLOCK DATA Non executable First Statement of BLOCK

DATA Subprogram

BOOLEAN Non executable See above
CALL Executable Anywhere
CLEAR Executable Anywhere
COMMON Non executable See above
COMPLEX Non executable See above
CONTINUE Executable Anywhere
DATA Non executable Anywhere
DIMENSION Non executable See above
DO Executable Before the statement

number it references

DOUBLE LENGTH

DOUBLE PRECISION Non executable See above

REAL*8

END Non executable Last statement of program
or subprogram, or of a
program block

ENDFILE Executable Anywhere

EQUIVALENCE Non executable See above

EXTERNAL Non executable See above

f(x) = b (statement

Executed by reference

Before any reference to

function) to it in other statements the function in an
executable statement
FORMAT Non executable Anywhere
FUNCTION Non executable First statement of

type FUNCTION

FUNCTION subprogram

XXX FUNCTIONS

Non executable

Anywhere (see Chapter 8)

GOTO

Executable

Anywhere

GOTO
(computed)

Executable

Anywhere

157

Statement Executable or Not Position in Program

IF Executable Anywhere

(arithmetic)

LF Executable Anywhere

(Hartran logical and

Fortran IV logical)

IMPLICIT Non executable See above

INTEGER Non executable See above

LOGICAL Non executable See above

Machine code Executable Anywhere

OUTPUT Executable Anywhere

PAUSE Executable Anywhere

PRINT Executable Anywhere

PUNCH Executable Anywhere

READ Executable Anywhere

READ TAPE

READ INPUT TAPE

REAL Non executable See above

RETURN Executable Anywhere

REWIND Executable Anywhere

STOP Executable Anywhere

SUBROUTINE Non executable First statement of
SUBROUTINE subprogram

TEXT Non executable See above

TRACE Executable Anywhere (see Chapter 10)

TRACE PATH Executable before first label referred
to in the TRACE PATH
statement

TRUNCATION Non executable Anywhere (see Chapter 5)

UNLOAD Executable Anywhere

WRITE Executable Anywhere

WRITE TAPE

WRITE OUTPUT TAPE

159

APPENDIX 4 TABLE OF SYSTEM FUNCTIONS

The tables overleaf give the names and properties of all intrinsic and basic external
functions available in Fortran V.

The instrinsic names vary according to whether a FUNCTIONS statement (or *RUN
option) has been supplied. The basic external names (if available) are always the same,
no matter what set of intrinsic names is in force. Functions are described in detail in
section 8.4.

In the tables the following abbreviations are used:

C Complex

D Double precision
I Integer

L Logical

R Real

a argument

a, first argument
a2 second argument

The arguments of the trigonometric functions are expressed in radians.

INTRINSIC NAME

Ju0d
1A'

ASA or F4 OLD or F2 HARTRAN Basic Type Number Type
FUNCTIONS FUNCTIONS FUNCTIONS External of of of Properties of Function
(STANDARD) Name Function | Arguments Arguments
(result)

ABS ABSF ABSF ABS R 1 R Result is absolute value of a.
IABS XABSF IABSF IABS I il I i.e. ABS(a)=/a/
CABS = = = R 1 Cc
DABS = = = D il D
*AINT INTF AINTF AINT R 1 R Result is equal to the largest integer
* INT XINTF INTF INT I 1 R less than or equal to a.
* IDINT C = = I 1 D (see 5.1.4(2)).
(see note below)
NINT = NINTF NINT I il R Result is equal to the nearest integer

toa. Seeb.l.4.(2)

= = FIXF FIX R il R Result is equal to the sign of a multiplied by

IFIX XFIXF IFIXF IFIX I 1 R the largest integer which is less than, or equal

to, the modulus of a. See 5.1.4 (2).
SIGN SIGNF SIGNF SIGN R 2 R Result is equal to sign of a, multiplied by the
ISIGN XSIGNF ISIGNF ISIGN I 2 I modulus of a,. (transfer of sign).
DSIGN = = - D 2 D
DIM DIMF DIMF DIM R 2 R Result is equal to a. minus the smaller value of
IDIM XDIMF IDIMF IDIM I 2 I a and a2. (a1 ~-Min a az)). i.e.Positive difference
AMOD MODF AMODF AMOD R 2 R Remaindering. Result is equal to a_-(a /a)a
MOD XMODF MODF MOD I 2 1 Where (a,/a,) is the integer whose magmtuc%e
DMOD & = D 2 D does not exceed the value of a 1 /a 9 and whose sign

is the same as a
e.g. a_-a.* IFI)& (a /a), for MOD.

I =2

091

INTRINSIC NAME

ASA or F4 OLD or F2 HARTRAN Basic Type Number Type

FUNCTIONS FUNCTICNS FUNCTIONS External of of of Properties of Function

(STANDARD) Name Function | Arguments Arguments

(result)

AMAXO (zero) MAXOF = AMAXO R >2 I Choosing largest value. Result is equal

MAXO (zero) XMAXOF MAXF MAXO0 I >2 I to the largest argument; or IFIX

AMAX1 (one) MAXI1F AMAXF AMAX1 R >2 R (largest argument) for MAX1.

MAXI1 (one) XMAXIF = MAX1 I >2 R

DMAXI1 (one) = 5 = D >2 D

AMINO (zero) MINOF = AMINO R >2 I Choosing smallest value. Result is

MINO (zero) XMINOF MINF MINO 1 >2 I equal to the smallest argument: or

AMINI (one) MINI1F AMINF AMIN1 R >2 R IFIX (smallest argument) for MIN1.,

MINL1 (one) XMINIF & MIN1 I >2 R

DMIN1 (one) = = = D >2 D

FLOAT FLOATF FLOATF FLOAT R 1 I Converts a from integer to real.

DBLE = = = D i R Express single precision (real)
argument in double precision form.

SNGL = = = R i, D Express double precision argument in single
precision (real) form. i.e. obtain most
significant part.

REAL - 4 2 R i C Obtain real part of complex argument.

CMPLX = - = C 2 R Express two real arguments in complex form.
Result =a_ +ia

il 2
AIMAG = = . R il C Obtain imaginary part of complex argument.
CON]JG = = = C 1 C Obtain conjugate of complex argument. If

a = x+iy then result = x-iy, and vice versa.

191

INTRINSIC NAME

juod

144

ASA or F4 OLD or F2 HARTRAN Basic Type Number Type
FUNCTIONS FUNCTIONS FUNCTIONS External of of of Properties of Function
(STANDARD) Name Function | Arguments | Arguments

(result)

EXP EXPF EXPF EXP R il R Exponential. Result = ea.
CEXP . 2 .] 1 C
DEXP = = = D 1 D
ALOG LOGF LOGF ALOG R 1 R Natural logarithm. Result = log & B
CLOG = = = Cc 1 C
DLOG = = = D 1 D
ALOGI10 - LOGI10F = - R il R Common logarithm. Result = logma.
DLOG10 C 3 = D i D
SIN SINF SINF SIN R 1 R Result is equal to sine of argument.
CSIN = = = C 1 C sin (a)
DSIN = = = D 1 D
COs COSF COSF COS R 1 R Result is equal to cosine of argument
CCOs S = = 6} 1 (&) cos (a)
DCOS = = = D 1, D
TAN = TANF TAN R il R Result is equal to tangent of argument. tan (a)
COTAN = = = R it R Result is equal to cotangent of argument. cot (a)
ARSIN - ASINF ASIN R 1 R Obtain arcsine of argument sin © (a)
ARCOS = ACOSF ACOS R 1 R Obtain arccosine of argumemnt cos =4 (a)

91

INTRINSIC NAME

ASA or F4 OLD or F2 HARTRAN Basic Type Number Type
FUNCTIONS FUNCTIONS FUNCTIONS External of of of Properties of Function
(STANDARD) Name Function | Arguments Arguments
(result)
ATAN ATANF ATANF ATAN R 1 R Obtain arctangent of argument. tan-l (a).
DATAN - = = D il D
ATAN2 ATAN2F = = R 2 R Obtain arctangent of quotient. tan—l (a l/ a2).
DATAN2 = a = D 2 D The result lies between + = and - w
TANH = TANHF TANH R il R Hyperbolic tangent. tanh (a).
SINH - = = R 1 R Hyperbolic sine. sinh (a)
COSH S S = R 1 R Hyperbolic cosine. cosh (a)
SQRT SQRTF SQRTF SQRT R 1 R Obtain square root of argument.
CSQRT = & = C 1 C
DSQRT = = z D 1 D
AND = = E 2 See Section 5.1.6
OR - = = 2
ER = = 3 2
NOT = = - 1
SHIFTR = = = 2
SHIFTL = 2 = 2

* Inthe A.S.A.

specification, both INT and IFIX are defined as giving the sign of a times the largest integer less than or equal to the modulus of a.

