

-.
A manual
of the
Atlas
Fortran V
Language
by c. F. Schofield

May 1967

University of London
Atlas Computing Service
44 Gordon Square, London WC1. Euston 3421(01-3873421)

CONTENTS

QlAPTERS

1. INfRODUCTION

2. PUNCHINGTHE PROGRAM

2.1 Card layout
2.2 Character set
2.3 Conditional compilation (X cards)

3. CONSTANTS

3.1 Integer constants
3.2 Real constants
3.3 Doubleprecision constants
3.4 Complex constants
3.5 Text constants
3.6 Logical constants
•3.7 Booleanconstants

4. VARIABLESANDARRAYS

4.1 Variable names
4.2 Arrays

4.2.1 The DIMENSIONstatement
*4.2.2 Array storage

4.3 Implicit type assignment
4.3.1 The IMPLICITstatement

4.4 The type statements
4.5 The EQUIVALENCEstatement
4.6 The DATAstatement

5. EXPRESSIONSand REPLACEMENTSTATEMENTS

5.1 Arithmetic expressions
5.1.1 Subscripted variables
5.1.2 Evaluation of arithmetic expressions
5.1.3 Truncation
5.1 .4 The TRUNCATIONstatement
*5.1.5
5.1.6

Type of expressions
Maskingoperations

5.2 Logical expressions
5.2.1 Relational expressions
5.2.2 Logical expressions

5.3 The arithmetic replacement statement
5. 4 The logical replacement statement
5.5 The CLEARstatement

6. THE CONTROLSTATEMENTS
-

6.1 Labels (statement numbers)
6. 1. 1 Label variables

6.2 The ASSIGNstatement
6. 3 The GOTO statement
6. 4 The computed GOTO statement
6. 5 The arithmetic IF statement
6. 6 The logical IF statement

6.6.1 The Fortran IV logical IF
6. 6.2 The Hartran logical IF

6.7 The DOstatement
6. 8 The CONTINUEstatement
6.9 The PAUSEstatement
6.10 The STOPstatement

7. INPUTANDO{,JTPUT

7.1 Introduction
7.2 Symbolic I/O designation

7.2. 1 Output
7.2.2 Input
7.2.3 Magnetic tapes

7.3 Records
7.4 The I/O list

7 .4.1 Definition
7.4.2 Examples of I/O lists
7.4.3 Examples of output lists

7.5 Unformatted (binary) I/O statements
7 .5. 1 The unformatted READstatement
7.5.2 The unformatted WRITEstatement

7.6 The FORMATstatement
7.6.1 Definition
7.6.2 Carriage control
7.6.3 The non-numeric field specification

7.6.3.1 A conversion
7.6.3.2" Bconversion
7.6.3.3 H and primed conversion
7.6.3.4 K conversion
7.6.3.5 L conversion

7 .6. 4 The numeric field specification
7.6.4.1 D con~ersion
7.6.4.2 E conversion
7.6.4.3 F conversion
7.6.4.4
7.6.4.5

G conversion
I conversion

*7.6.4.6 0 conversion
7.6.5 The control specifications

*7.6.5. 1 P, Q and R specification
*7.6.5.2 S specification
7.6.5.3 X specification
7 .6. 5. 4 T and Y specification
7.6.5.5 Z specification

7.6.6 "Format Free" input
*7.6.7 Zero field widths

7.6.8 Variable formats
*7.6.9 Special features of paper tape input

7.7 The formatted READ statements
7.8 The formatted WRITE, PRINT and PUNCH statements
7.9 The magnetic tape manipulation statements

7.9.1 The REWIND statement
7.9.2 The BACKSPACE statement
7.9.3 The UNLOAD statement
7.9.4 The ENDFILE statement

7. 10 The use of magnetic tapes
7.11 The OUTPUT statement

8. SIMPLE PROGRAM STRUCTURE

8. 1 The END statement
8 .2 Main programs and subprograms

8 .2 . 1 Main programs
8.2 . 2 Subprograms

8.3 Arguments (parameters)
8. 4 Function subprograms

8.4.1 Intrinsic and basic external functions
8.4.2 Names of intrinsic and basic external functions

8.5 Statement functions
8.6 The FUNCTION statement
8.7 The SUBROUTINE statement
8 . 8 Adjustable dimensions
8.9 The EXTERNAL statement
8.10 The CALL statement
8.11 The RETURN statement
8.12 The PUBLIC statement
8.13 The COMMON statement

8.13.1 Arrangement of COMMON
8.13.2 COMMON/EQUIVALENCE int eraction

8.14 The BLOCK DATA statement

9. PROGRAMBLOCKSTRUCTUREANDDYNAMICARRAYS

9.1 Introduction to block structure
9.1.1 An example of block structure
9.1.2 Use of block structure

9.2 Block structure definitions
9.2.1 Program blocks
9.2.2 The BEGINstatement
9.2.3 Entering and leaving blocks

9.3 Global and local items
9.3.1 Variables
9.3.2 Labels (statement numbers)
*9.3.3 Assigned GOTO statements
9.3.4 Procedures

9.4 Compoundlogical IF statements
9.5 Dynamic arrays
9.6 Miscellaneous statements and block structure

9.6.1 COMMONand PUBLIC
9.6.2 EQUIVALENCE
9.6.3 EXTERNAL
9.6.4 IMPLICIT

9.7 Summary of block structure

10. TRACINGANDEXECUTIONERRORS

10.1 The TRACE statement
10.2 The TRACE PATHstatement
10.3 Execution errors

10.3. 1 List of execution errors
10.3.2 Supervisor detected errors
10.3.3 Interpretation of error output

10.4 The error statements
10.4.1 To continue execution
10.4.2 To terminate execution
10.4. 3 To take special action
*10.4.4 Advanced features of AFTERR
*10.4.5 Miscellaneous error routines

11. MACHINELANGUAGEINSTRUCTIONS

*11.1 Description of machine language

12. THE COMPILERDIRECTIVES

12.1
12.2
12.3
12.4
12.5

*12.6
*12.7

The *RUNdirective
The *FORTRANdirective
The *ENTER directive
The *ENDdirective
The *INPUTdirective
The SAVEPROGRAMinstruction
Making a private library
*12.7.1 The *MAKELIBRARYdirective
*12.7.2 The *LBENDdirective
*12.7.3 The *LIBRARYTAPE directive

13. OBJECT(BAS)CARDS(and arrangement of decks)

13.1
13.2
*13.3

Object cards
Arrangement of routines
Details of object cards

*Sections marked with an asterisk contain information which is not normally
necessary, but may be useful for specialised applications.

APPENDICES

1. PROGRAMS ON PAPER TAPE

2. THE CHARACTER SET

3. SOURCE STATEMENTS AND SEQUENCING

4. TABLE OF SYSTEM FUNCTIONS

5. NOTES ON EFFICIENCY

6. SOURCE PROGRAM ERRORS

7. LIBRARY SUBPROGRAMS

8. THE JOBDESCRIPTION
A8.1 The Document title
A8.2 The Document heading
A8.3 The job description

A8. 3. 1 The OUTPUT section
AS. 3.2 The INPUT section
A8.3.3
AS.3.4
AS.3.5
AS.3.6
AS.3.7

Magnetic tapes
COMPUTING time
EXECUTION time
STORE requirements
Examples

REFERENCES

INDEX

CHAPTER 1 INTRODUCTION

Fortran is the most extensively used programming language in the world. Compilers
exist for most machines - usually with variations in the language. Fortran is often
considered to be an evolving language, with many dialects. Some of these dialects
contain useful facilities which later become common to the language. The most
common dialects are Fortran II, and, more recently Fortran IV.

Tracing (run -tirne testing) statements.
Blockstructure (nested subprograms).
Fully dynamic arrays.
The CLEARstatement for zeroing variables and arrays.
The OUTPUTstatement for simple format free output.
"Format free" input of numbers.
Negative step, and real index for DOloops and I/O lists.
Improved control in FORMATspecifications (S,Y and Z controls etc).
The use of expressions, where only simple variables were normally
allowed e .g , expressions may be used in I/O lists, as parameters of
DO statements, and as subscripts, etc.
The use of in-line machine instructions.
The use of PUBLIC(name dependent) global variables.
Many other extensions will be found in the text.

Recently, the American Standards Association, (A.S.A) have proposed a standard
subset of Fortran (see Ref. 1). ASA Fortran is very similar to Fortran IVas
implemented on many computers. Extensions to the language are explicitly allowed
by the ASA report, so long as the ASA Fortran is included as a compatible subset.

The Fortran V compiler was developed by Atlas Computing Service in order to provide:-

(i) A subset compatible with ASA Fortran; and good compatibility with
System/360 Fortran IV, and with Atlas Fortran (Hartran), whilst
retaining as much compatibility as possible with Fortran II.

(ii) Efficient compilations using a reasonable amount of storage.

(iii) Goodtesting facilities for development work.

(iv) Extend the useful facilities of the Fortran Language. The useful extensions
to the language include: -

Some of the facilities described above are also available in Atlas Fortran (Hartran).
e are indebted to the Science Research Council, and in particular to Mr. E. B. Fossey,

and Miss B. Stokoeof the Atlas Computer Laboratory at Harwell, for permission to use
the Hartran system library including routines for dealing with input and output.

This publication is a definitive reference manual of the Fortran V language, and is not
intended to be a Fortran primer; however, the presentation of material is such that no
previous knowledgeof Fortran is required.

11

CHAPTER 2 PUNCHING THE PROGRAM

2.1 CARD LAYOUT

Fortran V programs may be presented on 80 column cards,
The rules for punchingpaper tape are given in Appendix1.
followingrules must be observed.

or 5 or 7 -t rack paper tape.
Whenpunchingcards, the

(i) Columns 1 - 5 of the first line of a statement may contain a label
(statement number) to identify the statement.

(ii) Column 6 of the first line of a statement must be left blank or punched
with a zero.

(iii) Columns 7 - 72 contain the actual Fortran statement. Blanks are
ignored, except in TEXT constants, or in an S field in a FORMAT
statement.

(iv) Columns 73 - 80 are not processed by Fortran V, and may be used for
identification.

(v) Lines punchedwith the character C (or 7r) in column 1 are not processed
by Fortran V, and may be used for comments.

(vi) If it is required to extend a statement over more than one line, then all
lines except the first must have a standard Fortran character other than
blank or zero in column 6. The statement is then continued in columns
7 - 72. Such lines are called continuation lines. Anyone statement may
not extend over more than 34 continuation lines (i. e. 35 cards in all).

(vn) Blanklines appearing between two statements will be ignored by Fortran V.
Blanklines should not appear between a statement and its continuation.

2.2 CHARACTER SET

A program is written using the followingstandard characters:

Alphabetic:
Numeric:

A, B, C,
0, 1, 2,

........... ,

........... ,
Y, Z
8, 9

Special: Character Character Name

*

Blank(space)
Equals
Plus
Minus
Asterisk
Slash
Left parenthesis
Right parenthesis

+

/
(
)

12

7r (or $)

Comma
Point
Pi (or Dollar)
Apostrophe (or Prime)

Other special characters may be used, and these are described in Appendix2.

An alphanumeric character is any alphabetic or numeric character.

2.3 CONDITIONAL COMPILATION (X CARDS)

Fortran V provides means for ignoring certain statements when compiling. All
statements which contain an X in column one are treated as comments unless the
TEST option is specified on the *FORTRANdirective of the routine (see section 12.2 (9».
If the TEST option is specified, then lines containing an X in column one are treated
as normal statements, the X itself being treated as blank, and not as a label or part
of a label.

This feature enables the user to include additional statements for testing purposes in
his routines, and when testing is complete, the statements do not have to be removed
from the program, since they can be turned into comments simply by removing the TEST
option.

Anormal statement may have continuation lines, which are X lines (see below). If an
X line has continuation cards, then these cards should also be X cards.

Example: X PRINT 10
X 10 FORMAT('TEST PRINT')

PRINT11,A,B
X 1 ,C,D

11 FORMAT(SX,FI0. 6)

..

13

CHAPTER 3 CONSTANTS

Seven types of constants are permitted in a Fortran V source program; integer, real,
double precision, complex, text, logical and Boolean.

3.1 INTEGER CONSTANTS

an integer constant is a string of one to eleven
significant decimal digits written without a
decimal point, and optionally preceded by a +
or - sign.

Definition I +n

An integer constant occupies one word of storage

An integer constant must lie within the range:

236 236>n>-

A string of more than 11 significant digits is set up as a double precision
constant.

Examples 0
11

+75
032

-7746

3.2 REAL CONSTANTS

Definition -+n.nor +n. or + .n or + n.nE + nor- - - - -
+ n. E+ n or + .nE + n or + nE + n- - - - - -

a Real constant may be: -
(1) An optional + or - sign followedby one to eleven

significant decimal digits, written with a decimal
point, but without a decimal exponent. ~

(2) An optional + or - sign followedby one to eleven
significant decimal digits, written with or without
a decimal point, and followedby a decimal
exponentwhich is written as the letter E followed
by an integer constant.

A real constant occupies one word of storage.

14

The absolute value of a real constant must lie within the range

-110 10510 < x c IO ,or be zero

A real constant has precision to about eleven decimal digits.

A string containingmore than eleven significant digits is set up as a double precision
constant.

Examples: 1.0
1.
0.1
.1
-.73610003 1
3.El (means 3.0 x 10 i.e., 30.0)

-3
.2E-3 (means 0.2 x 10 Le., 0.0002)

42 E+04 (means 2.0 x 10 Le., 20000.)

3.3 DOUBLE PRECISION CONSTANTS

Definition

a double precision constant is an optional + or - sign followed
by a sequence of up to 22 decimal digits written with, or without,
a decimal point, and followedby a decimal exponent, which is
written as the letter D followedby an integer constant. In
addition, real or integer constants containingmore than 11
significant digits are set up as double precision constants.

A double precision constant occupies twowords of storage.

The absolute value of a doubleprecision constant must lie within the range

-110 10510 < d<lO ,or be zero

A double precision constant has precision to about 22 decimal digits.

Examples: 3DO(means 3.0 x 100 LZ" 3.0)
-.4D+2(means -0.4x1O Le., -40.0)
3.141592653736

3.4 COMPLEX CONSTANTS

Definition I (real constant, real constant)

a complex constant is an ordered pair of real constants,
separated by a comma, and enclosed in parentheses.

A complex constant occupies twowords of storage.

The first real constant represents the real part of the complexnumber; the second
real constant represents the imaginary part of the complexnumber.

The parentheses are required regardless of the context in which the complex constant
appears.

The magnitude and precision of each part of the complex constant obey the same rules
as for real constants.

15

Examples: Fortran V representation
(4.7, 0.2)
(-8.3, -.01)
(7. 6E3,0.0)

Complex number
4.7+0.2i
-8.3-0.01i
7600. + 0.0 i

3.5 TEXT CONSTANTS

Definition or 'character string'
or nH character string

a Text constant is
(1) an unsigned integer constant (n) followedby the letter H

followedby a string of n characters. This is a
Hollerith constant.

or
(2) An apostrophe followedby a string of characters followed

by a second apostrophe. This is a primed text constant.

A text constant occupies one or more words of storage, eight characters being stored
in each word.

Spaces (Blanks)are significant characters in text constants.

Bothtypes of constant are left -adjusted and filled out with blanks to an integral
number of words, so that

2HXYis the same as 8HXYbbbbbb
and 'ABC' is the same as 'ABCbbbbb'

In the case of a primed text constant all characters (including spaces) between the
apostrophes are taken as the text constant.
The apostrophe character itself may be used in a primed text constant by punching two
apostrophes, e.g , 'DON"T' will be stored in the machine as DON'T.

Whena text constant is stored, the surrounding primes, or the nH, are not stored with
it.

Examples: SHDON'T
'THISbISbAbPRIMEDbTEXTbCONSTANT'
IIH(HOLLERITH)

Note: The primed text constant is preferable to the Hollerith constant, which should
only be used in FORMATstatements.

3.6 LOGICAL CONSTANTS

Definition I .TRUE. or. FALSE.

A logical constant may take either of the followingforms:

.TRUE.

. FALSE.

A logical constant occupies one word of storage.

A false constant is stored internally as a word whose least significant 24 bits are all
zero.

A true constant is stored as a word whose least significant 24 bits are all ones.

16

*3.7 BOOLEAN CONSTANTS

Definition n B octal digits
or n 0 octal digits

A Boolean, or Octal constant is an unsigned integer constant,
(n, which must not exceed 16) followed by a string of octal
digits of length not exceeding n.

A Booleanconstant occupies one word of storage.

An octal digit is

0,1,2,3,4,5,6, or7, but not 8or9.

Each octal digit is converted to three bits.

If the number (m) of octal digits is less than n, then n -m leading zeros are assumed.

If n is less than 16, then 16 - n followingzeros are assumed.

Examples: BooleanConstant Internal (Octal) word

IBO
3B123
8B123
16B123
160123

0000000000000000
1230000000000000
0000012300000000
0000000000000123
0000000000000123

17

CHAPTER 4 VARIABLES AND ARRAYS

A variable is defined by its name and its type. There are seven types of variables:
integer, real, double precision, complex, text, logical and Boolean.

4.1 VARIABLE NAMES

Definition

A variable name is a string of alphanumeric
characters, the first of which is alphabetic.
Onlythe first eight characters are significant.
Anyblanks embedded in the name are ignored.

Examples: I
L2557X
INNERSUM

Note that the followingare equivalent to INNERSUM:

INNERbSUM
INNERbSUMMATION
INNERSUMP

4.2 ARRAYS

Anarray is a block of successive storage locations which can be referenced by a
subscripted variable name (see 5.1.1). Arrays may have any number of dimensions.
An array name has the same form as a variable name.

The array name and its dimensions must be declared before the name is referenced
(see Appendix3).

An array is composed of one or more elements; each element may be referenced by the
array name followedby the appropriate subscript notation.

For Multi-dimensional arrays, Fortran V uses a special technique to access the element".
Incorrect or incompatible results are likely if any subscript used is outside the range
given by the dimensions. One-dimensional arrays (vectors) may be accessed out of
range provided that the element accessed has had its position relative to the array
defined by a COMMONor EQUIVALENCEstatement (see sections 8.14 and 4.5).

For both single and multi -dimensional arrays, the (possible) error of exceeding array
bounds (i. e. product of subscripts greater than product of dimensions.declared) is
automatically tested for in execution if the routine concerned is compiled in TEST mode
(see section 12.2 (9».

18

4.2.1. The DIMENSION statement

Note: see section 8. 8 for details of adjustable dimensions

Definition I DIMENSION dnamel, dname2, dname3 ...

dname ,dname ... are subscripted variable names, and the
subscrlpts are ~signed integer constants, which represent
the dimensions of the array(s) dname.

where

The DIMENSIONstatement is not executable, and must precede the first reference to
the array(s) being declared (see Appendix3).

The DIMENSIONstatement may be used to declare the dimensions of any number of
arrays.

An array may be declared as having any number of dimensions.

The number of storage words reserved for an array is equal to the product of its
dimensions multiplied by a constant which is 2 for doubleprecision or complex arrays
and 1 for all other arrays.

The DIMENSIONstatement has no effect on the types of the arrays being declared.

Examples: DIMENSIONARRAY(20,3,4),8(2),1(1000,3)
DIMENSIONCOSTS (1,2,3,4,5,6,7,8,9)

*4.2.2 Array storage

Arrays are stored by columns in ascending storage locations, so that the first subscript
varies most rapidly, and the last least rapidly. e. g. the two-dimensional array A(m,n)
is stored as follows:

The second element of A is referred to as A(2,1), the third as A(3,1) and so on. Thus
for the four -dimensional array X: X(I,J,K,L) refers to a storage location which is
greater than X(l, 1, 1, 1) by

where dl, d2,d3 and d4 are the dimensions of X. C is a constant which is 2 for double

precision and complex arrays and 1 for all other arrays.

4.3 IMPLICIT TYPE ASSIGNMENT

The type of a variable name may be specified in twoways:

(i) Explicitly by a type statement (see section 4.4)
(ii) Implicitly by name

In the latter case, any variable names beginningwith one of the characters I, J, K, L,
Mor N are assumed to be of type integer, and any other names are of type real.

Examples: I and J17 are integer names
P6 and ALPHAare real names

19

4.3.1 The IMPLICIT statement

The implicit type assignment described above may be modified by using the IMPLICIT
statement.

Definition

Where
chI' ch2· .. ch7... are any single alphabetic characters

and
typel, type2... are one of:

I' INTEGER
REAL
DOUBLEPRECISIONor DOUBLELENGTH
COMPLEX
LOGICAL
TEXT
BOOLEAN

and
n1, n2". are 1,2,4,8 or 16

The *nmay be omitted, if present they have no meaning except
that REAL *8 is taken as DOUBLEPRECISION.

The parentheses may be omitted from the list of letters
following the last type specified.

An optional comma may follow each right parenthesis.
The dash in ch3-ch4 etc. is a minus sign.

The IMPLICITstatement specifies that variable names beginningwith certain
designated letters, or ranges of letters, are of a certain type.

DOUBLEPRECISION,DOUBLELENGTHand REAL *8 are synonymous.

The IMPLICITstatement does not affect the types of any names which have been
declared before the appearance of the IMPLICITstatement. In particular dummy
argument names are not affected by IMPLICIT.

If more than one IMPLICITstatement is given, then the later will override the earlier
statements for any letters where the IMPLICITstatements conflict.

Examples:

a) IMPLICITREAL I. J

Following this statement all new variable names beginningwith I
or J will be assumed to be of type real (unless overridden by a
later type statement).
Names beginningwith K, L, M or N will still be integer. and
names beginningwith A-H or O-Z will be real.

20

b) IMPLICITTEXT M-Q

Following this statement all new variable names beginning with M, N, 0, P or

Q will be of type text. Names beginning with I, J, K or L will still be integer,
and all other new names will be real.

c) IMPLICITREAL (I,n INTEGER(A-H, Z) BOOLEANC,D

This statement has the effect:

Initial letter of new name
A or B
Cor D
E-H
lor J
K-N
O-Y

Z

Implicit Type
Integer
Boolean
Integer
Real
Integer
Real
Integer

Note that the later appearance of BOOLEANC,D overrides the previous
declaration INTEGERA-H.

4.4 THE TYPE STATEMENTS

Note see section 8. 8 for details of adjustable dimensions.

Definition

Where

type is one of:

INTEGER
REAL
DOUBLEPRECISIONor DOUBLELENGTH
COMPLEX
LOGICAL
TEXT
BOOLEAN

and
name1, name2 ... are variable names, which may be subscripted.
The subscripts must be unsigned integer constants.

and
n is 1,2,4,8, or 16

The *nmay be omitted. If present they have no meaning, except
that REAL*8 is taken as DOUBLEPRECISION.

The / data /, data/ ... may be omitted. If present, then
datal' data2 have the form:

i) A constant of the same type as the declaration
or ii) m* constant, where m is an unsigned integer
or iii) A series of the above two forms separated by commas.

21
4.4 cont

(1) The type statements are used to declare the types of variable names. If a variable
name is declared in a type statement, then this overrides the type implicit in the first
letter of the name.

(2) The type statements may be used to declare the dimensions of arrays. When subscripts
appear in the list, the associated variable name is the name of an array and the
subscripts are the dimensions of the array.

(3) The type statements are not executable, and must precede the first reference to the
variable name(s) being declared. (see Appendix3).

(4) The type statements may be used to assign initial data values to variables or arrays.
A list of constants of the form 1m*cl is equivalent to the list
Ic, c, c ... I where c is written m times.

The constants in the list are loaded into the storage location(s) given by the preceding
variable or array name. In the case of an array, the constants are loaded from left to
right starting at the first location in the array. See also sections 4.6(3), and 4.6(9).

(5) When initial data values are to be assigned by means of a type statement, the type of
constant stored is determined by the structure of the constant, rather than by the
variable type (i. e. by the type of the type statement).

e.g. REALX 131

An integer 3 is stored in X, and not a real 3.0 as may be expected from the type of X.
Care should thus be taken to ensure that the type of the constant(s) is the same as the
type of the type statement.

(6) DOUBLE'PRECISION,DOUBLELENGTH, and REAL*8are synonymous.

(7) If a variable name is declared in two or more type statements, then the first type holds
until the second is read, the second holds until the third is read, and so on. Note,
however, that the type of a variable cannot be changed once the variable has been
referenced. (see Appendix3).

Dimension information should be given once only, but the type of an array name may be
declared in a type statement and its dimensions declared in a DIMENSIONor COMMON
or PUBLIC(see sections 8.13 and 8.14) statement. If this is done, and an array is to
have values assigned in its type statement then its DIMENSIONstatement must come
first, otherwise the order is immaterial.

(8) Variables which are given in an EQUIVALENCEstatement and variables which are
PUBLICor in COMMONcannot be assigned initial data values by means of the type
statements, except in a BLOCKDATAsubprogram. (see section 8.15).

(9) Function names may be declared in type statements, but they must not have initial data
values assigned to them.

Examples:

a) REALI, JARRAY (2,5)

The name I now represents a real variable, and JARRAY is a real
array of length 10 words. Note that JARRAY could also be declared
as follows;

DIMENSIONJARRAY (2,5)
REALJARRAY
or
REALJARRAY
DIMENSIONJARRAY (2,5)

22

Since the DIMENSIONstatement is redundant in such cases, the single
declaration

REAL JARRAY (2,5)

is preferred. Note that:

REAL JARRAY (2,5)
DIMENSIONJARRAY (2,5)

would be in error.

b) INTEGER X/O/, Y (10),Z(2,3)/3*0,2*1,3/

The name Xnow represents an integer whose initial value is zero. The
name Y represents an integer array of length 10words, whose initial
values are undefined. The name Z represents an integer array of length
6words whose initial values are:

Z(l, 1)=0, Z(2, 1)=0, Z(I,2)=0, Z(2.2)=I, Z(I,3)=I, Z(2,3)=3

4.5 THE EQUIVALENCE STATEMENT

Definition

EQUIVALENCE(name1, name2,·· .), (name3, name4, nameS" .) ..

Where name, name ... are variable names whichmay be subscripted.
Any subscriJts must1;e unsigned integer constants.

(1) The EQUIVALENCEstatement specifies that variables with different names are to share
the same storage location(s). Each pair of parentheses in the list encloses the names of
two or more different variables (or array elements) which are to be stored in the same
location. Anynumber of equivalences (sets of parentheses) may be specified.

(2) The EQUIVALENCEstatement is not used to declare the dimensions of arrays. When
subscripts appear in the list these indicate that particular element of an array which
is to be made equivalent to the other items within the parentheses surrounding those
names.

(3) The dimensions of any arrays specified must be declared before the EQUIVALENCE
statement appears.

If the number of subscripts appendedto an array name is less than the number of
dimensionswhich have been declared for it, then the missing subscripts are taken to
be 1. The number of subscripts must not be greater than the number of dimensions
declared (see section 5.1.1).

(4) The EQUIVALENCEstatement is not executable.

(5) No two variables whichhave been referenced may be made equivalent to each other
(see Appendix3).

(6) Dummyarguments, and COMMONor PUBLICvariables may be equivalenced to
variables whichhave not been referenced.

(7) For each equivalence (set of parentheses) there is always one variable name to which
the others are made equivalent. If one of the variable names has been referenced,
then that name is the name to which the others are made equivalent. If none of the
variables have been referenced, then the variable in the list which occupies the most
storage is the one t? which the others are made equivalent. (e.g. the longest array).

(8) The EQUIVALENCE statement must not contradict itself, or any previously established
equivalence. No two elements of anyone array may be made equivalent to each other.
Adjustable arrays may not be equivalenced.

(9) In Fortran V, the EQUIVALENCE statement does not re -order COMMON. See
section 8.13.2.

(10) There is no restriction on the types of variables which may be made equivalent;
however, errors may occur in execution if apparently real variables in fact contain
integer values:

Example: EQUIVALENCE (I, X)
1=3
Y = 3.0
Z = YjX

would cause an execution error, because X contains an integer value (I = 3).

This also applies to other mixtures of types which are made equivalent by means of
EQUIVALENCEor COMMONstatements. (see section 8.13.2).

(ll) Variables which have been assigned initial data values by means of a ~ statement,
should not appear in any EQUIVALENCEstatement.

Examples: Assume REAL A(5), B(1O),C(1O,2)

a) EQUIVALENCE(A, B, C(5,I),X)

A(l), B(l), C(5,I) and X now refer to the same storage location.
Note that: A(2), B(2)and C(6, 1) will also be equivalent, and so on.

b) EQUIVALENCE(A(2), C(4», (B(4), C(5,I»

A(2) and C(4, 1) now refer to the same storage location similarly with
B(4) and C(5, 1). This means that A(I), C(3,I) and B(2) all share the
same location.

c) EQUIVALENCE(C(5, 1),B,C)

This is illegal, because C(1, 1) and C(5, 1) cannot be made equivalent.

d) EQUIVALENCE(A,B(2),C(4, 2», (A(3),B(4»

This is illegal, because the first equivalence establishes that A(I)
is equivalent to B(2)and hence A(3) is equivalent to B(5); and the
second equivalence is not permitted to contradict this.

e) Given COMPLEX CP(1O)
EQUIVALENCE (A,CP)

A(I) and CP(I) are now equivalent. Since each element of CP occupies two
words, A(2) and the imaginary part of CP(I) are equivalent. Similarly,
A(3) and the real part of CP(2) are equivalent, and so on.

4.6 THE DATA STATEMENT

Initial values of variables (data) may be compiled into the object program by means of
the type statements. An alternative and more flexible way of doing this is provided by
the DATAstatement.

24

4.6
cont

i)
or ii)
or iii)

a constant (of any type)
m * constant where m is an unsigned integer
a series of the above two forms separated by commas.
The commas followingthe slashes may be omitted.

Where
list , list ... are input lists with the
resfricti05s given in (1), below.

and
data , data ... are of the form:

1 2

(1) The input list is defined in section 7.4.
The DATAstatement variable list is of the same form as the input list with the
followingrestrictions:-

(i) Implied DOparameters must be unsigned integers.
(ii) If a subscripted variable appears in the list, then the subscripts must be

integers or variable names.
(iii) If any subscript is a variable name, then this name must be under the control

of (i. e. used as the index of) a current implied DO.

(2) The DATAstatement is used to assign initial data values to the variables or arrays
whichappear in its list.

A list of constants of the form Im*cl is equivalent to the list IC, C,C, ... /, where C
is written m times.

The constants are loaded, from left to right, into the list of variable names, any
implied DOloops being taken into account. If a non-subscripted array name appears
in the list, then the whole of the array will be loadedwith the constants. This method
I,e. the Short Listt is preferred whendata is to be compiled into an entire array.

(3) There shouldbe a one to one correspondence between the variables in the list and the
constants. Each constant corresponds to one undimensionedvariable or subscripted
array reference. Note If it is desired to define a text constant of (say) 20 characters
starting at 8(1), then 8 must be dimensionedto cover at least three locations. If the
constant is 'ISbTWENTYbCHARACTERS',then this is one constant which corresponds
to three variables; 8(1), 8(2) and 8(3). To this extent the one to one correspondence
rule is modified.

(4) All variables referred to in the list must have their properties (i. e. types etc.)
declared before the DATAstatement appears.

(5) The DATAstatement is not executable and does not define the value of any implied DO
indexpresent in the variable list.

(6) The type of the constant stored is determined by the structure of the constant itself
rather than by the variable type in the statement,

e.g. DATAX/31 (X is real)

An integer 3 is stored in X, and not a real 3.0 as may be expected from the type of X.
Care should thus be taken to ensure that the type of the constant is the same as the type
of the variable into which it is to be loaded.

(7) The DATAstatement only initialises the values of the variables. DATAdefined
variables that are redefined during execution of the program will assume their new
values regardless of the DATAstatement.

25
4.6 cont

(8) The DATAstatement cannot be used to enter data into blank COMMON. The BLOCK
DATA subprogram may be used to compile data into labelled COMMONor PUBLIC
(see section 8.15).

(9) If a variable is present in the list of more than one DATAstatement, or is given more
than once in the list of one DATAstatement, then only the last value assigned to the
variable will be effective, and all of the previous values are lost. Note also that the
DATAstatement may override any values assigned by a previous type statement
(or vice versa).

Examples:

a) DATAX,I,Q/l.O, I, i.o/

b) DIMENSIONA(1O,10)
DATAA/100*l.0/

every element of A is set to 1.0. This form is preferable to:
DATA«A(I,J),1=1,10), J=1,10)/100*1.0/

c) DIMENSIONA(1O),B(20)
DATAA, (B(l), 1=1,20,2)/3.6,10*4.8,8*6.0, .0/

A (1) is set to 3.6, A(2) to A(lO) are set to
4.8, B(l) is set to 4.8,B(3),
B(5)... B(17)are set to 6.0 and B(19)is set to 0.0.
The even numbered elements of Bare not defined.

d) COMPLEXC
TEXT A, B(2), Al
DATAC, A, A1,B/(l.0,0.0), 'XYZbbbbbABC', 'P', 'Q'/

C is set to 1.0 + O.Oi, A is set to 'XYZbbbbb', Al is set
to 'ABC', B(l) is set to 'P", B(2)is set to 'Q'.

CHAPTER 5 EXPRESSIONS AND
REPLACEMENT STATEMENTS

Fortran Vaccepts two types of expressions: arithmetic and logical. These
expressions form integral parts of Fortran V statements.

5.1 ARITHMETIC EXPRESSIONS

Anarithmetic expression is a sequence of operators, operands and parentheses,
assembled according to the rules given below.

An operator is: -

+meaning addition
subtraction

* multiplication
division
exponentiation

/
**

Anoperand is: -

a constant
a simple variable
a subscripted variable
a function reference (see section 8.4)

Rules:-

(i) Anyoperand is an expression.

(H) If X is an expression, then (X) is also an expression.

(Hi) If X and Yare both expressions then the followingare also expressions:

X +Y X - Y
X*Y X/Y
X**y and -X (but see below)

Anythingwhich results from repeated applications of these rules is also an expression.
For example, rule (ii) implies that «X» and «(X») etc. are expressions.

(iv) The sequence "operator operator" is not permitted.

e.g. A* - Bmust be written as A* (-B).

Examples of arithmetic expressions:

A
I - 76
(A)
4.3
-B -7.3 + X - (A+4.0)*6. 3

28

5.1.1 Subscripted variables

In Fortran, subscripts may be written following the name of an array in orde~ to
access a particular element of the array. The subscripts must be enclosed ill
parentheses.

In Fortran V a subscript is any arithmetic expression.

If a subscript is not of type integer, then it will be truncated according to the kind of
truncation in force when the statement is compiled. (see section 5. 1.3).

An array must not be referred to as having more subscripts than the number of
dimensions in its array declaration, so that if A is declared as DIMENSIONA(12,10),
then any reference to A(I,J, K)wouldbe illegal.

If an array is referred to as having less subscripts than dimensions, then the missing
subscripts are assumed to be 1: So that after DIMENSIONARRAY(2,3, 10) a
reference to:

ARRAY(M,N) wouldmean ARRAY(M,N, 1)
and ARRAY(M) " ARRAY(M, 1, 1)
and ARRAY " ARRAY(1,1,1)

in addition ARRAY(M, ,N) " ARRAY(M,1,N)
and so on.

Examples of arithmetic expressions containing subscripts are:

A(12)
1(7+J*4-6*K)
-A(JROW)+4.2
ARRAY2 (IARRAY(J»

In this case the value of the [th element of the array IARRAY is the subscript of
ARRAY2.

5.1.2 Evaluation of arithmetic expressions

The expression

A+B/C

might be evaluated as:

(A + B)/C

or as:

A + (B/C)

Actually, the latter form is correct. However, it is necessary to formulate rules for
evaluation so that such ambiguities do not occur. In general these rules correspond to
the ordinary rules of algebra.

(i) A subexpression is an expression which is enclosed in parentheses.

e.g. (I + J/K) is a subexpression.

Subexpressions by be nested to any level.

e.g. I*(A+B*(C+D/(H -J)+K)+L)

29'

In this case (H-J) is referred to as the innermost subexpression;
(C+D/(H-J}+K)is the next innermost subexpression, and so on.

(ii) The order of evaluation is: first the innermost subexpression followed by
the next innermost subexpression until all subexpressions have been
evaluated.