€91

165

APPENDIX 5 NOTES ON EFFICIENCY

The information in this section may serve as a guide to writing programs which are
economical in the use of time and store on Atlas. However, efficient programming is
an art which is acquired only by experience. Furthermore, the efficiency of a program
depends considerably on the machine and compiler on which it is run, and may change if
improvements are made in the compiler.

Compilation Efficiency

The Fortran V compiler has been carefully designed for high speed compilation. The
compilation speed tends to depend on the number of routines and the overall length of
the program, with only minor variations caused by the type of statement used.

Compilation expenses are considerably increased by requesting

Object Listings

BAS Cards

Source Listings
A program punched on paper tape compiles faster than the same program on cards.
Compilation of many short routines will be more expensive than an equivalent

compilation with fewer but longer routines.

The 'short-list' form in DATA, or input-output statements, will compile more
efficiently than the 'full list' form.

Execution Efficiency

The major cause of inefficiency in a program usually turns out to be use of an
inefficient technique, rather than the efficiency of the machine code produced by the
compiler. Some gains in efficiency may be made if the following points are kept in mind.

Statements inside a loop are executed many times. Therefore, the major rule for
efficient coding is: Do not put a statement inside the loop if it can be executed outside
the loop.

Calls to routines take time. Arguments of routines must be initialised. More efficient
coding will result if, instead of arguments, COMMON or PUBLIC or global variables are
used.

Multi-dimensional arrays are less efficient than one-dimensional arrays.

Adjustable dimensions or dynamic arrays are somewhat slower in execution than arrays
with constant dimensions.

For very large multi-dimensional arrays, efficiency of the Atlas system will be increased
if the first subscripts vary most rapidly.

e.g. DO 2 K=1,N
DO 2] =1,N

166

DO 2 I=1,N
2 A(LJK)=1.0

Storage will be saved if, when multi -dimensional arrays are declared, the largest
dimension is given first.

e.g. DIMENSION A(250, 10)
is better than
DIMENSION A(10, 250)

Programs compiled in TEST mode are less efficient than programs in PRODUCTION
mode. TEST mode should be used only when debugging.

The use of a large number of short labelled COMMON blocks may waste storage.
The INT type of truncation is more efficient in execution than IFIX or NINT.

DATA initialisation and CLEAR are efficient in execution.

(1

(2)

(3)

(4)

(5)

167

APPENDIX 6 SOURCE PROGRAM ERRORS

A list of source program errors detected by the Fortran V compiler is given below.
When an error is found, the appropriate message is explicitly printed. If no source
listing is specified, then the (possibly) incorrect statement is printed together with its
message. The messages always apply to the Fortran statement preceding them, but,
if a source listing is obtained, then comment lines and/or FORMAT statements may
appear between the incorrect statement and its error message.

In Fortran V there is a distinction between warnings or 'possible errors' and serious

or 'grammatical’ errors. Each serious error causes the error count (as in *RUN GO n,
or *FORTRAN CARDS n) to be increased by one. The warning-only messages do not
add to the error count (n).

Note that, once an error has occurred, the compiler may mistake the meaning of later
statements, and may accept incorrect statements or reject correct ones. (see 66 for

an example).

A list of current errors is given below, further messages may be added from time to
time.

SYNTACTICAL ERROR IN ABOVE STATEMENT.

The preceding statement is not a recognisable Fortran V statement, and has probably
been mis-punched. e.g. a comma instead of a point, etc.

Such error statements are ignored, but any attached label is accepted. i.e. these
statements are treated as CONTINUEs.

LABEL NOT SET -***

Occurs when a label (statement number) is referred to, but is not present in columns
1-5 in the routine.

e.g. LABEL NOT SET - 10

If a FORMAT label is not set, then the message is of the form
LABEL NOT SET - NO.10
LABEL GIVEN TWICE -***

Occurs if two, or more, statements have the same label.
FORMAT HAS NO LABEL

Every FORMAT statement must possess a statement number.

SPECIAL FORMAT 6G20 ACCESSED

168

A6 (Warning only). Occurs if reference to FORMAT omitted from formatted 1/O statement
cont (6G20 is accessed).

e.g. PRINT, I
(6) FORMAT GIVEN TWICE: FIRST ACCEPTED

Two FORMAT statements have the same statement number.

7) STRANGE 1/O STATEMENT
Occurs for WRITE INPUT TAPE, or similar invalid statements. The statement is
ignored.

(8) EXPRESSION IN INPUT LIST

Occurs for example in
READ 10, X+Y
%) SYNTAX ERROR IN LIST

Can occur in I/0O list or DATA statement. Usually due to excess or missing commas
or brackets.

(10) ILLEGAL UNIT NUMBER
Unit number referred to is not a legal expression.
e.g. REWIND//

(11) LONGER /VALUES/ THAN LIST

In DATA or Type statements. There are more constants than list items. The excess
constants are ignored.

(12) LONGER LIST THAN /VALUES/
As (11) but too few constants - the excess list items are undefined.
(13) DIFFERENT TYPES FOR /VALUE/ AND LIST ITEM

In DATA or Type statements. Constant and list item should be of same type. Constant
is, however, loaded without conversion.

(14) STRANGE CONSTANT IN /VALUES/
In DATA or Type statements
e DATA A,B /2,X/

(15) ARRAY TOO SMALL FOR LIST PARAMETERS
In DATA statements

(S DIMENSION A(10)
DATA (A(D), I=1, 20)/20%2./

The excess values are not loaded.

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

107

/VALUES/ CANNOT BE ASSIGNED TO BLANK COMMON, OR
ADJUSTABLE ARRAYS.

Can occur in DATA or Type statements. The message is self explanatory.
/VALUE/ TOO LONG FOR FIELD
(Warning only). Can occur in Type or DATA statements.

ekigy: DATA A/10HABCDEFGHI]/
Where A is not an array.

DATA PUNCH LIST FULL
There are too many DATA values for the compiler. This error is not likely to occur.
BLOCK SIZE LARGER THAN IN EARLIER ROUTINE

An attempt has been made to increase the length of a COMMON block defined in an
earlier routine.

STORE AREAS OVERLAP
Can occur if program is too large for machine, or if very large arrays are used.
OPERATOR IGNORED
Arithmetic operator is redundant.
€19, A=*1, taken as A=1
MISSING OPERATOR IS TAKEN AS *
e.g. A(A+1) is taken as A*(A+1)
Note that AB is not taken as A*B
TOO MANY SUBSCRIPTS
More subscripts present than dimensions declared. The excess subscripts are ignored.
TOO FEW SUBSCRIPTS, OR ARRAY NAME USED AS SCALAR
(Warning only). The missing subscripts are assumed to be one.
INVALID MIXTURE OF TYPES IN EXPRESSION
e.g. A = 3*'XY'
Instructions are compiled but result usually meaningless.
ILLEGAL OPERATION ON NON-NUMERIC TERMS
e.g. X = Y Ry
Instructions are compiled, but result usually meaningless.
TYPES OF LHS AND RHS ARE NOT COMPATIBLE

e.g. INTEGER A
A="XY'

170

A6 See Chapter 5 for meaningful combinations.
cont
(28) DO, OR IMPLIED DO: INDEX CHANGED WITHIN LOOP
es g PRINT 10 ((A(D), I=1, 5), B(I), I=1, 6)
or
DO 2I=1,5
I=4 etc.

Indices must be different
(29) DO ENDS ON CONTROL STATEMENT

eyg: DO2I=1,5
2, PO3J=1;6

(Use CONTINUE)
(30) DO: LABEL HAS ALREADY APPEARED

e.g. 2 X=4
DO21=1,2

(31) ILLEGAL DO NESTING

e.g. DO 21=1,10
DO3]=1,5
2 CONTINUE

(32) DO LOOP NOT TERMINATED
The label referred to is not set in program.
(33) ARRAY DECLARED TWICE: LAST IGNORED.
Dimension information is repeated. Only first dimensions specified are aécepted.
(34) REFERENCED ITEM DECLARED COMMON: COMMON IGNORED.
€ A=X

COMMON X

or
REAL A/1./
COMMON A

or
EQUIVALENCE (A, B)
COMMON B

see Appendix 3 for rules.

(35) TWO ITEMS ALREADY REFERENCED: GROUP IGNORED.
Can occur in EQUIVALENCE
€8 COMMON A

B=X
EQUIVALENCE (A, B)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(449

(45)

i o i
or
COMMON A (20)
REAL B(10)
EQUIVALENCE (A,B) (A(10),B(10))
See Chapter 4 for rules.

ITEM DECLARED AFTER REFERENCE

e.g. X=4
INTEGER X

ITEM FORCED BEFORE START OF DATA AREA
Can Occur in EQUIVALENCE
€2l DIMENSION X (10)

COMMON Y

EQUIVALENCE (X(9),Y)

Since Y is referenced, X(1) to X(8) now lie before the start of the COMMON region.
This is invalid.

UNDECLARED ARRAY ON LHS OF STATEMENT
€l X=4

X(1)=7

Where X has not been dimensioned.

STATEMENT FUNCTION DEFINED

(Warning only). Appears when ever a statement function is defined. If no function was
intended, then an array has not been dimensioned.

INCORRECT ARGUMENT IN STATEMENT FUNCTION
Dummy arguments must be simple variable or array names.

WRONG NUMBER OF ARGUMENTS IN SYSTEM FUNCTION
Sl X=SQRT (Y, Z)
Number of arguments must be correct - See Appendix 4.

SYSTEM FUNCTION OVERWRITTEN

(Warning only). Occurs if statement function is given same name as a system function.
The statement function takes precedence.

FUNCTION HAS NO ARGUMENTS
(Warning only). Occurs in FUNCTION statement when no dummy argument is present.
FUNCTION NAME NOT USED IN ROUTINE

(Warning only). Occurs in FUNCTION subprogram, when the function name has not been
assigned a value.

DUMMY ARGUMENT REPEATED

172

Ab
cont

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

Can occur in SUBROUTINE or FUNCTION statements when a dummy argument is
referred to more than once.

c.g. SUBROUTINE X(A,B, A)

VARIABLE NAME WAS PREVIOUSLY USED AS SUBPROGRAM NAME

e.g. E5LL X

X - 4
Names should be distinct.

SUBPROGRAM NAME WAS PREVIOUSLY USED AS VARIABLE
Similar to (46).

EQUIVALENCE ON ADJUSTABLE ARRAY

e.g. DIMENSION A(N)
EQUIVALENCE (A, B)

Illegal equivalence - see Chapter 4. Also applies to dynamic arrays.
EXTERNAL: NAME PREVIOUSLY USED

Name previously used as a variable is now declared EXTERNAL.
DYNAMIC ARRAY DECLARED

(Warning only). Occurs when any dynamic array is dimensioned. This is not an error,
but may be due to name left out of argument list.

ADJUSTABLE ARRAY IN PUBLIC OR COMMON
Not allowed. Also applies to dynamic arrays.
LABEL ON CONTINUATION CARD: LABEL IGNORED

(Warning only). May not be an error, but is often due to punching statements from cc 1,
rather than cc 7.

TOO MANY CONTINUATION CARDS: STATEMENT IGNORED,
The statement covers more than 35 cards, and is ignored.
ILLEGAL CHARACTER: STATEMENT IGNORED

A character has been punched (on a card), which is not in the Atlas card set. See
Appendix 2.

OUTER SET CHARACTER IN LITERAL
(Warning only). This is not an error, but see Appendix 2 for use of O/S characters.
TEXT CONSTANT EXTENDS BEYOND END OF STATEMENT

(Warning only). Occurs if second prime missing or if n H too long.

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

173
e.g. X=80H
with no continuation card,
CONSTANT OUT OF RANGE
Printed if a real or D. P. constant in the program is larger than 10**110.
CONSTANT HAS MORE THAN 22 DIGITS

(Waming only). Constant cannot be stored to accuracy given, but excess digits are
treated as zero, and are not ignored, so that the number is stored accurate to 22 digits.

ILLEGAL OPERAND IN M/C CODE
Message is self explanatory. See Chapter 11 for legal forms.
STATEMENT CANNOT BE REACHED

(Warning only). An unlabelled statement follows an unconditional transfer, and thus can
never be accessed.

UNRECOGNISED OPTION ON DIRECTIVE
e.g. *FORTRAN GO
The illegal option is ignored.

ROUTINE ALREADY LOADED

(Warning only). A routine with the same name has appeared before, This is not an
error. Only the first routine is used.

CHECKSUM ERROR
Occurs if a mis -punched, object (binary) card is loaded.
P.U.T OR CARD MIXUP

Occurs if binary cards are missing or in wrong order, or if a binary deck which uses
the Hartran PARAMETER facility is loaded.

BINARY MIXUP

Occurs when the loader expects a binary card, but actually reads BCD card. Due to
cards in wrong order or missing.

REQUIRED ROUTINES,

followed by a list of routine names which have been referred to, but which are not
present. Note that this could occur by forgetting to dimension an array.

e.g. if A is meant to be an array, but has not been dimensioned, and if the following
Statement appears:

X=A(D),

then A appears to be a function, and is treated by the compiler as such - thus the above
message could appear.

NO MAIN

No main program is present. The job is not executed.

175

APPENDIX 7 LIBRARY SUBPROGRAMS

The following standard constants are held in the library, and may be accessed by
putting their names in an EXTERNAL statement. If the names are also declared to be
DOUBLE PRECISION, then double precision (22 digits) values will be accessed.

e.g. EXTERNAL PI
AREA = PI*¥*R**2

Name Single length Value
PI 3.1415926536
RECIPI (1/7) 0.31830988618
DEG (180/) 57.295779513
RAD (/180) 0.017453292520
E (e) 2.7182818284
LOGEPI (log) 1.1447298858
LOGE10 (log" 10) 2.3025850930
LOGE2 (log %) 0.69314718056
LOG2E (1og§e) 1.4426950409
LOG10E (1o e 0.43429448190
GAMMA 0.57721566490
GAUSS 0. 47693627620

In addition to the list below many mathematical (e.g. matrix) subroutines are available;
these are not in the system library, but are available as object (BAS) decks from Atlas
Computing Service.

Other system library routines are described in reference 6. These include many
routines for specialised input/output operations.

The following library subroutines can be accessed by CALL statements from any
Fortran V program, or subprogram.

Name, and form

Pro i
of arguments perties

EXIT Prints 'END OF JOB' on output stream
zero, and terminates execution
(normal exit).

EEXIT ; Prints 'JOB TERMINATED' on output
stream zero, and terminates execution
(error exit).

OUTBRK (N) Causes a break of output to appear on
output stream N. This should be used
to divide large amounts of output into

manageable segments (of (say) 3000 lines).
(continued)

176

A7
cont

Name, and form
of arguments

Properties

OUTSEL (N)

Select output stream N.

INPSEL (N)

Select input stream N.

OUTREC

Print the output buffer.

INPREC

Read a recoxd to the input buffer,

IOBUFF (A)

Initialise the I/O buffer to contain the
character in the left-most position of A.
(Standard setting is to blanks).

e.g. CALL IOBUFF ('/")

101

Set I/0 buffer to blanks.

SETBFR (N)

This causes a special set of fixed block
length transfer routines to be used instead
of variable length transfers when writing
to magnetic tape. It is only useful when
a known maximum number of words is
being transferred at any one time, and can
be inefficient if there is a wide variation
in the number of words being transferred

at any one time. SETBFR sets the
buffer length to N.