(iii) Within a subexpression, (or if no subexpressions are present), the
operations are done in the following order:

** (first)
* and /
+ and - (last)

:class 1
:class 2
:class 3

(iv) In expressions where operators of like classes appear, evaluation proceeds
from left to right,

e.g. A**B**C is evaluated
as (A**B)**C
and A*B/C is evaluated as (A*B)/C

(v) Functions are evaluated before being used as operands.

5.1.3 Truncation

In Fortran, .the quotient resulting from a division of two integers (or integer
expressions) is always an integer. This property leads to ambiguity as to the result
of a division such as 3/4. This result could be 1 or 0 depending on the kind of truncation
employed.

In Fortran V, this ambiguity is resolved by use of the TRUNCATIONstatement.

5.1.4 The TRUNCATION statement

Definition I TRUNCATIONt

Where t is IFIX, or IFIXF
or INT, or INTF
or NINT,or NINTF

(1) The TRUNCATIONstatement specifies the kind of truncation to be performed when
dividing integers or integer expressions, or in replacement statements (see section 5.3).

(2) If X is the exact quotient resulting from the division of two integers (or integer
expressions) then the integer result I, of the division is as follows: -

(i) If TRUNCATIONIFIX (or IFIXF) has been specified, or if there
is no TRUNCATIONspecification: - I is equal to the sign of X
multiplied by the largest integer which is less than, or equal to the
modulus of X.

e •g. The result of
3/4 would be 0
15/16 •• 0
17/16 1
-8/3 ••-2

i. e. rounding towards zero.

30

(ii) If TRUNCATION INT (or INTF) has been specified, I is equal to the
largest integer less than or equal to X.

e .g . The result of
3/4 would be 0
15/16" "0
17/16" "1
-8/3 " -3

Note that INT is the same as IFIX, except for negative numbers.

(iii) If TRUNCATIONNINT(or NINTF)has been specified:
I is equal to the nearest integer to X.

e .g . The result of
3/4 wouldbe 1
15/16" "1
17/16" .. 1
-8/3 " -3

(3) In the absence of a TRUNCATIONstatement, (or *RUNoption - see (6», the IFIX
truncation will be performed.

(4) The TRUNCATIONstatement is not executable, and should be placed before any
statement which involves arithmetic expressions where a non-standard (i. e. NINTor
INT)kind of truncation is required.

(5) If more than one TRUNCATIONstatement is given, then the first holds until the second
is read, the second holds until the third is read, and so on.

(6) The kind of TRUNCATIONto be performed (for a whole job) may be specified in the
*RUNdirective (see section 12.1(8».

It is important to note that I*J/K may yield a different result from J/K*I.

e. g . under IFIX truncation:

4*3/2 12/2 = 6
but

3/2*4 = 1*4 = 4

(7) Note that non-integer subscripts and DO, or implied DOparameters are also truncated
using the truncation in force when the statement concerned is compiled.

*5.1.5 Type of expressions

An arithmetic expression may contain operands of different types: -

Class 1: Integer, real, double precision, and complex, operands may be
present in one arithmetic expression.

Class 2: Text, Boolean, and logical operands may be present in one
expression.

Expressions which contain types of different classes are invalid.

The type of the result of an expression is the same as the type of the dominant operand.

The order of dominance of the Class I operand types is:

Complex
Double precision
Real
Integer

In expressions containing Class 2 operands. the only permitted arithmetic operation
is subtraction.

For expressions of the form X**Y the following table shows the relationship between
the type of X**Y and the types of X and Y.

Type of Type of Y
X Integer Real Double Complex

Integer I R D C
Real R R D C
Double D D D C
Complex C C C C

If X and Yare not Complex the value of X may be negative only if Y is of type integer.

In mixed arithmetic operations, division will be taken as integer division (i. e. division
with truncation) if the expressions divided are of type integer, otherwise the division
corresponds to the type of the dominant expression in the division.
For example, suppose I. J and K are integers and X is real. then. according to the
rules given in 5.1. 2.

Expression Type of division

X + 1/J
(X+I)/J
X*1/J
I*J/X*K
I*J/K*X

Integer
real
real
real
integer

Examples of arithmetic expressions; .

a) T - 'XY'

Where T is of type TEXT (or Boolean)

b) (X-2)/«1+7.6)*3.6)

c) (1. 2, 2.4)**1

Where (1. 2,2.4) is the complex constant 1.2+2.4i, and I is an
integer variable. Note that a complex variable cannot be written
as (A,B)where A and Bare real variables.

Masking operations

Masking (or Boolean)and shifting operations may be performed on Booleanor Text values
(constants or variables) by means of the following special intrinsic (built -in) functions;
they are not available when HARTRANFUNCTIONS,or F2 FUNCTIONS(or OLD
FUNCTIONS)is specified (see section 8.4.2).

32

Function Type of Type of Properties
Name Arguments Arguments result of Function

AND 2 Text or Boolean Boolean See below

OR 2 Text or Boolean Boolean See below

NOT 1 Text or Boolean Boolean See below

ER 2 Text or Boolean Boolean See below

SHIFTR 2 First Text or Shifts first argument
Boolean.Second Boolean right by n bits
Integer (n) (circular shift).

SHIFTL 2 First Text or Shifts first argument
Boolean.Second Boolean left by n bits
Integer (n) (circular shift).

The properties of these functions may be explained by assuming that each argument
consists of one bit only. Each pair of bits is treated in the same manner as
described below.

First Second RESULT
Argument Argument

(a) (b) AND(a,b) OR (a, b) ER (a, b) NOT (a)

1 0 0 1 1 0
0 1 0 1 1 1
1 1 I I 0 0
0 0 0 0 0 1

i.e. NOT(a) produces a bit string with l's where a has O's, and O's where a has
1'so
AND(a, b) produces a bit string with 1's where both a and b have L's, and
O's elsewhere.
OR (a, b) produces a bit string with l' s where there are l' s in a or b or both,
and 0' s elsewhere.
ER (a, b) produces a bit string with I 's where a and b differ, and 0' s
elsewhere.

5.2 LOGICAL EXPRESSIONS

Logical expressions have values which are either true or false. They can be used to
express the relationships between quantities.

5.2.1 Relational expressions

A relational expression is a sequence of arithmetic expressions separated by relational
operators.

A relational operator is:

.EQ. or meaning Equal to

.NE. Not equal to

.GT. or > Greater than

.LT. or < Less than

.GE. or .NL. " Not less than

.LE. or .NG. " Not greater than

33

No two relational operators may be adjacent.

A relational expression has the value. TRUE. if the arithmetic expressions satisfy
the relationship specified by the relational operators; otherwise it has the value
. FALSE.

Examples of relational expressions:

a) I.EQ.J-I (or I=J-l)

The result is true if 1 is equal to J -1, if not the result is false.
The expression i~ equivalent to I+l.EQ.J (or 1+1=])

b) 1+3.EQ.J*2-K.GT .K/I (or I+3=J*2-K>K/I)

The result of this expression is true if:
1+3is equal to J*2-K and J*2-K is greater than K/I.
If either, or both of the above conditions is not true, then the result of
the expression is false.

5.2.2 Logical expressions

A logical expression is:

a logical constant
a logical variable or function reference.
a relational expression

or a sequence of the above separated by logical operators.

Where a logical operator is
.NOT. meaningnegation

or •AND. " logical and
or .OR. logical inclusive or

Twological operators may be adjacent only if the second such operator is .NOT.. Note,
however, that the sequence .NOT.. NOT. is invalid, but .NOT. (.NOT....) is accepted.

If L is a logical expression, then (L) is a logical expression.

A logical expression may be preceded by the operator .NOT.

A logical expression has the value •TRUE. or . FALSE.

The properties of the logical operators are as follows:

.NOT. L is false only if Ll is true
L1.AND.t2. is true only if L1, L2, are both true
L1.OR.L2 IS false only if L1, L2 are both false.

Where L1, L2 are logical expressions.

In a manner similar to that discussed for arithmetic expressions, parentheses are
used to explicitly define the sequence of evaluation.

e.g. A.AND.B.OR.C.NE.D

does not have the same meaning as

A.AND.(B.OR.C.NE.D)

Where (B.OR.C.NE.D) may be described as a logical subexpression.

34

The order of evaluation of logical expressions is:
(i) Arithmetic expressions
(ii) Relational expressions (the relational operators are all of equal

precedence) .
(iii) The innermost logical subexpression, followedby the next innermost

logical subexpression, and so on.
(iv) The logical operators in the followingorder

•NOT. (first)
.AND •
.OR. (last)

Examples:

a) A. EQ. B.AND. B. EQ. C
(or A=B.AND.B=C)
This is equivalent to the relational expression A=B=C.

b) A=B.AND.C=D.OR.K='TEXTA'
(Kbeing of type TEXT); this expression is true if A is equal to Band C
is equal to D. It is also true if K is equal to 'TEXTA' . Otherwise it
is false.

c) .NOT.D.OR.X=4.2
D being of type LOGICALand X of type REAL.
The expression is true if D is .FALSE. The expression is also true if X
is equal to 4.2. Otherwise it is false.

5.3 THE ARITHMETIC REPLACEMENT STATEMENT

Definition I
Where

VI' v2' v3····· .are simple or subscripted variable names

and
aexp is any arithmetic expression

The arithmetic replacement statement causes the values of the variables on the left hand
side of the statement, to be replaced by the value of the arithmetic expression.

The generalised replacement statement defined above is equivalent to the following
series of simple replacement statements.

VI aexp
v2 aexp
"s aexp

The generalised form is useful in cases where several variables are to be set to
the same value.

The variables v, need not all be of the same type.
Whenthe type ol the expression aexp is not the same as the type(s) of the variables
(v.), the variables are assigned types as shownbelow:
1

35

Type of Type of Expression
variable Integer Real Double Complex Text Boolean Logical

Integer X 1 1* CI * N N N

Real F X P* CR* N N N

Double F* P* X* CD* N N N

Complex R* R* R* X* N N N

Text X X N N X X X*

Boolean X X N N X X X*

Logical N N N N N N X

ere the symbols meant -

X The variable is assigned the exact value of the expression
1 The variable is assigned the value of the expression truncated to give

an integer value (see section 5.1.3).
F The variable is assigned the real or double precision approximation

of the value of the expression.
P The variable is assigned the value of the expression with the

precision associated with the variable type.
R The real part of the variable is assigned the value of the expression

with real precision. The imaginary part of the variable is assigned
the value zero (0.0)

N This combination of type of expression and variable type is not
permitted.

CI The variable is assigned the truncated value of the real part of the
expression.
The variable is assigned the exact value of the real part of the
expression
The variable is assigned the exact value of the real part of the
expression. The least significant half of the variable is set to zero.
Allowedonly in simple form: v = aexp

CR

CD

*

For statements of the form:

Doubleprecision variable = real expression,

evaluation of the expression is carried out in double precision mode (except for
ctions which do not have a double precision form).

e.g. SINwouldbe acceptable, but TANwouldnot be because DTANis not
available.

For statements of the form:
text variable = text constant

y the first eight characters of the constant are stored in the variable.

The word "FORMAT"must not appear as the first name on the L. H. S. of the
replacement statement.

Examples:

a) 1 = A(I) (I integer, A real)
Replaces the value of I, by the truncated value of the Ith element of A.

b) 1 = 1+1
The value of I is increased by 1.

36

c}

d)

e)

f)

g)

A(I)=J*J (A real, J integer). The Ith element of A is replaced by the
value of J*J after this has been converted to type real.

C=I**J+D (C complex, I and J integer, and D double precision)
I is raised to the power of J and the result converted to double precision,
D is added. The most significant half of the result is stored in the real
part of C, the imaginary part of C is set to zero.

1,1(3), K(I,3) = 2
I and J(3) are set to 2 Since I is now set, K(2,3} is set to 2.
If the statement is written

K(I,3), I, J(3)=2, I and J(3) are set to 2, and K(I, 3) is set to 2
where I has the value set before the statement is reached.

T = 'SbORbT'
T being of type text

B= 4B1477
Bbeing of type Boolean

5.4 THE LOGICAL REPLACEMENT STATEMENT

Definition I
Where

1 , 12"" are simple, or subscripted variable names,
whicli are of type logical, or Boolean.

and
lexp is any logical expression.

The logical replacement statement causes the values of the variables on the left hand
side to be replaced by the value of the logical expression.

The generalised replacement statement defined above is equivalent to the following
series of simple statements

1 = lexp
11 = lexp
12 = lexp
3

The word "FORMAT"must not appear as the first word on the L. H. S. of the statement.

Examples:

a)

b)

c)

d)

L = A.AND.B.OR.C where L,A,B and C are logical (or Boolean).

AL = I-J.EQ.4.0R .. NOT.. 3.EQ.X
or
AL = I-J = 4.0R .. NOT.• 3=X

G = .TRUE.

H = .NOT.G

37

5.5 THE CLEAR STATEMENT

Definition I
Where

vI' v2' v3' .. are simple or subscripted variable names.

The CLEARstatement is used to set variables, entire arrays, or individual elements
of arrays to zero. The statement is preferred to the use of DOloops for clearing
entire arrays.

Variables of any type may be cleared, and the variables v. need not be all of the
same type. The different types are set as follows: 1

Type of v Value after CLEARv

Integer
Real
Double precision
Complex
Text
Logical
Boolean

a
0.0
o. a (2 words)
(0.0, 0.0)
Blanks ('bbbbbbbb')
. FALSE. (or 1 BO)
1 BO(or. FALSE.)

If an unsubscripted array name appears in the list, the entire array will be cleared.

Examples:

a) TEXT X(6,6) Y(5)
CLEARX,Y(2)
All 36 locations of X, and the second location of Yare set to blanks.

b) REALR(5),K

CLEARR(I),K
K, and the Ith location of R are set to O. a

39

CHAPTER 6 THE CONTROL STATEMENTS

Normally, Fortran statements are executed sequentially. The control statements
may be used to control and alter this normal sequence of execution of statements in
the program. This is done by referring to a label or statement number.

Fortran V labels may be names as well as statement numbers; and labels may be
variable: i. e. Fortran V labels may assume different values.

6.1 LABELS (STATEMENT NUMBERS)

A label is a sequence of 1 to 5 alphanumeric characters.
If the first character is numeric, then all of the characters
must be numeric. The name of a variable (assigned) label
has the same definition as a variable name (see section 4.1)

Definition I

A label is punchedin columns 1 to 5 of a statement, and may be referred to by other
statements.

A statement number is a label consisting only of numeric characters. Other labels
are namedlabels.

Blanksmay be present in a label; if present they are ignored.

If a label begins with the characters C or X, then the C (or X)must not be punched
in column 1.

No two statements may have the same label, (unless one (only) of them is a FORMAT
statement) .

Anyleading zeros punched in a statement number (or named label) are ignored.

Examples: 1
99999
X
Y127J
ZbbZ (same as ZZ)
OABCD(same as ABCD)
01 (same as 1)

6.1.1 Label variables

The value of a label is defined by the followingrules:

(i) If a label is attached to a statement (i. e. appears in columns 1 through 5
of that statement), then the value of the label is the location of that

40

statement. If no label is attached to a statement, then the location of the
statement is not defined. A label with more than 5 characters in its name
cannot be attached to a statement.

(ii) At any given time during execution, the value of a label is equal to the
value of the last label ASSIGNed to it.

Label variable names are distinct from ordinary (data) variable names (see section
6.2 (5». This means that labels (or assigned labels) cannot be used as arguments
(see section 8.3).

6.2 THE ASSIGN STATEMENT

Definition I ASSIGN11 TO 12

where 11is a label (or a label
variable), and 12 is a label
variable.

(1) If 11 is not a statement number, then it must be enclosed in parentheses.

(2) If 11 is a label, and 12 is a label variable, the ASSIGNstatement sets the value of 12 in
sucfi a way that future control statements which refer to 12 will actually be referring
to the label 11.

Labels may be indirectly assigned by writing statements of the form:(3)

ASSIGNlabell TO varl
ASSIGN(var 1) TO var2
ASSIGN(var2) TO var3

ASSIGN(var 1) TO varn- n

In this case future control statements which refer to the label variable var will
actually be referring to the label, label1. n

(4) Statement numbers which are attached to FORMATstatements must not appear in an
ASSIGNstatement.

(5) Note that ASSIGNstatements only set the values of label variables. If the same name
is used for a data variable and a label or label variable, then these two uses of the
name are never confused by Fortran V; the actual meaning of the name is determined
by the context in which it appears.

e.g. ASSIGN761 TO IK
A = IK/3

where the value of A is not defined, because the value of the arithmetic variable IK is
not defined.
Similarly:

M =5
cannot be substituted for

ASSIGN5 TO M
and vice versa.

6,3 THE GO TO STATEMENT

Definition I GOTO i, (11' 12, 13'" ,)

where
i is a label or a label variable

and
11' 12", are labels

The comma preceding the left parenthesis may be omitted.
The part of the statement which follows i may be omitted:
if present it is ignored.

41

If i is a label, the GOTO statement causes control to be transferred to the statement to
which that label is attached.

If i is a label variable, the GOTO statement passes control to the statement whose
label was last directly or indirectly assigned to i.

Examples: (where ILABELand JLABELare label variables)

a) GOTO 10
10 X=3

b) ASSIGN10 TO ILABEL
GOTO ILABEL

10 X=3

c) ASSIGN10 TO ILABEL

10 X = 2

ASSIGN(ILABEL)TO JLABEL

GOTOJLABEL, (10, 20, 30)

In this case both ILABELand JLABELare set to label 10.

6.4 THE COMPUTED GO TO STATEMENT

Definition I 1), aexpn

This statement causes control to be transferred to the statement whose label is
11' 12' 13 ... or In' depending on whether the value ,ofaexp is 1, 2, 3 or ~
respectively. If any of 1 , 12 .. or 1 are label vanables, then ~ontrol wi.Il be
passed to the statem.ent wfiose label waf},directly or indirectly aaaigned to
1 ,1 .,. or 1 .
1 2 n

where
11' 12, In' are labels or label variables

Anyof 11' 12, or In may be omitted
and
aexp is an arithmetic expression whose value should lie within the
range 1< aexp ~ n. aexp should be of type integer.
The comma preceding aexp may be omitted.

42

If the value of aexp is less than 1, or greater than n, then the transfer of control is
undefined. This error is automatically tested for in execution, if the routine is
compiled in TEST mode. See sections 12.2 and 10.3.1 (error 11).

Null (or omitted) labels have the value "next statement" .

e. g . GOTO (11' , 12,) aexp

If the value of aexp is 1, control is passed to 11
If the value of aexp is 2, control is passed to tlie next statement.
If the value of aexp is 3, control is passed to 12
If the value of aexp is 4, control is passed to tlie next statement.

Examples:

a) GOTO (10,X,S),I

Control is passed to the statement whose label is 10, X, or S
depending on whether the value of I is 1, 2 or 3.

b) ASSIGN10TO ILABEL
GOTO(ILABEL,, lS)K+S-J(3)

Control is passed to the statement whose label is 10 or IS
depending on whether the value of K+S-J(3)is 1 or 3.

If the value of K+5-J(3) is 2, control is passed to the statement
which follows the computed GOTOstatement.

6.5 THE ARITHMETIC IF STATEMENT

Definition I
where

aexp is any arithmetic expression
and

11' 12 and 13 are labels or label variables.
Any 01 11' 12, or 13 may be omitted. The two commas
must alwaysDe present.

The statement causes control to be transferred to the statement whose label is
11' 12, or 13when the value of the arithmetic expression is less than zero, equal to
zero, or greater than zero respectively.
If any of Ii' 12, or 13 are label variables, then control will be passed to the statement
whose label was last directly or indirectly assigned to 11' 12 or 13,

If the expression is of type complex, then only the real part is tested for zero.

Null (or omitted) labels have the value "next statement".

e.g. IF (aexp), 11'

If the value of aexp is zero, control is passed to the statement whose label is 11:
otherwise control is passed to the statement which follows the IF statement.

Care should be taken when 11 is a named label (or a label variable) that the sequence
11' 12, 13 does not satisfy the syntax of any Fortran statement. If this occurs, the
arithffietic IF may be taken as a logical IF, which has a different meaning.

e.g. IF(X) READl, A,B

may be taken as a logical IF.

4;)

Examples:

a) IF(I**3 - K(N»l" X

The value of 1**3- K(N)is computed. If this value IS zero, control
is passed to the next statement; if the value is negative control is
passed to the statement whose label is 1; if it is positive control is
passed to label X.

b) ASSIGN10 to L
ASSIGN(L) to X
IF (T - 'AB') 10,11, X

If the text variable T is equal to 'AB', control is passed to label 11,
if it is not equal to 'AB', control is passed to label 10.

6.6 THE LOGICAL IF STATEMENT

The logical IF statement has two forms. These are defined below.

6.6.1 The Fortran IV logical IF

Definition I IF (lexp) stat

where
lexp is any logical expression

and
stat is any:executable Fortran V statement except a DO
statement or Fortran IVtype logical IF statement.

(1) If the value of the logical expression lexp is .TRUE. the statement stat is executed,
and control is then passed to the next statement (unless stat is a control statement
which has altered this normal path of control).
If the value of lexp is . FALSE., the statement stat is ignored and control is passed to
the next statement.

(2) Care should be taken when testing real quantities for strict equality, since rounding
errors may give an unexpected result.

e.g. 1=3

IF (I. EQ.3) GOTO6

is preferable to

X = 3.0

IF(X.EQ.3.0) GOTO6

(3) If the statement stat is a BEGINstatement (see Chapter 9), then the logical IF statement
may be used to jump round, or execute, a whole block of statements, instead of just one
statement.

If this facility is used, then, (if the logical expression lexp is false), control is passed
to the first executable statement followingthe ENDstatement which corresponds to the
BEGIN.

If the logical expression is true then the block of statements followingthe BEGINare
executed.

44

The block of statements contained between the BEGIN and its END is subject to the same
rules as a normal block, these rules are described in Chapter 9.

Examples:

a) IF (1.EQ. 4) I = 5

c)

IF (I = 4) I = 5

IF (A.GT .B.AND.C. EQ. 'S' .AND.L)X = 3

b)

d) IF (I =J = K = I) IF (X - 3.0) 1,2,3

6.6.2 The Hartran logical IF

Definition I
where

lexp is any logical expression
and

11 and 12 are labels or label variables.
11 or 12 may be omitted. The comma must always
be present.

If the value of the logical expression lexp is .TRUE., control is passed to the
statement whose label is 11; if the value is . FALSE. control is passed to the
statement whose label is 12,

If 1 or 1 are label variables, then control will be passed to the statement whose label
wailast Jirectly or indirectly assigned to 11 or 12,

Null (or omitted) labels have the value "next statement".

If 11 is a named label (or a label variable), care should be taken that the sequence 11' 12
does not satisfy the syntax of any Fortran V statement. If this occurs the Hartran
logical IF statement may be taken as a Fortran IV logical IF, which has a different
meaning (see section 6.6.1).

Examples:

a) IF (1.EQ.O) 12,

This has the same effect as

IF (I.EQ.O) GOTO12

b) IF (J.LT. X) 10,20

If J is less than X control is passed to label 10, if not, control is passed to
label 20.

c) ASSIGN(X)TO I
IF (K=I.OR.Z<Y), I

If K is equal to I or Z is less than Y, then control is passed to the next
statement; if not, control is passed to the statement whose label is X.

6.7 THE DO STATEMENT

This statement provides a means of repeating groups of statements (looping), and
changing the value of a variable during the loop.

6.7
cont Definition I DO1 v = aexPl' aexP2' aexP3

where
1 is a label or a label variable

and
v is a nonsubscripted variable of type integer, or real

and
aexPl' aexP2and aexP3are any arithmetic expressions which
are of type mteger or real.

aexP3and its preceding commamay be omitted. If they are omitted
aexP3 is taken to be 1.
aexPl' aexP2must always be present
Anoptional commamay be inserted between 1 and v.

If 1 is a named label then it must be enclosed in parentheses, or followedby a comma.

e.g. DO(l) v =aexPI' aexP2, aexP3
or DO1, v = aexPI' aexP2' aexP3

The DOstatement causes the statements which follow it, up to and including the
statement labelled 1, to be executed repeatedly. These statements are said to be
within the range of the DO.
The variable v is the index of the DOloop, and aexPI' aexP2' and aexP3are the loop
parameters. aexPI is the first limit, aexP2 is the second Timit, and aexP3 is the loop
step.
At the start of the loop, the iridexis set to the value of the first limit, and the loop is
entered.
At the end of the loop, the step is added to the index. If the step is positive, the loop is
re -entered so long as the index is less than, or equal to the second limit. If the step is
negative, the loop is re-entered so long as the index is greater than, or equal to, the
second limit.

Uponcompletion of the DO, control is passed to the statement which follows the statement
labelled 1. Whenthis occurs the value of the index v is not defined.

The statements within the range of the DOare always executed at least once. Thus,
the number of times the range is executed is given by:-

N = I +

where the brackets indicate the largest non-negative integral value not exceeding the
value of the expression within those brackets.
If the step (aexP3)is zero, the loop may be executed an infinite number of times.

If any of the expressions aexPI' aexP2' aexp are real, and the index (v) is an
integer, then the value(s) of tlie expression(si will be truncated to give integer values
for the purpose of computingthe number of times the loop is to be executed. See
sections 5.1.3 and 5.1.4.

If the index of the DOis of type real, then care should be exercised when choosing the
Iimite ,

e.g. in the case of

00 2 X = 1.0,2.0,0.1

the executionwith X equal to 2.°may be lost due to roundingerrors. A better
choice of limits wouldbe

DO2 X = 1.0, 2.001, 0.1

46

6.7 The label, 1,must appear in the text of the program after the 00 statement.
cont

The label, 1must not be attached to any non-executable statement (see Appendix 3)
or to any 00 statement.

If 1 is attached to any IF or computed GOTOstatement which contains a null (omitted)
label, then the null label represents the end of the 00 loop. Execution of the loop is
thus continued normally, if control is passed to the hull label.

1 should not be attached to a statement which causes a transfer of control back into the
range of the 00.

The values of any variables contained in aexP2 or aexP3 should not be changed by
statements in the range of the 00. If this is done, the execution of the loop may be
affected.

The value of the index (v) must not be changed by statements contained within the range
of the 00.

The index (v) may be changed by statements outside the range of a DO, only if no
transfer is made back into the range of the DOwhich uses that index.

A transfer of control out of the range of a DO is permitted at any time.

Control may be transferred into the range of a 00 only when control has at some
previous time been transferred out of it.

Subprograms may be called, from, and returned to, within the range of a DO.

There may be other 00 statements within the range of a 00. All statements within
the range of the inner DOmust also be within the range of the outer 00. A set of DO
statements which satisfy this rule is called a nest of 00's .
Nesting may be to any level. The index of an inner 00 must not be the same as the
index of any 00 containing it.

Examples:

a)

2

x = 1
DO2 I = 1,6
X = X*5
When the DOloop is completed, X is equal to 5 to the power 6.

b) REAL INNER(60)
00 3 II4 = 1,60
INNER(II4) = 3.2
All elements of INNERare set to 3.2

3

c) REAL INTER (10,20)
DO 4 1= 1,20
DO 4 J = 1,10

4 INTER (1,1) = 3.2
All elements of INTER are set to 3.2

~ INTEGERARRAY(~)
DO 5 INDEX42= 1,40,2

5 ARRAY (INDEX42)= INDEX42*2

ARRAY(1) is 2, ARRAY(3) is 6,
and so on. Even numbered elements of ARRAYare undefined.
This could also be accomplished by:

DO 5 INDEX42= 39, 1, -2
5 ARRAY(INDEX42)= INDEX42"2

-XI

e) DO 6 I = I,N
6 IF(A(I)),8,

GOTO 7
8 A(I) = 1. 0
7 ---------

If statement 8 is reached, then A(I) is zero.
Thus the first zero element of A is set to 1.0. If none of the first N
elements of A are zero, statement 8 is not executed.

inner
DO 00

f) 00 10 I = 1, 10
00 (X) J = I, 10

X CQ+l) = A(I,1)
10 A(I) = 0

}
outer

The inner DO is executed for J = 1 to 10, then statement 10 is executed;
then the inner DO is executed for J = 2 to 10; then statement 10is
executed again. This continues until the last execution for which I is
equal to 10.

6.8 THE CONTINUE STATEMENT

Because of the restriction on the kinds of statements which can end the range of a DO,
it is convenient to have a statement to which a label may be attached, but which
otherwise has no effect on the execution of the program.

I Definition

CONTINUE

The CONTINUEstatement may be placed anywhere in a source program.

No instructions are compiled for the CONTINUEstatement, although it is considered to
be executable.

Examples:

a) DO 15 I = 1,20
5 IF (A(I) - B(I)) 10,15,15
10 A(I) = A(I)+1

B(I) = B(I)-2
GOTO5

15 CONTINUE

The CONTINUEprovides a means of avoiding ending the 00 with GOTO5

b) DO (X) 1=1,10
IF (A(I)-B(I» Y,Z,Z

Y A(I) = B(I)
GOTOX

Z A(I) = 0
X CONTINUE

The CONTINUEprovides a means of bypassing statement Z.

6.9 THE PAUSE STATEMENT
~----~--------------------------I
Definition I PAUSEx

where
x is an unsigned integer constant or a primed text
constant or may be omitted.

48

In other versions of Fortran, the PAUSEstatement is often used to halt the machine and
wait for operator intervention. Since this is not possible on Atlas the PAUSE
statement is treated as a CONTINUEin Fortran V.

The constant x is not printed in Fortran V.

6.10 THE STOP STATEMENT

Definition I STOPn

where
n is an unsigned integer constant or may be omitted.

The STOPstatement is executable, and terminates execution of the compiled (object)
program.

In Fortran V, n (if present) is not printed.

CHAPTER 7 INPUT AND OUTPUT

7.1 INTRODUCTION

The input and output (I/O) statements provide a means of transferring data between I/O
devices and internal storage. OnAtlas, the available input devices are:

(i) Magnetic tape units (1" or !" tape)
(ii) 80 - column card readers.
(iii) 5, 7, or 8 - track paper tape readers.

and the output devices are:

(i) Magnetic tape units (1" or !" tape)
(ii) 80 - column card punches.
(iii) 5, 7, or 8 - track paper tape punches.
(iv) Line printers (120printable characters per line).

Someof these devices may be remote from Atlas and connected to it by means of a
data - link.

There are four standard I/O statements: READ,which causes data to be transferred
from an input device to internal storage, PRINT, PUNCH,andWRITE, which cause
data to be transferred from intemal storage to an output device.

The manner in which I/O devices are specified is described in section 7.2. The
FORMATstatement, which is not executable, may be used in conjunctionwith the above
I/O statements in order to specify the precise manner in which data is to be transferred.

In addition, in Fortran V there is a special I/O statement, which does not reference a
FORMATstatement:

OUTPUT

which causes data to be transferred from internal storage to an output device.

In addition to the above I/O statements, there are four statements which are used to
manipulate magnetic tape units. These are

REWIND,BACKSPACE,ENDFILE, andUNLOAD.

7.2 SYMBOLIC I/O DESIGNATION

Atlas provides for a very powerful and generalised means of referring to its
peripheral (I/O) devices. The way in which this is done is described below.

7.2.1 Output

The particular device which is accessed by any given output statement is dependentupon:

50

(i) The logical device number, (or stream number) which is referred to by
the statement.

(ii) The way in which this stream number is described in the job description.

Full details of the job description are given in Appendix8. For every different
stream number referred to, the job description will contain a line (statement) which
relates the stream number to the name of the type of output device to be used for that
stream.

e.g. If stream number 6 is referred to by a statement such as:

WRITE(6, f) list

and it is desired that this statement is to produce output on a line printer, then the job
description will contain the line:

OUTPUT6 LINEPRINTER....

Alternatively, if the output is to be produced on cards, then the job description will
contain a line

OUTPUT6 CARDS .

In this way, the output statements in the program are independentof the device used.

7.2.2 Input

The input statements also refer to stream numbers, and for each different stream
number, a descriptive line must appear in the job description. For input, this line does
not describe the type of input device to be used, since this must already be fixed by the
time the program is ready to be run. Instead, the line relates the stream number to
a documentname. This name is, in fact, the name of the documentto be input on
that stream and, in addition to being given in the job description, must also be
declared at the start of the input itself.

e. g . for a statement of the form

READ(5, f) list

which refers to input stream 5, the job description will contain the line:

INPUT5 name of document five

and the data to be read on input stream 5 will be preceded by the two lines:

DATA
name of document five

In this way, the job description and the input statements in the program, are independent
of the type of input device used.

7.2.3 Magnetic tapes

Most of the I/O devices cannot be used for both input and output (e. g. output cannot be
produced on a card reader). This is not true of magnetic tapes, however, since the
same tape can be written to and read from in one program. As a result, the words
INPUTand OUTPUTin the job description described above are not meaningfulwhena
magnetic tape is to be used as the I/O device; and the word TAPEis used instead.

e.g. WRITE(6) list

51..
would require a job description line of

TAPE6 label on tape
and

READ(5) list
would require

TAPE5 label on tape.

A maximum of 6 one inch magnetic tape units, and/or two ! inch (IBM-compatible)
units may be used by anyone job.

Tape numbers must not conflict with input or output stream numbers.
Tape numbers for one inch tapes must be in the range 0 through 99.
Tape numbers for! inch tapes must be in the range 0 through 15.

7.3 RECORDS

Note: this section does not apply to the Fortran V statement OUTPUT.

In Fortran, input and output is done by records, and not one value at a time. An I/O
statement will transfer one (or more) records to or from storage, and this record may
containmany different values.

In general, a record is:

(i)
or (ii)
or (Hi)
or (rv)

a card
a length of paper tape contained betweennew line characters.
a length of magnetic tape contained between end-of-record markers.
one line as printed by a Iineprtnter.,

7.4 THE I/O LIST

Whentransferring information to or from internal storage, it is necessary to know
whichparts of storage (Le. whichvariables) are involved.

Whenvariables (or arrays) are transmitted by means of an I/O statement, an ordered
list of the quantities to be transmitted must be included in that statement. The order of
this I/O list must be the same as the order in which the information exists in the I/O
medium.

A list used in an input statement (input list) has a slightly more restricted definition
than an output list (or I/O list).

7.4.1 Definition

(1) A simple I/O list is a simple input list or a simple output list.

(2) A simple input list is a series of simple or subscripted variable names separated by
commas.

(3) A simple output list is a series of arithmetic expressions separated by commas.
Note that logical expressions are not allowed, but simple or subscripted logical
variables or logical constants are allowed.

(4) If X is a simple I/O list, then an I/O list (under the control of an "implied 00") is:

52

7.4.1
cont

Where

and

v is a non-subscripted variable name, of type integer, or real,
v is the index of the implied DO.
aexPl' aexP2' and aexP3are arithmetic expressions of type inte~er, or
real. They are the parameters of the implied DO. aexP3 and its .
preceding comma may be omitted. If this is done the value of aexP3 IS

taken as one (integer 1).

(5) If Y is any I/O list, then (Y, v = aexp , aexP2' aexP3)is an I/O list, where
v, aexPI, aexP2, and a'exP3are defin€d in rule (4).

(6) If Y is an I/O list, then (Y) is an I/O list, the parentheses being redundant.

(7) If X and Yare I/O lists then X, Y is an I/O list.

(8) The execution of a list of the form

(X, v = aexPI' aexP2' aexP3)

is exactly that of DOloop; as thougheach left parenthesis (except subscripting or
redundant parentheses) were a DO statement with the indexing information given before
the matching right parenthesis, and with the DOrange extending up to that information.
That is:-

00 10 v=aexPl aexP2, aexP3
transfer information to or from the list X
(allowingfor the changingvalue of the index v)

10 CONTINUE

The above list is also equivalent to the list

X,X,X,X .

(allowing for the changingvalue of the index v).

Where the number of times that X is repeated is determined by the values of aexPI' aexP2
and aexP3 in the same way as for a DOstatement (see section 6.7).

Note, however, that (for example)

00 2 I = 1,10
2 READ20, A(I)

will read at least ten records, since each execution of the READstatement brings in a
new record.
Whereas:

READ20, (A(I), 1=1,10)

may read more, or less, than 10 records, dependingon FORMATnumber 20.

(9) For a list of the form

K, A(K)
or

K, (A(I),1=1,K)

Where the definition of a subscript or an indexingparameter appears earlier in the list
of an input statement than its use, the indexing (or subscripting) will be carried out
with the newly read-in value.

(10) If the input or output of an entire array is desired, then only the name of the array need

53•.
be given in the I/O list, and the indexing information may be omitted.

e. g. If A has previously been declared to be an array (i. e. has been given dimensron
information), then the followingstatement is sufficient to read in all of the elements of
A;

READ(5, 10)A

If A has not previously been dimensioned then only one value will be read in, The
elements transmitted by this notation are stored (or output) in accordance with the
description of the arrangement of arrays in storage. (see section 4.2.2)

This notation, which is sometimes called a "short list" is more efficient, both in
compilation and execution than the form:

READ(5,10) (A(I), I = 1, N)

where N is the number of elements contained in A.

(11) The I/O list controls the quantity of data that is transmitted. On input, if more
quantities are present in the external record, than are in the list, then only the number
specified in the list are transmitted, and the remaining quantities are ignored.

Conversely, if a list contains more quantities than are given in one input record, then
more records(s) are read.

(12) If an I/O statement contains a list with an implied DO, and this I/O statement is within
the range of a DOstatement, then the index of the implied DOmust not be the same as
the index of the DOstatement.

e.g. DO20 I = 1, 6

READ(5, 10) (A(I), I = 1,20)

20 CONTINUE

would be illegal since the READstatement changes the value of I (the index of the DO
statement) within the range of the DOstatement (see section 6.7)

Similarly, if aIist contains nested implied DO's then none of these implied DO's may
share the same index.

e.g. READ(5, 10)«A(I), 1=1,10),B(I),1=1,10)

would be illegal.

7.4.2 Examples of I/O lists

Examples of I/O lists which may be used in conjunctionwith input or output statements.
The variables may be of any type.

a) I

The value of I is transmitted to an output device, or a value obtained from
an input device is transferred into I.

b) I,J, A(K+3)

Values are transferred to or from the variables I and J and the element
A(K+3),where K has been set previously.

54

c)

d)

(A,1=1,6)

For output, the value(s) of A is output 6 times. For input, 6 values are
read into location A, all values being overwritten except the last one.

(A(I), 1=1,6)

Values are transferred to or from the elements A(l),A(2) A(6),
in order.
This list is equivalent to the list:
A(1), A(2), A(3), A(4), A(S), A(6)

If A has been declared as
DIMENSIONA(6)
then the list is also equivalent to the list: A

e) (A(I), 1=6.1, -1)

This is the same as d), except that values are transferred in the reverse
order.
i.e. A(6), A(S), A(1)

f) A, K, «AR(I, 1),B(I),1=1,20),Cm, J=1,5), X

This is equivalent to the following pseudo statements (but see section
7.4.1(8»: -

transfer value to or from location A
""" " K

00 10 J=1,5
DO20 1=1,20

transfer value to or from location AR(I,1)
"" "B(I)

20 CONTINUE
transfer value to or from location C(J)

10 CONTINUE
transfer value to or from location X

7.4.3 Examples of output lists

Examples of lists which may be used only in conjunction with output statements.

a) 1

the number 1 is written

b) 'OUTPUTbTABLE'

the characters OUTPUTbTABLEare written

c) X+Y**3

the value of X plus the cube of Y is computed, and this value is written.

d) (A(I)*B(I),1=1,20)

The value of A(l) times B(1)is computed and written; then A(2) times
B(2), and so on. up to A(20)times B(20)

55

e) (SIN(X)**3,X=O,P1/2,PI/180)

This outputs the cubes of the sines of angles from 0 degrees to 90 degrees
in steps of 1 degree. (Functions are described in section 8.4). PI (if it
means 71") wouldpreviously have been set to 3.1 4 1 5 9 .

f) LOG,.TRUE.

This writes the values .FALSE.. TRUE. or .TRUE.. TRUE. dependingon
the value of the logical variable.

7.5 UNFORMATTED (BINARY) I/O STATEMENTS

As mentioned in section 7. 1 certain of the I/O statements may be used in conjunction
with a FORMATstatement which gives details of how information is to be transferred.
Sometimes, however, this information may not be required, and it may be adequate to
transfer data to or from internal storage with no intermediate conversion (e.g. from
decimal to binary or internal (binary) code to text, and so on). Whenthis is the case,
no FORMATstatement need be referred to: any output produced will be in the form of
a string of binary digits, and any input presented must be in the same form.

Unformatted I/O statements are meaningful onlywhen the I/O device is a one-inch
magnetic tape unit.

7.5.1 The unformatted READ statement

Definition

READ(Idn), input list
or

READTAPEldn, input list

where
ldn is any arithmetic expression of type integer, whose value is
in the range 0 ~ ldn 599

and
input list is defined in section 7.4. 1. In either definition,
the comma preceding the input list may be omitted.

The two definitions given above are equivalent, but READis preferred to READTAPE.

The unformatted READstatement causes one record to be transferred to internal storage
from the input device whose logical number is equal to the value of expression ldn.
The record is assumed to be in binary form. If the input list contains more items
(words) than are present in the record read, then an error will occur (execution error
10 - see section 10.3). If the list contains less items than are present in the first
record read, then the remaining items in the record are ignored.

The input list (with any preceding comma) may be omitted from either form of the
unformatted READstatement. If this is done, then one record on tape number ldn
will be skipped (i. e. a record is read, but no information is transmitted to internal
storage).
Example; READ(10) A, (B(I), 1=1,3)

The values obtained from the record read from tape 10 are loaded into
A, B(l), B(2), and B(3)

in order.

56

7.5.2 The unformatted WRITE statement

Definition

WRITE(Idn), I/O list
or

WRITETAPE ldn, I/O list

where
ldn is any arithmetic expression, of type integer,
whose value is in the range 0 < 1dn~ 99

and
I/O list is defined in section 7.4. 1
In either definition the comma preceding the
I/O list may be omitted.

The two definitions are equivalent, but WRITE is preferred to WRITETAPE.

The unformatted WRITE statement causes one record to be written by means of the
output device whose logical number is given by the value of ldn.
The-record is written in binary form.

The I/O list (with any preceding comma) may be omitted from either form of the
unformatted WRITEstatement. If this is done, then one record of zero length
(i. e. a record containing no information) is written on to tape number ldn.

Example: WRITE(ITAPE+ 6) A, (B(I), 1=1,3)

The values contained in A,B(I), B(2), and B(3)are written, in order, on to the tape
whose logical number is equal to the value of ITAPE+ 6.

7.6 THE FORMAT STATEMENT

The FORMATstatement is used in conjunction with certain (formatted) I/O statements
in order to specify the precise manner in which values are to be transferred.

A format specification can be thought of as a piece of program in a special language,
which is executed interpretively, when the corresponding I/O statement is obeyed.
The various characters which can occur in the format specification correspond to
"instructions" which are obeyed by the computer when the I/O statement is executed.

A summary of the conversion and control specifications available in Fortran V is
given below:

Code Used For

An
Bn*
D n.m
E n.m
F n.m
G n**

nH
In
Kn*
Ln
On

nP
nQ*
nR*

Character information
Octal digits
Double precision numbers
Real numbers
Real numbers
Real numbers
Text
Decimal integers
Treats characters as integers
Logical values (true/false)
Octal integers
Scale Factor (D,E and F)
Scale Factor (D and E only)
Scale Factor (F only)

continued

Sign control
Position on line
Skips columns
Position on line
Prints or suppresses leading zeros
Text

57

* These codes are not usually present in other versions of Fortran (they are all in
Hartran).
* * This code is usually written in the form Gn. m.

7.6.1 Definition

S*
Tn
nX
nY*
nZ*
'chars'

Definition

FORMAT(format specification)

Where format specification is written as series of field
specifications and/or control specifications which are
normally separated by commas or slashes.

These specifications may be: -

(i) A text constant (primed or Hollerith)
(ii) S followedby two characters.

Note The characters followingS, and the characters in a text
constant may be chosen from the entire character set (see
Appendix2), and blanks are significant. Elsewhere, blanks
are not Significant and only the followingcharacters may be used:

ABDEFGIKLOPQRSTXYZ
0123456789
()j, .+-

(iii) Anyof ABG I K L or 0 (owe)followedby an unsigned
or negative integer and optionally preceded by an
unsigned integer.

(iv) D or E or F followedby an unsigned or negative real
constant of the form n. m or - n.m, and optionally
preceded by an unsigned integer.

(v) Y or Z preceded by an unsigned integer.

(vi) Anyof P Q R or X preceded by a signed or unsigned
integer (of the form n or + nor -n)

(vii)T followedby an unsigned integer.

(viii)A sequence of specifications may be enclosed in
parentheses and be optionally preceded by an
unsigned integer. This constitutes a specification
whichmay itself by included in a sequence enclosed
in further parentheses, and so on up to depth eight.
Note Field specifications with negative or zero
field widths are described in section 7.6.6, and
7.6.7.

58

7.6.1 cant
(1) Every FORMATstatement must have a statement number (as opposed to a named label)

attached to it.
The statement numbers attached to FORMATstatements are treated separately from
normal labels, and a FORMATstatement may have the same statement number as
another (executable) statement. If this statement number is referred to by a control
statement, then the executable statement will be referenced, and not the FORMAT
statement.

(2) The FORMATstatement is not executable, and may appear anywhere in the program
except as the last statement in the range of a DO.

(3) One FORMATstatement may be referred to by any number of formatted I/O statements.

(4) A sequence of characters to be input or outputwhich are processed together is called
a field.
The field width is the number of consecutive characters concerned, and must be
specified in all field specifications.

In Fortran V, the specified field widthmay be negative in order to allow for a
"format free" input of values. Full details of this facility are given in section 7.6.6.

(5) Bypreceding it with an unsigned integer constant, a field specification may be
repeated as many times as desired.

An integer preceding a conversion code A, B, D, E, F, G, I, K, L or 0 specifies
that the conversion is to be applied to the specified number of consecutive items in
the I/O list.

e. g. The specification

4 F 10.6
is equivalent to

F 10.6, F 10.6, F 10.6, F 10.6

(6) A group of field specifications enclosed in parentheses and preceded by an unsigned
integer is repeated the specified number of times. If no integer is specified, the
group is scanned once only.

A parenthetical group is itself a specification and may occur within another group;
and so on to depth eight.

e.g. 3(12, F3.l)
is equivalent to:

12, F3.1, 12, F3.1, 12, F3.1
and

2(14,3(12,A8),16)
is equivalent to:

14,12,A8,12,A8,12,A8,16,14,12,A8,12,A8,12,A8,16

(7) Whena formatted I/O statement is executed, the relevant FORMATstatement is scanned.
Whenevera field specification is reached which refers to an I/O list item, the next item
in the list is processed and transmitted.
Executionof the I/O statement is endedwhenall list items have been transmitted and either
another item is called for by a format specification. or whenthe end (i. e. last
right parenthesis) of the format specification is reached. '"

(8) If the end of a format specification is reached, and items still remain to be processed
in the I/O list, then the format specification is re -scanned from the last nest of
repeated field specifications (due regard being paid to any associated count).

•. 59

7.6.1
cont

If there are no repeated groups of field specifications, the format specification is
re -scanned from the beginning(first left parenthesis).

(9) A FORMATstatement may define Fortran records as follows:

(i) If no slashes or additional parentheses appear within a format
specification, then a Fortran record is definedby the beginningof
the specification (left parenthesis) to the end of the specification
(right parenthesis). Thus, on input, a new record is read when the
format control is initiated (left parenthesis). Onoutput, a new
record is written when the format control is terminated (right
parenthesis) .

(ii) If slashes appear within a format specification, then Fortran records
are defined by the beginningof the format specification to the first slash
in the specification; from one slash to the next slash; or from the last
slash to the end of the format specification.

Thus, on input, a new record is read whenthe format control is initiated,
and thereafter a new record is read uponencountering each slash. On
output, a new record is written upon encountering a slash or whenthe
format control is terminated.

Thus, both a slash, and the final right parenthesis of a format specification
indicates the termination of a record.

(iii) If more than one level of parentheses appears within a format specification,
then a record is definedby the beginningof the format specification to the
end of the specification; and thereafter records are defined from the
beginningof the last nest of repeated field specifications to the end of the
format specification.

Example:

a) (A2, (14. 18»

If the I/O list were long enoughto induce repeated scanning this
specification woulddefine records as follows:

A2,
14,
14,
14,
14,

14,
18
18
18
18

18

b) (A2, 3(I4,18})

This defines records as follows:

A2,14, 18, 14, 18, 14, 18
14, 18, 14, 18, 14, 18
14, 18, 14, 18, 14, 18

(10) Blankoutput records may be introduced. or input records skipped, by using consecutive

60

7.6.1 slashes in a format specification. If there are n consecutive slashes at the beginning,
cont or end, of a format specification, n input records are skipped; or n blank records are

inserted between output records, respectively. If n consecutive slashes appear anywhere
else in a format specification, then the number of records skipped or blank records
inserted is n-1.

(11) During repeated scanning of a format specification, the scaling factors P, Q, and R,
the zero suppression control Z, and the sign control S, are not reset, but have the
values as at the end of the previous scan. They are re -set (to normal if not
specified) at each execution of any formatted I/O statement.

(12) In Fortran V, all records to be input or output are passed through a buffer. The
maximum number of characters which this buffer can hold is 160. Thus, no attempt
should be made to input or output a record containing more than 160 characters by
means of a formatted I/O statement.

This limitation does not apply to the unformatted (binary) I/O statements.

If more than 160 characters are fed to the buffer then only the first 159 and the last 1
will be retained, and all of the other characters will be lost.

e.g. lOF20.1O

The characters corresponding to the last two conversions are lost and the last
character of the 8th conversion is overwritten.

(13) In addition to the above limitation on record length, some of the I/O devices have their
own limitations.

The maximum number of characters which can be printed on one line by a lineprinter
is 120 characters (121with carriage control character - see section 7.6.2).

The maximum number of characters which can be read from (or punched on) one card
by a card reader (or punch) is 80 characters.

If an attempt is made to print a record of (say) 130 characters, then two lines will be
printed, and the 122ndcharacter will be taken as the carriage control of the second
line.
Similarly, if a record of (say) 90 characters is read from a card reader, then 2 cards
will be read.

(14) Whentransmitting values on input, the type of conversion code, type of data, and type
of variable in the input list should correspond.
Whentransmitting values on output, the type of the output value will correspond to the
conversion code used; and this code need not be of the same type as the variable in the
output list.
It is not norrna.llyuseful to output text information using numeric conversion codes
(or vice versa), but it may be useful to output a numeric value of type real as an
integer, or an integer as real, and so on.

(IS) Complex numbers must be input as two real numbers (using F or E conversion).
Complex numbers must be output as two values using two conversions (normally F or
E or I).

(16) Commas must be used to separate field specifications in cases where ambiguities
would arise if the specifications were not separated.

e.g. FlS.I, 318

Wouldbe ambiguous without the comma. Commas need not be inserted after H or
primed text constants, after slashes, or after any of the control specifications
(section 7.6.5).

bl•.
7.6.2 Carriage control

Whenrecords written under format control are prepared for printing, the first
character of the output record is treated as a carriage control character and not
printed. The table belowshows the effect of various characters on the line spacing.
Note that on all I/O devices other than the lineprinter the first character in a record
is treated as normal data.

First Character Carriage Advance
BeforePrinting

blank One line
o (zero) (or A) Twolines
1 First line of next page

(skip to channel 1)
2 Skipto channel 2
3 " " " 3
4 " " " 4
5 " " " 5
6 " " " 6 -
7 " " " 7
+ Noadvance (overprinting)
B Three lines
C Four lines
D Five lines
E Six lines
F Sevenlines

If any other character appears as the first character of a print record, then the carriage
is advancedby one line, and the record is then printed. In this case the (illegal)
carriage control character is printed and all other characters in the line are shifted
right by one place.

The channel skips allow the line to be printed at a standard position on the page,
regardless of the current position. The position skipped to is dependentuponthe way
in Whichthe printer is set up, and may be foundby enquiring at the installation where
the program is to be run.

7.6.3 The non-numeric field specification

In this section it is assumed that all field widths specified are positive. The properties
of negative and zero field widths are described in sections 7.6.6, and 7.6.7.

7.6.3.1 A conversion

Form I An

where n is an unsigned integer

A conversion is used to transmit data in character (text) form. Oninput each
character read is converted into internal code and stored. Onoutput each internal
code number (of 6 bits) is converted to a character and output. The Atlas internal
code is described in Appendix2.

On input, n (of An)characters are read. .' .
If n is less than 8, then the characters read will be left adjusted within a word,
filled out with blanks.

and

e.g. READ10, CHAR
10 FORMAT(AI)

62

will read one character, if this character is X (say), then the variable CHAR will have
the value 'X' or 'Xbbbbbbb'.

If n is greater than S, then only the first eight characters are stored, and the next
n -S input characters are ignored.
Example: -
If one whole card is to be read in and stored, then at least 10 words must be allowed
in the list:

TEXT CARDA (10)
READ 5, CARDA

5 FORMAT (lOAS)

SOcharacters are read, and stored S characters per word in the 10 elements of CARDA.
If FORMAT (ASO)had been used, then the first S characters read in would be stored
in CARDA(l) and the next 72 input characters would be ignored; so that CARDA(2) to
CARDA(lO) would be undefined. If FORMAT (SOA1)had been used, then CARDA
would have been dimensioned: - TEXT CARDA (SO), and each character would have
been stored in one element of CARDA.

On output, n characters are written. If n is less than or equal to S, then the output
field will consist of the n left -most characters of the word.

If n is greater than S, then the field will be output as above (with n=S) but will be
preceded by n - S blanks.

e.g. PRINT I, 'ABCDEFGH'
1 FORMAT ('b', AS)

will print ABCDEFGH.

If the FORMAT is ('b', A12), then bbbbABCDEFGH is printed.

7.6.3.2 B conversion

Form I Bn

Where n is an unsigned integer constant.

B conversion is used to transmit octal digits between I/O devices and internal storage.

On input, n (of Bn)octal digits are read.
Any characters read under B conversion should be 0, 1,2,3,4,5,6,7,
An error (see section 10.3) will occur if any other character is read.
(leading, trailing, or embedded) are taken as zero.

or blank.
Anyblanks

If n is less than, or equal to 16, then n characters are stored left -adjusted within a
word. The last 16-n octal digits of the word are set to zero (00).

If n is greater than 16 the first 16 characters are read and stored, and the next n -16
characters of the input record are ignored.

e.g. BOOLEANDIG
READ10, DIG

10 FORMAT(BS)

If a card (say) has its first S columns punched0123b4bOand is read as above, then DIG
will have the (octal) value 0123040000000000.

On output, n octal digits are transmitted to the external record.
Each 3 bits of the word (starting from the left), are converted to an octal digit and

•. 63

written. Zeros are written as zero, and not as blank. If n is less than 16, then the n
left -most digits of the word are written and the remaining digits are ignored.

If n is greater than (or equal to) 16, then all 16 digits of the word are written followed
by n-16 zeros (not blanks).

7.6.3.3 H and primedconversion

Forms nHcharacter string
or

'character string'.

Where n is an unsigned integer constant (not zero).

Blanksare significant in the character string. In the H form, n must be equal to the
number of characters contained in the string.

In the primed form, an apostrophe cannot be includedwithin the string.

e .g , 'OON"T' must be written as SBDON'T

H or primed conversion is used to transmit data in character form. Bothforms of
conversion have the same effect.

On input,the n characters in the string are replaced by the next n characters read.
This facility can be used to change titles, dates, columnheadings, etc., which are to
appear on an output record generated by the H or primed specification.

Onoutput, the n characters in the string are transmitted to the external record.

Examples:

a) PRINT 20
20 FORMAT ('TABLEb2')

b) READ10
10 FORMAT(80H <eighty blanks»

PRINT10

The READinstruction reads one card (say), and the 80 characters contained on this
card replace the 80 blanks of the H specification.

The PRINTinstruction prints the characters contained in the H string, and thus the
card read is printed. The character in the first column of the card is treated as a
carriage control character for the printed line.

7.6.3.4 K conversion

Form I Kn

where n is an unsigned integer constant

K conversion provides a means of treating characters as integers, and is most useful
on input, with the value of n equal to 1.

On input, n (of Kn)characters are read. If n is greater than 6, th~n the first n - 6
characters are ignored, and only the last six are processed. If n IS less than, or
equal to 6, then n characters are processed.

64

7.6.3.4 The characters are stored (in Atlas internal code form) in a word in such a way that
cont the word can be treated as a Fortran V integer. The corresponding list item shouldbe

of type integer.

If the specification is Kl (n=L), then the value of the integer will be equal to the
internal code number of the character read (see Appendix2).

1
READ1,1
FORMAT(Kl)

e.g.

If the character read is a blank, then I will have the value 1 (one), since the internal
code for blank is 01. If the character read is A, then I will have the value 33, the
internal code for A being 41 (octal), which is equal to 33 decimal.

If n is greater than one, then the n characters read are converted so that the first
character forms the most significant part of the integer, and the last character the
least significant part. Note that leading blanks (except on Kl) are stored as binary
zero (internal code 00).

Example:
1

READ1,1
FORMAT(K2)

If the 2 characters read are both blank, then the value of I will be 0001(octal),
i. e. 1 in decimal.

If the characters read are "IA" then the value of I will be 2141(octal)
i.e. 1121in decimal.

Onoutput, n characters are written. The word to be output (i ,e. the list item)
shouldbe of type integer. If n is less than, or equal to 6, then the 2n least
significant octal digits of the integer part of the word are converted into n characters
and output. (This is exactly the reverse of the procedure for input). Non-printable
characters are printed as a decimal point, except that leading zeros (internal code 00)
are printed as blanks.

If n is greater than 6, then the output field is as described above, (withn = 6) but is
preceded by n - 6 blanks.

Examples:

a) PRINT10, I
10 FORMAT(Kl)

If I is equal to 14, then * is printed (internal code = 16 octal).

If I is equal to 2761 (=5311octal), then) is printed (internal code
= 11 octal).

b) PRINT10,1
10 FORMAT(K2)

If I is equal to 97 (=0141octal) then bA is printed.

If I is equal to 1 (=0001octal), then bb is printed, the leading
zero (00)being printed as a blank.

If I is equal to 2761(=5311octal) then K) is printed.

.. 65

7.6.3.5 L conversion

Form I Ln

where n is an integer constant

L conversion is used to transmit logical values (true or false) between I/O devices
and internal storage.

On input n (of Ln)characters are read. If n is greater than 5 only the first 5
characters are processed, and the next n - 5 are ignored.

If n is less than, or equal to 5, the input field should consist of the n left-most
character(s} of the words.

TRUEb
or

FALSE

the result stored being the logical value .TRUE. or .FALSE. respectively. Leading,
and embeddedblanks are illegal. All illegal fields (includingan all-blank field) are
read in as false, but a data error occurs (see error 5, section 1O.3.1.)

On output, n characters are transmitted to the external record. If n is less than or
equal to 5, then the output characters will be the n left-most characters of the words

TRUEb
or

FALSE

dependingonwhether the value of the corresponding list item is .TRUE. or . FALSE..

If n is greater than 5, the output field will be as above (withn = 5), but is followedby
n - 5 blanks.

7.6.4 The numeric field specification

The numeric conversions I, F, E,G,D and a are used to specify input/output of integer,
real, double prectsion, complex or octal-integer data.

Withall numeric input conversions, in the field read, leading blanks are not Significant,
and trailing blanks are taken as zero. Embeddedblanks (i.e. within numbers) are
taken as zero, but an input error (error 5) occurs. This error can be avoided (see
section 10. 4). A field of all blanks is taken as zero. See also section 7.6.6.

With F, E,G and D conversion, a decimal point appearing in the input field overrides
the decimal point position implicit in the field specification.

Withall input conversions a plus sign may precede a positive value, and a minus sign
must precede a negative value. If no sign is given, the value is taken as positive.

Withall numeric output conversions, the written number is right adjusted. If the
number of characters produced by the conversion is less than the field width specified.
then leading blanks are inserted in the output field (leading zeros, or blank fields, may
be obtained by use of the Z control specification - see section 7.6.5.5).

If the field width (n) specified is less than the number of characters produced by the
conversion, then only the n right -most (i. e. least significant) characters are
transmitted to the output record.

66

With all numeric output conversions a minus sign is output for negative values, and no
sign (i. e. a blank sign) is output for positive values. The~e conventions may be
overidden by means of the S control specification (see section 7.6.5.2).

For the real number conversions, E, F and G, accuracy is maintained to about
eleven decimal digits. If fields containing more than eleven digits are transferred,
then the least significant digits are lost (on input) or inaccurate (on output).

7.6.4.1 0 conversion

Form I Dn.m

where nand m are unsigned integer constants

D conversion is used to transmit double precision values between internal storage and
I/O devices.

D conversion is similar to E conversion with the followingexceptions: -

(i) For input, the character D may be present instead of E.
conversion the D character may be omitted altogether.
with an E are also accepted by D conversion.

As for E
Values punched

(ii) For output, the character D will be present instead of E.

e.g. for D12.5
-66.334 is converted to -6. 63340DtOl

As for E conversion, if the exponent exceeds 99, the D character is not
written.

For double preciston values, accuracy is maintained to about 20 decimal digits. If
fields containing more than 20 digits are transferred, then the least significant digits
will be lost (on input), or inaccurate (on output).

7.6.4.2 E conversion

Form I En.m

where nand m are unsigned integer constants

E conversion is used to transmit real numbers between internal storage and an I/O
device. Either part of a complex number may be processed using this conversion.

If double precision values are processed using E conversion, then accuracy is to
single precision. In En.m, m is the number of digits present in the fractional part
of the field. (See also section 7.6.4).

On input, n (of En.m) characters are read, and converted to a real number. The
field read must be in one of the followingforms:

+xE+k
or + x + k
or + x - k

where:
±. is an optional plus or minus sign
x is an unsigned real or integer constant
and
k is an unsigned integer constant.

67

7.6.4.2
cont

The exponentk is the power of 10 bywhich the number x is to be multiplied.
If a decimal point is present in x, then it overrides the implicit decimal point given by
the value of m in En.m.

Note that trailing blanks on an exponentare taken as zeros - they are not ignored.

e.g. for conversion E6.0 and the input field

b1. EOI

the result is 10.0, but if the input field were 1.EOlbthen the result wouldbe 1.0 x 1010

An all blank field is read as zero, but an input error occurs (execution error 5 - see
section 10.3).

Examples:

Input characters Specification Internal Value

bb-113409E2 Ell. 6 -11.340900
+b4713l6-03 Ell. 6 .000471316
bb1234+5 ES.O 123400000.0
bl.36EOl ES.4 13.6 10
1.36EOlb ES.4 1.36xlO

First, the decimal point (if not present in the input field) is positioned according to the
specification; then the value of the exponent is applied to determine the actual position
of the decimal point. In the first examp~ - 113409E2is interpreted as - .113409E02,
whichwhen evaluated (i. e. -.113409 x 10) becomes -11. 340900.

On output, n characters are transferred. Internal values are converted to real
constants of the form: -

d. ddd . . . dE+ee
d.ddd dE-ee
d. ddd dEeee

or d.ddd d-eee

where .ddd d represents m (of En.m) decimal digits, and + ee and + eee
are interpreted as multipliers of the form

10±ee and 10±eee

These forms of output may be modified by using a scale factor (see section 7.6. 5.1).

Internal values are rounded to m+I digits, and negative values are preceded by a
minus sign.

The field width is counted from the right and includes the exponentdigits, the exponent
sign (minus or plus), the letter E, the magnitude digits, the decimal point, and the
sign of the value (minus or blank). If the width n is not sufficient to allow expression
of an entire value, then only the n right -most digits will appear. This is not an
error condition. To prevent a loss of this nature it is necessary to ensure that
(in En.m)

n~m + 7

Note that this feature can be used intentionally (in conjunctionwith a scale factor) to
obtain the multiplier field, which is an indication of the order of magnitude of the
internal value.

e.g. for E3.0
60255 . 334 is converted to .+04
0.0000072 is converted to -06

68

Examples:

Value ElO.3 E8.3 E6.3

-2013.55 -2.0l4E+03 .014E+03 l4E+03
.361887 3.6l9E-01 .619E-Ol 19E-Ol
.0001 1.000E -04 .000E-04 OOE-04

7.6.4.3 F conversion

Form I Fn.m

where nand m are unsigned integer constants

F conversion is used to transmit real numbers between internal storage and an I/O
device. Either part of a complex number may be processed using F conversion. If
double precision values are processed using this conversion, then accuracy will be to
single precision only.

In Fn.m, n is the field width, and m is the number digits present in the fractional part
of the field. (see also section 7.6.4).

On input, n (of Fn.m) characters are read, and converted to a real number. The
field read in must be in one of the followingforms:

+i

+.i
+i.

2:_i.j
or blank

where: 2:_ is an optional plus or minus sign
and i and j are unsigned integer constants.

An all blank field is taken as zero.

If a decimal point is present, then its position overrides the implicit position given by
the value of m in Fn.m. If m is greater than n, then the implicit position of the decimal
point is m-n places to the left of the first digit of the field read in.

Examples: for the specification F7. 3:-

bbbbb33 is converted to 0.033
1234567 is converted to 1234.567
33bbbbb is converted to 3300.000
-1. 63bb is converted to -1.630
bb-1. 63 is converted to -1. 630

On output, n characters are transferred. Internal values are converted to real
constants, rounded to m decimal places, with an overall field width of n, (m should not
be greater than n).

If a value requires more positions than are provided by the magnitude of n then only the
n right -most characters are printed. This is not an error condition. In order to ensure
that a loss of sign or digits does not occur, the followingrelation must hold true
(in Fn.m) ,

n ~ m+2+d
where d is the number of digits to the left of the decimal point.

69

Examples:

Internal Value Specification Output Field

273.4 F9.4 b273.4000
273.4 F4.4 4000
-442.306 F7.2 -442.31
63 FS.l b63.0
62.7 F3.0 63.

7.6.4.4 Gconversion

Form I Gn

where n is an unsigned integer constant

G conversion is used to transfer real numbers between internal storage and an I/O
device. It combines the properties of E and F type conversions. Either part of
a complexnumber may be transferred using G conversion. If doubleprecision values
are transferred by means of G conversion, then accuracy will be to single precision
only. See also section 7.6.4.

On input, n (of Gn) characters are read, and converted to a real constant. The field
read in may take any of the forms accepted by E and F type conversions, and is
processed in the same way.

If a decimal point is not explicitly provided in the input field, the position of the
decimal point will be assumed to be at the right -hand end of the magnitude part of the
field.

e.g. If read onG6:
bbl277 is converted to 1277.
1277bb is converted to 127700.
b-25E3 is converted to -25000.
-.25E3 is converted to -250.

Onoutput, n characters are transferred. Internal values are converted to real
constants. The form of the constant is dependent on the magnitude of the data, and
conversion is either E type or F type according to the followingrule:

The F form is used if the value can be expressed without either leading zeros or an
exponent, otherwise the E form is used. The conversion chosen is the onewhich
allows for the maximum number of significant digits; i. e. the maximum accuracy
compatible with the field width, n. The following rules also apply for outputG
conversions.

(i) If n (of Gn) is less than 7, then the F form is always used.
(ii) A maximum of 13 significant decimal digits will be printed, whatever

the value of n. (The 13 does not include sign, decimal point, or exponent.)
(iii) If n is greater than 6, and if the number is such that the F form is used,

then four blanks are printed at the right hand end of the output field
(i. e. in the place where an exponentwouldotherwise appear). In
general for Gn, where 6<n<20 the number of significant digits printed
is n - 6.

Examples: If the speCificationG10 is used

1.0
-1
1.000606

Output Field

bl.000bbbb
-1.000bbbb
b1.001bbbb continued

Internal Value

70

57.9999
0.1
0.00123
1234567881.0
-6666666
1. 7E+10

b58.00bbbb
b1.000E-01
bI.230E-03
b1.235E+09
-6. 667E+o6
b1.700E+1O

7.6.4.5 I conversion

Form I In

where n is an unsigned integer constant

I conversion is used to transfer decimal integer values between internal storage and an
I/O device. Doubleprecision values and either part of complex values should not be
input using I conversion; but may be output by this means. (see also section 7.6.4.)

On input,. n (of In) characters are read and converted to a decimal integer. The
input field may contain a signed or unsigned integer constant, or may be blank. If
the field is blank, its value is taken as zero. Anyvalues read in should lie within
the range for an integer constant (see 3. 1).

The input field must not contain a decimal point or an exponent.

Examples: if specification 16is used

Input Field Internal Value

bbbblO 10
b-bb1b -10
Ibbbbb 100000
776543 776543
b-11bb -1100
+b11bb 1100

On output, n characters are written. Internal values are converted to integer
constants. Real and double precision values are truncated to give the nearest
integer (NINT)and then output.

If the field width n is not sufficient to contain the output field, then only the n
right-most characters of the field are output.

Examples: if specification 15is used

Internal Value Output Field

10 bbb10
-1001 -1001
100000 00000
7.53 bbbb8
-113.7653 b-114

*7.6.4.6 0 conversion

Form I On

where n is an unsigned integer constant

o conversion is used to transmit octal integers between internal storage and an I/O
device. Real, double precision, and complex values may not be processed using
o conversion.

71

On input, n (of On) characters are read and converted to a decimal integer. The input
field should be a signed or unsigned octal constant, or be blank. If the field is blank,
its value is assumed to be zero. An octal constant is a combination of the digits,
0, 1,2,3,4,5,6 or 7 but not 8 or 9.

Examples: if specification 06 is used

Input field Internal Value (decimal)

bbbbb7 7
bbbblO 8
bbbbib 8
Ibbbbb 32768
b+6001 3073
-bb333 -219

On output, n characters are written. An internal value, which should be in INTEGER
form, is converted to an octal integer. If the field width n is not sufficient to contain
the number, then only the n right-most characters are printed.

Examples: if specification 05 is used

Internal Value (decimal) Output Field

1 bbbbi
8 bbbl0

-64 b-lOO
1100 b2114

32769 00001

7.6.5 The control specifications

The control specifications are used to modify the input or output of the format
specifications described above.

Leading zeros may be printed, or blank fields obtained, by means of Z; plus signs etc.
(normally suppressed) may be printed by means of S; spacing may be controlled by means
of X, Y and T; and the magnitudes of numbers may be controlled by means of the
scale factors P, Q and R.

*7.6.5.1 P, Q and R specification

Forms I iP iQ and iR

where i is a signed or unsigned integer constant

Two scale factors: Q (for E and D type conversion), and R (for F type conversion)
are maintained during processing of a FORMATstatement.

These specifications cause the scale factor to be set to i, where the scale factor is
treated as a multiplier of the form:

i10 .for output
-1and 10 for input

at the beginningof each formatted I/O operation, before any processing occurs, the
scale factor Q has the value 1 and R has the value O.

These values may be altered by means of the specifications iR and iQ.
specification iP sets them both to the same value (i).

The

72

If the specification iQ is used, then for E and D type output, the mantissa is normalised
to the range

i-I i10 :$ mantissa < 10

(so that there are i integer places), and the decimal exponent is reduced by i.
Q is also effective for E type output of outputG conversions. On input, Q is not
effective.

If the specification iR is used, then for F type output.(and F type output of output G
conversions), the number written has the value of 101times the value of the.
corresponding list item. On input the number read is multiplied by the 10-1 before
assignment to the list item.

Scale factors are effective only within: -

OutputD or E conversions
Output E type G conversions
Input and output F conversions
Input and output F type G conversions.

Any number of P, Q or R specifications may be present in one FORMATstatement,
thereby causing the value(s) of the scale factor(s) to be changed several times
during a formatted I/O operation. If a FORMATis restarted within a single I/O
operation due to the number of items in the I/O list, then the scale factors are not
re -set to their standard values.

The scale factors do not affect I conversions.

Examples:

a)

Internal Value

External F7.3 2RF7.3 -2RF7.3 EI0.3 2QEI0.3 -2QElO.3Value

14.633 14.633 0.14633 1463.3 14.633 14.633 14.633
-0.234 -0.234 -0.00234 -23.4 -0.234 -0.234 -0.234

b)

Output Field

Internal F8.3 2RF8.3 -2RF8.3 E11.3 2QE11.3 -2QE11.3Value

14.633 bb14.633 1463.300 bbbO.146 bbl. 463E+01 b14.633E+OO bbO.001E+04
-0.234 bb-0.234 b-23.400 bb-0.002 b-2. 340E-01 -23. 400E-02 b-0. 002E+02

*7.6.5.2 S specificati'on

Form I
where c1 and c2 are any characters, blanks being significant.