OUTDEL (N)

Delete (i.e. destroy) the current output
on output stream N.

DUMP (X, Y)

Dumps storage from location of X to
location of Y.

PDUMP (A, B, N)

Dumps storage from address of A to
address of B (or B to A if B has the lower
address). If N =0, format is as machine
instructions, with the address in octal.
If N = 1 words are printed all in octal
(i.e. as data words) A and B are simple,
or subscripted variable names, or
routine names.

€:2%

CALL PDUMP (A(1), A(500),1)

CALL PDUMP (THETA, PI, 0)

LOC(N) M = LLOC (N), the location (address)
of N is placed in M. Alternative
(Function) names are LOCF and XLOC.
RMCTR(A) This places, in A, the number of
instruction interrupts left for this job.
TIME(A) Places the time since the start of the job
in A (as a real number of seconds).
OVFLOW (O) Can be used as a logical function to test

(Function)

the overflow indicator and set it to
FALSE.

L7

Name, and form
of arguments

Properties

ELAPSE (A)

Gives the time since the last call of
ELAPSE, (or from the start of the job).
The result is in A as a real number of
seconds.

TXCLOK(A)
or
TXTIME(A)

Gives, in A, a text version of the time
of day, suitable for output on A8
conversion. e.g.

09.47.33

TXDATE(A)

As TXCLOK, but gives date in A8
format. e.g.

11/07/67

TAPES5(I)

For reading five track paper tape.

Sets I (as a Fortran integer) to the next
character on the currently selected

input stream (INSPEL (above) should
normally be used to do this). There are
two modes: -

(i) If read as a binary document then
the bits (i.e. the holes are 1 bits) of the
character form the value of I, so that I
is within the range 0 to 31. For an end
of record, I is setto 32. For the
physical end of tape, Iis 33. The least
significant punch is the one at the edge of
the tape, on the side which is two holes
from the sprocket holes.

(ii) If read as a B.C.D. document,
then I is set to minus the internal code
number of the character read. (See
Appendix 2.) e.g. If the character A is
read I is set to - 33.

TAPE7 (1)

As TAPES, but for reading seven track
paper tape. If read as a binary document
0< 1127
I is 128 for end of record, and 129 for
physical end of tape. The least
significant punch is the one at the edge of
the tape, on the side which is three holes
from the sprocket holes.

TAPES (1)
TAPES (1)

(continued)

For reading six or eight track paper tape
(on currently selected input stream) which
must be presented as a binary document.
I is set to a Fortran integer formed of the
bits (holes) of the number punched.

For 6 track 0<I<é63
For 8 track 0<I<255

For end of record

I=064 (6 track)

°F 1 =256 (8 track)

178

Name, and form
of arguments

Properties

TAPE6 (1)
TAPES (1)
(continued)

Note that because of spurious newlines at
the start of the tape, end of record
characters may appear before the tape
proper is read. For eight track tape,
the least significant punch is the one, on
the edge of the tape, on the side which

is three holes from the sprocket holes.

A8.1

A8.2

AB.3

179

APPENDIX 8 THE JOB DESCRIPTION

Note: the material in this Appendix is dependent on the Atlas Supervisor program, and
is subject to change from time to time. Up to date information is available from Atlas
Computing Service.

Every Fortran V job presented to Atlas must be preceded by a Job Description, which
states, among other things, the output devices to be used, the amount of output to be
produced, and the amount of time to be allowed for compilation and execution.

A brief explanation of Job Descriptions is given below. This explanation will be found
sufficient for most purposes, but further details are given in Reference 8.

Each Job is presented to the computer as one, or more, documents. These are self
contained blocks of information presented to the machine through one input device
without a break. Each document is preceded by a heading, followed by a document
title; and is ended by a card punched with 7 and 8 in column one, or by a paper tape
line beginning with *** (this line is usually ***Z). The majority of jobs involve only
one input document.

THE DOCUMENT TITLE

A title is punched on one card or one paper tape line. It must be different from the
title of any other document present in Atlas at the same time,

It must not start with a blank, comma, point or the word END. The first characters
of the title should be the user's job number.

THE DOCUMENT HEADING
This is one of: -

JOB (preceding a job description document).
or

COMPILER FORTRAN (or USE FORTRAN) (Preceding a program document).
or

DATA (preceding a data document).

THE JOB DESCRIPTION

Where appropriate, the Job Description must contain the information dealt with below.
Each line starts in column one, and may be punched on cards or paper tape. The
various sections which may be contained in a Job Description are given below. Note: -
a maximum of seven input and/or output streams may be used by one job.

180

A8.3.1

The OUTPUT section

This section specifies the kind of output devices to be used, and the maximum amount of
output to be produced on each output device (or stream). (See also section 7.2. 1).

If a device is used which is not specified, or if the specified quantity of output is
exceeded, then the job is terminated with execution error 9: OUTPUT NOT DEFINED or

OUTPUT EXCEEDED (see section 10.3).

The output section of the Job Description consists of the word OUTPUT followed by a list
of the logical numbers of all output documents (i.e. the numbers by which they are
referred to in the program), followed by the output device name, followed by the
maximum quantity of output to be produced by that device. The logical numbers used
for output streams must be within the range

0 < number < 15.

Examples:

a) The presence of a statement
WRITE (6, fmt) list

in the program, where this statement is required to produce output on a
line printer, would require a Job Description specification of:

OUTPUT
6 LINEPRINTER n LINES

where n is the maximum number of lines to be produced on output stream 6.
This could be written on one line as:

OUTPUT 6 LINEPRINTER n LINES

b) OUTPUT
0 LINEPRINTER 500 LINES
6 LINEPRINTER 1000 LINES
15 CARDS 120 LINES (i.e. 120 cards)
8 CARDS 2000 LINES
9 SEVEN HOLE PUNCH 2 BLOCKS
10 FIVE HOLE PUNCH 80 LINES

The term "LINES" means records (see section 7.3). One "BLOCK" is
equal to 512 words each of 8 characters (this is usually equivalent to about
two printed pages).

Note: Output streams 0 and 15 are used by the Fortran V compiler. Source (and

object) listings are produced on output stream 0, and object cards are punched on output
stream 15.

Output stream O is usually a line printer (but it need not be), output stream 15 should
always be specified as a card punch if object cards are to be punched (see section 12.2).

In addition PRINT statements access output stream 0, and PUNCH statements access
output stream 15.

In order to write the Job Description, it is necessary to know how much output is likely
to be produced by the compiler. If a routine contains P lines (statements and comments
and continuation lines), then the following output is likely to be produced on stream zero: -

(i) 100 lines; plus

A8.3.2

181

(ii) if SOURCE is specified: 2P lines; plus
(iii) if LIST is specified: 4P lines; plus
(iv) if MAP is specified: 50 lines

In addition, on output stream 153: -
(v) if CARDS (or CARDSnh) is specified: 2P/3 lines. (This is approximate).
Thus, for a program containing 300 statements for which it is required to produce
SOURCE listings, and object CARDS for each routine, and a loading MAP, a minimum
specification of:

OUTPUT

0 LINEPRINTER 700 LINES

15 CARDS 200 LINES
would be required.
Note that any cards punched on stream 15 by the program (by PUNCH, or WRITE (15,
fmt)) would have to be added to the above estimate; similarly with any program output
on stream zero (by PRINT, TRACE, OUTPUT or WRITE (0, fmt), statements).
The above proportions of output produced to number of source statements are approximate,
and may be exceeded under some circumstances: e.g. if a job consists of a large

number of short routines. However, a job is not likely to exceed the above estimates
by more than 50 per cent.

The INPUT section

A description of the way in which input streams are specified is given in section 7.2.2.

Normally, the program itself is read on input stream zero, and this input stream is not
usually specified in the Job Description.

If input statements in the program refer to input streams other than zero, then these
streams must be specified in the Job Description.

e.g. READ (5, fmt) list
This refers to input stream 5, which could be specified in the Job Description as:

INPUT
5 LXP932XY, BOND NUMBERS

There would then exist a separate document with the heading and title: -

DATA
LXP932XY, BOND NUMBERS

The title following the stream number in the Job Description must match exactly with
the title following the DATA line.