S control is used to modify the output of numerical information (i.e. information
written using D, E, F, G, I, or 0 conversions).

The character to be output immediately to the left of the left -rnost digit is specified
to be:-

73

c1 for zero or positive numbers

c2 for negative numbers

In the absence of the S specification, c1 is blank and c2 is -

If a FORMAT is re-started within a single I/O operation due to the number of items in
the I/O list, then c1 and c2 are not reset to the standard values. Several S specif­
ications may appear in the same FORMAT statement.

The S specification has no effect on input conversions.

Examples:

Internal Value Specification Output Field

1 S-b,12 -1
-1 S-b,12 b1

-76.3 S**,F6.2 *76.30
.001 SOO,E1O.3 01. OOOE-03

7.6.5.3 X specification

Form I nX

where n is a signed or unsigned integer constant

X specification is used to adjust the position in the line where the next character is to be
output, or the position in an input record from where the next input character is to be
taken. The position of the next character of the line in the external medium to be
processed is identified by a pointer. This pointer is advanced automatically when
fields of specified widths are processed. It can also be explicitly adjusted by means of
X control. nXmoves the pointer n places relative to its present position. The
value of n must not be such as to move the pointer outside the record.

On input, if n is posttive, then the next n input characters are ignored. If n is
negative, then the previous n characters are "re-read".

e.g. with F5. 2, 6X,13
and the input string
32. 6345AB12366

the characters 45AB12are not processed, and the numbers read will be 32.63 and 366.

The negative specification is useful since it enables the same characters to be read two
(or more) times under different conversions. Zero fields can thus be distinguished
from blank fields (see example bj).

Examples: -

a) READ1O,J,A

10 FORMAT(13,-3X,F3.0)

The same value is nowavailable as a real number (A) and as an integer (1).

b) TEXT T
READ20, K,T

20 FORMAT(14,-4X,A4)

The same value is now available as an integer (K) and as a sequence of characters (T).
The value of K is zero both if zero(s) are punchedand if the field is left blank. Which

74

characters are actually present can be determined by testing the value of T.

e.g. IF (T='bbbb') GOTO25
if statement 25 is executed then blanks were read, andnot zeros.

On output, if n is positive, then n blanks are inserted into the output record. If n is
negative, then the previous n characters in the output string are deleted and further
output creation begins at the left -most position of those n characters.

e .g. The specifications

'FORMULA', -4X, 'TRANSLATING'

will create
FORTRANSLATING

as the output string.

7.6.5.4 T and Y specification

Forms I Tn or nY

where n is an unsigned integer constant

T ar Y specification adjusts the record pointer in the same way as X specification, but
instead of being a relative adjustment, T or Y adjusts the pointer to the specified
absolute character or column position (n).

Tn has exactly the same effect as nY.
The value of n should be less than 160 (see section 7.6.1.(12».

Example: Onoutput, the specifications

60Y, 4H****, -4X, S* -, 14
will cause an integer to be output in columns 60 to 63 with preceding asterisks instead
of blanks.

The pointer may be "backspaced" in a similar way to X specification, but the value ofn
is again absolute rather than relative. .

7.6.5.5 Z specification

Form I nZ

where n is an unsigned integer constant

Z specification is used to obtain or suppress leading zeros in numeric output conversions.
It has no effect on input conversions.

nZ specifies that not less than n digits are to be output in I or 0 type fields; and that a
minimum of n digits are to be output before the decimal point in E, D,F andG type
fields.

It applies to all numeric conversions after the Z control is processed, and is not
re -set to the standard value of 1Z if the FORMATis re -scanned. Several Z
specifications may appear in the same FORMATstatement. Note that the specification
OZprovides a very simple means of printing blank fields for zero values, without
affecting the output of non-zero values.

In the absence of a Z specification, lZ is assumed so that all leading zeros are
suppressed, except a single zero for a zero integer, or for a zero integer part of a
real number. The field width(s) specified in the numeric conversions must be

75

sufficient to allow for the n digits output under nZ.

Examples:

Internal Value Specification Output Field

1 3Z,16 bbb001
0 6Z,16 000000
3.2 3Z, F6.2 003.20
-4.1 3Z,ElO.1 -004.1EbOO
0 OZ,16 6 blanks
0.0 OZ,FB.4 B blanks

7.6.6 "Format free" input

The use of fixed field widths as described above is not always convenient, as data is
sometimes provided as numbers of variable lengths which are separated by spaces.
(This is often the case whenthe data is punchedon paper tape - see section 7.6.9).

In order to deal with this kind of data, Fortran V allows the field widths (n) of all of
the numeric conversions described in section 7.6.4 (i. e. D, E, F, G, 1and 0) to be
negative (i. e. preceded by a minus sign).

The number of characters accepted by a numeric input conversion (with a negative
field width) is dependenton the data presented, and not on the format specification.
The value of the negative field width is irrelevant so long as it is not zero (see 7.6.7).
Thus, both F-1.3, and F-6.3 have the same effect. The rules for the input of numbers
in free format are

(i) spaces before digits are ignored.
(ii) a space after digits terminates the number.
(iii) End of record (e.g. newline) is treated as space.
(iv) A number is started by anynon-blank character.

If a blank, or end of record is read then reading of the number is terminated at that
point and the characters read in so far are presented for conversion:

The characters which terminate reading of a number are;

blank (or space)
tab (see section 7.6.9)
newline (7 track tape)
line feed (5 track tape)
End of card
Eridof magnetic tape record.

If an'end of record is foundwhenthe input list is not satisfied, then a new record is read
and processing continues until all values in the list have been read in. If the list is
satisfied and characters remain to be processed in the input record, then these
characters are lost.

If numbers having exponents (for D, E, or G conversion) are to read, then no blanks
may appear betweenthe exponentand its mantissa (since this wouldterminate the read).
Similarly, zero values must be explicitly punched, and cannot be left blank. It will be
seen that completely blank records are ignored.

If a real number is read, and no explicit decimal point is punchedin the input field,
then the (implicit) position of the decimal point is decided as for normal (positive
field width) conversion.
e.g , if 51234bis read on F-B.2, then the result stored is 512.34. The blank
terminates the read, and the decimal point is two digits from the right -hand end.

76

If a negative field width is attached to a non-numeric input conversion (i.e. A,B,K or L),
then the buffer pointer is moved back by the number of columns given by the field width,
and the corresponding list item is assigned one of the following values

A conversion 'bbbbbbbb'
B conversion 16BO
K conversion 0
L conversion . FALSE.

e.g. A-8 is equivalent to -8X,AO
(see section 7.6.7)

If a negative field width is attached to any output conversion, then the corresponding
list item is ignored (skipped), and the buffer pointer is moved back by the number of
columns given by the field width.

e.g. on output
F-1O.6
is equivalent to
-lOX,FO.O

Examples:

READ10,1,J,X, Y
10 FORMAT(21-3,F-3.1, F-6.2)

If the input string is
2b34b7.6b885b.....
Then
I will be 2
J will be 34
Xwill be 7.6
Ywill be 8.85

The .2 of F6.2 specifies the position of the decimal point. With the same instructions,
if the input string is

bbb123bb4b-6.7bbb34b .
Then I will be 123

J will be 4
Xwill be -6.7
Ywill be 0.34

*7.6.7 Zero field widths

In all of the conversions dealt with in sections 7.6.3 and 7.6.4, the field width specified
may be zero. On input conversions, a field of width zero does not take any characters
from the input string and is effectively the same as reading an all blank field.

The actual values assigned are:

AO conversion 'bbbbbbbb'
BO conversion 16BO
KO conversion 0
LO conversion .FALSE.
DO.O, EO.O, FO.O, GO conversions 0.0
10,00 conversions 0

For output conversions a zero field width means "ignore the next item in the output
list". No characters are output.

77

Examples:

a) READ10,K,J
10 FORMAT(10,13)

with an input string of
123....

K would be zero and J would be 123.

b) PRINT 1O,K,X,J
10 FORMAT(12,FO.O,13)

If K were equal to 12 and J were equal to 345 the output string produced
would be
12345

7.6.8 Variable formats

Format specifications may be specified at the time of program execution. The
specification must include its surrounding parentheses but not a statement label nor the
word FORMAT. The specification should be stored into a TEXT array or (if the
specification is less than 9 characters long), into a single TEXT variable. Hand
primed fields may be included.

The specification may be stored in one of three ways

(i) by reading it in under A conversion
(ii) by setting it up in DATAstatement or in a TEXT type statement.
(iii) by setting it up by one or more arithmetic replacement statements.

The name of the array or variable is then used in I/O statements in place of the usual
FORMATstatement number. If a TEXT array is usedthen only its name should be
given in the I/O statements which refer to it, this name should not be subscripted.

Example: Assume that the following characters are punched on a card:

(F6.2, lOX,IS,E13.4)
This card could be read in as follows:

TEXT F(3)
READ10, (F(I), 1=1,3)

10 FORMAT(3AS)

Subsequent I/O statements can now refer to the array F as though it were a FORMAT
statement.

e.g. READF,A,K,X
or

WRITE (6, F)A,K,X
and these statements would be equivalent to:

READ10,A,K,X
or

WRITE (6, lO)A,K,X
with
10 FORMAT(F6.2, lOX,IS,E13.4)

The specification could also be stored in the array F as follows: -

a)
b)

TEXT F(3)/' (F6.2, lOX,IS,E13.4)'/
TEXT F(3)
DATA FI' (F6. 2, lOX,18,E13. 4),/

78

or
c) TEXT F(3)

F(1)='(F6.2,10'
F(2)='X,18,E13'
F(3)='.4)'

*7.6.9 Special features of paper tape input

In addition to the "format free" input described in section 7.6.6, the followingfeatures
facilitate data input from paper tape. This section does not apply for input from cards
or magnetic tape.
All erases, and redundant upper and lower case characters are always ignored, and
the characters tab, backspace, query, and inner and outer set shift are treated
specially (see below).

Other characters are stored until a maximum of 160characters is reached, any
further characters in the record are then ignored.

Inner and outer set shifts are stored onlywhenthere is actually a character of that set
to store. Since space appears in both sets, the sequenceA erase space space B,
which appears in internal code as A shiftout er sp ~ shiftin B, wouldactually be
stored as A ~ ~ B.

The effect of tab depends on the number of characters whichhave been stored from the
record. If there are 6 or more, then tab is treated as space. If there are less than 6,
then the number of stored characters is increased to 6, by planting the appropriate
number of spaces.

Note that a record containing tab is not a null record.

The character backspace has the effect it wouldhave on a Flexowriter print -out, so
that the character preceding the backspace is overwritten by the character which
follows it. Compoundcharacters (e.g. ~) are not constructed. Backspace is ignored
if it wouldcause characters to be planted before column one.

If the character? (query) is punchedin a line of paper tape input, then the whole of that
line (up to the ?) is ignored, and input is begun again at the character which follows the
query. This provides a convenientmethod of deleting mis -punchedlines.

The character (normally?) which causes lines to be ignored can be changedby the user
by calling the library subroutine SKIPCH(C).

The argument C must be set to 64s+K; where s is 0 for inner set, and I for outer set
characters; and K is equal to the internal code of the desired character stored as a
Fortran V integer.

e.g. CALLSKIPCH(33)

causes paper tape records to be ignored whenA appears.

If s is set to 2 (e.g. CALLSKIPCH(128» then the facility for ignoring records can be
removed. The standard behaviour is as thoughCALLSKIPCH(12)were executed on
entry to the main program.

Records containingno characters other than backspace, erases, run-out, and lower
case are ignored: Suchrecords are null records.

The library subroutine NULSET(N)can be used to cause null records to be accepted,
and not ignored. If the argument N is not zero, then null records will not be ignored,
but will be treated as a blank card image. The standard action is as thoughCALL
NULSET(O)were obeyed on entry to the main program.

79

7.7 THE FORMATTED READ STATEMENTS

Definition

READ (ldn,fn), input list
or
READINPUTTAPEldn, fn, input list
or
READfu, input list

Where
ldn is any arithmetic expression of type integer, whose value
is in the range 0s; lnd$lS (or 99 - see below)

and
fn is a statement number attached to a FORMATstatement,
or the name of a TEXT array or variable in which a format
specification has been stored.

and
input list is defined in section 7.4. 1
The comma followingthe right parenthesis in the first
definition is normally omitted.

The first two definitions are equivalent, but READ(Idn,fn) is preferred to READ
INPUTTAPE.

••
The third form is equivalent to:

READ(0, fn) input list

i. e. it reads from input stream number zero (logical input device number zero).

The formatted READstatements cause one (or more) records to be transferred to
internal storage from the input device whose logical number is equal to the value of the
expression Idn, If the input device is a one inch magnetic tape then the value of ldn
should be less than 99, for other devices, the value should be less than 16.

If the input list contains more items than are present in the first record read, then
further records will be read until the list is satisfied provided that the associated
FORMATstatement is such as to cause extra records to be read, e. g. the specification
(2015)shouldnot be used to read 80 column cards, as the last 4 (of 20) list items would
be undefined. (see 7.6.1 (9». The FORMATstatement referred to may also cause
extra records to be transferred (see section 7.6).

If the list contains less items than are present in the first record read, then the
remaining items in the record are ignored.

The input list may be omitted from any form of the formatted read statements. If this
is donethen one record on device number ldn will be skipped (i. e. a record is read, but
no information is transferred to internal storage). There is an exception to this rule
which is described in section 7.6.3.3. More than one record may be read if slashes
are present in the FORMATstatement.

Records containingmore than 512words (4096characters) cannot be read from half-Inch
magnettc tape. This limitation does not apply to one inch (Ampex)tape.

All reference to the format number fn may be omitted from the formatted READ
statements, (Except READINPUTTAPE)

80

e .g . READ (ldn,) input list
and READ, input list

the commas must be present.
If this is done the format specification

(6G20)
is referenced.

Examples:

a) READ 10, A, B, C
10 FORMAT (3F1O.6)

b) READ (1+4,10)A, B, C
10 FORMAT (3F10.6)

c)

d)

a record is read from the device whose logical number is equal to 1+4.

READ (5, VF) (AQ),B(J),]=1,6)

where VF is a TEXT variable or array containing a format specification.

READ (I/]+l,X)C,V,K,(AQ),]=K*2, -1, -1)

7.8 THE FORMATTED WRITE, PRINT AND PUNCH STATEMENTS

Definition

WRITE(ldn,fn),I/O list
or
WRITEOUTPUTTAPE ldn, fn, I/O list
or
PRINTfn, I/O list
or
PUNCHfn, I/O list

where
ldn is any arithmetic expression of type integer, whose value
is in the range 0 ~ ldn ~ 15 (or 99 - see below)

and
fn is a statement number attached to a FORMATstatement, or
the name of a TEXT array or simple variable in which a format
specification has been stored.

and
I/O list is defined in section 7.4. 1
In the first definition, the comma following the right
parenthesis is normally omitted.

The first two definitions are equivalent, but WRITE(ldn, fn) is preferred to WRITE
OUTPUTTAPE.

The third form (PRINT)is equivalent to

WRITE (0, fn) I/O list

i. e. it writes to output stream zero (logical device number zero), which is normally the
line printer (see Appendix 8). Similarly, the fourth form (PUNCH)is equivalent to

WRITE(15,fn)I/O list

•. 81

In the Fortran V system, output stream 15 is normally reserved for the 80 column card
punch, so that cards are normally produced by the PUNCHinstruction. See Appendix 8.
The formatted WRITEor PRINTor PUNCHstatements cause one (or more) record(s) to
be transferred from internal storage to the output device whose logical number is equal
to the value of the expression 1dn. If the output device is a one-inch magnetic tape
unit, then the value of ldn should be less than 99, for other devices, the value should be
less than 16. The number of records written is dependent on the Fo.RMATstatement
referenced.

The I/O. list may be omitted from any form of the formatted WRITEor PRINTor PUNCH
statements. If this is done, the record(s) created are dependent on the corresponding
Fo.RMATstatement.

e .g , PRINT10
10 Fo.RMAT(6HbTITLE/)

All reference to the format number fn may be omitted from the formatted WRITEor
PRINTor PUNCHstatements, (except WRITEo.UTPUTTAPE).

e. g. -WRITE(Idn,)I/o. list
PRINT,I/O. list
and
PUNCH,I/o. list

the commas must be present. If this is done, then the format specification
(6G20)

is referenced.

If half inch tapes are used, then any records written should not contain more than 512
words (4096characters). This limitation does not apply to one inch (Ampex)tapes.

Examples:

a) PRINT10, A,B,C
10 Fo.RMAT(3F10. 3)

b) WRITE (ITAPE, 10) A, B, C
10 FORMAT(3FlO.3)

One record is written to the device whose logical number is equal to the value of ITAPE.

c) WRITE(6, R) X,Y, (A(I), 1=1,3)
where R is a TEXT variable or array containing a format specification.

d) WRITE(1*2,FMT) X+Y,2.7, (K,A(K)**2,K=1O,J-3)

7.9 THE MAGNETICTAPE MANIPULATION STATEMENTS

The following statements enable magnetic tapes to be manipulated. They should not be
used to control other devices.

7.9.1 The REWINDstatement

Definition I
where

ldn , ldn ... are arithmetic expressions of type integer
1 2

The REWINDstatement causes the magnetic tapes whose logical unit numbers are
equal to the values of the expressions ldn, to be rewound i. e. to be positioned so that
t:henext:record read or written is the first record on the tape.

82

Examples:

a) REWIND1

b) REWIND1,2,ITAP+7,J*2

7.9.2 The BACKSPACE statement

Definition I BACKSPACE1dn1, 1dn2, 1dn3, •••••

where
Idn1, Idn2... are arithmetic expressions of type integer

The BACKSPACEstatement causes the magnetic tapes whose logical unit numbers are
equal to the values of the expressions ldn, to be backspaced by one logical record,
i.e. the tape is moved backwards by one record.

If a tape is currently positioned at the "rewound" position, then the BACKSPACE
statement has no effect.

7.9.3 The UNLOAD statement

Definition I
where

Idn , ldn ... are arithmetic expressions of type integer.12-

The UNLOADstatement causes the magnetic tapes whose logical-unit numbers are
equal to the values of the expressions Idn, to be:

(i) Rewound
(ii) Dis-engaged

Once a tape is dis -engaged it cannot be accessed again by the program, and it may be
physically removed from the tape unit. The most efficient use of Atlas is obtained if a
tape is dis -engaged (or UNLOADed)as soon as it is knownthat it will not be needed
again by the program.

7.9.4 The ENDFILEstatement

Definition I ENDFILEIdn1, Idn2, Idn3, .

where
ldnl' Idn2··are arithmetic expressions of type integer

The ENDFILE statement causes end-of-file marks to be written on the tapes whose
logical numbers are equal to the values of the expressions ldn,

Whenan end-of-file mark is encountered by a READoperation, reading is terminated
and an error message is printed. It is, however, possible to override this feature and
to take special action upon encountering an end of file. (see section 10.4). It is not
possible to read past (i. e. beyond)an end-of-file marker.

7.10 THE USE OF MAGNETIC TAPES

In Fortran, the practice of over-writing records on magnetic tape is definiteiy not
recommended in cases where later records on the same tape are to be preserved.

If it is desired to modify one or more records on a magnetic tape, then the tape should

83

be '.'copied"to a new tape, the changes beingmade in the process of copying.

7.11 THE OUTPUT STATEMENT

Definition I OUTPUT(Idn,n)list

where
ldn is any arithmetic expression of type integer whose
value is in the range 0 ~ ldn~ 15

and
n is an unsigned integer constant

and
list is a series of arithmetic expressions, or slashes,
separated by commas. (see below).

ldn may be omitted. If omitted its value is taken as zero.
The commamust still be present. n may be omitted (with
the comma omitted). If omitted, the value of n is taken as 12.
If bothn and ldn are omitted the OUTPUTstatement is
written as:

OUTPUTlist
which is equivalent to

OUTPUT(0, 12) list

The OUTPUTstatement differs from the other Fortran V output instructions in that it is
not record-oriented. A new record is not always started whenthe OUTPUTstatement
is executed and a record is not terminated by the endingof the OUTPUTstatement.
If new records are required to be started, then this is explicitly stated by the introduction
of slashes into the list, (this is similar to the slashes in a FORMATstatement).

The OUTPUTstatement causes the values of the arithmetic expressions in its list to be
written on to the output device whose logical number is equal to the value of the
expression ldn. The output device must not be a magnetic tape.

The field width allowedfor each value is equal to n columns (or 12 if n is not specified).
Integer values are written in the same manner as for the conversion In-I, IX (see
section 7. 6.4.5). If the value of the integer is too large to fit into n-1 columns, then
an asterisk (*) is printed to indicate the overflow.

Real values are written in the same manner as for the conversions Gn+L, IX (see
section 7.6.4.4). The mantissa is normalised to the range 1.0~mantissa < 10.0
i. e. an exponentis printed if the mantissa wouldotherwise lie outside this range.

Text variables are written in the same manner as for the conversion A8,n-8X. Text
constants (e.g. OUTPUT'XYZTABLE')are written out in full, so that every character
(Includingblanks) in the constant is printed. Note that the field width (n) is ignored
for text constants.

A double precision value is output as a real number to single precision only; and only
the real part of a complexvalue is output (the imaginary part is not printed).

Logical andBooleanvalues shouldnot be present in the list of an OUTPUTstatement.

84

7.11
cont

Note that if a nonstandard value for the field width n is chosen, the OUTPUTstatement
may cause some numbers to be split across the end of one line and the start of the next

line. This will be the case when 120 is not exactly divisible by n. (120 is the number
of printable characters per line). It could also occur when text constants are present
in the list (see above).

In addition, it should be noted that the OUTPUTstatement, may cause values to be
printed on the same line as previously executed PRINTor formatted WRITEstatements.

The first character of each line printed by means of an OUTPUTstatement is always
printed, and is not treated as a carriage control character.

The presence of K consecutive slashes in the list causes K-1 blank lines to be written.

Each list item (including slashes) should be separated from the next item by a comma.
If this is not done then the meaning of the list may be ambiguous:-

e.g. OUTPUTX./Y

prints two values, (X then on a new line Y)

but

OUTPUTX/Y

prints one value i. e. the value of X/Y.

However. OUTPUTX/ /Y

would not be ambiguous. since X/ /Y is not a legal arithmetic expression.

If an apparently real variable in fact contains an integer (unstandardised) value, then
the OUTPUTstatement prints the variable as a real number, followedby the character / .

e.g. -3.0000E03/
This situation could arise as follows:

REAL X
EQUIVALENCE(I, X)
1=6
OUTPUTX

The variable X, although real, contains an integer value (6), and is printed as

6.0000/

Other ways in which this situation could arise are described in sections 4.5(10),
4.6 (6), 8.3 (9), and 8.13.2 (5).

If an unsubscripted array name is given in the list then every element of the array is
output in the same way as for a 'short list' (see 7.4.1 (10».

CHAPTER 8 SIMPLE PROGRAM STRUCTURE

A Fortran V program consists of onemain program together with any number (or none)
of subprograms.

The main program and subprograms may communicatewith each other by means of
arguments (parameters) and by COMMONor PUBLICvariables ..

The main program and its subprograms may call other subprograms provided that the
calls are non-recursive. That is, a program may not call itself, directly or indirectly,
e.g. If program A calls subprogram B, then subprogram Bmay not call subprogram A,
or any subprogram which calls A.

There are two kinds of subprograms: subroutine and function; in the followingdiscussion
the term subprogram refers to both.

Subprograms may be compiled independentlyof the main program and independentlyof
each other. Whenthe program is to be executed, one main program and all of its
associated subprograms (if any)must be present.

Subprograms may be defined by the user, or may be pre-programmed and contained in
the system library.

In Fortran V, a powerful new facility has been introduced which enables subprograms
to be nested i. e. one program may contain other subprograms. This facility is known
as block structure, and is described in Chapter 9. A subprogram which is not nested
in another is also called a segment.

8.1 THE END STATEMENTI~:_:_iti_oo ~1
An ENDstatement must be the physica.lly last statement of all programs or subprograms
(includingnested subprograms).

The ENDstatement is not executable, but in Fortran V the ENDstatement will effect
termination of the program or subprogram in the absence of a RETURNstatement.

8.2 MAIN PROGRAMS AND SUBPROGRAMS

8.2.1 Main programs

A main program is comprised of a set of Fortran V statements, the first ofwhich
(other than comment lines) is not a subprogram definition statement, namely:-

86

a FUNCTIONstatement
or a SUBROUTINEstatement
or a BLOCKDATAstatement

and the last of which is an ENDstatement. Main programs are also referred to as
programs in this manual, and main programs or subprograms are also referred to as
routines.

Main programs may contain any Fortran V statements (including FUNCTIONand
SUBROUTINEstatements) except a BLOCKDATAstatement. See also Chapter 9.

8.2.2 Subprograms

Subprograms are program units which may be called by other programs and may be in
any of the following categories:

(i) Intrinsic (or built -in) function subprograms
(ii) Basic external function subprograms
(iii) Statement function subprograms
(iv) FUNCTIONsubprograms
(v) SUBROUTINEsubprograms
(vi) Library subprograms

Some library subprograms are described in Appendix7.

8.3 ARGUMENTS (PARAMETERS)

(1) Arguments provide a means of passing information between a subprogram and the
program or subprogram which called it.
There are two kinds of arguments:

Actual Arguments, and
DummyArguments (or Formal Parameters)

Actual arguments are used in the statement which calls the subprogram (CALLor
function reference), whilst dummy arguments are used in the statement which defines
the called subprogram (SUBROUTINE,FUNCTION,or statement function).

Dummy arguments are merely "formal" argument definitions and are used to indicate
in the called subprogram, the number, the order and the types of the actual arguments
being used in the calling program.

(2) Dummyarguments do not actually exist, i. e. no storage is reserved for them, but they
do identify to the called subprogram the actual arguments used the calling program or
subprogram.

(3) The actual arguments defined by the calling program or subprogram to which a dummy
may correspond are:

simple (scalar) variables
array elements (subscripted)
non-subsc rtpted array names
any arithmetic expressions
logical variables or constants
subprogram names

Labels (or assigned labels), may not be given as arguments.

If a subprogram name appears as an argument, then it must be declared in an EXTERNAL

87

8.3 statement (see section 8.9) unless the subprogram name has already been defined in
cont the same segment.

An actual argument list is a series of actual arguments separated by commas and
enclosed in parentheses.

(4) A dummy argument itself may be classified within the called subprogram as:-

a scalar variable
an array
a subprogram

A dummyargument list is a series of dummyarguments separated by commas, and
enclosed in parentheses.

The table belowshows the permissable correspondences between actual and dummy
arguments.

DUMMY

ACTUAL Scalar Array Subprogram
name

Scalar or Array yes yes* No
Element
Array name yes* yes No
Expression yes No No
Subprogram name No No yes

*Seeparagraphs (7) and (8) below.

(5) Withina subprogram, its dummyarguments may be used in the same way as any other
scalar, array, or subprogram names, with certain restrictions, namely, dummies may
not appear in the followingkinds of statements

COMMON
PUBLIC
DATA

and they may not have values assigned in a Type statement.

(Since dummies do not actually exist, the reason for the above restrictions is clear).
Furthermore, classification of a dummyas a simple (scalar) variable, an array, or a
subprogram name, occurs in the same manner as for other (actual) names, in both
implicit and explicit classifications.

(6) Dummyarguments should agree in number and type with the actual arguments to which
they correspond.

Whena dummy corresponds to a variable in the calling argument list, any reference to
the dummy(in the called subprogram) is really a reference to the actual argument (in
the calling program or subprogram).

Thus, not onlywill the dummyhave the value which the actual argument had at the
time of the call, but any value subsequently assigned to the dummywill actually be
assigned to the actual argument, thus effectively returning a result through the argument
list.

On the .other hand, when a dummycorresponds to an expression or a constant in the
actual argument list, the expression merely serves to initialize the value of the
dummy, and the value of the dummy should not be changedwithin the called subprogram.

This is particularly important when the dummycorresponds to an actual argument

88

8.3 which is a simple constant. If the dummy to which the constant corresponds is
cont assigned a new value, then the value of the constant may also be changed.

(7) Dummy scalars (i. e. simple variables) are single valued entities which have the
values of the calling arguments to which they correspond.

Dummies which are not explicitly declared to be arrays or subprograms are treated as
scalars.

A dummy argument may be declared to be an array by the presence of its nams in an
array declaration within the called subprogram.

Since a subprogram may be compiled separately from its calling program, the fact that
a calling argument is an array does not of itself define the corresponding dummy to be
an array. As with all dummies, a dummy array does not actually occupy any storage;
instead, the calling subprogram assumes that the actual argument supplied in the
calling statement defines the first (or base) element of an actual array and calculates
subscripts based on that location.

(8) Normally, a dummy array should be given the same dimensions as the actual array (or
it may be a simple variable) to which it corresponds. This is not necessary, however
and sometimes useful operations can be performed by defining different dimensions for
the dummy and calling arguments.

e.g. DIMENSIONA(10, 10)
CALL PART(A(l,6» SUBROUTINEPART(B)

DIMENSIONB (50)

END

In this case, the one dimensional array B corresponds to the last half of the two
dimensional array A (Le. elements A(l, 6) through A(lO, 10».

However, since the subprogram assumes that the calling argument defines the first
element of an array, if the calling statement were

CALLOUT(A)
or CALLOUT(A(l, 1»

the dummy array Bwould correspond to the first half of the array A.

Similarly, if an array corresponds to something other than an array, then the latter
will correspond to the first element of the array. This is true whether the dummy is
an array and the calling argument is not, or vice versa.

Thus, if the calling argument is a scalar, and the dummy is an array, any reference in
the subprogram to elements of the array other than the first, will access whatever
happens to the stored near the scalar.

Care should be taken when creating correspondences of this nature.

(9) If a dummy has a different type from its corresponding actual argument, then an
execution error may occur.

e .g, REALX
CALL S (X)
A =B/X

SUBROUTINES(I)

1=3

RETURN
END

Wouldcause a division error, because, on return to the calling program, X contains an
integer value (3), althoughX is a real variable.

8.4 FUNCTION SUBPROGRAMS

Function subprograms are programmed procedures which are often used to provide
solutions to mathematical functions and are used in a manner similar to that of normal
mathematical notation. For example, there is an intrinsic cosine functionwhose name
is COS; thus allowing

y = cos x
to be written

y = cos (X)

All kinds of function subprograms are referenced in this way.

Function references may be used in the same manner as variable references in any
expression.

e.g. X = (-B+SQRT(B**2- 4*A*C» / (2*A)

Where SQRTis the name of the square root function, and (B**2- 4*A*C)is the calling
argument list.

Associated with each function reference is one value which is returned for the function.
Consequently in order that the value returned for a function is of the proper data type
the following conventions have been established.

The intrinsic (built-in) and basic external functions are typed
automatically by the Fortran V compiler. Tables giving details of
these functions are given in Appendix4.

Functions whose names are not declared to be of any particular type are
typed implicitly according to the first letter of the function name (in the
same way as for variables) (see 4.3). The IMPLICITstatement is also
effective for function names.

Functions defined external to the program or subprogram in which they are
defined, which are to be typed other than Implicitly (as above), must be
explicitly typed; that is, their names must appear in a Type statement in
all of the programs or subprograms in which they are referenced.

Statement functions which are not to be typed implicitly must be explicitly
typed by the appearance of their names in Type statements in all of the
programs or subprograms in which they are defined.

FUNCTIONsubprograms which are to be typed explicitly must have their
type declared in the FUNCTIONstatements which define them (s.ee.section
8.6), or by the appearance of their names in Type statements within the
FUNCTIONsubprograms themselves.

90

8.4.1 Intrinsic and basic external functions

Intrinsic functions are used to evaluate commonly used mathematical functions, and
are supplied by the Fortran V compiler.

Everytime an intrinsic function reference appears, the machine instructions ·requ.ire~
to evaluate the function are compiled in-line with the instructions for the expressron ill

which the reference was made.

Basic external functions are subprograms which are supplied from the system library
and are accessed by standard calling sequences (see Chapter 11). In the source
program, basic external functions are referenced in the same way as intrinsic functions.

All other subprograms are called using standard calling sequences including:

FUNCTIONsubprograms
Statement function subprograms
SUBROUTINEsubprograms
Library subprograms

Whenintrinsic or basic external functions are referenced, the number and type of the
arguments must correspond to the table given in Appendix4.

.8.4.2 Names of intrinsic and basic external functions

As will be seen from the above comments, intrinsic functions provide for more efficient
execution than external functions.

Many Fortran V functions are available as both intrinsic and basic external functions;
and the same function may have several different names.

These different names have been introduced into Fortran V in order to improve compat­
ability with other versions of Fortran. A complete list of available functions is given
in Appendix 4.

Three sets of function names are available in Fortran V. These sets of names
correspond to the names used in:

-
Atlas Fortran (Hartran), (see ref. 2)
A.S.A. Fortran (Fortran IV) (see ref. 1)
Fortran II (see ref. 4)

The standard set of names used in Fortran V is the Fortran IV (or A.S.A.) set. The
other sets of names may be made standard for any main program or subprogram by
insertion of one of the following statements in that main program or subprogram.

Definition

F4 FUNCTIONS
ASA FUNCTIONS
F2 FUNCTIONS
OLD FUNCTIONS
HARTRANFUNCTIONS

ASAFUNCTIONS,and F4 FUNCTIONSare equivalent statements.

The inclusion of one of these statements in a program or subprogram causes the compiler
to recognise onlyASA(or Fortran IV) function names in those statements which follow
the FUNCTIONSstatement. Other function names will either be recognised as basic
external functions or, if not available in this form, a functionwith the corresponding
name-must be supplied by the user. (see Appendix4 for a table of available intrinsic

and basic external functions).

OLD FUNCTIONS, and F2 FUNCTIONS are equivalent statements. Their use, and
effect, is the same as for the above paragraph, except that Fortran II names are
recognised, and not ASA or Hartran names.

The use and effect of HARTRAN FUNCTIONS is the same as in two paragraphs previous
except that Atlas Fortran (Hartran) names are recognised and not ASA or Fortran II
names.

Some of the Hartran names are the same as the Fortran II names, but most of the ASA
names are different from the other two sets. Most of the external names are the same
as the ASA names.

In the absence of a FUNCTIONS statement in any main or subprogram, ASA FUNCTIONS
is assumed. Once a FUNCTIONS statement has been given in a main or subprogram it
remains effective for all later statements in the program.

The FUNCTIONS statement should appear in the text of the program before any
references to system functions.

The type of FUNCTIONS to be used for a whole job may be specified on the "'RUN
directive (see section 12.1 (9».

8.5 STATEMENT FUNCTIONS

Statement functions are function subprograms, which are defined in a single expression.

Definition I fname (name1, name2, namen) == ~xp

where
. fname, and name1, name2 .

are variable names
and

exp is any logical or arithmetic expression.

fname is the name of the function and must not be the same as the name of any other
function,subprogram, or variable of the program or subprogram containing the
statement function.

The name. are the dummy arguments of the statement function, and must be dummy
1scalars; they must not be dummy arrays or subprograms.

The expression exp should contain at least one reference to each of the name.. Other
references in the expression are unrestricted, with the exception that the ide1ttifier of
the function (fname) may not appear. For example, any other st~tement function
already defined may appear, and subscripted array names may appear.

Examples: G(X,I) == X * B(I,1+7,3)+4.2
F(X) == A*X**2+ B*X+C
EX (THETA) == CMPLX(COS(THETA),SIN(THETA»
TRUFAL (A, B, C) =A=B=C.OR.A<B<C

Since each name. is a dummy and does not actually exist, the name. may be the same
names as other James in the main or subprogram (except those referenced in the
expression exp), without conflict. However, if a dummy is explicitly typed by the
presence of its name in a type statement, any other use of that name will have the same
data type.

If a statement function is to be explicitly typed, then its name (fname) must appear in a

92

type statement before the statement function appears.

A statement function may be referenced only in the main or subprogram in which it
appears unless its name (fname) is given as an actual argument after the function has
been defined. In this case the function name should not appear in an EXTERNAL
statement.

Statement function definitions must precede all references to the functions in executable
statements in the main or subprogram in which they appear.

8.6 THE FUNCTION STATEMENT

Functions which cannot be defined in a single statement may be defined as FUNCTION
subprograms. These programs begin (other than comment lines) with a FUNCTION
statement.

Definition

type FUNCTIONfname (namel, name2··· .namen)

where

type is either not present or is one of:-
INTEGER
REAL
DOUBLEPRECISIONor DOUBLELENGTH
COMPLEX
LOGICAL
TEXT
BOOLEAN

and

fname, namel, name2, are variable names

fname is the name of the function and must not be the same as the name of any other
function, subprogram, or variable of any main or subprogram in the same job. The
function name (fname), is public, and may be referenced by any main or subprogram.

The name. are the dummy arguments of the function and may take any of the forms
described\n section 8.3.(4). If a dummy argument is a subprogram name, then the
corresponding actual argument must be declared in an EXTERNALstatement within the
calling program.

The dummy arguments, name., may be used for any purpose within the FUNCTION
subprogram, with the exception described in section 8.3. (5).

A FUNCTIONsubprogram must have at least one dummy argument; and must contain at
least one RETURNstatement.

.
Within the FUNCTION, the name (fname) is treated as though it were a scalar variable,
and may be used like any other scalar, but fname should normally be assigned a value
for each execution of the FUNCTION. The value returned for a FUNCTIONis the last
value assigned to its name (fname) prior to the execution of a RETURNstatement.

Example: FUNCTIONMAXIMUM(L, M)
MAXIMUM= L

I = MAXIMUM(J, K) IF (L>M)GOTO2

93

MAXIMUM= M
2 RETURN

END

Where I is set to the larger value of J or K. The IF statement could also take the form

IF (MAXIMUM>M)GO TO 2

The data type of the FUNCTIONfname may be explicitly declared in the FUNCTION
statement itself, or may be declared in a type statement within the subprogram. If the
latter form is used, the type statement must precede the first reference to the name
'(fname) in any executable statement within the subprogram.

e.g. LOGICALFUNCTIONT(A)

is equivalent to

FUNCTIONT (A)
LOGICALT

If the type of fname is not explicitly declared, then it will be Impltcitly typed as described
in sectionBv d.

The type of a FUNCTIONsubprogram should correspond to its use in any calling
programs.

A FUNCTIONsubprogram may include any Fortran V statements (including other
FUNCTIONand SUBROUTINEstatements), except a BLOCKDATAstatement. See also
Chapter 9.

A FUNCTIONsubprogram may change the values of its argument(s), or of variables
contained within PUBLICor COMMONstorage. This is knownas a side -effect of the
function.

Warning: In the evaluation of expressions, no attempt is made to provide for. side­
effects of functions. Therefore, functions called in an expression should not change the
values of any variables appearing in the expression.

Note: care s~ould be taken to ensure that the type of the function is the same in the
function itself, and in its call.

e.g. REALX INTEGERFUNCTIONX(J)

A = B/X(J) END

would cause an error, since an integer value would be returned for X, although it is
declared as real in the calling program.

8.7 THE SUBROUTINE STATEMENT

SUBROUTINEsubprograms, like functions, are self contained programmed procedures.
However, unlike functions, subroutines do not have values (and hence not types) associated
with their names, and they are not referenced in expressions. Instead, subroutines
are accessed by means of CALL statements (see section S. 10.)

Subroutine subprograms begin (other than comment lines) with a SUBROUTINE
statement.

94

Definition

SUBROUTINEsname (name1, name name)2 n
or

SUBROUTINEsname

where
sname is a variable name, which is the name of
the subroutine

and
name1, name2··· namen
are variable names.

sname is the name of the subroutine, and the name. (if any) are its dummy arguments.
The dummy arguments may take any of the forms Jescribed in section 8.3. (4). If a
dummy argument is a subprogram name, then the corresponding actual argument must
be declared in an EXTERNALstatement within the calling program.

The dummy arguments may be used for any purpose within the subroutine, with the
restrictions described in section 8.3. (5).
If the SUBROUTINEhas no arguments, then the second definition is used.

A subroutine subprogram should normally contain at least one RETURNstatement,
unless execution is to be terminated within the subroutine. The RETURNstatement(s)
should be positioned so that it is the last statement executed for each execution of the
subroutine.

Subroutine subprograms may return values to the calling program or subprogram(s) by
assigning values to the name., or by changing the values of COMMON or PUBLIC
variables. 1

Subroutine subprograms may contain any Fortran V statements (including other
SUBROUTINEor FUNCTIONstatements), except a BLOCKDATAstatement. See also
Chapter 9.

Examples:

a) SUBROUTINEPRINT

b) SUBROUTINEREADARRAY(A,B,C)

c)

1

SUBROUTINEOUTPUT(A)
DIMENSIONA (100)
PRINT 1, A
FORMAT(9H1TABLEb2., 10(lX, F6. 3»
RETURN
END

Which prints the array corresponding to A, starting on a new page, with a heading, and
with 10 numbers to a line.

8.8 ADJUSTABLE DIMENSIONS

Note: Dynamic Arrays are described in Chapter 9.

Since a dummy array does not actually occupy any storage, its dimensions are used only
to locate its elements, and not to allocate storage for them. Therefore, the dimensions
of a dummy array need not be defined in the called program in the normal way. Instead
any (or all) of the dimensions of a dummy array may be specified by means of scalar

95

8.8 variables rather than by constants. This permits the calling program to supply the
cont (adjustable, or variable) dimensions of the dummy array each time the subprogram is

called.

The absolute dimensions of an array must be declared in a calling program. The
magnitudes of the adjustable dimensions of an array, declared in the called subprogram,
should be less than or equal to the absolute dimensions of that array, as declared in the
calling program. Adjustable dimensions cannot be used in a main program.-

The adjustable dimensions may be passed to the called subprogram as

(i) an argument
or (ii) a COMMONvariable
or (Hi) a PUBLICvariable

The adjustable dimensions declared in the called program may be arithmetic expressions
comprised of integer constants and scalar variables whose values are defined as in (i),
(ii), and (iii), above. All specifications for variables used in the dimensions must
precede the dimensioning statement.

The name of the adjustable dummy array itself must be a dummy argument, and must
not be in COMMONor PUBLIC.

Note that the last dimension of a multi -dimensional dummy array is not arbitrary in
Fortran V.

The last dimension of a multi -dimensional array must be as large as the largest
value used for the subscript.

The use of adjustable dimensions means that the definition of the DIMENSIONstatement
given in section 4.2. 1 has to be extended to allow the dimensions to be any arithmetic
expressions of type integer, rather than merely integer constants. Any variables used
in such expressions must be previously defined as above.

The definitions of the type statements given in section 4.4 are similarly extended, but
when adjustable arrays are declared in type statements, no initial data values may be
assigned to the array by means of the type statement.

Adjustable arrays must not appear in any EQUIVALENCE,COMMON,PUBLIC,or DATA
statements.

Adjustable dimension specifications of an array must appear after other specifications
for the array. In no case can the length of the array be changed after its dimensions
have been specified as adjustable.

e. g . DIMENSIOND(M,N)
COMPLEXD

would be in error.

It should be specified as

COMPLEXD
DIMENSIOND(M,N)

or (preferably) as

COMPLEXD(M,N)

96

Examples:

a) INTEGER A(lO, 10) SUBROUTINES(8, L, M)
INTEGER B(L,M)

1=9

J=2

CALL S(A,I, J) RETURN
END

b) DIMENSIONX(S, 6) FUNCTIONSUM(X, L, M)
DIMENSIONX(L, M+2)

1=4

RETURN
END

A = SUM(X, 4, I)

c) DIMENSIONA(lO, 10) SUBROUTINEX(A)
PUBLICI PUBLICI
COMMONJ COMMONJ

DIMENSIONA (1/3, J*4 - 6)

1=

J =

CALL X (A) RETURN
END

8.9 THE EXTERNAL STATEMENT

As described in section 8.3. (3) (see also Chapter 9) "actual" arguments which are
subprogram names must be declared in an EXTERNAL statement.

Definition

EXTERNAL name l' name2, namen

where
namel, name2····· namen
are variable names.

Each name appearing in an EXTERNAL statement is explicitly defined to be the name of
a subprogram.

Intrinsic function names which appear in EXTERNAL statements cause the names to be
treated as external function references rather than instrinsic function references.

Specifically, intrinsic function names which appear in an EXTERNAL statement, may be
passed as subprogram arguments. Not all of the intrinsic functions are available as
external functions (see Appendix 4). In such cases the user must provide his own
function of that name.

.. 97

EXTERNALstatements are not executable, and must appear in the text of the program
before any reference to the names which are to be treated as external.

Examples:

a) EXTERNALSUM, SUBX,SIN, COS

b) EXTERNALCOpy SUBROUTINESO,DUM)

CALL S (I, COpy) CALL DUM(A,B,C)

RETURN
END

In Subroutine S the CALL statement will, in fact, call subprogram COPY.

c) SUBROUTINESUBR(P,Q, R)

EXTERNALZ
C = Q(P,R*3)

CALL SUBR(A, Z, B)

RETURN
END

The replacement statement C = Q(P,R*3) actually accesses function Z.

If the CALL statement were (say)

CALL SUBR(A, Z(S,T), B)

then the EXTERNALstatement would be incorrect, because function Z is not now an
argument: it is executed first, and the result becomes the argument. Also, Q could not
nowbe used as a function.

8.10 THE CALL STATEMENT

Definition

CALL sname (aI' a2, a3, an)
or

CALL sname

where
sname is a variable name, which
is the name of a subroutine.

and
"r a2, a3, an

are each arithmetic or logical expressions,
or subprogram names.

The CALL statement causes control to be transferred to the first executable instruction
of the SUBROUTINEwhose name is sname.

The a. are the actual arguments to be passed to the called subroutine, and are described
in sechon 8.3. If the called subroutine requires no arguments then the argument list
is omitted, as in the second definition above.

Arguments appearing in a CALL statement may be

98

constants (of any type)
simple (scalar) variables
array elements (subscripted)
Array names (non-subscripted)
Arithmetic expressions

or subprogram names (excluding statement names)

If a subprogram name is used as an argument, then this nam~ is not followed by a~
argument list, since this argument form is only used to provide the calle~ subroutme
with a subprogram reference. In this sense, the subprogram reference IS merely a
name, and as such, has no value associated with it. (Butsee the note in example c)
above).

Furthermore, when a subprogram name is used in this manner, it must appear in an
EXTERNALstatement which is given in the text of the program before the CALL
statement(s) in which it is used, (unless the subprogram is a sub-block or statement
function which has already been defined in the segment: (see Chapter 9).

Examples:

a) CALLMATRIX(A,B,C/Dt43.2)

b) CALLS47T (1,2, X*Y)

c) CALLOUTPUTARRAYS(A(4), B(I+1), 'TABLE47')

8.11 THE RETURNSTATEMENT

I Definit.ion

RETURN

The RETURNstatement causes control to be transferred from a subprogram back to the
main or subprogram which called it.

If the called program is a SUBROUTINE,then the RETURNstatement causes control to
be transferred back to the first executable statement following the corresponding CALL
statement.

In the case of a function subprogram a return occurs to the evaluation of the expression
in which the function was referenced.

8.12 THE PUBLIC STATEMENT

Normally, except for external or subprogram names, any names of variables used in a
program or subprogram have no connection with names used in other subprograms.
i. e. the same name does not mean the same variable.

Use of the PUBLICstatement enables variables to be referenced by name in more than
one program or subprogram.

Definition

PUBLIC=-. (iI' i2, ...) name2 (i3), name3·· .

where

and
namel' name2, are variable names

iI' i2, i3, ... are unsigned integer constants.

When a variable name is placed in PUBLIC statements in more than one program or
subprogram, all references to that name in those programs or subprograms will access
the identical data item.

The variable name should be classified identically, in those programs or subprograms,
in respect of dimensions and type.

The dimensions (not adjustable) of arrays may be declared in the PUBLIC statement;
when subscripts appear in the list, the associated name is the name of array, and the
subscripts (i) are the dimensions of the array.

A public variable is only public to those main or subprograms which contain a PUBLIC
statement containing the name of that variable.

Within one main or subprogram, a PUBLIC statement must not contain any names which
are:

(i) Declared in a COMMON statement
(ii) Labelled COMMONblock 'names
(iii) The same as other (different) variables or function names appearing in

the same program.
(iv) Declared in an EXTERNAL statement.
(v) Assigned initial data values by means of DATA or type statements, unless

these statements appear in a BLOCK DATA subprogram. See section 8.14.
(vi) In the dummy argument list (if any) of the subprogram.

The PUBLIC statement is not executable, and must appear in the text of the program
before any reference to names contained in the statement. (See Appendix 3)

If a public variable is also declared in a DIMENSION and/or a Type statement, then the
order of the PUBLIC/DIMENSION/Type statements is immaterial. If a public variable
also appears in an EQUIVALENCE statement, then the PUBLIC statement must appear
first.

Example; PUBLIC MATX (3,6,7), THETA,A(4)

8.13 THE COMMON STATEMENT

The COMMONstatement is used to assign data to a particular region of storage called
COMMONstorage. Since this area of storage is fixed, the COMMONstatement provides
a means by which more than one program or subprogram may reference the same data.

Definition I
where each c. is of the form

1

or

and
bname is a variable name

and
each v. is a subscripted or non-subscripted variable name.
Any subscripts must be unsigned integer constants.
The commas following the second slash of each pair of
slashes are optional.

100

8.13 Examples:
cont

a) COMMONA,B(4,5), MAT2

b) COMMONTA, B3/XX/C(5), D/ /E, F(6)

c) COMMON/NB5/X, Y/XX/K

(1) The dimensions (not adjustable) of arrays may be declared in the COMMONstatement.
When subscripts appear in the list, the associated name is the name of an array. and
the subscripts are the dimensions of the array.

(2) The COMMONstatement is not executable, and must appear in the text of the program
before any reference to the variables in its list. (See Appendix 3).

If a COMMONvariable appears in a DIMENSIONand/or a Type statement, then the order
of the COMMON/DIMENSION/Typestatements is immaterial.

If a COMMONvariable also appears in an EQUIVALENCEstatement, then the COMMON
statement must appear first.

(3) Each bname is the name of a labelled COMMONblock, and the list of names that follows
it contains the names of variables or arrays which are to be placed in that block. If no
bname is specified (as in example a), or if a blank name is specified (as in example b)
the variables in the following list are placed in blank (or unlabelled) COMMONstorage.

(4) Labelled COMMONblocks are discrete sections of the COMMONregion, and are thus
independent of each other, and of unlabelled COMMON.

In the examples above, A,B,MAT2, TA,B3,E and F are in unlabelled COMMON; C,D
and K are in COMMONblock XX; and X and Yare in COMMONblock NB5.

(5) A COMMONvariable may not appear in:

A PUBLICstatement
A dummy argument list

A labelled COMMONvariable may only appear in a DATAstatement (or have initial data
values assigned in a type statement), when these statements are contained within a
BLOCKDATAsubprogram. (See 8. 14.)

A variable which is in unlabelled COMMONmay not have initial data values assigned in a
Type statement, and may not appear in a DATAstatement.

(6) Any labelled COMMONblock may be referenced by any number of programs or
subprograms. References are made by block names (bname), which must be identical
if it is desired to reference the same COMMONblock (i. e. bname is effectively a
public name).

All labelled COMMONblocks need not be defined in anyone program or subprogram;
only those blocks containing data required by the program or subprogram need be
defined.

(7) The variables defined as being in a particular COMMONblock do not necessarily have
to correspond in type or in number between the programs or subprograms in which the
block is referenced. This is also true of unlabelled COMMON. See also section
8.13.2(5).

However, the definition of the overall length of a COMMONblock must be the same in all
of the programs or subprograms in which it is defined.

•. 101

Example: FUNCTIONF(I)

COMMON/BB/ A(40)

SUBROUTINEX
DOUBLELENGTHP(20)
COMMON/BB/ P

Bothreferences to block BBcorrespond in size. The array A (not being explicitly
declared) is of type real and hence is 40words in length. The array P being of type
double precision, is also 40words in length.

(8) Reference may be made to the name of a labelled COMMONblock more than once in any
program or subprogram. Multiple references may occur in the same COMMON
statement; or the block name may be specified in any number of individual COMMON
statements.

In both cases, the compiler links together all variables defined as being in the block into
a single labelled COMMONblock of the appropriate name.

The variables are linked together in the order in which they appear.

(9) Blocknames (bname) must not be the same as:-

names which are contained in PUBLICstatements.
or subprogram names.

Blocknames do not conflict with names other than the above.

(10) Blank, or unlabelled COMMONis an area of COMMONstorage which is not discrete,
although it is separate from the block region; i. e. there is only one such area, and
empty block name specifications always refer to it.

In addition, as opposed to labelled COMMON,blank COMMONareas defined in various
programs and subprograms need not correspond in size.

Example:

The following two subprograms define blank COMMONareas of different lengths, and
yet both may be portions of the same executable program.

FUNCTIONZ(B)
COMMONA (50), E, F

SUBROUTINEK
COMMONTT (100)

Subprogram Z defines a COMMONlength of 52 words, and a length of 100words is
defined in K.

(11) Reference may be made to blank COMMONany number of times within a program or
subprogram. The multiple references may occur in a single COMMONstatement, or
in several individual COMMONstatements. In both cases, all variables defined as being
in blank COMMON,are linked together and placed in the blank COMMONarea. The
variables are linked together in the order in which they appear.

8.13.1 Arrangement of COMMON

Each separate COMMONblock, and the unlabelled COMMONarea, contain, in the order
of their appearance, the variables declared to be in that block, or area.

The variables in each section of the COMMONregion are arranged from low-address
storage towards high-address storage. The first variable declared as being in a
particular section is placed the low-address word(s) of that section; succeeding,
variables are placed in higher addresses; until the last variable declared to be ill the

102

8.13.1
cont

section is placed in the highest address word(s) of the section.

Array variables are stored in the normal manner (see section 4.2.2) within the COMMON
region.

Examples:

a) The statements
COMMONA,B/XX/C(4)
COMMON/XX/E(2, 2)/ /D(3, 2)

produce the following arrangement of COMMONstorage,

Item Block Unlabelled
XX COMMON

1 C(l) A
2 C(2) B
3 C(3) D(l,l)
4 C(4) D(2,1)
5 E(l,l) D(3,1)
6 E(2,1) D(l, 2)
7 E(1,2) D(2,2)
8 E(2,2) D(3,2)

b) The statements:

SUBROUTINEASUB
REAL I, K(4), PI
COMPLEXZ (4), ROOT
COMMONZ/BB/I
COMMON/BB/K//PI

Produce the following arrangement:

SUBROUTINEBSUB
COMPLEXT (2)
REAL Q (8), I
COMMONQ/BB/T, I

Block BB Unlabelled COMMON
Item in ASUB in BSUB in ASUB in BSUB
(word)
1 I T(l) Z(l) Q(l)
2 K(l) T(l) Z(l) Q(2)
3 K(2) T(2) Z(2) Q(3)
4 K(3) T(2) Z(2) Q(4)
5 K(4) I Z(3) Q(5)
6 Z(3) Q(6)
7 Z(4) Q(7)
8 Z(4) Q(8)
9 PI

Each COMPLEXitem requires two words.

In BSUBa reference to T(l) will access the words in which I and K(l) are stored;
Similarly, a reference to I will access K(4).

Putting item 9 (PI) into COMMONis not useful unless another program or subprogram
exists which defines at least 9 words of blank COMMON.

Note: Each labelled COMMONarea begins at the start of an Atlas block of 512 words.
Use of many short (less than 512 words) labelled common blocks may waste store on
Atlas.

103

8.13.2 COMMON/EQUIVALENCE interaction

(1) The EQUIVALENCEstatement is described in section 4.5.
No storage allocation declaration is permitted to cause conflict in the arrangement of
storage.

(2) Each COMMON,PUBLICand EQUIVALENCEstatement determines the allocation of the
variables declared in them. Therefore, no EQUIVALENCEset may contain references
to more than one variable (or more than one element of one array) which has been
previously allocated (or referenced). Similarly, COMMONor PUBLICstatements
should not contain the names of any variables which have previously been declared to be
PUBLICor in COMMON.

When the above rule is violated Fortran V accepts the first reference, and rejects (with
an error message) all later (illegal) references.

(3) It is sometimes permissable for an EQUIVALENCEstatement to cause a segment of the
COMMONregion to be lengthened beyond the last item defined to be in that segment.
It is not, however, permissable for an EQUIVALENCEstatement to cause a segment to
be extended beyond the first item declared to be in that segment.

Example: COMMON/AB/I(5),J/BB/K(4),L
DIMENSIONP(8),Q(5)
EQUIVALENCE(I, P), (Q(4), K(2»

The first EQUIVALENCEset is a permissable extension of the block AB; the second set
illegally defines an extension of block BB. If the illegal extension were carried out (it
would not be), the storage arrangement would be:-

Item AB BB

- - Q(l)) .
- - 9.(~)....>. .l~~~~~~
1 I(l)=P(l) K(1)=Q(3)
2 I(2)=P(2) K(2)=Q(4)
3 I(3)=P(3) K(3)=Q(5)
4 I(4)=P(4) K(4)
5 I(5)=P(5) L
6 J=P(6)
7 P(7)
8 P(8)

(4) The fact that COMMONblocks may be lengthened by EQUIVALENCEdeclarations in no
way nullifies the requirement that labelled COMMONblocks of the same name must be
of the same length in all of the programs or subprograms in which they are defined.

(5) Note: care should be exercised when variables of different types are made equivalent
either by EQuivALENCE or by COMMONor PUBLICstatements. For example, if a
variable, which appears to be of type REAL, in fact contains an INTEGERvalue, then
the wrong instructions may be compiled.

e.g. SUBROUTINEA
COMMON I

1=4
CALL B

SUBROUTINEB
COMMONX
Y = l/X

would cause an execution error is SUBROUTINEB, since a floating point division
would be compiled, and the value contained in X is, in fact, an integer.

104

8.14 THE BLOCK DATA STATEMENT

As mentioned in sections 8..12, and 8.13.(5), initial data values may be assigned (by
means of DATAor Type statements) to PUBLICor block COMMONvariables, only in a
BLOCKDATA subprogram.

I Definition

BLOCKDATA

The BLOCKDATA statement is the first statement (other than comment lines) of a
BLOCKDATA subprogram.

The BLOCKDATA subprogram may contain only the following kinds of statements

IMPLICIT
DIMENSION
any Type Statements (in which values may be assigned)
PUBLIC
COMMON
DATA
Comment Lines.

and the last statement of the subprogram must be an END statement.

Since the BLOCKDATA subprogram has no name, it may not be called by any other
program or subprogram; it is not executable. and may not contain any executable
statements.

The only purpose of the subprogram is to assign initial data values to block COMMON
or PUBLICvariables.

Data may not be assigned to variables which are in blank common.

All items in a COMMONblock must be given. even though they might not appear in the
type or DATA statement(s).

Data may be entered into any number of COMMONblocks, or PUBLICvariables, in one
BLOCKDATA subprogram.

Any number of BLOCKDATA subprograms may appear in one job, although there is
never need for more than one.

Example: BLOCKDATA
COMMON/X/A, B(lO),C, D. 1(5)
INTEGER B
PUBLICP,Q, R(3)

REAL 1(5)/5*1.0/
DATA (B(K), K=l, 10), C, P, Q. R/IO*O, 6*1.0/
END

The values of A and D are not defined.

105

CHAPTER 9 PROGRAM BLOCK STRUCTURE
AND DYNAMIC ARRAYS

9.1 INTRODUCTION TO BLOCK STRUCTURE

Fortran V program block structure is a generalisation of ordinary Fortran subprogram
structure (see Chapter 8). It is very similar to the program block structure of
languages like Algol or PL/l.

Normally, Fortran programs are broken up into segments, consisting of a main
program,. and function or subroutine procedures. Compilation of each segment
proceeds independently. Names of variables and labels are private to each routine,
and do not conflict with use of the same names or statement numbers in other segments.
Communicationbetween segments is effected by the COMMONand PUBLICstatements
for variables, and by special provision for making procedure names public.

This segmental structure is very convenient for dividing a large program into
manageable pieces, but it does have certain disadvantages:

(i) Tedious book-keepingmay be required, such as the repetition of long COMMON
declarations in many segments.

(ii) Names are either private or fully public causing difficulties in segmenting
routines designed for general use.

(iii) Entry of subsections must take the form of procedure calls.

These disadvantages may be overcome by the use of block structure.

In Fortran V, outer segments are still compiled separately. However, within such a
segment, program blocks may be written which contain variables and labels (statement
numbers) that are private or local, to the block.

Since the entire segment is compiled as a unit, information about variables and labels
of the outer block is available when compiling the inner block. These variables or
labels are global to the sub-block (or inner block).

9.1.1 An example of block structure

FUNCTIONor SUBROUTINEstatements can appear within a routine, and indicate the
start of a procedure sub-block. Consider the followingexample:

SUBROUTINEOUTER
DIMENSIONA (10)
INTEGERN

FUNCTIONPOLY(X) l
INTEGERI
POLY =A(I)
IF (N.EQ.l) GOTO 2

106

DO 1 I = 2,N J1 POLY = X*POLY+ A(I)
2 RETURN

END
DO 1 I 1,10

Y = POLY (Z)
1 CONTINUE
2 Z = Z-l

IF (Z) 2,3,2
3 RETURN

END

The inner procedure POLYis a sub-block function for evaluating the polynomial with
coefficients stored in A. Note that A and N are global to POLY, but I is local to POLY,
and has no connection with the variable I used in the 00 loop after the first END. This
statement is the first executable statement of OUTER. The statement numbers 1 and 2
of POLYare also local to it.

9.1.2 Use of block structure

Blockstructure is particularly useful for large programs, or for writing sections of
programs to be inserted into other programs. It will frequently be found that the use of
block structure economises on storage space, without loss of running time.

The compoundlogical IF statement (9.4) is of general use, and provides some of the
flexibility of Algol compoundIF statements. When storage space requirements are
crucial, or difficult to estimate, dynamic arrays (9.5) may be.found useful.

A brief summary of block structure is given in 9.7.

9.2 BLOCK STRUCTURE DEFINITIONS

9.2.1 Program blocks

(1) A block heading is one of the following:

(i) a SUBROUTINEstatement
(ii) a FUNCTIONstatement
(iii) a BEGINstatement (see 9.2.2)

(2) A program block consists of all statements between a block heading and a matching END
statement. Blockheadings and ENDstatements match up in the same way as left and
right brackets do in arithmetic expressions. Whenan ENDstatement is encountered in
compilation, it is matched with the last block heading not already matched by an END
statement. (See example 9. 1.1.)

The block heading is not considered as part of the program block (9. 3.2) .

A program block with a FUNCTIONor SUBROUTINEheading is a procedure block.

(3) It follows from the definition that two program blocks are either disjoint, that is, do not
overlap, or that one is contained (i. e. nested) within the other. Program blocks may
be nested to any depth. If a program block A is contained in a program block B, then A
is called an inner block of B, and B is called an outer block of A.

107

(4) A program block not contained in another block is called a program segment, or
subprogram (or main program - see Chapter 8). Program segments are compiled
independently. Object cards, when specified, are produced only for program segments,
including cards for any inner blocks of the segment, (i. e. cards cannot be produced for
an inner block without its containing blocktsj),

Program segments can be subroutines, functions, or a main program.

Note: A main program which contains any inner blocks must start with a BEGIN
statement. Otherwise, the first END statement encountered will terminate the program
segment.

9.2.2 The BEGIN statement

I Definition

BEGIN

The BEGINstatement is an executable statement, and can be labelled. It serves as the
block heading for a BEGINblock. BEGINblocks are terminated by an ENDstatement
which matches the BEGINstatement.

BEGINblocks differ from procedure blocks only in the way the block is entered and left.

9.2.3 Entering and leaving blocks

BEGINblocks are entered when control reaches the BEGINstatement, and left when
control reaches the ENDstatement. A RETURNstatement in a BEGINblock means a
return from the procedure block containing the BEGINblock.

A procedure block is entered by a call, i. e. a CALL statement for a subroutine block,
or use in an expression for a function block. Procedure blocks are left by a RETURN
statement. Control in a procedure block should normally never reach the ENDstatement,
but in Fortran V procedures, if control reaches the ENDstatement, a RETURNis
executed.

A procedure block cannot be entered by control reaching the block heading. If control
apparently reaches the heading, then the first executable statement after the END
statement of the procedure block will be executed.

Transfers into any block are not allowed.

Transfers out of a block are permitted (see 9.3.2).

Differences between Procedure and BEGINblocks

Procedure BEGIN---
Blockentered by: CALL or use in expression control reaching BEGIN

If control reaches go to statement after end enter block
heading: of block

Blockleft by RETURN control reaching END

Effect of RETURN return from block return from outer
procedure.

108

9.3 GLOBAL AND LOCAL ITEMS

Privacy for variables, labels and procedures is provided by block structure.

Essentially, a block cannot refer to items that are local to an inner block, or local to a
completely separate block. On the other hand, a block can refer to entities of a block
in which it is embedded (or nested).

An item is global to a program block if it is not
local to the block but is local to an outer block.

Definition

An item (variable, label or procedure) is local to a
program block if it is declared within the block,
i .e. inside the block, but not inside an inner block.

Global and local are relative terms. An item is local to the block in which it is
declared, but global to an inner block.

The definition of a declaration depends onwhether the item is a variable, a label, or a
procedure; these definitions are given below.

9.3.1 Variables

(1) A variable is (explicitly) declared in a block when it appears in a specification statement
(see Appendix 3), or is a dummy argument of the block.

Example: SUBROUTINESUBA(W)
REALX,Y (100)
INTEGERI,N
DIMENSIONA(5), B(lO)
COMMONC,D,E
SUBROUTINESUBB(X)
DIMENSIONC(lO)
INTEGERB
J = I
V = X
D = X
W= Y
RETURN
END
INTEGERJ

END

The variables Band C are local to SUBB,and are therefore quite different from the
variables B and C of SUBA. Note that none of the properties of a variable in an outer
block apply to a local variable of the same name in an inner block. In the example, the
integer variable Bof SUBBis not an array, although the real variable B of SUBA,is
dimensioned. The variable X is also local to SUBB,since it is a dummy argument.

The variables I, D, W and Yare global to SUBB,since they are not explicitly declared
in SUBB.

(2) In Fortran V, the order in which declarations appear is important. The scope of a
declaration extends over the program text from the line in which it appears to the end
of the program block.

lU';I

Thus, in the example above, the variable J is not global to SUBB,since SUBBdoes not
lie within the scope of the declaration.

(3) Fortran allows the use of implicit variables, that is, variables which do not appear
explicitly in a declaration. In Fortran V an implicit variable is considered to be
implicitly declared when it is used in any executable or DATAstatement. The scope of
an implicit declaration extends over the program text, from the first executable or
DATAstatement in which the variable is used, to the end of the block containing the
statement.

Thus, in the example above, the variable Vwill be considered to be local to SUBB,
since it is impl icitly declared in the statement

V = X

Note, however, that if a variable with the name Vhad been used in the text before the
statement SUBROUTINESUBB(X)this statement wouldhave been taken as a reference to
the global V.

In order to avoid confusion, variables that are desired to be local to a block should be
explicitly declared before any executable or DATAstatements in the block.

(4) Local variables that are not dynamic·arrays (9.5) are assigned fixed storage locations.
Values given to the variables are still available when the block is re-entered.

Example: BEGIN
INTEGERN
DATANIOI
N N+l

END

N is increased by one each time the block is entered.

9.3.2 Labels (statement numbers)

Labels are declared in a block if the label is attached to a statement, i. e. appears in
columns 1 through 5 of a statement. The scope of the label declaration extends over
the whole block.

If a global label, i. e. a label not declared in the block, is referred to in a control
statement (Iri an inner block), then control jumps out of the block. Control will jump
to a label with the same name or number (as that in the control statement) in the nearest
outer block in which the label is declared.

Example: DO 3 I = 1,100

IF (A(I)) 4,5,2
2 BEGIN

B ;:: A(I)
3 C = B/A(I)
21 IF(ABS(A(I)- C) -1.0E-7)5,5,2
2 A(I) = O.5*(A(I)+C}

GOTO 3
END

4 A(I) = 0
5 (Example continuedoverleaf)

110

3 CONTINUE

This example illustrates several aspects of label declarations.

(i) The range of the DOloop includes the BEGINblock and terminates on the
second statement number 3 (i. e. CONTINUE). The DOloop does not
terminate on the first statement number 3 since that statement is in the
inner block.

(ii) DOloops starting in an inner block must terminate before the END
statement for that block.

(iii) The first statement number 2 is local to the outer block, although it is
attached to the BEGINstatement for the inner block. This illustrates
the point raised in 9.2. 1 that a block heading is not inside the program
block it heads.

(iv) Transfer statements may be written before or after the declaration of
the label. In statement number 21, the transfer to statement number 2
goes to the next statement, which has the statement number 2 that is
local for the inner block. Similarly, the statement

GOTO 3

transfers to the first statement number 3.

Labels attached to FORMATstatements follow the same declaration rules as other labels.
An input/output statement may refer to a FORMATin an outer block, provided there is
no FORMATwith the same statement number in the inner block.

*9.3.3 Assigned GO TO statements

Assigned GOTOstatements can be used to cause a transfer out of a program block.
They cannot cause a transfer into a program block. A statement of the form

is treated as a declaration for 12, which is therefore local to the block.

Examples:

a)

FUNCTIONSQT(X)
IF (X) 1,2,2

1 GOTON
2 SQT = SQRT (X)

RETURN
END

ASSIGN2 TO N
Z = -B+SQT(DISC)

III

2 PRINT121
12 FORMAT(13H Z IS COMPLEX)

If DISCis negative, control transfers out of the function to the outer block statement
number 2 (PRINT).

b) ASSIGN 1 TO L
ASSIGN 2 TO M
BEGIN
IF (I) 21, 22, 23

21 GO TO L
22 GO TO M
23 ASSIGN 3 TO L

END
2 GO TO L

Since an ASSIGNstatement for L has appeared in the inner block, L is a local label for
the inner block, and is not the same as the label L of the outer block.

At statement 21, L is unassigned and the GOTOwill cause an error. At statement 2,
the GOTOrefers to the outer L, which is still set to jump to statement number 1, even
if statement 23 has been executed.

9.3.4 Procedures

A subroutine or function procedure is declared in a block by the appearance of a
SUBROUTINEor FUNCTIONstatement in the block. From the definition in 9.2.1
the SUBROUTINEor FUNCTIONstatement starts an inner block, but is itself in the
outer block.

The scope of the procedure declaration extends over the entire block in which it appears.

(1) Example: SUBROUTINEA

SUBROUTINEB

B A
SUBRO~TINE C I c1

END ~

END
SUBRO~TINE C I C2

END ~

END

Subroutine B is local to A, and can be called anywhere in block A. Inside block B, a
CALL statement for C results in a call to the first subroutine C, which is local to C.
Outside block 8, a CALL statement for Cwill result in a call to the second C.

(2) If a procedure block is a program segment, that is, it is not contained in another block,
then the procedure name is public. The procedure, is in fact, an ordinary Fortran
subprogram (Chapter 8). Procedure names for inner blocks cannot be made public

112

even by use of EXTERNAL or PUBLIC declarations. However, inner block procedure
names can be used as arguments, and can therefore be called from other blocks.

Example:

A trapping routine for zero division. Division by zero is trapped by Atlas (section 10.3).
By use of the library routine AFTERR, a procedure can be called when a trap occurs.
A return from the trap procedure may however cause erratic results.

The computation in the example computes the column average of a table. If the column
is all zero, the trap routine sets the average to zero.

DIMENSIONTABLE(50,10) AV(50,1O)
INTEGER I,J
SUBROUTINETRAP
INTEGER I
DO 2 1==1,50

2 AV(I,J)==O.0
GOTO4
END

CALLAFTERR (1, TRAP)
DO 4J==I,1O
SUM==O.O
00 21==1,50

2 SUM==SUM+ TABLE (I,J)
DO 31==1,50

3 AV(I,J) ==TABLE (I, J)/SUM
4 CONTINUE

If SUMis zero, an error trap occurs in statement 3, calling the TRAP subroutine.
This clears the column, and transfers to continue the loop.

(3) The location of a procedure in a block is not crucial. If the procedure has been
written using local implicit variables, then it is preferable to put the procedure at
the start of a block.

(4) Fortran V procedures must not be used recursively (see Chapter 8).

9.4 COMPOUND LOGICAL IF STATEMENTS

The BEGINstatement (9.2.2) can be used as the successor statement in:a Fortran IV
type logical IF (6.6.1(3». In this case the entire BEGINblock is effectively a compound
successor statement.