The job cannot be run until all input documents specified in the Job Description are
present in the machine.

The logical numbers used to refer to input devices (streams) must be within the range: -
0 < number < 15

and this number may be the same as a logical number used for an output stream.

182

A8.3.3

(1)

Data read by READ statements on input stream zero may follow the *ENTER directive
and do not need an INPUT specification in the Job Description.

Example: INPUT
5 LSR584X3, SMITH SUEZ DATA
7 LSR584X3, SMITH HUNGARY VALUES
15 LSR584X3, SMITH VIETNAM STATISTICS

This would require that the following documents be provided

DATA
LSR584X3, SMITH SUEZ DATA

and DATA
LSR584X3, SMITH HUNGARY VALUES

and DATA
LSR584X3, SMITH VIETNAM STATISTICS

Note that the input stream number is not given in the data document itself (although it
could be mentioned in the title if desired), and that the type of input device is nowhere
mentioned.

The title(s) used for data documents must be different from the title of any other
document present in the machine at the same time, hence data document titles must be
different from job titles. In order to avoid confusion with other jobs, the job number
and user's name should be present in all data document titles.

Magnetic tapes
One Inch (Ampex) Tapes

As described in section 7.2.3, when a magnetic tape is used for input or output (or
both), the word TAPE must appear in the Job Description.

Example: READ (10) list
Would require a specification such as: -

TAPE
10 LSO10*PERMIT

Where LS010 is the title (or reel number) of the magnetic tape (this is physically
present at the start of the tape); and the * means that what follows is a comment to the
machine operators. The usual comments are

PERMIT
or
INHIBIT

INHIBIT means that the tape is to be file protected; i.e. the tape can only be read, and
will not be written to. If an attempt is made to write on an inhibited tape, then the job

will be terminated on execution error 9: WRONG TAPE MODE.

PERMIT means that the tape can be written as well as read.

A8.3.3
cont

(2)

()

180
The logical number used for a one-inch magnetic tape must be within the range
0 < number <99
The number should not be the same as the logical number of any input or output stream.

The titled magnetic tapes described above are hired by the user and are not used by other
programs. Sometimes however, it may be desired to use a (one inch) magnetic tape for
intermediate storage while the job is being run, and it may not be necessary to retain

the tape after the job is finished. In such cases a COMMON (scratch) tape is

specified in the Job Description.

e.g. TAPE
COMMON 10

Common tapes are mounted in "PERMIT" mode (i.e. they are not file protected).

A common tape cannot be retained by the user once the job is finished and it may be
overwritten by other jobs.

Half Inch (I.B.M.) Tapes

Half-inch tapes, which are compatible with I.B.M. 7 track tapes, may be used for
formatted (B.C.D.) I/O operations on Atlas. These tapes cannot be used for unformatted
(binary) input or output.

The logical number used for a half-inch magnetic tape must be within the range
0 < number < 15.

Not more than two half-inch tapes may be used in any one job.

Example: READ (3, 10) list

when used to access a half-inch tape, would require a specification such as:

TAPE IBM (to indicate a half-inch tape)
3 LP0O08 SMITH DATA 556 DENSITY INHIBIT

In this example, LP008 is the reel number of the tape, and SMITH DATA is the title of
the tape. These are not normally written on the tape itself, and hence cannot be checked
by the Supervisor, but they must appear in the Job Description so that the correct reel
can be mounted. If desired, a title record could be written on to the tape, and checked
by each program that uses it, but there is no automatic facility for doing this.

The words 556 DENSITY indicate the density at which the tape is to be read, or
written. All operations on the tape must be performed in the same density.

There are three densities: 200, 556, and 800 six-bit characters to an inch. On the
London Atlas, these.densities are referred to as low, medium, and high density
respectively; but at some installations high density refers to 556.

INHIBIT has the meaning described in (1) above.

Lengths of magnetic tapes.

A new one-inch magnetic tape contains about 5000 blocks each of 512 forty -eight bit
words.

A new half-inch tape can contain the equivalent of:

184

A8.3.4

A8.3.5

at 200 density: 1300 blocks
at 556 density: 3500 blocks
at 800 density: 4900 blocks.

On half-inch tapes, each record is terminated by a 2 inch inter-record gap; so that if
short records are written the amount of information which can be contained in the tape

is considerably reduced.

COMPUTING time

The amount of time (or instructions) to be allowed for the compilation of a job must also
be specified. The time includes time spent in execution, and time taken to compile and
load the program. If the specified time is exceeded the job is terminated with the
message C TIME EXCEEDED.

Examples: COMPUTING 1 MINUTE
COMPUTING 1.2 MINUTES
COMPUTING 30 SECONDS
COMPUTING 20000 INSTRUCTIONS

One INSTRUCTION is in fact, equivalent to 2048 basic machine instructions. About
10000 "INSTRUCTIONS'" occur in one minute, so that

COMPUTING 1 MINUTE
is roughly equivalent to
COMPUTING 10000 INSTRUCTIONS

The time spent in execution must be estimated by the user, but a guide to the time likely
to be spent in compilation of a source program containing P lines (statements) is: -

150 instructions
plus If no listing or object cards are produced: SP instructions
plus If a SOURCE listing is produced: P/2 instructions
plus If object CARDS are produced: P/2 instructions
plus If an object LIST is produced: SP instructions
plus 1 instruction for each object card loaded
plus If execution is required: 100 instructions.

Thus, for a job containing 800 source statements, requiring a source listing and object
cards, the number of instructions spent in compilation and loading would be about

150 + 4000 + 400 + 400 + 100

= 5050 INSTRUCTIONS

i.e. about 30 SECONDS
The figures given above are only approximate and may be exceeded under certain
circumstances: e.g. where a job consists of a large number of short routines, or
where there are a large number of complicated statements. However, no job is likely
to be as much as twice as slow as the above estimates.
EXECUTION time
When a job uses magnetic tapes, a certain amount of time is spent in manipulating

(e.g. REWINDing) these tapes. This tape manipulation time is specified separately
from the COMPUTING time, and is known as EXECUTION time. The difference

A8.3.6

185

between EXECUTION and COMPUTING times is usually small, but will vary according
to the number and type of the jobs in the machine.

A reasonable guide is to specify 50 per cent more execution time than computing time.

Examples: EXECUTION 5 MINUTES
EXECUTION 2.4 MINUTES
EXECUTION 100000 INSTRUCTIONS

Note that the Fortran V compiler does not itself use magnetic tapes, and therefore
execution time need only be specified when the program itself uses them. If the
execution time is exceeded, then the job is terminated with the message

E TIME EXCEEDED

STORE requirements

This specification gives the maximum number of storage blocks (each of 512 woxrds)
which are to be used:

(i) in execution (nl)
and (ii) in compilation (nz)
The form is
STORE n l/n2 BLOCKS

If n, is not specified (i.e. if the STORE line is omitted) then 20 blocks are allowed in
execution. If n2 is not specified, the line is written as

STORE n 1 BLOCKS

and 80 blocks are allowed in compilation. Note this standard allocation is subject to
any changes made in the Supervisor. 80 blocks is sufficient for programs up to about
400 statements, if the program is longer than this then the allowance (n,) should be
increased at the rate of 3 blocks for every 100 statements above 400. gain, this is an
approximation, and may not always be sufficient. However, programs are not likely
to exceed the above estimate by more than 10 blocks.

Compile store is dependent on the size of the whole program (plus object routines), and
not merely on the size of the largest routine. There is thus no limit on the amount of
storage which could be required for a compilation.

Savings in compilation storage may be effected by using the COMPILE option on the *RUN
directive (see section 12.1); if this is done the compile store used will depend only on
the length of the largest routine,

When calculating execution storage, 6 blocks should be allowed for library routines, and
one block for each input and output stream.

If either of the storage specifications is exceeded, then the job is terminated with the
message EXCESS BLOCKS.