If-the logical expression is true, control enters the BEGINblock. Otherwise, none of
the statements of the BEGINblock are executed.

Example:

A compound statement which interchanges X and Y if X is greater than Y.

IF (X.GT.Y) BEGIN
REAL Z
Z==X
X==Y
Y==Z
END

The declaration REAL Z ensures that any variables called Z in block(s) containing the

11,)

compo\ll1dIF, will not be overwritten.

Any legal Fortran statements can be written in the BEGINblock, including simple or
compoundlogical IF statements. Transfers out of the block are permitted.

Exampler A compoundstatement which finds the first non-zero element of an array.

1=0
2 IF (I. LT. N) BEGIN

1=1+1
IF (A(I).EQ.O.O) GOTO 2
END

The transfer to statement number 2 is a jump out of the block.

The following rules, which are essentially re -statements of block structure
properties will minimise the possibility of errors.

(i) If compoundlogical IF statements are used in a main program, then the
main program must start with a BEGINstatement.

(ii) Variables and labels that are explicitly declared in the BEGINblock are
local to the block, and have no connection with variables or labels of the
same name outside the block.

(iii) Variables that are not declared in the BEGINblock will be the same as
variables with the same name outside the block only if they are declared or
used before the BEGINblock.

9.5 DYNAMIC ARRAYS

Dynamic arrays can be used to set up a variable amount of storage at run time, and can
effect a considerable saving in store requirements.

(1) A dynamic array is an array which is declared in a DIMENSIONor type statement with
adjustable dimensions (8.8) where the array name is not a dummy argument. The array
is local to the block or subprogram in which it is declared.

The amount of storage required for the array is set up when the block or subprogram is
entered. All variables used in the dimensions must be declared before the declaration,
for the array appears, and their values must be knownwhen the block is entered. This
means that the variables must be one of (or combinations of) the following:

(i) a dummy argument
(ii) a COMMONor PUBLICvariable
(iii) a global variable
(iv) a function

If functions are used in the adjustable dimensions , side-effects should be avoided.

Example: A program which reads in the storage requirements for several arrays.

BEGIN
READ 101, M, N
BEGIN
DIMENSIONA(M,N),B(N,M),C(M*N)

END
END

114

9.5 The first BEGINis needed because this is a main program with inner blocks. The
cont second BEGINheads the block in which the dynamic arrays are defined. Within this

block the arrays can be referred to by ordinary Fortran V statements.

The amount of store used is precisely that needed for the individual run and can be
specified accordingly in the Job Description. If the arrays were not dynamic, the
maximum amount of store ever used would have to be specified. Thus, in many
circumstances, the use of dynamic arrays can reduce the store required for a job.

(2) A dynamic array remains available until control leaves the block. It is available if
control enters inner blocks. A dynamic array can be passed as an argument to a
procedure block or subprogram, which may use adjustable dimension statements for the
array.

(3) Whencontrol leaves the block, by means of a RETURNstatement, or by reaching the end
of a BEGINblock, or by a transfer out of the block, the store for the dynamic array is
returned to an area of available store.
This area is knownas a stack.

On a re-entry to the block, a different area of store may be assigned to the dynamic
array. Therefore, the initial values of the array are unpredictable and values stored
in the array are lost when the block is left.

(4) Different routines or blocks can use the same storage area for dynamic arrays. This
occurs automatically if the blocks are disjoint (see 9.2.1(3», and one does not call the
other; since the space is returned to the stack when the block is left, and taken by the
next block requiring space for dynamic arrays.

Example: A routine for computing the square of a matrix, and storing the result over
the original matrix.

SUBROUTINESQMAT(A,N)
DIMENSIONA(N,N),B(N,N)
DO2 1=1,N**2

2 B(1)= A(I)
CLEARA
DO3I=1,N
DO3 J=l,N
DO3 K=l,N

3 A(1,]) =A(1,])+8(1,K)*B(K,])
RETURN
END

A is an argument array with adjustable dimensions, and B is a dynamic array. The
space used temporarily by B is available for dynamic arrays of other routines after the
return from SQMAT.

(5) The followingpoints apply to the use of dynamic arrays:

(i) Dynamic arrays can be dimensioned in Type statements or DIMENSION
statements. All specifications for the array must precede the
dimensioning.

(ii) Dynamic arrays should not be specified as COMMONor PUBLICnor
should they appear in EQUIVALENCEstatements.

(iii) Specifications for variables used in the dimensions must precede the
dimensioning statement.

(iv) The variable dimensions themselves must be in the form described in
section 9.5. (1).

9.6 MISCELLANEOUS STATEMENTS AND BLOCK STRUCTURE

9.6.1 COMMON and PUBLIC

COMMONand PUBLICstatements are not normally needed in inner blocks. COMMON
and PUBLICstatements are often used to declare variables at the start of a program
segment, and can then be referred to as global variables by statements in the inner
blocks.

Labelled and unlabelled common areas start from their beginning at the start of every
block.

Example: COMMONA,B
BEGIN
COMMONC,D

The variables A and C refer to the same common store location, as do Band D.

A COMMONstatement is a declaration, so that the variables contained in its list are
local. However, COMMONstatements may result in variables in the outer block being
overwritten. Thus, in the example above C is not the same as a variable C of the
outer block, but assignment to C will overwrite A.

The usual case of identical COMMONstatements will result in variables with the same
name using the same store locations.

PUBLICstatements in an inner block have the same effect as PUBLICstatements in a
program segment provided that no procedure block is declared with the same name as a
PUBLICvariable. These variables are, in fact, public in the sense described in
9.3.4(2).

Because of the way Fortran V handles multi -dimensional arrays, considerable store
saving may be made by re -compiling as a program block a program which has a number
of routines using the same COMMONand PUBLICvariable declarations. The suggested
procedure is:

(i) Remove all *FORTRANlines.
(ii) Remove the specifications (including dimensioning statements) from all

routines.
(iii) Place at the head of the program a *FORTRANline followedby a BEGIN

statement, and one set of the specifications.
(iv) The main routine should be the last routine in the source deck. It should

be followedby the *ENTERline. An additional ENDstatement is not
necessary.

9.6.2 EQUIVALENCE

EQUIVALENCEstatements cannot be used to set up equivalence between local variables
of an inner block and global variables. Effectively, an EQUIVALENCEstatement is a
declaration for all variables appearing in it.

Dynamic arrays must not appear in EQUIVALENCEstatements.

9.6.3 EXTERNAL

An EXTERNALstatement informs the Compiler that a name, is, in fact, the name of a
procedure. It is not a declaration for the procedure. The EXTERNALstatement is
not needed if the procedure block has already appeared, or if a CALL statement has

116

appeared, or if the function name (with arguments) has appeared in an expression.

9.6.4 IMPLICIT

The effect of an IMPLICITstatement extends over all statements after the appearance
of the IMPLICITstatement until the end of the program segment.

9.7 SUMMARY OF BLOCK STRUCTURE

Program block structure is a new concept in Fortran. The detailed definitions given in
this chapter may seem strange at first, even to experienced Fortran programmers.
The followingsummary and simplified rules may be helpful.

Program blocks can be subroutines or functions (procedure blocks) or BEGINblocks.
Procedure blocks are called, either by CALLstatements or by appearance in an
expression. BEGINblocks are essentially 'compoundstatements' that is, they are
used as if they were single statements; for example in a (Fortran IV) logical IF .

.Both kinds of program blocks can be embedded as sub-blocks (inner blocks) to any depth.
Variables and labels that are explicitly declared in a program block are local i. e.
private, to the block, and have no connectionwith variables or labels of the same name
outside the block. Procedures embedded in a block are also local to the block, and
cannot interfere with user or library sub-programs.

Variables that are not declared in a program block will be the same as variables with
the same name outside the block only if these are declared or used before the
appearance of the block.

Transfers out of a block are legitimate, but transfers into the bodyof a block are not
allowed.

Fortran V combines block structure and ordinary Fortran sub-program segmentation.
A program segment is a block which is not contained in another block.

A main program which contains any sub-blocks must start with a BEGINstatement. In
other words, a main program is a BEGINblock, but for compatibility with ordinary
Fortran, the BEGINstatement need not appear if there is only one ENDstatement.

117

CHAPTER 10 TRACING AND EXECUTION ERRORS

In Fortran V, some powerful instructions have been introduced whichgreatly facilitate
the checking and correction (debugging)of programs.

These statements enable the values and names of numeric variables to be printed
automatically whenever these variables appear in a statement which could change their
value. Similarly, in order to followthe path of control through a program, a statement
exists which prints the names of labels whenever the statements attached to these labels
are executed. The tracing statements are only effective for routines compiled inTEST
mode (see section 12.2 (9».

10.1 THE TRACE STATEMENT

Definition I TRACEname1, name2, namen

where name1, name2, are nonsubscripted numeric
variable or array names.

(1), The TRACEstatement causes the names and newvalues of the variables in its list to be
written whenever these variables appear:

(i) in any READstatement
(ii) on the left hand side of a replacement statement
(iii) as the index of an input or output list, or of a DOstatement.

Note that the TRACEstatement is not effective whenvalues are changed by means of
CLEAR, or ASSIGN,or "machine language", statements and that label variables
cannot be traced.

(2) The values and names are written on to output stream number zero (see Appendix8).
The layout of the output is as follows:

columns 1 to 8 : the name of the variable
columns 9 and 10: are blank
column 11 is The character =
column 12 is blank
columns 13 to 23 The value of the variable
column 24 is blank

a maximum of five of these fields may be written in one line (record). The name of the
variable is right adjusted and filled out with blanks if it contains less than eight
characters.

If the number of cha~acters in the value is less than 11, then the value is preceded by
the appropriate number of blanks (spaces). Negative values are preceded by a minus
sign, positive values are not signed. Leading zeros are not printed.

If the variable is of type integer, then the output field is the same as it wouldbe if it
were written using the specification Ill. (see section 7.6.4.5).

118

10.1 If the variable is of type real, then the output field is the same as it wouldbe if it were
cont written using the specification Gll (see section 7.6.4.4).

Doubleprecision variables are given to single precision only. Only the real parts of
complex variables are printed. Text, Booleanand logical variables cannot be traced,
and should not be present in the list of the TRACEstatement. If a real variable
appears in the list of a TRACEstatement, and the variable in fact .cont~inSan integer
(unstandardised) value, then a real value with a possible exponent IS pnnted, followed
by a slash.

e.g. X = 1.000 EOO/
or

X = 1.000/

(3) Each new value is not necessarily printed as a new record (line). The field is only
printed as a new record if:

5 trace fields (120 characters) have already appeared in the current record.

or a combination of trace fields and fields produced by OUTPUT,PRINT, or
WRITEstatements have caused the current record to exceed 120 characters
in length (on the printer).

Note that TRACEoutputmay appear on the same line (or record) as a line produced by
a previously executed formatted PRINTor WRITEinstruction.

(4) The TRACEstatement is effective only in the program, or subprogram in which it
appears and onlywhen that program or subprogram is compiled in TEST mode;
i.e. when a TEST option appears in its *FORTRANline. (If this is not the case, then
all TRACEstatements are ignored - see section 12.2(9».

(5) Anynumber of TRACEstatements may appear in a program or subprogram, all of the
variables in their lists will be traced. The TRACEstatements may app~ar anywhere
in the program, but tracing will begin only at the point where the TRACEstatement
appears; i.e. only those references which textually followthe TRACEstatement will be
traced.

e.g. 2 I = 6
TRACEI,}
}=4
1= J*7
GOTO2

will cause the followingline to be written

J = 4 I = 28 J = 4 I = 28
and so on.

(6) If the name of an array appears in the list, then trace output is produced whenever any
element (or the name of the whole array) appears in a READ, on the left hand side of a
replacement statement, of as the index of an actual or implied 00.

If the name of the array appears as a "short list" in a READstatement, then each
element of the array is traced.

Whenan array is traced the subscripts are not printed, only the array name itself is
output in the trace field.

(7) Note that TRACEstatements can produce a large amount of output, unless used with
discretion .

119

Example: SUBROUTINEG(I)
REAL X(lO)
TRACE}, X, K, L
DIMENSION M(3)
READ 5, (X(K), K=l, 10,2)
CLEAR M
}=1*3

Assuming values for X, and I, this could produce the following output (each field would
actually occupy 24 columns).

K=
K=

1 X=
7 X=

6.0000 K=
7.3012 K=

3 X=
9 X=

-4.3000
1.3006Eb02

K= 5 X=
}= 27

1.0000E -01

10.2 THE TRACE PATH STATEMENT

Definition I TRACEPATHFROMlabel1 TO label2

where label1 and label2 are statement numbers or named labels,
which are both attached to executable statements. If label1 is
a named label, then it must be enclosed in parentheses. i. e .

TRACEPATHFROM(labeI1)TO label2

(1) The TRACEPATHstatement is used to trace the path of control through a program or
subprogram, and causes the labels of executable statements to be printed whenever
those statements are executed.

(2) The TRACEPATHstatement is effective only for programs which are compiled in TEST
mode, i. e. if a TEST option appears in the *FORTRANline (section 12.2 (9». (If this
is not the case, then all TRACEPATHstatements are ignored).

Any number of TRACEPATHstatements may appear in a program or subprogram.
Each statement must textually precede the first labelled statement in the routine.

(3) The TRACEPATHstatement is effective only for those labels which are executed
between executions of label1 and label2 (label is not included). i. e. The trace is
"switched on" when labell is executed and "s~itched off" when label is executed.
If a subroutine or function (not an intrinsic function) subprogram is ~alled between
label1 and labe~ then the name of the subprogram is printed on entry, and the
characters --- RETURNare printed on return from the subprogram.

If the called subprogram was compiled in TEST mode, then path tracing will continue
in that subprogram, even when it contains no TRACEPATHstatement itself.

(4) The trace output is written on to output stream zero. The layout of each field is: -

columns 1 to 10:
columns 11 and 12:
columns 13 to 20:
columns 21 to 24:

are blank
the characters --+-

the name of the label (or of the called subprogram)
are blank

The label is right adjusted within.its field of eight columns, and preceded by the
appropriate number of blanks. On return from a subprogram, the characters -­
RETURNare printed. Note that if a label is defined as having leading zeros, then
these zeros are not printed (see section 6.1).

Each field is not necessarily started on a new line (or record). The action taken is
described in section 10.1 (3).

120

(5) In addition to the above tracing, when any logical IF statement is encountered between
label and label one of the words "TRUE" or "FALSE" are printed depending on whether
the vllue of the ~ssociated logical expression is true or false.

(6) TRACEand TRACEPATHstatements may be used together without restriction in any
program or subprogram. Note that the TRACEPATHstatement can produce a very
large amount of outputwhen subprograms in TESTmode are being repeatedly called
whena TRACEPATHis effective.

Example:

TRACEPATHFROM5 TO 6
5 1=4
3 IF(I)6, 6,X
X 1=1-4

IF (I. EQ.1) 1=1*3
ASSIGN6 TO]
GOTO]

will cause the followingto be printed

-5-3-X FALSE

If the followingstatement were inserted before statement 5

TRACEI

then the outputwouldbe:

1= 4-3-X 1= 0 FALSE

10.3 EXECUTION ERRORS

Several types of program errors may occur when the program is in execution. Typical
execution errors are: division by zero, and the reading of illegal characters on a
numeric FORMATspecification. If an execution error occurs, Fortran V takes a
special action; this action consists of:-

(i) terminating execution of the program
(ii) Printing the execution error and sub-error numbers
(iii) Printing an error tracing giving the storage location where the error

occurred. If the error occurred in a subprogram, the positions of the
statements which passed control to that subprogram are also given.

(iv) The contents of the accumulator, and of all non-zero index registers
(Blines) are printed.

(v) The machine instructions in the area where the error is assumed to have
occurred are printed.

In the case of input/output errors, the contents of the I/O buffer are printed, so that the
character which caused the error can be. identified.

This error output is always printed on output stream zero. An example is given
opposite. This output could be produced by:

READ1O,X
10 FORMAT(16)

if used to read in the characters

123.45

INPUT nATA FAULTY. = HARTRAN EXECUTIlJN EHROH
SUB-ERROR: 00000030 8119= 0400uOl0 8121= OOuUU540
ACClr4uLATCR HIGH HALF'= 0300000000001730 ACCUMULATOR

OCCURRr::D IN T~E ROUTINE III"n AT LOCAriuN 0001247~
CALLED FROM THE ROUTI~E IIOH AT LINE U~OOOU1
CAlLE0 FRUM THE ROUTI~E IRSI AT LINE O~OU031
CALLFJ FROM THE ROUTI~E AT LINE O~OOOUl

THr::Iia BUFFER CONTAINS
123.45

OCTAL CONTENTS OF
Ri= 00012470

890= 00012470
Bq7= 40100677

DUMP OF PROGRAM NEAR
OCTAL FUNCTION 8A

lOCATlnN CODE
00012400 210 127
00012410 121 1
QC01?4?0 1~1 127
on012430 000 0
OQU12440 000 0
00012450 000 0
000124~O 000 0
00012470 101 69
00012500 202 127
00012510 113 0
OC012520 1?1 81
000l?~10 121 82

NON~ZERO 8-REGISTERS.
883= 00000004 B84= 77777620
891= 00000030 892= 7777777u

PRESUMED CONTROL LOGAllON
8M OCTAL ULTAL

ADDRESS HAL~WOROS
89 00011310 104377~100U11310
o 00012470 0504U~U000012470
o 00C24341 050716~OU0024341
8 60006300 OOUouUl060006300
o 00013330 OOGOuUW000013330
o 00013330 GOOOvUUOOOU13330
o 04000010 OOUOUU~OJ4UOV010
o 0000~070 G40662u000006G70

R9 00012240 101377~100J12240
o 00012424 0454uUvOOOQ12424
o 07000134 050642u007UOU134
o 42453044 050644~042453044

5
Ace EXPONENT:; 01400~OO &NLICATUkS=
LOW HALr= 0300000UOOOOOOOO

885. 00000020
893= 00000030

886:; 00000040
894= 00000030

Bd8. GHG!_,OG5
B'i5= dlC25!;5Q

ti89= ;;4;;_,;·,1.
1::190=,.:..'.,_.1

r

122

10.3.1 List of execution errors

Error Sub- CAUSE
Number Error

1 0 Division overflow

2 0 Exponentoverflow

Argument out of range, (probably negative).
B119usually equal to address of argument

3 0 SQRT

1 ALOG, LOGF

2 ARSIN, ARCOS,ASINF, ACOSF

4 ~ Incorrect FORMATspecification. Sub-error is
equal to the illegal character in Atlas internal
code. Bl19 often equal to address of I/O list item.

Input data illegal for FORMATconversion used

1 Error character in mantissa

2 Error character in exponent

5 3 Exponent in I conversion

4 Exponent in F conversion

5 No exponent in E conversion

6 Non-octal digit in Bor 0 conversion

6 ~ Input ended (e. g. 7/8 card read) Sub-error
equal to input stream number involved.

One inch (Ampex)tape error

0 End of file marker read on tape

7 1 Variable tape error. (see ref. 7)

2 Tape Fail - i. e. tape in poor condition

9 - Supervisor - detected error (see section.Hl. 3.2)--

10 - Binary (unformatted) tape record too short for input
list. B119is equal to the address of the first list
item which cannot be filled with information from
the logical record. (Does not apply to BCD
(formatted) records).

11 - ComputedGOTO out of range, i. e. the transfer
is undefined. This error is tested for only if the
routine is compiled in TEST mode.
See section 12.2 (9).

123

Half -inch tape error. Top seven digits of
sub-error give selected tape number, and bottom
digit = 6 if selected in BCD(formatted), or = 0
if selected in binary (unformatted).
B119= 0 : End of file encountered in writing
Bl19 = 4 Read parity failure
B119= 10 : End of tape encountered in writing
B119= 14 Bad tape on writing
B119= 20 No tape left: failure to detect end

of file.
B119= 30 : Attempt to read record of more than

512words (4096 characters).
(N.B. ~ inch tape only)

B119= 40 : Machine error

12

13 o I/O buffer not free - "recursive" call of I/O
routine. See 10.4.3.

14 o Excess blocks - job has run out of storage, B119
often contains address of variable requiring extra
block.

15 Undefined tape unit: incorrect job description.
The sub -error is equal to the undefined unit
number.

Note: Error number 8 cannot occur in Fortran V jobs.

10.3.2 Supervisor detected errors

There are many different Supervisor-detected errors. In many cases, the error is due
to an incorrect, or insufficient Job Description. (see Appendix 8). Common errors are:

Error Cause, Or action to cure
,

OUTPUTEXCEEDED
C TIME EXCEEDED
E TIME EXCEEDED
EXCESSBLOCKS
(error number 14)

OUTPUTNOTDEFINED
TAPENOTDEFINED
TAPE FAIL
WRONGTAPEMODE

ILLEGAL FUNCTION

SVOPERAND

Increase allowance for this stream
Increase COMPUTINGtime
Increase EXECUTIONtime
Increase execution STORE

Insert missing stream number
Insert missing TAPEnumber
Magnetic tape in poor condition
Job is trying to write to a file-protected
(inhibited) magnetic tape
Control has been passed out of program
area: - often due to overwriting program
by exceeding array bounds.
Attempt to access illegal (e.g. -ve.)
address.

Other errors may occur: if the cause and cure is not obvious. the .reader should consult
Reference 7.

124

10.3.3 Interpretation of error output

The execution of a program may have produced:

ENDTAPE = HARTRANEXECUTIONERROR7
OCCURREDINTHE ROUTINE/RAT AT LOCATION01041050
CALLEDFROMTHE ROUTINE AT LINE0000025

Since /RAT has been called from a routine with a blank name, that routine must be the
main program. Inspection of the main program would show that there is an unformatted
READstatement at line 25, which caused the system routine /RAT to be called. It is
this statement which has read an end of file marker.

Similarly: COMPLEXRESULT= HARTRANEXECUTIONERROR3
OCCUREDINTHE ROUTINEXAT LOCATION00001600
CALLEDFROMTHE ROUTINEY AT LINE 0000005
CALLEDFROMTHE ROUTINE AT LINE 0000050

This would indicate that a complex result has occurred in subprogram X, whichwas
called at line 5 of subprogram Y, whilst subprogram Y was called at line 50 of the main
program.

To locate the error more exactly, the loading map must be consulted (see Chapter 12.1(3».
From this map we may find that the absolute entry point of routine X is at 0000171.0
(octal). In addition, the source listing of routine X must be consulted; this may show
that the relative entry point of X is located at 0000165.0 (this is the octal number of
words from the start of the routine).

This implies, therefore, that the origin (start) of routine X is at location 171 - 165 = 4

(octal).

Hence the error must have been detected at location 160.0 - 4 = 154 (octal) of X.
Using the length (given in decimal on the source listing) of X as a guide, the approximate
position of the source statement which caused the error may be found. This
approximation is usually sufficient to locate the error, but if it is not, it may be
necessary to obtain an object listing (machine instructions) by the use of *FORTRAN
LIST. (see section 12.2(7».

Sometimes, the error information given may not be accurate: e.g. if those parts of the
program which are examined by the tracing procedure have been overwritten.

If the trace is not correct, then using the loading map, the two routines must be found,
whose entry points (absolute) are nearest to, but on either side of, the error location.
The position of the error in the source routine can them be found in the manner
described above.

It is important to realise that for many errors, control may have passed through as many
as four instructions before the error is detected. Since one of these errors may be a
jump instruction, it is clear that the dump of program printed out may not in fact
contain the instruction which caused the error.

10.4 THE ERRORSTATEMENTS

Some of the errors described in section 10.3 may be considered to be relatively minor
for some applications, and it may not be desirable that execution be terminated.
Sometimes it may not even be necessary to print the error information. In order to
deal with this situation, the error statements (they are calls to library subprograms)
have been provided. These statements allow the user to take any action desired on
the occurrence of an execution error.

Note that the error statements are not effective for execution errors of type 9, 14,
or 15.

125

10.4.1 To continue execution

In order to continue execution after an execution error has occurred, the statement

CALLCONTXQ(n)

must be positioned, in any program or subprogram, in .such a place that it is executed
before the execution error occurs. Once the statement has been executed, it remains
effective for all programs and subprograms until the job is finished.

n is the error number after whose occurrence it is desired to continue execution. If n
is zero, then execution will be continued after the occurrence of all types of errors,
except numbers 9, 14 and 15. If execution is to be continued after more than one type
of error, then the above technique (CALLCONTXQ(0» may be used, or more than one
CALLCONTXQstatement may be given.

e.g. CALLCONTXQ(6)
CALLCONTXQ(5)

Note that once an error 6 or 7 (end of data) has occurred, it is not possible to read more
data from that stream. Provided that this is not attempted, execution continues
normally.· The error output is still printed each time the error(s) occurs. As soon
as an error type (n) occurs which is not in an executed CALLCONTXQ(n)statement,
then execution of the program is terminated.

10.4.2 To terminate execution

In the same way that the CALLCONTXQ(n)statement is used to continue execution, the
CALLENDXQ(n)statement may be used to "turn off" a previously executed CALL
CONTXQ(n)statement. As with CONTXQ,if n is zero, then execution will be
terminated after the occurrence of any execution error. ENDXQis used in the same
way as CONTXQ,but it has exactly the reverse effect, i. e. it restores the normal
error action for error type n,

10.4.3 To take special action

In addition to continuing execution when an error occurs, it may be desired to avoid
printing the error message, and to take some special action: e.g. adding to an error
count, or printing one's ownmessage etc. This may be done.by insertion of the
statements

EXTERNALsname
CALLAFTERR (n, sname)

in such a position that the CALLis executed before the error occurs. (i. e. usually
at the head of the main program).

sname is name of a SUBROUTINEwhich must be supplied by the user, and n is the error
number which will cause that subroutine to be called.

Once the CALLAFTERR statement has been executed, it remains effective for all
progrems and subprograms until the job isfintshed, or until a new CALLAFTERR
statement (with the same n) is executed.

The same, or different subroutines may be entered for different error numbers if the
appropriate CALLAFTERR statements are given; and the subroutine(s) sname may be
explicitly called by the user if desired. The statement CALLAFTERR (0, sname)
causes the routine sname to be entered on the occurrence of all types of errors
except numbers 9, 14 and 15.

126

On occurrence of the execution error(n) the subroutine (sname) is entered, no standard
error output is printed. With certain restrictions (below) any action may be taken in
sname which follows all the rules applying to normal subroutines. Often. an error. .
count (which may be in COMMON)will be added to. The restrictions on the action
taken in sname are as follows:

(i)
(ii)

AFTERR should not be called in sname.
If sname is called for an input/output type error (numbers 4, 5, 6, 7,
12 and 13) then no input or output instructions (except the Fortran V
OUTPUTstatement) may appear in sname.

Error messages may still, however, be printed by setting a PUBLICor COMMON
indicator and testing this indicator after return from sname; or by using an OUTPUT
instruction.

The CALLAFTERR statement is not effective for execution errors of types 9, 14, or
15. If it is desired to continue execution on return from sname, then a CALL
CONTXQ(n)statement should have previously been executed. If this is not done, then
execution of a RETURNstatement(s) in sname will cause execution of the program to be
terminated.

Example: PUBLICNERRORS
DATANERRORS/O/
EXTERNALBADCARD
CALLAFTERR (5, BADCARD)

SUBROUTINEBADCARD
PUBLICNERRORS
NERRORS=NERROR+l
RETURN
END

READ10, (A(I),1=1,10)
10 FORMAT(1OF8.4)

The value of NERRORScan be printed out later, in order to find the number of illegal
(mispunched) fields read in.

*10.4.4 Advanced features of AFTERR

The rescue routine (sname) is called with two arguments (but these need not be present
as a dummy argument list if their values are not required).

e.g. after

EXTERNALRESSUB
CALLAFTERR (1, RESSUB)

both of the following are accepted

SUBROUTINERESSUB
and

SUBROUTINERESSUB(II, 12)

The first argument (II) contains the execution error number, and the second (12)is an
array containing the useful information printed in the standard monitor dump. The
array 12contains 9 elements, so that the following statement should appear in RESSUB.

DIMENSION12(9)

The elements of 12contain the following information:

127

*10.4.4
cont

12(1) Sub-error number
12(2) Accumulator contents
12(3) Accumulator exponent
I2(4) Bl (return link)
12(5) Presumed control location
12(6) BU9
12(7) Indicators i. e. V store line 6 (see section 7.8 of ref. 7)
12(8) Low half of accumulator
12(9) B121

Note that although many of these quantities are of type integer, some, such as 12(2),
and 12(8)may be of type real. Also, the values in the other elements may not be
strictly integral, and may contain a non-zero octal fraction digit (this is often the case
with 12(6)and 12(9».

Since the rescue routine can contain a CALL statement, it is possible (by entering
another routine with a different setting of a parameter) to continue the program whether
or not an appropriate CALL CONTXQ(n)has occurred; but for some errors an ensuing
error will immediately terminate the job.

To illustrate the use of this technique we may consider a job which is to copy card
images from a half inch tape through a format conversion to binary records on a one
inch tape. Wewill give the half inch tape logical number 4, and the one inch tape
logical number 9. The following program will achieve this: -

*FORTRAN
EXTERNALIBTRAP
CALL AFTERR (12, IBTRAP)
CALL MAIN(1)
END

*FORTRAN
SUBROUTINEMAIN(KK)
DIMENSIONXX(5)
GOTO (1,10) KK

1 READ (4,100) XX
100 FORMAT(5E16. 7)

WRITE (9) XX
GOTO 1

10 ENDFILE 9
STOP
END

*FORTRAN
SUBROUTINEIBTRAP(II, 12)
DIMENSION12(9)
IF (12(6» 10, U, 10

C ENDOF FILE MARKER
11 CALL MAIN(2)
C OTHERHALF INCHTAPE ERROR
10 CALL OFFIO

Kl=I2(6) + 12(6)
PRINT100, Kl

100 FORMAT(,bHALFbINCHbTAPEbERROR',13)
STOP
END

This example also illustrates the fact that when an error occurs within an active I/O
statement, the rescue routines provided by the user cannot use any standard Fortran
I/O statement without causing another error (Error 13).

128

Note, however, that the Fortran V OUTPUT statement may be used. In the above
example the statement giving rise to the error 12 is

READ (4,100) XX

If this I/O statement is active, the subroutine IBTRAP must not initiate another I/O
statement unless library routine OFFIO is first called. This is done at statement
number 10.

A call of OFFIO severs the linkage between an active I/O statement, and the library I/O
processing routines. It follows therefore, that control cannot be transferred back to
the disabled I/O statement; i. e. a RETURNstatement must not be used after a CALL
OFFIO has been executed.

Errors (in I/O statements) can be dealt with after completion of the I/O statement by
using a variable or array, in COMMONor PUBLICstorage.

The example below uses such a technique to detect an error on a particular I/O statement.

*FORTRAN
COMMONK,KK(10),I, XX(lO)
EXTERNALRESCUE
CALL CONTXQ(S)
K=O
CALL AFTERR (5, RESCUE)

15 FORMAT(lOF8.2)
READ(0, l5)(XX(I),1=1,10)
IF-(K) 20,21,20

20 PRINT200, (KK(I),I=l,K)
200 FORMAT(,bERRORSb1NbELEMENTS',1013)
21 CONTINUE

END

*FORTRAN
SUBROUTINERESCUE(Jl, J2) (or just SUBROUTINERESCUE)
COMMONK,KK(10),I, XX(lO)
K=K+l
KK(K)=I
RETURN
END

In this way the need to record the presence of an input error (error 5) is delayed until
the input statement is completed.

*10.4.5 Miscellaneous error routines

The statement

CALL RSTERR

Nullifies any CALLAFTERR statements which have been executed, and restores the
normal error action (for all error numbers).

The statement

CALL BDUMP

prints the numbers, and contents of all non-zero index registers on whatever output

129

stream was last selected. (This is n for WRITE(n, f); 0 for PRINT, or 15 for
PUNCHdepending on the last output statement executed.)

The tracing information, which shows the path of control through the program (as
described in section 10.3) may be obtained, on output stream zero, by executing the
statement:

CALLTRACE

(This has no connection with the Fortran V TRACE statements).

The position of all magnetic tapes used by a job may be obtained (on the currently
selected output stream) by executing the statement

CALLWHTPS

The standard error printing can be obtained by the user in his own rescue routine by
calling the library routine ERRDGas follows

SUBROUTINERESCUE(Kl, K2)
CALLERRDG(Kl,K2)

Other useful library routines are described in Appendix 7.

131

CHAPTER 11 MACHINE LANGUAGE
INSTRUCTIONS

*11.1 DESCRIPTION OF MACHINE LANGUAGE

Sometimes, Fortran statements are not suitable, or not sufficient to perform certain
operations. This is not usually the case, but may be true of certain special
applications. To copewith these applications, Fortran V permits Atlas "machine
language" instructions to be written at any point in a program. or subprogram. These
instructions all start with a number, and can thus be distinguished from other Fortran
statements. This means that no special "entry" directives or column1 puncbingsare
required. The instructions, as usual, are punchedin columns 7 through 72with a
label (if desired) in columns 1 through 5. Continuationcards may be used.

Definition I function, ba, bm, operand

where
functionis an Atlas function (operation) code, or an extracode.

and
ba and bm are bothunsigned integers, less than 128; they are
the index registers (Blines) of the instruction.

and
operand is:
(i) A Fortran variable name, whichmay be subscripted

(ii) a decimal integer, whichmay be signed.

(iii) a decimal integer (whichmay be signed)followedby a
decimal point, followedby one octal digit (0 through 7).

(iv) (i) followedby signed versions of (ii) or (iii)

(v) Anoctal integer, up to 8 digits in length, and preceded by
an asterisk. If there are less than 8 digits, they are
left -adjusted and filled with zeros. (e. g. *77= *77000000).

(vi) A label (or statement number), which is enclosed in
parentheses.

(vii) AnyFortran V constant (described in Chapter 3) preceded
by the character "=".

The properties of the Atlas functioncodes are described in Reference 7. No checking
is doneto see whether the machine instruction wouldcause an error.

The various operands are used as follows:-

(i) Variable name: The address of the variable (modifiedby any subscript) is
used in the instruction.

(ii) Decimal integer: The value of the integer is used in the instruction.

132

*11.1 (iii)
cont

(iv)

(v)

(vi)

(vii)

as (ii), but octal fraction (character address) also allowed.

Name modified by (ii) or (iii): The address of the variable is modified by
the constant and used in the instruction

octal constant: The value of the octal constant (half-word) is used in the
instruction

Label: The address of the statement to which the label is attached is used
in the instruction.

= Constant: The constant is stored by the compiler and its address is used
in the instruction.

If the operand is a subscripted variable name, then the subscripts may take any form
legal in Fortran V. Additionalmachine instructions will be generated if the subscripts
are not integer constants.

Additionalmachine instructions may also be generated if the program or subprogram is
compiled in TESTmode.

A Fortran V program or subprogram may, quite legally, contain only machine language
instructions (there must be an ENDstatement, and if a subprogram, a SUBROUTINEor
FUNCTIONstatement). Normally however, the use of PUBLICor COMMONand
RETURNstatements can be useful.

The use of machine language instructions may require a knowledgeof the instructions
compiled for a standard calling sequence in Fortran V. This is the same as for
Hartran, and is described below.

An instruction of the form CALLSUBR(aI' a2, ... an) causes compilation of the
followinginstructions: -

121, 1, 0, AR
121, 127, 0, AS
In AL
0 An
0 An-I

Where AI' A2, ... An, are the addresses of the arguments aI' a2··· .an.

AR is the return address.
AS is the address of the entry point of the called routine.
In is the line number of the Fortran CALLstatement. }
AL is the address of a link store. {

This word is used for
error tracing only,
and may be omitted.

i. e. (i) BI is loadedwith the return address.
(ii) Control is transferred to SUBR.
(iii) A link word for execution tracing (this need not be present).
(iv) The addresses of the arguments in reverse order. The address being in

the lowhalfword. The high halfword is zero.

Use of machine language also requires a knowledgeof which index registers (Blines) are
compiled into the machine language instructions generated by the compiler from standard
Fortran V statements.

The B lines which are not used by generated instructions are B81through B89, and these
registers may be freely used in machine language instructions.

Note however, that these registers (81-89) are not saved by Fortran V, and they should
therefore be used as 'working' registers only.