186
A8.3.7 A complete job description

Examples:
(a) A simple Job Description is:

OB

{JXS99PQR, WELLER BUBBLE CHAMBER
OUTPUT

0 LINE PRINTER 1000 LINES

15 CARDS 200 LINES

COMPUTING 1 MINUTE

COMPILER FORTRAN

*REIN . s€LEL

(b) A more complex job:

JoB

LXS99PQR, WELLER ROTATE AXIS
OUTPUT 0 LINEPRINTER 2000 LINES

6 LINEPRINTER 1000 LINES

15 CARDS 2600 LINES

14 CARDS 200 LINES

3 SEVEN HOLE PUNCH 5 BLOCKS
INPUT

5 LXS99PQR, WELLER AXIS DATA

3 LXS99PQR, WELLER STREAM 3DATA
COMPUTING 70000 INSTRUCTIONS
EXECUTION 100000 INSTRUCTIONS
TAPE

4 LS101*INHIBIT

TAPE IBM

1 LS002 WELLER IBM VALUES 556 DENSITY PERMIT
STORE 65/100 BLOCKS

COMPILER FORTRAN

* RUN etc.

The input documents for streams 5 and 3 must be provided.

The order of the lines in the Job Description is not significant provided that all OUTPUT,
all INPUT, and all TAPE specifications are kept together.

REFERENCES

1 American Standard FORTRAN U.S.A. Standards
Institute. X.3.9 March 7 1966.

2 Atlas Fortran Manual (Part 1) by E. J. York.
HMSO AERE R 4599 (1964).

3 IBM 7090/7094 IBSYS Operating System. Version 13.
Fortran IV language. July 1965. Form No. C28-6390-1
File No. 7090-25.

4 IBM 7090/7094 Programming Systems. Fortran II
Programming. August 1963. Form No. C28-6054-4.
File No. 7090-25.

) IBM System/360. Fortran IV language. 1966.
Form No. C28-6515-4. File No. S360-25.

6 Science Research Council. Atlas Computer Lab.
Hartran System Note No. 4. May 1965.

7 I.C.T. Atlas 1 Computer. Programming manual for
A.B.L. List CS 348A. January 1965.
8 I[.C.T. Ltd., "Preparing a Complete Program for Atlas I"

TL 1254. List CS460 March 1966.

INDEX

A
A format conversion = o &5 &% o =2 e i 61
Accumulator overflow & ia B e e ore e os 122
Actual arguments o ora - e o o 23 »: 86
Adjustable dimensions .. e s 0 e % e o 94
Adjustable FORMAT's .. s s Fi e o3 s . 70
AFTERR library subroutine ofe o o o %6 G .. 125, 126
Allocation of storage o o 5 5% o ol o - 18
Alphanumeric characters. 3 5 O o v o o 12
American Standards Assoc1at10n (A S. A) o T 3o o i 9
Ampex magnetic tape devices .. oxE o v ¥ o G 50
AND (see logical operators) ot e o e BC u e
Apostrophe (see prime) .. v - s i i G ¥
Arguments 3 oy o o or T e o 86
Arithmetic expressions .. oo ¥ Sie oG e - I 27
Arithmetic IF statement .. ot o= o o X s e 42
Arithmetic operators e o 5 oo o o 27
Arithmetic replacement (ass1gnment) statement " e e .- - 34
Arithmetic statement function .. 3G 32 s o o - 91
Arrangement of COMMON oi13 - 0 o Al a e 101
Arrangement of routines - ik iy 145
Arrays .o ‘e .o . 17
adjustable .. e oF o o o ot 29 94
arrangement in storage a5 : s . o 18
declaring size of (see also Type statements) e A e 18
dynamic .3 o & o s o o = 113
efficiency of .. o6 o o = 35 e .. 165, 166
elements of .. o - o . e 5. oo 17
exceeding bounds of .. as] e e oxs s 17
names (identifiers) of eis o - X5 3 e 17
subscripts .. g G e s S 28
unsubscripted (see also short list’) 5 x = s 28
ASSIGN statement P % 50 5% .. o o0 x 40
and block structure .. 0.0 o o ie e - 110
Assigned GOTO statement o - o e - s o 41
and block structure .. = S e o 110
Assignment statements (see Replacement statements) oR i
Asterisk in column 1 X s 39 a6 s oite B e 135, 150
Atlas Fortran (Hartran) .. 45 53 - o e T - 9
Atlas internal code .5 . .. - e . - s 1ER 153
B
B format conversion s o 3 ia s 62
Backspace character
in data o sie o oie o 0 o3 e 78
in source program .. = R fhe e o = 149

BACKSPACE statement .. as o o e X - i 82

BAS cards

Basic external functions s

BCD (formatted) input/output statements

BEGIN statement o6

Binary (object) cards o e ..
Binary (unformatted) input/output statements =

Blank COMMON o8 oo oy
Blank lines e os

in data

in source program o e
Blanks 5.3 .

in data

in labels

in names

in statements 5
Block COMMON (see COMMON statement)
BLOCK DATA statement
Block structure
Blocks (see program blocks)
Boolean constants s
Boolean intrinsic functions s
BOOLEAN statement (see also FUNCTION statement)
Bounds (of arrays) s e & i
Brackets (see Parentheses)
Buffer (1/0)
Built-in functions
list of

c

C in column 1
CALL statement ..
Calling sequence ..
Cards e
for data
for object program
for source program .. g o
CARDS option on * FORTRAN .. s 34
Carriage control (for printer) .. b oo
Character set o e o - o
complete
standard
Checksum 5
CLEAR statement
Column 1 characters:
E]
C
ks
X A 5.8
Commas in FORMAT statement
Comment lines:
on cards
on paper tape . - oy
COMMON statement S8 - e e
array declarations .. 0
blank (unlabelled) COMMON
block (labelled) COMMON
and block structure
COMMON/EQUIVALENCE interaction
Common Tapes
Compatability with other Fortrans
of functions
of truncation,

.

.

.

.o

145,

146
90

79, 80

145,

107
146

55
101

59
11

67, 68

39
17
-1

104
105

16

31, 32

11,

137,

135,
11,
o 163
12,

20
17

60
90
159

150

87
132

145
il |
140
61

L5
11
146
36

150
150
150
150

11
150

99
100
101
100
115
103
183

90
29

COMPILE option on *RUN 3% e o =2 - 5% AT |2

Compiler directives (see Directives)
Complex constants o
COMPLEX statement (see also FUNCTION statement)

Compound logical IF statements X X .o s o's o 43,
Computed GOTO statement w3 o g Ahs o o i
Computing time (see Job description) .. o o .o . .o
Conditional compilation (X in Column 1) i o ire o 12, 141,
Constants .. o o e s

Boolean (octal)

complex

double precision

integer oF oI a0 o 13

logical

real % o o o PR 00

text (Hollerlth and prlmed)
Constants (standard values)
Continuation cards e NG s - O
CONTINUE statement a s
Control Cards (see Directives) .. % o o 8¢ e i
Control specifications (in FORMAT) nT oL o 3 oF,

P,Q, R (scale factors) o o o s Do 8

S (sign printing)
T,Y (column position)

X (blank fields etc) .. e i % £ e i
Z (zero printing control) .. g a9 ols ¥ -
CONTXQ library subroutine o8
Conversions, FORMAT (see field spec1f1cat10ns) .
D
D format conversion 2 . = o
D exponents °F e = a5 &a o 34 14,
Data documents (see Job Descnptlon) oG o5 4
Data on paper tape oF o o o e . o3 o
DATA statement = v % e o e .. = 23,
Data-link .. e oy sité & 45 o o8 o
Decimal exponents “s
in constants o it e -5 23 Aie e 13,
in data o 5 o Ard 5 e 66,
Declarations (see also spec1flcat10n statements) sea > oo oy
in block structure .. o ke o o o e
Device (1I/0) o ks oy
Diagnostics s oF o0 ofc o B s o 56

in source program

in execution:
DIMENSION statement . .
adjustable dlmensmns - xi o
layout of storage ok 96 ok
Dimensions, exceeding bounds of e s o
Directives oo e o B &%) ails 35 e i
*BAS .. e e - o . e wo 149,
*ENTER 9 = i s oo
- *FORTRAN .. S 0 v 33
*INPUT ore X o3 i
*LBEND

*LIBRARY TAPE
*MAKE LIBRARY TAPE
*RUN
Disjoint blocks 4
Division (see also ar1thmet1c operators) 5% 5 3 9 ok

136

14
20
112
41

150
13
16
14
14
13
15
13
15

175
11
47

71
71
72
74
73
74
125

66
66

78
24

49

14

108
49

167
120
18
94
18
17

146
142

141
137

142
144
144
143
135
106

integer division
truncation of
Division overflow

DO level
DO statement
index of s - S o0
parameters of
range of
step of

DO-implied loops 35

in DATA statement .. ok

in I/0 list T
Documents (see Job Description) ot
Dollar sign (or =) in column 1.
DOUBLE LENGTH statement (see also FUNCTION statement)
Double precision constants :
DOUBLE PRECISION statement (see also FUNCTION statement)
Dummy arguments sl e e o oo
DUMP and PDUMP library subroutmes g0 ars " os
Dynamic arrays .

E

E exponents o'e 5 e o T Yo o
in constants
in data
E format conversion
Efficiency 56 .
of compilation
of execution 9% o9 o
Embedded blanks (see blanks)
END statement .. oL .o ot .o .o of &
and block structure .. o v .is ok
*END directive .. e sis s y1e o ore
ENDFILE statement o s .e °F o i@ o
End-of -file processing .. e o0 o0 o
*ENTER directive o or i s
Entry point of routine % or 10 oo .o
EQ (see relational operators) .. s 5 o
EQUIVALENCE statement o o oxe - o
and block structure .. o Ve os o1
Erase character e o o e e e
in data Sr 5% P oG o
in source program .. 9 oo .
Errors e o1 o i o 56 .o
in execution i ok e
in source program
Evaluation hierarchy

Arithmetic

Logical
Example o6 e

of block structure

of error trace 5

of source listing T 5
Executable statements (list of) .. o3 o o o
Execution

errors during

efficiency of ok

time required (see Job descrlptlon)
Explicit declarations (see Type statements)
Exponentiation o
Exponent overflow e X e

29, 31
29

122

137

45

46

- 46
% 46
46

24
51

11, 150
20

14

20

86

176

113

13
66
66

165

168

ke 106
142

82

R 82
.o 141
140

22
115

78
149, 150

oo 120, 122
.o 167

28, 29
33, 34

.. 105, 106
e 121
138

156, 157

120, 122
165

27, 31
122

Exponents i
in constants
in data
Expressions
arithmetic
logical o .o
relational 51
Extensions oA oo s
of a COMMON block
to the Fortran language
EXTERNAL statement
and block structure

F

F format conversion
FALSE (see also logical constants)
Field specifications

W >

"o AT TQaQmmo

(prlme)

Field termination (see commas in FORMAT)

Fixed point (see integer)
Flexowriter characters
Floating point (see Real) .

Formal parameters (see Dummy arguments)

Format free input

Format specifications o
control spec:.flcatlons
non-numeric
numeric

FORMAT statement

format and list mteracuon

punching of .. .o

records defined by

variable format
Formatted I/O statements

PRINT

PUNCH

READ .o
READ INPUT TAPE
WRITE

WRITE OUTPUT TAPE
Fortran II .. v &4
function names
1/0 statements
Fortran IV .. s s

function names

I/O statements

logical IF .o ..
Fortran V compiler o 5
Fortran program .o

.

13, 14
66, 67

27
33
32

100, 103
9

96

115

68
65
56, 57
61

66
66

69

65
70

oF s5, 1525 1183

- . 75
o 5 57
A o 71
e o 61
e .o 65
A oF 56
.o oo 59, 79
W ok 150
e e 59
77

oI 79

o 80

on or 80
BT s 79
79

80

80

90, 159
55, 56, 79, 80

oo . 90, 159
oo 55, 56, 79, 80
.o > 43
o s 9
oo e 85

*FORTRAN directive
Free format input i 5
FUNCTION statement -~ - i
Function subprograms
and block structure
Functions
basic external .
compatibility with Fortran II and Hartran
intrinsic 5 o
library G oo o v
list of
reference to
statement functions
FUNCTIONS statement

G

G format conversion

GE (see relational operators)

Global variables and labels

GO option on *RUN

GO TO statements . o3
assigned o o
computed
unconditional

GT (see relational operators)

H

H format conversion 5

Half -inch (IBM) magnetic tape

Hartran function names

Hartran logical IF

Hierarchy of operations
arithmetic .. o
logical o .o

Hollerith constants (literals)

I format conversion
Identifiers (see names)
IF statements

arithmetic

compound

logical (Fortran IV)

logical (Hartran)
Imaginary number (see complex constant)
IBM (4 inch) magnetic tape o1
Implicit declarations in block structure ..
Implicit type declaration
IMPLICIT statement

and block structure
Implied DO loops (see DO implied loops)

Initialisation of variables (see also CLEAR statement) ..

by DATA statement

by Type statements 3
In line functions (see intrinsic functlons)
In line machine code statements
Index e 51

of DO .

of implied DO

137

75

92

89

105, 106

89

90

o 90
e 90, 159

o 86, 175
. 159
89
91
90

69

108, 109
135, 136

s 41

41
41

63

.. 49, 183

90, 159
44

3 28, 29
33, 34
15

70

42
43, 112
43
44

49, 50, 183
108

18

19

116

24
20
131

o 45
s 24, By .52

Inner blocks .

*INPUT directive ..

Input list

Input on paper tape

Input/output conversions (see FORMAT spec1f1c:at10ns)
Input/output list o3

Input/output records ais o

Input/output statements

formatted 5
unformatted .. e .
Input streams (see also Job Descr1pt1on)
Integer constants o o' o0 on

Integer division
INTEGER statement (see also FUNCTION statement)
Interaction of store allocation statements
Internal Code (see Atlas internal Code
Internal subprograms (see program blocks)
Intrinsic (built-in) functions

list of

J

Job Description
Documents
OUTPUT stream
INPUT stream
magnetic tapes e o
COMPUTING time .. "
EXECUTION time
STORE requirements

K

K format conversion

L

L format conversion
Label assignment statement
Label variables
Labelled COMMON
Labels (statement numbers)
and block structure
*LBEND directive
LE (see relational operators)
Leading zeros (in labels)
Length of routine
Library subprograms (see also Functlons)
Library (private)
*LIBRARY TAPE d1rect1ve
Line number
Limits on values of numbers (see constants)
List of identifiers and properties
LIST option on *FORTRAN o0
Listing
of source program
of generated object program
Lists . o
input list
I/0 list
in DATA statement

106
142
51
78

51
51

79, 80
55, 56
50
13
29, 31
20
103

90
159

179
179
49, 180
50, 181
50, 182
184
184
185

63

65

40

39

99, 100
11, 39
108, 109
144

39
140
175
143
144
137

137, 139
137, 140

137, 138
140

51
51
24

Literal constants (see Text constants)
Literals in FORMAT (see H and Primed convers1ons)