Examples: COMMON P(7, 7)

CALL A (13)

SUBROUTINE A(J)
COMMON Z(7, 7)

LABEL 101, 81, 0, J+19.4
165, 82, 82, *00000077
1066, 82, 0, Z(J+5,6)
121, 127, 0, (LABEL)
101, 127, 0, (66)
334,0,0, = 8B777
342,0,0, = 3.14159

66 RETURN
END

Note; this subprogram is not useful, it is merely intended to illustrate the facilities
described above.

135

CHAPTER 12 THE COMPILER DIRECTIVES

The compiler directives are used to inform the compiler about the manner in which a
routine is to be compiled and to say whether execution of a program is desired, or
merely compilation.

There are also special directives; e.g. to permit a program or a library to be written
on to a magnetic tape.

With the exception of one (SAVEPROGRAM),the compiler directives are all written
with an asterisk in column 1 (one) of the statement, the rest of the line (columns 2
through 72 on cards) being used for the directive. Continuation cards are not permitted
and blanks are not significant (except where stated otherwise).

12.1 THE *RUN DIRECTIVE

Definition I *RUNoption list

where option list is a series of options separated by commas.
The permitted options are:-
NOMAP
MAP
COMPILE
GO
GOn (where n is an unsigned integer)
IFIX or INT or NINT
HARTRANor F2 or F4
The * is in column l.

(1) Every Fortran V job must have a *RUNdirective present as the first line following the
Job Description. This directive gives information about the job as a whole.

(2) If no option is specified, then the standard options GO, NOMAP,IFIX, and F4 are
assumed.

i.e. *RUN
is equivalent to

*RUNGO, NOMAP,IFIX, F4
and

*RUNMAP, F2
is equivalent to

*RUNMAP,GO, IFIX, F2
and so on.

(3) If MAPis specified, then a loading map is printed on output stream zero. This map
consists of a list of the names of all routines loaded, together with the absolute storage
locations (in octal) of their entry points and their origins. In addition, the names,
origins, and lengths, of common and public blocks are listed.

136

12.1 The library routines loadedwill also be given, so that for a typical job, the map will
cont comprise about 40 printed lines.

(4) If MAPis not specified, or if NOMAPis specified, then the loading map is not printed.

(5) If GO, or GOnis specified, then (subject to certain conditions) the compiled program
will be entered (executed) when compilation is complete. The conditions are:

(i) a "'ENTERdirective must be present (see section 12.3), and
(ii) If GOis specified, then the program is executed only if it contains no

source errors (see Appendix6).
(iii) . If GOn is specified, then the program is executed only if it contains not

more than n source errors. (GOis equivalent to GO0). This enables
programs to be executed even though they may contain errors. Note,
however, that the machine instructions (if any) generated for incorrect
statements, are not well defined, and will often cause execution errors.

If a statement is syntactically incorrect, then it is ignored, and the compiled program
is the same as it would be if the statement were not present.

(6) Whena program is executed, the words "PROGRAMENTERED"are printed below the
loading map (if present); after this, at the top of a new page, are printed the words
"EXECUTIONSTARTEDON" followedby the time and date.

Whenthe program is not entered the words "EXECUTIONDELETED" are printed, and
the job is then terminated. The above lines always appear on output stream zero.

(7) If COMPILEis specified, then the compiled program is not executed, even if a *ENTER
directive is given.

The use of the.COMPILEoption is recommended when it is not desired to execute a
program, since a considerable saving in storage used by the compiler is effected.

Since routines are not loaded whenCOMPILEis specified, the loading map will not
include library routines.

(8) If IFIX (or INT or NINT)is specified, then the form of truncation assumed for all
routines of the job will be IFIX (or INT or NINT). (see sections 5. 1.3 and 5. 1. 4).
The TRUNCATIONstatement (see section 5.1.4) may be used to override, for a
particular routine, the form specified in the *RUNdirective. If this is done, then at
the end of the routine, the form of truncation is set back to that specified on the *RUN
directive.

If no truncation specification appears, then IFIX is assumed.

(9) If HARTRANis specified, then the intrinsic (built-in) function names assumed for all
routines in the job will be the same as the names used in Atlas Fortran (Hartran). If
F2 is specified then Fortran II names are assumed, and if F4 is specified, then Fortran
IV (A.S.A.) names are assumed. The FUNCTIONSstatement (see section 8.4.2) may
be used to override, for a particular routine, the specification on the "'RUNdirective.
If this is done, then at the end of the routine, the kind of functions used is set back to
the kind specified on the *RUNdirective. If no functions specification is given, then F4
(Le , A.S.A.) function names are assumed.

(10) If conflicting options are present in the *RUNdirective then the last option (s) appearing
are the effective ones.

Examples: "'RUNGO5,MAP
"'RUN
*RUN COMPILE,NOMAP

12.2 THE *FORTRAN DIRECTIVE

Definition I *FORTRAN .optionltst

137

(1) A *FORTRANdirective must precede every Fortran V program segment presented. A
program segment is either a main program, or a subprogram which is not contained
within another subprogram. .The *FORTRANoptions specified for the outer main or
subprogram will also apply to any (nested) subprograms which it may contain. A
*FORTRANdirective may not be inserted anywhere within a program segment. The
*FORTRANdirective is used to inform the compiler about the manner in which a
particular program segment (or routine) is to be compiled.

where optionlist is a series of options separated by commas.
The permitted options are:-

SOURCE
NOSOURCE
CARDS
CARDSn (where n is an unsigned integer)
NOCARDS
LIST
NOLIST
TEST
PRODUCTION
a primed Text constant

The * must appear in column 1.

(2) If no option is specified, then the standard options

NOSOURCE
NOCARDS
NOLIST
PRODUCTION

are assumed; and the value of the Text constant will be taken as the first six characters
of the name of the outer-most program (or subprogram) of the program segment. If
there are less than six characters in this name, then the constant consists of the name
left adjusted and filled out with blanks. For a main program, it will be all blanks.

(3) If SOURCEis specified, then a source listing of the routine is printed on output stream
zero. This listing is started on a new page, and the layout is shown overleaf.

The line number is the one referred to in execution error diagnostics. (see section
10.3)

The DOLEVEL is a number showing the number of DO statements within which the
statement is contained (i. e. the depth of nesting). If the 00 LEVEL is more than nine,
then an asterisk is printed (this does not imply an error).

The statements are printed exactly as they are read in, including blank lines on cards.
On paper tape consecutive newline characters do not produce blank lines; the presence
of one (at least) blank character between the newlines will cause the blank line to be
printed. Erase characters on paper tape (and all non-printable characters) are printed
as a decimal point. The tabulate character on paper tape is printed as one blank
(space), this may cause labelled statements to be printed slightly offset (see also
Appendix 1).

The "List of Identifers and Properties" (see the example overleaf) is also produced if
SOURCEis specified, except for nested subprograms (blocks); (Le. the list is printed
for outer blocks only). This list gives details of:

continued on page 140

I.INE NO. DO LEVEL

1
2
3
4
5
6

7

SYNTAX ERROR IN LIST

8

FORTRAN v. LISTING OF SOURCE PROGRAM.

*fORTRAN SOURCE
SUBROUTINE PRINT(X)
COMMON Z(5l,P,QUARTS,/AA/SQUARE,THETA VALUFS(10).TOTAL
INTEGER Xe~),NOS(9).SQUARE
TEXT BOX(9)/9*' 'I.XX/'X'I
DATA NCS/2.9,4,7,5,3,6,l,81
PUBL.IC Y,NlI

r. TEST STATEMENTS AND EXAMPLE OF ERROR FOLLOW.
X PRINT 11,SOUARE
X 11 FORMATe14H PRI~T ENTERED,I7)

PRINT 10,e%eK).K=l,5»

83 IFeXeS).EQ.9) BEGIN

START BLOCK LEvEL 2

9 INTEGER Zz
10 ZZ=X(5)
11 X(5);;ze5)
12 Z(5)=ZZ
13 END

RETURN BLOCK LEVEL 1

14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
~O
31

1
2
2
2
2
2
2
2
1
1

43 DO 13 I=l,NX
DO 3.J=1.9
IF(XII)=NOS(J)l GO TO 3
BOX(J)=XX

99999 X(3).xeJ'+1
SQUARE=SQUARE/4+MOnIX(J),4)
IFeSQUARE~1024) 99999,2,3
Y=Y·1QOO.

J CONTINUE
Z(4)·Z(4)+~QUARE

13 CONTINUE

2 PRINT 1O,BOX
10 FORMATllHO.9X,Al,3H I ,Al,3H I ,A1/10X,9H---------/l0X,A1,3H I ,A1

l,3H I ,A1,il0X,9H---------/l0X,Al.3H I ,Al,3H I ,AlII)
IFCY-l.ES) ,83,4~
CALL SUMMARISE

ExIT RETURN
END

LIST OF IDENTIFIERS AND PROPERTIES

LOCAL STORE
~i\ME TYPE DECIMAL NAME TYPE DECIMAL NAME TYPE n!=;CIMAL

X INTEGER ARRAY DUMMY BOX TEXT ARRAY 0 XX TEXT 9
NOS INTEGER ARRAY 10 Y REAL PURL! C NX !NTEr,ER P(lqLlr.

I INTEGER 21 J INTEGER 22

COMMON STOR E AA
~AME TYPE DECIMAL NAME TYPE DECIMAL NAME TYPE nECTMAL

SQUARE INTEGER 0 THETAVAL REAL ARRAY 1 TOTAL REAl. 11

COMMOI\; STORE II ,
~AME TYPE DECIMAL NAME TYPE D.ECIMAL NAME TYPE nEr:1MAL

Z REAL ARRAY 0 P REAL 5 QUARTS REAL f.

LABEb:S
NAME OCTAL ADnRFSS NAME OCTAL ADDRESS NAME nCTAl. AOf'lRF.C:;C;

83 0000 423 43 0000 467 99999 n n o 0 c;24
:5 0000 ~6" 13 0000 604 2 onoo .c.l1

EX rr 0000 "40

SUBROU'INES AND FUNCTIONS
NAME TYPE

SUMMARIS SUBROUTINE

ROUTINE PRINT
ENTRY '0 THIS ROUTINE
LENGTH or THIS ROUTINE

0000 641. 0
165

140

12.2
cont

(i) The layout of local storage, dummy arguments, and PUBLICfor the routine.
The layout of COMMONstorage for the routine.
The names, and locations of labels used.
The name, relative entry point and length of the routine.

(ii)
(iii)

(i) The storage layouts give the names and types of all v~ri~bles used followedby
their locations (in decimal) relative to the start of the routme s local data area (or
relative to the start of COMMONstorage).

(ii) The list of labels comprises a list of the names of all labels (or statement numbers)
used in the routine followedby their relative locations, in octal (i. e. relative to the
origin, or start, of the routine). FORMATstatement labels are not listed.

(iii) "ENTRYTOTHISROUTINE"is then printed, the octal number followingbeing the
relative location of the entry point of the routine. The entry point is usually near the
end of the routine.

The decimal number printed after "LENGTHOF THISROUTINE"is the number of
machine instructions which have been compiled for the routine: it does not include the
storage space used for variables and constants.

(4) If NOSOURCEis specified, or if SOURCEis not specified, then none of the output
described under (3) is printed. Note, however, that source statements containing
errors, together with the error message, will always be printed.

(5) If CARDSis specified, then object (BAS)cards will be punched for the routine, provided
that there are no source errors. If CARDSn is specified, then object cards will be
punched if there are not more than n errors. (CARDSis equivalent to CARDS0). Note
that cards will not be punched if TEST is specified.

CARDSn (withn nonzero), should only be used when a source error occurs which does
not affect the execution of the routine. If cards are required, then a line OUTPUT
15------ must appear in the JobDescription (see Appendix8).

(6) If NOCARDSis specified, or if CARDS(or CARDSn) is not specified, then no object
cards are punched.

(7) If LIST is specified, then a listing of the machine instructions, and program constants,
is printed (on output stream zero).

Each instruction is preceded by its absolute octal location. Each instruction is of the
form:

function code, B ,B, Address Parta m

(octal) (decimal) (octal)

The positions of the various source statements may be foundby comparing the addresses
in the list of statement labels with the addresses printed in the object listing.

The list of constants is a list of constant values used by the routine, preceded by their
absolute octal locations. The constants are printed as sixteen octal digits per word.
Text constants may comprise several words . FORMATspecifications (not variable
FORMAT)are contained in the constant list, as are various constants used for setting
up arrays: so that the list of constants may be considerably greater than the number
simple constants used in the routine.

(8) If NOLIST is specified, or if LIST is not specified, then none of the output described
under (7) is printed.

LIST should only be specified if the user is expert in the use of Atlas machine language.

141

(9) If TEST is specified. then the routine is compiled in TEST mode, and any TRACE or
TRACE PATH statements it contains will be effective. Note that routines compiled in
TEST mode will usually be longer, and less efficient than if they were compiled in
PRODUCTIONmode.

The use of TEST should, therefore. be restricted to routines which are being debugged,
and which contain TRACE statements.

When TEST is specified, a check is done in execution for each subscripted array
reference to see whether the value of the subscript (or the product of the subscripts if
there are more than one) is larger than the dimension (or product of the dimensions)
specified for the array.

If the dimensions are exceeded the message

*** - OUT OF RANGE

is printed on output stream zero, where *** is the name of the array. Note that each
individual subscript is not checked, but only the product of the subscripts. Note that
if TEST is specified, then object cards are not produced, even if CARDS (or CARDSn)
has been specified.

If a routine is compiled in TEST mode, a check is done in execution for each computed
GOTO statement, to see whether the value of the arithmetic expression would cause an
undefined transfer of control (see section 6.4). This error is execution error 11, and
the action taken is described in section 10.3.

When TEST is specified, lines which contain an X in column 1 are compiled, the X
itself being ignored (i. e. treated as blank). See section 2. 3.

(10) If PRODUCTIONis specified, or if TEST is not specified, then any TRACE or TRACE
PATH statements contained in the routine are ignored; and no computed GOTO checks
are done in execution, so that execution error 11 cannot occur.

In addition, when in PRODUCTIONmode, any lines containing an X in column 1 are
ignored, i. e. they are treated as comments. This allows for the conditional
compilation of statements, which is useful for testing purposes. This facility is
described in detail in section 2.3.

(11) If a Text constant is specified, then its first 6 characters are punched in the identific­
ation field (columns 73 to 80) of any object cards produced for the routine. Blanks are
significant in the constant. See also (2), above.

(12) If conflicting options (e.g. TEST and PRODUCTION) are specified, then the last one to
appear will be effective.

Examples: *FORTRAN SOURCE, CARDS, 'SUBB'
*FORTRAN SOURCE, TEST
*FORTRAN

12.3 THE *ENTER DIRECTIVE

Definition I *ENTER

This must be punched in columns 1 through 6

The *ENTERdirective is used to execute the program once it has been compiled. The
program is entered at the first executable statement of the main program.

The directive must appear as the last line followingall source and/or object routines

142

presented. Any lines following the *ENTER directive are treated as program data on
input stream zero, and are not read by the Compiler.

*ENTER is only effective if the *RUN directive satisfies the conditions described in
section 12.1 (5).

12.4 THE *END DIRECTIVE

Definition I *END

This must be punched in columns 1 through 4

This directive causes execution of the program to be deleted, and is normally used with
*RUNCOMPILE. Whena *ENDdirective is encountered, the Compiler does not read
any further lines, and the job is terminated.

12.5 THE *INPUT DIRECTIVE

Definition I *INPUTn

Where n is an unsigned integer constant.
The * must be in column one.

Whena *INPUTdirective is encountered, the Compiler takes its further input from input
stream number n.

This directive is especially useful when a job contains source routines on paper tape
together with object routines on cards. Such a job wouldbe arranged so that the last
line on the paper tape was *INPUT1 (say), followedby * * * Z. The object cards would
then be read in on input stream 1. A line

INPUT1 name of input

would appear in the JobDescription, (see Appendix8), and the object cards wouldbe
preceded by the cards

DATA
name of input

*12.6 THE SAVE PROGRAM INSTRUCTION

Definition I SAVEPROGRAM

where the S is punched in, or after column 7
(as for normal Fortran statement)

The SAVEPROGRAMinstruction is used to write (i. e. save) a compiled (object) program
on to a magnetic tape.

SAVEPROGRAMis an executable statement. Whenthe statement is encountered, the
program and all data areas which have been initialised (or referenced) are copied on to
tape. Whenthe program is brought downfrom tape, as described below, execution
begins at the first executable statement after the SAVEPROGRAM. Normally, the
SAVEPROGRAMstatement will be the first executable statement of the main program.

If this facility is used, then the document title of the Job Description (see Appendix8)
must be in the form:

143

Job number, name and run name *E* program title

The "E" will cause the program to be executed as well as stored. If execution is not
required, the E is omitted, but the asterisks must always be present.

In addition the following line must be present in the job description:

TAPE99 tape title*WRITE PERMIT

Before this facility is used the magnetic tape must be "initialised" for Compiler LOAD.
This is described in A. C. S. publication LSP9. .

After the program has been stored as described above, it may be executed at any time
by adding the following lines to the usual Job Description

TAPE99 tape title*WRITE INHIBIT
COMPILERLOAD(replacing COMPILERFORTRAN)
file number/program title

followed by the data (if any) for input stream zero. In the usual way, other input
documents may also be present. The "file number" is that output by the writing run.
(See A.C.S. publication LSP9; the LOADSYSTEM).

If magnetic tapes are used in a job, the logical numbers used must be the same in both
the Job Description for the compile run, and the Job Description for the load run. The
actual magnetic tape titles need not be the same.

*12.7 MAKING A PRIVATE LIBRARY

Normally, when a Fortran Job is executed, a library of routines is supplied by the
compiler. These routines include many subprograms used to deal with input and output,
etc. Sometimes, however, it may be convenient for the user to supply his own library,
which may contain routines which he often uses, but which are not sufficiently general
to be included in the compiler's own library. The following set of directives allow
such a private library to be written on to a magnetic tape, and used. If this is done,
then the private library will supplant the system library, and therefore it will be
necessary to include in the private library, copies of all system routines needed.
These routines may be obtained from Atlas ComputingService.

*12.7.1 The *MAKE LIBRARY directive

Definition I *MAKELffiRARYTAPEn BLOCKm

where nand m are unsigned integers.
The * must appear in column one.

(1) This directive is used to write a private library of routines on to magnetic tape number
n, starting at block number m. All routines which follow the directive must be in object
(BAS)form. These routines are written on to tape n in order, starting at block m; and
writing is terminated by the appearance of a *LBENDdirective (see below).

(2) Main .coutines should not be put into the library; but the library may contain any form
of subprogram except BLOCKDATA.

(3) Several libraries may be put on to the same tape, by modifying the value of m.

Example: *MAKELffiRARYTAPE1 BLOCK201

144

*12.7.2 The *LBEND directive

Definition I *LBEND

This is punched in column 1 through 6

This directive is used to terminate the writing of a library after a *MAKELffiRARY
directive has been used.

*12.7.3 The *LlBRARY TAPE directive

Definition I *LffiRARYTAPEn BLOCKm

where nand m are unsigned integer constants.
The '"must appear in column one.

This directive is used in order to access a private library which has previously been
made as described in section 17.7.1. Whenthe directive is encountered, magnetic
tape number n is positioned to block number m. The start of a private library should
be in block number m: i. e. a library should have been made using "'MAKELffiRARY
TAPEi BLOCKj,where i = n and j = m.

The "'LffiRARYTAPEdirective may appear anywhere in the program (but not within a
routine). The directive is only useful if the program is to be executed, and should
appear somewhere before the "'ENTERdirective.

Whenthe library is loaded, (immediately prior to execution) only the routines which
have been called (or indirectly called) by the job, are loaded.

Example: "'LffiRARYTAPE 1BLOCK201

145

CHAPTER 13 OBJECT (BAS) CARDS
(and Arrangement of Decks)

13.1 OBJECT CARDS

Once a program, or subprogram, has been debugged, it is wasteful to keep re -compiling
it every time the program is to be executed.

To avoid this, it is possible in Fortran to produce a "machine language" version of each
routine compiled. This version is punchedon 80 column cards. which are called object
(or binary) cards. These cards contain machine instructions etc., which are in a form
close to machine language; in fact the language is Binary andArbitrary Symbolic (BAS).

Object cards are produced for each routine whichhad CARDS(or CARDSn)specified in
its *FORTRANdirective, even if the source routine is punchedon paper tape, but see
also section 12.2.

The object cards produced for a routine take the form:

(i) a *BAScard followedby

(ii) object cards whichhave the + (or 10)position of column one punched;
followedby

(iii) The last object card, which does not have the + position of column one
punched.

13.2 ARRANGEMENT OF ROUTINES

The arrangement of a typical job is as follows:

(i) Job Description
(ii) *RUNdirective
(iii) Source routines (if any), each preceded by a *FORTRANdirective.
(iv) Object routines (if any)
(v) *ENTERor *ENDdirective
(vi) Data (if any) for input stream zero
(vii) End of document marker (7/8 card, or ***2 on paper tape).

In addition, separate documents, to be read on input streams other than zero, may be
present.

If the source routines are on paper tape, and object routines (always on cards) are to be
loaded, then the *INPUTdirective must be used (section 12.5).

A job may consist only of source routines, or only of object routines or a mixture of
both. If both are present, then all source routines must come first: once a *BAScard
has been read, no more source material can be processed.

If a job is to be executed, then no two routines of the same name should be presented.
If two routines of the same name are presented, then both are compiled (if source), but

146

the first one is the one which is used in execution. For all practical purposes, there
is. no.limit on the sizes of routines which may be compiled in Fortran V, since no fixed
length tables are used in the compiler. .

*13.3 DETAILS OF OBJECT CARDS

Each BAScard is of the form:

41-48
49-71

*BAS
Name of routine
Entry point relative to origin (start) of routine.
Length of routine.
Number of auxiliary entry points defined in
routine.
Length of unlabelled COMMONdefined in routine.
The time and date when the object cards were
punched is given.
Identification of routine (see section 12.2)
o 0 (start of numbering)

Columns 1- 4
9-16
17-24
25-32
33-40

72-78
79-80

The contents of columns 9-16 are blank in the case of a main program; each of the next
4 fields contain an octal integer, and usually the first and last columns will be zero and
left blank. .

Followingthe *BAScard are one or more object cards. These cards all have the 7 and
9 positions of column one punched. They are serially numbered in columns 79 and 80.

If a routine contains more than 100object cards, then columns 77 and 78 are also used
for the three or four digit serial numbers.

Each object card contains a checksum of all internal information. The use of this
checksum may be supressed by punchingthe 0 (zero) position of column one.

The object cards contain information which can be loaded into any part of storage in such
a way that the routine may operate there. Suchobject routines are knownas relocatable,
and they may be loaded in any order.

The amount of information contained in the card is punched as a count in rows 2 to 6 of
column one. This is a binary countwith the units position in row 6, and is a count of
the number of words of information on the card.

The other columns of object cards are used as follows:

Columns 2, 3 and 4; contain the relocation bits to indicate whether a particular 24 bit
half word is to be incremented by the value of the initial loading address of the routine.
The punchingis described below.

Columns 5 and 6: Contain a 24 bit checksum of all information on the card.

The checksum is such that the logical sum (with end-around-carry) of the information in
columns 1 to 8, and of the information words in column 9 onwards is 77777777octal.

Columns 7 and 8: Contain the loading address of the first information word to be
loaded, relative to the origin (start) of the routine.

Columns 9 onwards: Each word of information occupies 4 columns, the first in columns
9 to 12, the second in 13 to 16, and so on up to column 72. From a group of columns,
the lowest numbered columns represent the more significant binary digits of a word,
with the + row most significant; and the 9 row least significant.

Each word is treated for relocation as two separate 24 bit halfwords. The relocation

147

bits in column 2 refer to the halfwords in columns 9 to 32; the bits in column 3 refer to
the halfwords in columns 33 to 56, and those in column 4 to the halfwords in columns 57
to 72.

The relocation bits of a column are taken in turn from the + row downto the 9 row. A
punch indicates that the 24 bit halfword it to be incremented by the initial loading
address of the routine. The + row refers to the first pair of columns, the - row to the
second, and so on.

149

APPENDIX 1 PROGRAMS ON PAPER TAPE

Fortran V programs may be punchedon 5 or 7 track paper tape as well as cards.

A job consisting of a mixture of paper tape and card routines may be processed by using
the *INPUTdirective (see section 12.5).

The rules for punchingpaper tape programs are given below, and apply to both 5 or 7
track unless otherwise specified. For the purpose of counting columns on paper tape,
all characters are significant except erases, upper case (figure shift) and lower case
(letter shift) characters, which are ignored. Spaces are significant for column
counting.

(1) Labels (statement numbers) can be started in column 1, and must not contain more than
5 characters.

Labels may be separated from the statement by a tabulate character, or alternatively
the line may be punchedby inserting sufficient blanks so that the label field (+ blanks)
occupies 5 columns.

The latter method must be used on 5 track tape, since the tabulate character is not
available.

If the latter method is used, column 6 (whichwill normally be blank) forms part of the
statement proper, and not part of the label.

A tab appearing anywhere before column 6 causes the followingcharacter to be taken as
the first character of the statement proper.

(2) Continuationof statements on to new lines cannot be done on paper tape. A punch in
column 6 of any paper tape line is taken as the first character of the statement punched
in that line.

The maximum number of characters whichwill be accepted in one paper tape line (i. e.
one statement) is 1000.

If elegant source listings are required, then no line should exceed 96 characters in
length.

(4) There is no provision for an identification field on paper tape lines (as in columns 73 to
80 on cards) any identification field punched is taken as part of the statement proper.

(5) With the provision given below, mis -punched characters (in statements or in labels).may
be deleted by manually back-spacing the tape, and punchingan erase over the offendmg
character. The back-space character must not be used.

The statements where erase characters must not appear are

(i)
(ii)

FORMATstatements
The very first statement (line) of the program followingCOMPILER
FORTRAN(this should be a *RUNdirective).

150

(6) In addition to the above method of deleting mispunched characters, the whole
statement may be deleted by punching a ? (query) in the line. This method must be
used for errors in the *RUNdirective, or in FORMATstatements.

If a ? is punched in a line, then the whole line (from the newline.preced~rigthe? to the
newline following the 1) is ignored by the compiler. Any label IS also. Ignored.
However, if a source listing is requested such deleted lines are also listed.

Note that if a ? is punched in a primed text constant, the ? is taken as part of the
~tant, and does not cause the line to be deleted.

(7) Except in FORMATstatements and in text constants, the following characters are
always ignored by the compiler:-

space
erase
backspace
spurious upper case (figure shift) i. e. run -out
spurious lower case (letter shift).
inner, or outer set shift characters.

This means that any outer set characters (see Appendix 2) not in primed text constants
or in FORMATstatements, will be taken as their inner set equivalents.

Spaces and inner or outer set shift characters are not ignored in primed text constants.

(8) FORMATstatements are subject to more severe rules than other statements, and the
followingcharacters must not appear in a FORMATstatement.

Erase
backspace
spurious upper case (figure shift)
spurious lower case (letter shift)

If an error is made when punching a FORMATstatement, then the whole line must be
deleted (using a ?) and repunched.

(9) If an error is made when punching a primed text constant, a manual backspace and erase
may not be successful- Such errors should be corrected by punching a' (prime -to end
the literal) and then a ? (to delete the line), and the whole statement should be re-punched.

(10) In the case of comment (C or 11') or directive (*) lines, the C or 11' or * must appear in
column one, i. e. immediately following a newline character. These characters must
not be preceded by any erases or.redundant upper or lower case characters.

e.g. If a comment line is punchedwith a G (say) instead of C, then the G cannot be
erased: the whole line must be deleted by punching a ?

(ll) The facility for conditional compilation of statements with an X punched in column 1 is
also available for paper tape lines. The feature works in the same way as for cards,
and is described in detail in section 2.3.

The X character is subject to the conditions described in paragraph (10) above.

•. 151

APPENDIX 2 THE CHARACTER SET

The full character set of Fortran V is given below. Withthe exception of 3 characters,
only the standard set may be used outside of text constants, of FORMATstatements, or
comments. The standard set is given in section 2.2.

The exceptions to the aboverule are:

(i) < (less than), whichmay be used in relational expressions
(ii) > (greater than), whichmay be used in relational expressions
(iii) ? (query), whichmay be used to delete mispunchedlines on paper tape

only (see Appendix1).

The non standard characters shouldbe used only in text constants for printing etc.

The inner set characters are given in the table at the end of this Appendix. If no paper
tape case is specified, then the character is available as both upper and lower case (or
figure and letter shift), and in both inner and outer sets.

In the card codes, 10 is the top (+) row of the card, and 11 is the second (-) row.

The card code is the Atlas ExtendedHollerith Code. This differs from the EBCDIC
code used on System/360, and the ICT 1900code. The paper tape codes are Atlas
codes. Paper tape punches for other computers may have incompatible codes.

The outer set characters are distinguished from the inner set characters by the presence
of an outer set shift character in the string. Oncean outer set shift has appeared all
succeeding-characters are taken as outer set, until an inner set shift character appears.
Further characters are then taken as inner set, and so on.

If outer set characters are present in a text constant, then, whendealingwith the
length of the constant, provision must be made for the presence of one extra character
for each changeof set. The shift characters are not printed, but they are stored as
part of the constant.

e.g. PRINT10, I [A] I

The constant in fact contains 7 characters, and not 3, since [and] are outer set. Thus
the format wouldbe

10 FORMAT(A7)
whichwouldprint

[A]

Note that

10 FORMAT(A3)
wouldnot print the whole constant, similarly,

152

A2 3H[A]
cont wouldnot be valid, it must be written as

7H[A]

The outer set characters which are available on the line printers are given below.
Non-available characters are printed as a decimal point.

Internal
Card Code 7 track tape 5 track tape

Character (rows code (case & code (case &
Code punched) binary bits) binary bits)

£ pounds 03 - - -

: colon 17 6,8 LCOOll.lll -

[left bracket 21 11,7,8 LCOllO.OOl -

] right bracket 22 11,6,8 LCOllO.01O -

- Underline 26 10,6,8 LC0100.110 -

I bar 27 10,7,8 LCOllO.lll -

2 (as in X2) 30 - LCOlOl.01O -
a alpha 32 - UCOlOl.01O -

fJ beta 33 - ucoui.on -

!half 34 - UCOlOl.lOO -

10 ten (pence) 35 - - -

11 eleven (pence) 36 - - -

Erase 77 - 1111.111 11.111
(prints as .)

Note: on most Atlas Ylexowriter keyboards the characters belowmay be punched:

§ is acceptable for !
-- is acceptable for?

is acceptable for 7r

x (not ex) is acceptable for &.

In addition, on some punches, the character '(prime) is given as $or &.

153

Internal Card Code 7 -track tape 5 -t rack tape
CHARACTER Code (rows code (case & code (case &

(octal) punched) binary bits) binary bits)

o zero 20 0 UCOlOO.OOO FSOO.OOI
1 21 1 UCOllO.OOl FSlO.OOO
2 22 2 UCOllO.OlO FSOl.OOO
3 23 3 UCOlOO.Oll FSll.OOl
4 24 4 UCOllO.lOO FSOO.lOO
5 25 5 UCOlOO.lOl FSlO.lOl
6 26 6 UCOlOO.110 FSOl.lOl
7 27 7 UCOllO.lll FSll.lOO
8 30 8 UCOlll.OOO FSOO.OlO
9 31 9 UCOlOl.OOl FSlO.Oll
A 41 10,1 UClOlO.OOl LSlO.OOO
B 42 10,2 UClOlO.OlO LSOl.OOO
C 43 10,3 UClOOO.Oll LSll.OOO
D 44 10,4 UClOlO.lOO LSOO.lOO
E 45 10,5 UClOOO.lOl LSIO.lOO
F 46 10,6 UClOOO.110 LSOl.lOO
G 47 10, 7 UClOlO.lll LSll.lOO
H 50 10,8 UC1011.000 LSOO.OlO
I 51 10,9 UClOOl.OOl LSlO.OlO
J 52 11,1 UClOOl.OlO LSOl.OlO
K 53 11,2 UClOll.Oll LSll.OlO
L 54 11,3 UClOOl.lOO LSOO.110
M 55 11,4 UClOll.lOl LSlO.110
N 56 11,5 UClOll.110 LSOl.110
o (owe) 57 11,6 UC1001.111 LSll.110
P 60 11,7 UClllO.OOO LSOO.OOI
Q 61 11,8 UCllOO.OOl LSIO.OOl
R 62 11,9 UCllOO.OlO LSOl.OOl
S 63 0,2 UClllO.Oll LSll.OOl
T 64 0,3 UCllOO.lOO LSOO.IOI
u 65 0,4 UCll1O.l01 LSlO.lOl
V 66 0,5 UCIllO.110 LSOl.lOl
W 67 0,6 UCllOO.lll r.sir.roi
X 70 0,7 UCllOl.OOO LSOO.Oll
Y 71 0,8 UCllIl.OOI LS1O.011
Z 72 0,9 UCllll.OIO LSOl.Oll
blank 01 none 0010.000 FSOl.110
(10 0,4,8 LCOlll.OOO FS1O.l00
) 11 10,4,8 LCOlOI.OOl FSOl.100
, comma 12 0,8,3 LCOlOl.lll FSll.110
7r pi 13 11,8,3 t.cour.on LSOl.lll
? query 14 11,8,5 LCOlOl.lOO LSlO.lll
& ampersand 15 8,5 i.cnur.roi
* asterisk 16 11,8,4 LCOlll.110 FSll.OOO
/ slash 17 0,1 UCOOll.lll FSll.lOl
< less than 32 0,8,5 LCOlOO.Oll
> greater 33 10,8,5 LCOllO.lOO FSlO.OOl
= equals 34 8,3 LCOlOO.1Ol FSOl.OlO
+ plus 35 10 ucoi u.aoi FSOl.Oll
- minus 36 11 UCOlll.110 FSll.OlO
. point 37 10,8,3 UCOIOl.lll 00.111
, prime 40 8,4 LC0100.000 FSIO.lll

tabulate 02 0000.100
shift to O. Set 04
shift to I. Set 05
shift to LCjLS 06 0010.110 11.011
shift to UC/FS 07 0000.111 00.000

APPENDIX 3 SOURCE STATEMENTS
AND SEQUENCING

A complete list of Fortran V statements is given overleaf. In general, the ordering of the
statements should be such that all specifications statements appear in the text of the
program before any of the specified variables are referenced.

Variables are considered to have been referenced if they have occurred in:

(i) an executable statement, or a statement function.
(ii) a DATAstatement, or Type statement in which values are assigned.
(iii) as a dummyargument
(iv) a COMMONor PUBLICstatement.
(v) an adjustable dimensioning statement.
(vi) an EXTERNALstatement, or otherwise used as a routine name.
(vii) or have already occurred in an EQUIVALENCE.

The specification statements are:-

Type statements
COMMON
DIMENSION
PUBLIC
EXTERNAL

If a variable appears in a specification statement and is to appear in an EQUIVALENCE
statement, then the EQUIVALENCEstatement must come after the specification(s), and
before any reference to the variable. Otherwise the order of the specification statements
is not significant, except that:

(i) For adjustable dimensions, the array dimension declaration must come after
(or in the same statement as) any type declaration. It must also come after
any declarations involvingthe variables used in the dimensions.

(ii) If values are assigned in a Type statement, then any dimension information
must come first (or it may be in the same statement). Suchvariables must
not appear in an EQUIVALENCEstatement.