Local labels and variables e - s 45 57 108, 102
Logical constants . ;3
Logical expressions 5
Logical IF statement o3 i e 21 5 -
= Fortran IV type 43, 112
Hartran type 44
Logical operators : o 33
Logical replacement (a351gnment) statement &3 o % 563 a3 36
LOGICAL statement (see also FUNCTION statement) .. & = 5 20
Logical statement function o RS o o e 5 .w 91
Looping (see DO statement)
LT (see relational operators)
M
Machine language instructions .. 5 & 0 s 3 131
Magnetic Tape (see also Job Descrlptlon) o oY, e 50 s
half -inch (IBM) o0 I ot ol? - 5 49, 50, 183
one-inch (Ampex) - o3 ve o a3 - o 49, 50
manipulation of i e s e e s o 81
notes on use of i o s s = e S 82
Magnitude of numbers (see constants) o
Main program o s & 36 3 P B 85
*MAKE LIBRARY TAPE d1rect1ve AxE i3 o o e g 43
MAP (of routines), option on *RUN - o - o T o 135
Masking operations @ @ o 0 5% st v 31
Mathematical functions (see FunCtlonS -list of)
Mixed mode expressions - o o s o i o » 30
Mode of expressions o = o . o o ¥ ¥ 30
N
Named COMMON (see labelled COMMON) ag s e om
Named labels o - as o g i e v oL 39
Names: ,
of arrays o .o w o o 30 e W 17
of functions .. a1s e oa il o e s 90, 159
of label variables .. o i 50 o5 o0 as 39
of subroutines a ot o os o oo ol 94
of variables (scalars) " o' o - o . 17
NE, NG, and NL (see relational operators) o e o v g
Negative field width (in Format) oE it S % e o 75
Nested DO loops e = 1 o e s o o5 46
Nested implied DO loops i % i ¥ ws 245 52, 53
Nested subprograms (see Program blocks) o .o oz 2 i
Nesting of Format specifications - o o sue s o 57, 58
Newline character e o o o ;@ 3 o .
in data s e i o 9 5 8 03 ga 78
in source program .. - o 9 i " 28 149
Non -executable statements (list of) & 5 - - 54 s 156y 157
Non-numeric Format conversions a5 s o o s o 61
Null (omitted) labels . S e o e - e .. 41, 42, 44
Numeric format conversions - . e s o e o 65
0]
O format conversion o o i ¥e &9 NG o as 70
Object (binary or BAS) cards T e 53 i e o i 145
Object listings .. 2t S e G 5 o V54 s 140

Oblique (see Slash) o 5 5%

Octal constants (see Boolean Constants)

Octal digits
Operands o
arithmetic ..
logical »e it
Operators .. 0 oo
arithmetic .. 9
logical
relational
Options g s)
on *FORTRAN e e
on *RUN . o o,
OR (see logical operators) -
Order of computation in e o5

of arithmetic expressions

of logical expressions
Order of statements
Outer blocks s e
Outer set characters 2 o% oha
Output (I/0) lists
Output records BT s %
OUTPUT statement . 5
Output stream (see also Job Descr1pt10n)
Overflows :

division (by zero)

exponent (too large)

P
P format specification
Paper tape
characters
for source programs a@
for data
library subprograms for readmg
Parameters s

of DO statement
of subprograms
Parentheses 9% o
in arithmetic expressions
in FORMAT statement
in logical expressions
PAUSE statement . e
PDUMP and DUMP 11brary subprograms
Pi (7) in column 1 (see Dollar)

Pi (value of) 9% o > a0
Precedence of statements
Prime (') conversion Vo 573 %
Primed text constant e o
PRINT statement = N R
Printed output .

carriage control a6

length of line o B0
Private library .. » .
Procedures (see also Subprograms) .
PRODUCTION option on *FORTRAN
Program documents (see Job Descnpuon)
Program segments .. .
PUBLIC statcsment oxe £y o

aad block structure .o
PUNCH statcmment =% o3 .o

16

27
33

BT 27
o 33
o 32
B 137

135

28, 29
33, 34
155

106
151, 152
51

51, 59
83, 128
49

122
122

71

152, 153
149
78

177

45
86

. 275 28, 29
57, 58

33, 34

os 47
o 176
o 175
155

63

15
80

61

60

143

i

137, 141
85

166

85, 105
" 98
3 115
i 80

Q

Q format specification
Query (?) character ore
Quotation mark (see prime)

R
R format specification .. o0 +a o
Range of a DO statement Ko o e o%
Range of subscripts we 1% o0 .. oo .o
READ statements s e 7
READ (formatted) i o

READ (unformatted)
READ INPUT TAPE e o o
READ TAPE T . %
Reading of FORMATSs (see variable FORMAT)
Real constants
REAL statement (see also FUNCTION statement)
REAL*8 statement (see DOUBLE PRECISION statement)
Records or i o ot i W
Reference 0 o
to functions .. oD We o s e
to variables
Relational expressions .. =% == o 0 s
Relational operators o o
Relocatable object cards o ¥ o
Replacement statements
arithmetic
logical
RETURN statement
REWIND statement
*RUN directive
Run time o
efficiency
errors e o i'a e -
tracing ‘e e Ve .. .o

S

7 -8 punch in column 1 oo e o » o

7-9 punch in column 1 Vi * e e ks

S format specification .. o o0

Sample program @ or o

SAVE PROGRAM mstructmn . e .
Scalar identifiers (see Variable names) v s o o
Scale factors (in Format)

Scratch tapes (see Common Tapes)

Segments .. oG 142

Sequence (order) of source statements .. ate 56

Shift characters .. i &8 21 a o

Shifting functions . o i .o .

Short list .. 57 - % i D o8 o
in CLEAR statement ot - i oo
in DATA statement
in I/O statements .. e . ore o
in OUTPUT statement B v w e

Side effects in functions . 519

Simple 1/0 lists .. 5 o o

Slash (/) in FORMATSs
SOURCE option on *FORTRAN
Source Program .. ot 0 o
errors in
example of .. o op =6

78,

31,

145,

117,

85,

78,

52,

71
150

71
45

17

79
55
79
55

13
20

89
155
32
32
146

34
36
08
81
135

165
120
119

145
146

72
138
142

71

105
135
151

32

37
24
53
84
93
51
59
137

167
138

listing of £
punching of (on cards)
punching of (on paper tape)
Special characters s .
Specification statements .. o1 ‘e o
COMMON
DATA
DIMENSION
EQUIVALENCE
EXTERNAL
PUBLIC ots
Type statements
Stack :
Standard I/0 unit ass1gnment
Statement functions :
Statement numbers (see labels)
Statements
order of
punching on cards
punching on paper tape
STOP statement
Storage allocation ;
Store requirements (see]ob Descr1pt1on)
Stream Number (see also Job Description)
Sub-expressions
arithmetic
logical
Subprograms o
SUBROUTINE statement ..
and block structure
Subscripts
form of
meaning if omitted
number of
Symbolic I/O designation

System Functions (list of)

T

T format specification
Tabulate character
Tape errors i
TEST mode compilation ..
Text constants
Text in FORMATS
TEXT statement (see also FUNCTION statement)
TRACE PATH statement ..
TRACE statement ;
Tracing of variables at run time
Trapping of execution errors
alternative procedure
standard action
Transfer statements (see control statements)
TRUE (see also logical constants)
Trencation st
TRUNCATION statement g
Type specification o

explicit (see Type statements) v
implicit (see also IMPLICIT statement)

of fomction names .. e

138
11
149
11
155
99
24
18
22
96
98
20
114

79, 80

91

155
11
149
48
18

49

28, 29
33, 34
85, 86

105,

93
106

17, 28

78,
122,
12,

28
28
28
49
159

74
149
123
141

15

63

20
119
117
117
120
125
120

65
29
29

18
89
20

U

Unconditional GO TO statement 2@ o 53 o3 s e 41
Unformatted I/O statements I - . o
READ e Vi - - e it g £ o
WRITE @ o e s #%
Unlabelled (blank) COMMON (See COMMON statement) - ot o
UNLOAD statement sa - - ohia m o 13 o5 82
\"
Variables (see also array)
names of 30 is e o % o g 17
scalar e A o @ % 56 o o 17
subscripted .. o 3 o o e or 17, 28
Variable dimensions (see also Dynamic arrays) oo o ois o 94
Variable FORMAT o o e e o oxs o 77
Vertical line spacing (see Carr1age control) oy’ = oa i
w
WRITE statements o s e o 0@ ¥ ok e °r
WRITE (formatted) .. e s o oo o am 80
WRITE (unformatted) 7 o o o #a o 56
WRITE OUTPUT TAPE o v e ors o 5 80
WRITE TAPE o e ¥ e s i o 56
x -
X in column 1 o - i " o e e o 12, 141, 150
X format specification .. o e °r a5 o 23 e 73
Y
Y format specification .. o 5 . o 3 o AR 74
z
Z format specification .. i o - G i P 0% 74
Zero field width (in format) ra o o ol 33 3 o 76

Designed and produced by A. B. Saunders Associates Ltd
Printed in Great Britain by Megaron Press Ltd