156

A3
cont

Statement Executable or Not Position in Program

a == b (arithmetic or Executable Anywhere

logical replacement)

ASSIGN Executable Anywhere

BACKSPACE Executable Anywhere

BEGIN Non executable at start of a program block

BLOCKDATA Non executable First Statement of BLOCK
DATA Subprogram

BOOLEAN Non executable See above

CALL Executable Anywhere

CLEAR Executable Anywhere

COMMON Non executable See above

COMPLEX Non executable See above

CONTINUE Executable Anywhere

DATA Non executable Anywhere

DIMENSION Non executable See above

DO Executable Before the statement
number it references

DOUBLELENGTH
DOUBLEPRECISION Non executable See above
REAL*8

END Non executable Last statement of program
or subprogram, or of a
program block

ENDFILE Executable Anywhere

EQUIVALENCE Non executable See above

EXTERNAL Non executable See above

f(x) == b (statement Executed by reference Before any reference to
function) to it in other statements the function in an

executable statement

FORMAT Non executable Anywhere

FUNCTION Non executable First statement of
type FUNCTION FUNCTIONsubprogram

XXX FUNCTIONS Non executable Anywhere (see Chapter 8)

GOTO Executable Anywhere

GOTO Executable Anywhere
(computed)

151

Statement Executable or Not Position in Program

IF Executable Anywhere
(arithmetic)

IF Executable Anywhere
(Hartran logical and
Fortran IV logical)

IMPLICIT Non executable See above

INTEGER Non executable See above

LOGICAL Non executable See above

Machine code Executable Anywhere

OUTPUT Executable Anywhere

PAUSE Executable Anywhere

PRINT Executable Anywhere

PUNCH Executable Anywhere

READ Executable Anywhere
READTAPE
READ INPUTTAPE

REAL Non executable See above

RETURN Executable Anywhere

REWIND Executable Anywhere

STOP Executable Anywhere

SUBROUTINE Non executable First statement of
SUBROUTINEsubprogram

TEXT Non executable See above

TRACE Executable Anywhere (see Chapter 10)

TRACE PATH Executable before first label referred
to in the TRACE PATH
statement

TRUNCATION Non executable Anywhere (see Chapter 5)

UNLOAD Executable Anywhere

WRITE Executable Anywhere
WRITE TAPE
WRITE OUTPUTTAPE

159

APPENDIX 4 TABLE OF SYSTEM FUNCTIONS

The tables overleaf give the names and properties of all intrinsic and basic external
functions available in Fortran V.

The instrinsic names vary according to whether a FUNCTIONSstatement (or *RUN
option)has been supplied. The basic external names (if available) are always the same,
no matter what set of intrinsic names is in force. Functions are described in detail in
section 8.4.

In the tables the followingabbreviations are used:

C Complex
D Doubleprecision
I Integer
L Logical
R Real
a argument
al first argument
a2 second argument

The arguments of the trigonometric functions are expressed in radians.

INTRINSIC NAME
ASA or F4 OLD or F2 HARTRAN Basic Type Number Type
FUNCTIONS FUNCTIONS FUNCTIONS External of of of Properties of Function
(STANDARD) Name Function Arguments Arguments

(result)

ABS ABSF ABSF ABS R I R Result is absolute value of a.
lABS XABSF lABSF lABS I I I i. e. ABS(a)=/a/
CABS - - - R I C
DABS - - - D I D

*AINT INTF AINTF AINT R I R Result is equal to the largest integer
* INT XINTF INTF INT I I R less than or equal to a.
* IDINT - - - I I D (see 5.1. 4(2».
(see note below)

NINT - NINTF NINT I I R Result is equal to the nearest integer
to a. See 5. 1. 4. (2)

- - FIXF FIX R I R Result is equal to the sign of a multiplied by
IFIX XFIXF IFIXF IFIX I I R the largest integer which is less than, or equal

to, the modulus of a. See 5.1.4 (2).

SIGN SIGNF SIGNF SIGN R 2 R Result is equal to sign of "z multiplied by the
ISIGN XSIGNF ISIGNF ISIGN I 2 I modulus of "i: (transfer of sign).

DSIGN - - - D 2 D

DIM DIMF DIMF DIM R 2 R Result is equal to a minus the smaller value of
IDIM XDIMF IDIMF IDIM I 2 I aI and a2. (aI-Min1aI' a2». Le.Positive difference

AMOD MODF AMODF AMOD R 2 R Remaindering. Result is equal to al -(a/aia2
MOD XMODF MODF MOD I 2 I Where (a/a2) is the integer whose magnitu e
DMOD - - D 2 D does not exceed the value of a 1/a2, and whose sign

is the same as a /a2.
e.g. aI-a2* IFIX-(a/a2), for MOD.

INTRINSIC NAME
ASA or F4 OLD or F2 HARTRAN Basic Type Number Type
FUNCTIONS FUNCTIONS FUNCTIONS External of of of Properties of Function
(STANDARD) Name Function Arguments Arguments

(result)

AMAXO(zero) MAXOF - AMAXO R ~2 I Choosing largest value. Result is equal
MAXO(zero) XMAXOF· MAXF MAXO I ~2 I to the largest argument; or IFIX
AMAXI (one) MAXIF AMAXF AMAXI R ~2 R (largest argument) for MAXI.
MAXI (one) XMAXIF - MAXI I ~2 R
DMAXI (one) - - - D ~2 D

AMINO(zero) MINOF - AMINO R ~2 I Choosing smallest value. Result is
MINO(zero) XMINOF MINF MINO I ~2 I equal to the smallest argument: or
AMINI (one) MINIF AMINF AMINI R ~2 R IFIX (smallest argument) for MINI.
MINI (one) XMINIF - MINI I ~2 R
DMINI (one) - - - D ~2 D

FLOAT FLOATF FLOATF FLOAT R I I Converts a from integer to real.

DBLE - - - D I R Express single precision (real)
argument in double precision form.

SNGL - - - R I D Express double precision argument in single
precision (real) form. i. e. obtain most
significant part.

REAL - - - R I C Obtain real part of complex argument.

CMPLX - - - C 2 R Express two real arguments in complex form.
Result = al + ia2

AIMAG - - - R I C Obtain imaginary part of complex argument.

CONJG - - - C I C Obtain conjugate of complex argument. If
a = x+iy then result = x -iy, and vice versa.

INTRINSIC NAME
ASA or F4 OLD or F2 HARTRAN Basic Type Number Type
FUNCTIONS FUNCTIONS FUNCTIONS External of of of Properties of Function
(STANDARD) Name Function Arguments Arguments

(result)

EXPF EXP R R Exponential.
a

EXP EXPF 1 Result = e .

CEXP - - - C 1 C
DEXP - - - D 1 D

ALOG LOGF LOGF ALOG R 1 R Natural logarithm. Result = log a.
CLOG C 1 C e- - -
DLOG - - - D 1 D

ALOGlO LOGI0F - - R 1 R Common logarithm. Result = log io":
DLOGlO - - - D 1 D

SIN SINF SINF SIN R 1 R Result is equal to sine of argument.
CSIN - - - C 1 C sin (a)
DSIN - - - D 1 D

COS COSF COSF COS R 1 R Result is equal to cosine of argument
CCOS - - - C 1 C cos (a)
DCOS - - - D 1 D

TAN - TANF TAN R 1 R Result is equal to tangent of argument. tan (a)

COTAN - - - R 1 R Result is equal to cotangent of argument. cot (a)

ARSIN - ASINF ASIN R 1 R Obtain arcsine of argument sin -1 (a)

ARCOS - ACOSF ACOS R 1 R Obtain arccosine of argument CDS -1 (a)

INTRINSIC NAME
ASA or F4 OLD or F2 HARTRAN Basic Type Number Type
FUNCTIONS FUNCTIONS FUNCTIONS External of of of Properties of Function
(STANDARD) Name Function Arguments Arguments

(result)

-1
ATAN ATANF ATANF ATAN R 1 R Obtain arctangent of argument. tan (a).
DATAN - - - 0 1 D

ATAN2 ATAN2F - - R 2 R Obtain arctangent of quotient. tan -1 (a/a2).
DATAN2 - - - 0 2 D The result lies between + 7r and - 7r

TANH - TANHF TANH R 1 R Hyperbolic tangent. tanh (a).

SINH - - - R 1 R Hyperbolic sine. sinh (a)

COSH - - - R 1 R Hyperbolic cosine. cosh (a)

SQRT SQRTF SQRTF SQRT R 1 R Obtain square root of argument.
CSQRT - ~ - C 1 C
DSQRT - - - D 1 D

AND - - - 2 See Section 5. 1. 6
OR - - - 2
ER - - - 2
NOT - - - 1
SHIFTR - - - 2
SHIFTL - - - 2

* In the A. S.A. specification, both INT and IFIX are defined as giving the sign of a times the largest integer less than or equal to the modulus of a.

165

APPENDIX 5 NOTES ON EFFICIENCY

The information in this section may serve as a guide to writing programs which are
economical in the use of time and store onAtlas. However, efficient programming is
an art which is acquired only by experience. Furthermore, the efficiency of a program
depends considerably on the machine and compiler on which it is run, and may change if
improvements are made in the compiler.

CompilationEfficiency

The Fortran V compiler has been carefully designed for high speed compilation. The
compilation speed tends to depend on the number of routines and the overall length of
the program, with only minor variations caused by the type of statement used.

Compilation expenses are considerably increased by requesting

Object Listings
BASCards
Source Listings

A program punchedon paper tape compiles faster than the same program on cards.
Compilationof many short routines will be more expensive than an equivalent
compilationwith fewer but longer routines.

The 'short list' form in DATA, or input-output statements, will compile more
efficiently than the 'full list' form.

Execution Efficiency

The major cause of inefficiency in a program usually turns out to be use of an
inefficient technique, rather than the efficiency of the machine code produced by the
compiler. Somegains in efficiency may be made if the followingpoints are kept in mind.

Statements inside a loop are executed many times. Therefore, the major rule for
efficient coding is: Donot put a statement inside the loop if it can be executed outside
the loop.

Calls to routines take time. Arguments of routines must be initialised. More efficient
codingwill result if, instead of arguments, COMMONor PUBLICor global variables are
used.

Multi-dimensional arrays are less efficient than one-dimensional arrays.

Adjustable dimensions or dynamic arrays are somewhat slower in execution than arrays
with constant dimensions.

For very large multi -dimensional arrays, efficiency of the Atlas system will be increased
if the first subscripts vary most rapidly.

e.g. DO2 K=l,N
D02]=1,N

166

DO 2 I=l.N
2 A(I.J,K) = 1.0

Storage will be saved if, when multi -dimensional arrays are declared, the largest
dimension is given first.

e.g. DIMENSIONA(250,10)

is better than

DIMENSIONA(1O.250)

Programs compiled in TEST mode are less efficient than programs in PRODUCTION
mode. TEST mode should be used only when debugging.

The use of a large number of short labelled COMMONblocks may waste storage.

The INT type of truncation is more efficient in execution than IFIX or NINT.

DATAinitialisation and CLEARare efficient in execution.

167

APPENDIX 6 SOURCE PROGRAM ERRORS

A list of source program errors detected by the Fortran V compiler is given below.
Whenan error is found, the appropriate message is explicitly printed. If no source
listing is specified, then the (possibly) incorrect statement is printed together with its
message. The messages always apply to the Fortran statement preceding them, but,
if a source listing is obtained, then comment lines and/or FORMATstatements may
appear between the incorrect statement and its error message.

In Fortran V there is a distinction between warnings or 'possible errors' and serious
or 'grammatical' errors. Each serious error causes the error count (as in *RUNGOn,
or *FORTRANCARDSn) to be increased by one. The warning-only messages do not
add to the error count (n).

Note that, once an error has occurred, the compiler may mistake the meaning of later
statements, and may accept incorrect statements or reject correct ones. (see 66 for
an example).

A list of current errors is given below, further messages may be added from time to
time.

(1) SYNTACTICALERRORINABOVESTATEMENT.

The preceding statement is not a recognisable Fortran V statement, and has probably
been mis -punched, e. g. a comma instead of a point, etc.

Such error statements are ignored, but any attached label is accepted. i.e. these
statements are treated as CONTINUEs.

(2) LABELNOTSET -***

Occurs when a label (statement number) is referred to, but is not present in columns
1-5 in the routine.

e.g. LABELNOTSET - 10

If a FORMATlabel is not set, then the message is of the form

LABELNOTSET - NO.10

(3) LABELGIVENTWICE -***

Occurs if two, or more, statements have the same label.

(4) FORMATHASNOLABEL

Every FORMATstatement must possess a statement number.

(5) SPECIALFORMAT6G20ACCESSED

168

A6 (Warning only). Occurs if reference to FORMAT omitted from formatted I/O statement
cont (6G20 is accessed).

e.g. PRINT, I

(6) FORMATGIVEN TWICE: FIRST ACCEPTED

Two FORMAT statements have the same statement number.

(7) STRANGEI/O STATEMENT

Occurs for WRITE INPUT TAPE, or similar invalid statements. The statement is
ignored.

(8) EXPRESSIONIN INPUT LIST

Occurs for example in

READ 10, X+Y

(9) SYNTAXERROR IN LIST

Can occur in I/O list or DATA statement. Usually due to excess or missing commas
or brackets.

(10) ILLEGAL UNIT NUMBER

Unit number referred to is not a legal expression.

e.g. REWIND//

(11) LONGER /VALUES/ THAN LIST

In DATA or Type statements. There are more constants than list items. The exces s
constants are ignored.

(12) LONGER LIST THAN /VALUES/

As (11) but too few constants - the excess list items are undefined.

(13) DIFFERENT TYPES FOR /VALUE/ AND LIST ITEM

In DATA or Type statements. Constant and list item should be of same type. Constant
is, however, loaded without conversion.

(14) STRANGECONSTANTIN /VALUES/

In DATA or Type statements

e.g. DATAA,B /2,X/

(15) ARRAY TOO SMALL FOR LIST PARAMETERS

In DATA statements

e.g. DIMENSIONA(lO)
DATA (A(I), 1=1,20)/20*2./

The excess values are not loaded.

10'

(16) jVALUESj CANNOT BE ASSIGNED TO BLANK COMMON, OR
ADJUSTABLE ARRAYS.

Can occur in DATA or Type statements. The message is self explanatory.

(17) jVALUEj TOO LONG FOR FIELD

(Warning only). Can occur in Type or DATA statements.

e.g. DATA AjlOHABCDEFGHI]j
Where A is not an array.

(18) DATA PUNCH LIST FULL

There are too many DATA values for the compiler. This error is not likely to occur.

(19) BLOCK SIZE LARGER THAN IN EARLIER ROUTINE

An attempt has been made to increase the length of a COMMON block defined in an
earlier routine.

(20) STORE AREAS OVERLAP

Can occur if program is too large for machine, or if very large arrays are used.

(21) OPERATOR IGNORED

Arithmetic operator is redundant.

e.g. A='~l, taken as A=l

(22) MISSING OPERATOR IS TAKEN AS *

e.g. A(A+l) is taken as A*(A+l)

Note that AB is not taken as A *B

(23) TOO MANY SUBSCRIPTS

More subscripts present than dimensions declared. The excess subscripts are ignored.

(24) TOO FEW SUBSCRIPTS, OR ARRAY NAME USED AS SCALAR

(Warning only). The missing subscripts are assumed to be one.

(25) INVALID MIXTURE OF TYPES IN EXPRESSION

e.g. A = 3*'XY'

Instructions are compiled but result usually meaningless.

(26) ILLEGAL OPERATION ON NON-NUMERIC TERMS

e.g. x = 'XY'*'XYZ'

Instructions are compiled, but result usually meaningless.

(27) TYPES OF LHS AND RHS ARE NOT COMPATIBLE

e.g. INTEGER A
A='XY'

170

A6 See Chapter 5 for meaningful combinations.
cont

(28) 00, OR IMPLIED 00: INDEX CHANGEDWITHIN LOOP

PRINT 10 «A(1), 1=1,5),B(1), 1=1,6)e.g.
or

DO 21 = 1,5
1=4etc.

Indices must be different

(29) DO ENDS ON CONTROL STATEMENT

e.g. 0021=1,5
2003J=1,6

(Use CONTINUE)

(30) 00: LABEL HASALREADY APPEARED

e.g. 2 X=4
D02I=1,2

(31) ILLEGAL DO NESTING

e.g. D021=1,1O
00 3 J = 1,5

2 CONTINUE

(32) DO LOOPNOT TERMINATED

The label referred to is not set in program.

(33) ARRAY DECLARED TWICE: LAST IGNORED.

Dimension information is repeated. Only first dimensions specified are accepted.

(34) REFERENCED ITEM DECLARED COMMON: COMMONIGNORED.

e.g. A=X
COMMONX

or
REAL A/l./
COMMONA

or
EQUIVALENCE (A,B)
COMMONB

see Appendix 3 for rules.

(35) TWO ITEMS ALREADY REFERENCED: GROUP IGNORED.

Can occur in EQUIVALENCE

e.g. COMMONA
B=X
EQUIVALENCE (A,B)

.i/.i

or

COMMON A (20)
REAL B(10)
EQUIVALENCE (A, B) (A(10),B(10»

See Chapter 4 for rules.

(36) ITEM DECLARED AFTER REFERENCE

e.g. X=4
INTEGER X

(37) ITEM FORCED BEFORE START OF DATA AREA

Can Occur in EQUIVALENCE

e.g. DIMENSION X (10)
COMMON Y
EQUIVALENCE (X(9), Y)

Since Y is referenced, X(l) to X(8) now lie before the start of the COMMON region.
This is invalid.

(38) UNDECLARED ARRAY ON LHS OF STATEMENT

e.g. X=4

X(I) = 7
Where X has not been dimensioned.

(39) STATEMENT FUNCTION DEFINED

(Warning only). Appears when ever a statement function is defined. If no function was
intended, then an array has not been dimensioned.

(40) INCORRECT ARGUMENT IN STATEMENT FUNCTION

Dummy arguments must be simple variable or array names.

(41) WRONG NUMBER OF ARGUMENTS IN SYSTEM FUNCTION

e.g. X=SQRT (y, Z)

Number of arguments must be correct - See Appendix 4.

(42) SYSTEM FUNCTION OVERWRITTEN

(Warning only). Occurs if statement function is given same name as a system function.
The statement function takes precedence.

(43) FUNCTION HAS NO ARGUMENTS

(Warning only). Occurs in FUNCTION statement when no dummy argument is present.

(44) FUNCTION NAME NOT USED IN ROUTINE

(Warning only). Occurs in FUNCTION subprogram, when the function name has not been
assigned a value.

(45) DUMMY ARGUMENT REPEATED

172

A6 Can occur in SUBROUTINE or FUNCTION statements when a dummy argument is
cont referred to more than once.

e.g. SUBROUTINE X(A,B,A)

VARIABLE NAME WAS PREVIOUSLY USED AS SUBPROGRAMNAME(46)

e.g. CALL X

X=4

Names should be distinct.

(47) SUBPROGRAMNAME WAS PREVIOUSLY USED AS VARIABLE

Similar to (46).

(48) EQUIVALENCE ON ADJUSTABLE ARRAY

e.g. DIMENSION A(N)
EQUIVALENCE (A,B)

Illegal equivalence - see Chapter 4. Also applies to dynamic arrays.

(49) EXTERNAL: NAME PREVIOUSLY USED

Name previously used as a variable is now declared EXTERNAL.

(50) DYNAMIC ARRAY DECLARED

(Warning only). Occurs when any dynamic array is dimensioned. This is not an error,
but may be due to name left out of argument list.

(51) ADJUSTABLE ARRAY IN PUBLIC OR COMMON

Not allowed. Also applies to dynamic arrays.

(52) LABEL ON CONTINUATION CARD: LABEL IGNORED

(Warning only). May not be an error, but is often due to punching statements from cc 1,
rather than cc 7.

(53) TOO MANY CONTINUATION CARDS: STATEMENT IGNORED.

The statement covers more than 35 cards, and is ignored.

(54) ILLEGAL CHARACTER: STATEMENT IGNORED

A character has been punched (on a card), which is not in the Atlas card set. See
Appendix 2.

(55) OUTER SET CHARACTER IN LITERAL

(Warning only). This is not an error, but see Appendix 2 for use of OIS characters.

(56) TEXT CONSTANT EXTENDS BEYOND END OF STATEMENT

(Warning only). Occurs if second prime missing or if n H too long.

173

e.g. X=80H

with no continuation card.

(57) CONSTANTOUTOF RANGE

Printed if a real or D. P. constant in the program is larger than 10"''''110.

(58) CONSTANTHASMORETHAN22 DIGITS

(Warning only). Constant cannot be stored to accuracy given, but excess digits are
treated as zero, and are not ignored, so that the number is stored accurate to 22 digits.

(59) ILLEGAL OPERANDINM/C CODE

Message is self explanatory. See Chapter 11 for legal forms.

(60) STATEMENTCANNOTBEREACHED

(Warning only). An unlabelled statement follows an unconditional transfer, and thus can
never be accessed.

(61) UNRECOGNISEDOPTIONONDIRECTIVE

e.g. "'FORTRANGO

The illegal option is ignored.

(62) ROUTINEALREADYLOADED

(Warning only). A routine with the same name has appeared before. This is not an
error. Only the first routine is used.

(63) CHECKSUMERROR

Occurs if a mis -punched, object (binary) card is loaded.

(64) P.U. T OR CARDMIXUP

Occurs if binary cards are missing or in wrong order, or if a binary deck which uses
the Hartran PARAMETERfacility is loaded.

(65) BINARYMIXUP

Occurs when the loader expects a binary card, but actually reads BCDcard. Due to
cards in wrong order or missing.

(66) REQUIREDROUTINES,

followed by a list of routine names which have been referred to, but which are not
present. Note that this could occur by forgetting to dimension an array.

e. g . if A is meant to be an array, but has not been dimensioned, and if the following
statement appears:

X=A(I),

then A appears to be a function, and is treated by the compiler as such - thus the above
message could appear.

(67) NOMAIN

No main program is present. The job is not executed.

175

APPENDIX 7 LIBRARY SUBPROGRAMS

The following standard constants are held in the library, and may be accessed by
putting their names in an EXTERNALstatement. If the names are also declared to be
DOUBLEPRECISION,then double precision (22 digits) values will be accessed.

e.g. EXTERNALPI
AREA= PI*R**2

Name Single length Value

PI 3.1415926536
RECIPI(1/7r) 0.31830988618
DEG (180/7r) 57.295779513
RAD(7r/180) 0.017453292520
E (e) 2.7182818284
LOGEPI(log 7r) 1.1447298858
LOGElO(loge10) 2.3025850930
LOGE2(log 2) 0.69314718056

e 1.4426950409LOG2E(log2e)
LOGI0E (logI0e) 0.43429448190
GAMMA 0.57721566490
GAUSS 0.47693627620

In addition to the list below many mathematical (e .g , matrix) subroutines are available;
these are not in the system library, but are available as object (BAS)decks from Atlas
Computing Service.

Other system library routines are described in reference 6. These include many
routines for specialised input/output operations.

The following library subroutines can be accessed by CALL statements from any
Fortran V program, or subprogram.

Name, and form Propertiesof arguments

EXIT Prints 'ENDOF JOB'on output stream
zero, and terminates execution
(normal exit).

EEXIT Prints 'JOBTERMINATED'on output
stream zero, and terminates execution
(error exit).

OUTBRK(N) Causes a break of output to appear on
output stream N. This should be used
to divide large amounts of output into
manageable segments (of (say){~OOO.l~~N·

continu

176

A7
cont

Name, and form Properties
of arguments

OUTSEL(N) Select output stream N.

INPSEL(N) Select input stream N.

OUTREC Print the output buffer.

INPREC Read a record to the input buffer.

10BUFF(A) Initialise the I/O buffer to contain the
character in the left -most position of A.
(Standard setting is to blanks).
e.g. CALL 10BUFF('/')

101 Set I/O buffer to blanks.

SETBFR(N) This causes a special set of fixed block
length transfer routines to be used instead
of variable length transfers when writing
to magnetic tape. It is only useful when
a knownmaximum number of words is
being transferred at anyone time, and can
be inefficient if there is a wide variation
in the number of words being transferred
at anyone time. SETBFRsets the
buffer length to N.

OUTDEL(N) Delete (i. e. destroy) the current output
on output stream N.

DUMP(X,Y) Dumps storage from location of X to
location of Y.

PDUMP(A,B,N) Dumps storage from address of A to
address of B (or Bto A if Bhas the lower
address). If N = 0, format is as machine
instructions, with the address in octal.
If N = 1words are printed all in octal
(i. e. as data words) A and B are simple,
or subscripted variable names, or
routine names.
e.g.
CALL PDUMP(A(1), A(500),1)
CALL PDUMP(THETA, PI, 0)

LOC(N) M = LOC (N), the location (address)
of Nds placed in M. Alternative

(Function) names are LOCF and XLOC.

RMCTR(A) This places, in A, the number of
instruction interrupts left for this job.

TIME(A) Places the time since the start of the job
in A (as a real number of seconds).

OVFLOW(0) Can be used as a logical function to test
the overflow indicator and set it to

(Function) FALSE.

177

Name, and form
of arguments

Properties

ELAPSE (A) Gives the time since the last call of
ELAPSE, (or from the start of the job).
The result is in A as a real number of
seconds.

TXCLOK(A)
or

TXTIME(A)

Gives, in A, a text version of the time
of day, suitable for output on A8
conversion. e.g.

09.47.33

TXDATE(A) As TXCLOK, but gives date in A8
format. e. g.

11/07/67

TAPE5(1) For reading five track paper tape.
Sets 1 (as a Fortran integer) to the next
character on the currently selected
input stream (INSPEL (above) should
normally be used to do this). There are
two modes:-
(i) If read as a binary document then
the bits (i. e. the holes are 1 bits) of the
character form the value of I, so that 1
is within the range 0 to 31. For an end
of record, 1 is eet to 32. For the
physical end of tape, 1 is 33. The least
significant punch is the one at the edge of
the tape, on the side which is two holes
from the sprocket holes.
(ii) If read as a B. C. D. document,
then I is set to minus the internal code--number of the character read. (See
Appendix2.) e. g. If the character A is
read 1 is set to - 33.

TAPE7(1) As TAPES, but for reading seven track
paper tape. If read as a binary document

0515127
1 is 128for end of record, and 129for
physical end of tape. The least
significant punch is the one at the edge of
the tape, on the side which is three holes
from the sprocket holes.

TAPE6(1)
TAPE8(1)

(continued)

For reading six or eight track paper tape
(on currently selected input stream) which
must be presented as a binary document.
1 is set to a Fortran integer formed of the
bits (holes) of the number punched.

For 6 track
For 8 track

051563
0:::;I:::;255

For end of record

or 1=64
I = 256

(6 track)
(8 track)

178

Name, and form Properties
of arguments

TAPE6 (I) Note that because of spurious newlines at
TAPE8 (I) the start of the tape, end of record
(continued) characters may appear before the tape

proper is read. For eight track tape,
the least significant punch is the one, on
the edge of the tape, on the side which
is three holes from the sprocket holes.

179

APPENDIX 8 THE JOB DESCRIPTION

Note: the material in this Appendix is dependent on the Atlas Supervisor program, and
is subject to change from time to time. Up to date information is available from Atlas
ComputingService.

Every Fortran V job presented to Atlas must be preceded by a JobDescription, which
states, among other things, the output devices to be used, the amount of output to be
produced, and the amount of time to be allowed for compilation and execution.

A brief explanation of Job Descriptions is given below. This explanation will be found
sufficient for most purposes; but further details are given in Reference 8.

Each Job is presented to the computer as one, or more, documents. These are self
contained blocks of information presented to the machine through one input device
without a break. Each document is preceded by a heading, followed by a document
title; and is ended by a card punchedwith 7 and 8 in column one, or by a paper tape
line beginningwith *** (this line is usually ***Z). The majority of jobs involve only
one input document.

A8.1 THE DOCUMENT TITLE

A title is punched on one card or one paper tape line. It must be different from the
title of any other document present in Atlas at the same time.

It must not start with a blank, comma, point or the word END. The first characters
of the title should be the user's job number.

A8.2 THE DOCUMENT HEADING

This is one of:-

JOB(preceding a job description document).
or

COMPILERFORTRAN(or USEFORTRAN)(Preceding a program document).
or

DATA (preceding a data document).

A8.3 THE JOB DESCRIPTION

Where appropriate, the Job Description must contain the information dealt with below.
Each line starts in column one, and may be punched on cards or paper tape. The
various sections which may be contained in a Job Description are given below. Note:-
a maximum of seven input and/or output streams may be used by one job.

180

AS.3.1 The OUTPUT section

This section specifies the kind of output devices to be used, and the max~mumamount of
output to be produced on each output device (or stream). (See also section 7.2.1).

If a device is used which is not specified, or if the specified quantity of output is
exceeded, then the job is terminated with execution error 9: OUTPUTNOTDEFINED or
OUTPUTEXCEEDED(see section 10.3).

The output section of the Job Description consists of the word OUTPUTfollowed by a list
of the logical numbers of all output documents (i. e. the numbers by which they are
referred to in the program), followed by the output device name, followed by the
maximum quantity of output to be produced by that device. The logical numbers used
for output streams must be within the range

o 5 number 5 15.

Examples:

a) The pres ence of a statement

WRITE (6, fmt) list

in the program, where this statement is required to produce output on a
line printer, would require a Job Description specification of:

OUTPUT
6 LINEPRINTERn LINES

where n is the maximum number of lines to be produced on output stream 6.
This could be written on one line as:

OUTPUT6 LINEPRINTERn LINES

b) OUTPUT
o LINEPRINTER500 LINES
6 LINEPRINTER1000 LINES
15 CARDS120 LINES(Le. 120 cards)
8 CARDS2000 LINES
9 SEVENHOLE PUNCH2 BLOCKS
10 FIVE HOLE PUNCH80 LINES

The term "LINES" means records (see section 7.3). One "BLOCK"is
equal to 512words each of 8 characters (this is usually equivalent to about
two printed pages).

Note: Output streams 0 and 15 are used by the Fortran V compiler. Source (and
object) listings are produced on output stream O. and object cards are punched on output
stream 15.

Output stream 0 is usually a line printer (but it need not be), output stream 15 should
always be specified as a card punch if object cards are to be punched (see section 12.2).

In addition PRINT statements access output stream 0, and PUNCHstatements access
output stream 15.

In order to write the Job Description, it is necessary to knowhowmuch output is likely
to be produced by the compiler. If a routine contains P lines (statements and comments
and continuation lines), then the following output is likely to be produced on stream zero:-

(i) 100 lines; plus

181

(ii) if SOURCE is specified: 2P lines; plus
(iii) if LIST is specified: 4P lines; plus
(iv) if MAP is specified: 50 lines

In addition, on output stream 15:-

(v) if CARDS (or CARDSn) is specified: 2P/3 lines. (This is approximate).

Thus, for a program containing 300 statements for which it is required to produce
SOURCE listings, and object CARDS for each routine, and a loading MAP, a minimum
specification of:

OUTPUT
o LINEPRINTER700 LINES
15 CARDS200 LINES

wouldbe required.

Note that any cards punched on stream 15 by the program (by PUNCH,or WRITE(IS,
frnt) wouldhave to be added to the above estimate; similarly with any program output
on stream zero (by PRINT, TRACE, OUTPUTor WRITE(0, fmt), statements).

The above proportions of output produced to number of source statements are approximate,
and may be exceeded under some circumstances: e.g. if a job consists of a large
number of short routines. However, a job is not likely to exceed the above estimates
by more than 50 per cent.

AB.3.2 The INPUT section

A description of the way in which input streams are specified is given in section 7.2.2.

Normally, the program itself is read on input stream zero, and this input stream is not
usually specified in the JobDescription.

If input statements in the program refer to input streams other than zero, then these
streams must be specified in the JobDescription.

e.g. READ(5,fmt) list

This refers to input stream 5, which could be specified in the JobDescription as:

INPUT
5 LXP932XY,BONDNUMBERS

There would then exist a separate document with the heading and title:-

DATA
LXP932XY,BONDNUMBERS

The title followingthe stream number in the JobDescription must match exactly with
the title following the DATAline.

The job cannot be run until all input documents specified in the JobDescription are
present in the machine.

The logical numbers used to refer to input devices (streams) must be within the range:-

o :$ number :$ 15

and this number may be the same as a logical number used for an output stream.

182

Data read by READ statements on input stream zero may follow the "'ENTER directive
and do not need an INPUT specification in the Job Description.

Example: INPUT
5 LSR584X3, SMITH SUEZ DATA
7 LSR584X3, SMITH HUNGARY VALUES
15 LSR584X3, SMITH VIETNAM STATISTICS

This would require that the following documents be provided

DATA
LSR584X3, SMITH SUEZ DATA

and DATA
LSR584X3, SMITH HUNGARY VALUES

and DATA
LSR584X3, SMITH VIETNAM STATISTICS

Note that the input stream number is not given in the data document itself (although it
could be mentioned in the title if desired), and that the type of input device is nowhere
mentioned.

The title(s) used for data documents must be different from the title of any other
document present in the machine at the same time, hence data document titles must be
different from job titles. In order to avoid confusion with other jobs, the job number
and user Is name should be present in all data document titles.

A8.3.3 Magnetic tapes

(1) One Inch (Ampex)Tapes

As described in section 7.2.3, when a magnetic tape is used for input or output (or
both), the word TAPEmust appear in the Job Description.

Example: READ (10) list

Would require a specification such ast -

TAPE
10 LSOlO"'PERMIT

Where LSOlOis the title (or reel number) of the magnetic tape (this is physically
present at the start of the tape); and the " means that what follows is a comment to the
machine operators. The usual comments are

PERMIT
or

INHIBIT

INHIBITmeans that the tape is to be file protected; i. e. the tape can only be read, and
will not be written to. If an attempt is made to write on an inhibited tape, then the job
will be terminated on execution error 9: WRONGTAPEMODE.

PERMITmeans that the tape can be written as well as read.

A8.3.3 The logical number used for a one-inch magnetic tape must be within the range
cant

o '5number s 99

The number should not be the same as the logical number of any input or output stream.

The titled magnetic tapes described above are hired by the user and are not used by other
programs. Sometimes however, it may be desired to use a (one inch) magnetic tape for
intermediate storage while the job is being run, and it may not be necessary to retain
the tape after the job is finished. In such cases a COMMON(scratch) tape is
specified in the JobDescription.

e.g. TAPE
COMMON10

Commontapes are mounted in "PERMIT"mode (i. e. they are not file protected).

A commontape cannot be retained by the user once the job is finished and it may be
overwritten by other jobs.

(2) Half Inch (1.B.M.) Tapes

Half-inch tapes, which are compatible with 1.B.M. 7 track tapes, may be used for
formatted (B.C.D.) I/O operations onAtlas. These tapes cannot be used for unformatted
(binary) input or output.

The logical number used for a half-inch magnetic tape must be within the range

o ~ number 5 15.

Not more than two half-inch tapes may be used in anyone job.

Example: READ(3,10) list

whenused to access a half-inch tape, would require a specification such as:

TAPEIBM (to indicate a half-inch tape)
3 LP008SMITHDATA556DENSITYINHIBIT

In this example, LP008is the reel number of the tape, and SMITHDATAis the title of
the tape. These are not normally written on the tape itself, and hence cannot be checked
by the Supervisor, but they must appear in the JobDescription so that the correct reel
can be mounted. If desired, a title record could be written on to the tape, and checked
by each program that uses it, but there is no automatic facility for doingthis.

The words 556DENSITYindicate the density at which the tape is to be read, or
written. All operations on the tape must be performed in the same density.

There are three densities: 200, 556, and 800 six-bit characters to an inch. Onthe
LondonAtlas, these.densities are referred to as low, medium, and high density
respectively; but at some installations high density refers to 556.

INHmlT has the meaning described in (1) above.

(3) Lengths of magnetic tapes.

A new one-inch magnetic tape contains about 5000blocks each of 512 forty -eight bit
words.

A new half-inch tape can contain the equivalent of:

184

at 200 density: 1300 blocks
at 556 density: 3500 blocks
at 800 density: 4900 blocks.

On half -inch tapes, each record is terminated by a * inch inter -record gap; so that if
short records are written the amount of information which can be contained in the tape
is considerably reduced.

AB.3.4 COMPUTING time

The amount of time (or instructions) to be allowed for the compilation of a job must also
be specified. The time includes time spent in execution, and time taken to compile and
load the program. If the specified time is exceeded the job is terminated with the
message C TIME EXCEEDED.

Examples: COMPUTING1 MINUTE
COMPUTING1.2 MINUTES
COMPUTING30 SECONDS
COMPUTING20000 INSTRUCTIONS

One INSTRUCTIONis in fact, equivalent to 2048 basic machine instructions. About
10000"INSTRUCTIONS"occur in one minute, so that

COMPUTING1 MINUTE

is roughly equivalent to

COMPUTING10000INSTRUCTIONS

The time spent in execution must be estimated by the user, but a guide to the time likely
to be spent in compilation of a source program containing P lines (statements) is:-

150 instructions
plus If no listing or object cards are produced: 5P instructions
plus If a SOURCElisting is produced: P/2 instructions
plus If object CARDSare produced: P/2 instructions
plus If an object LIST is produced: 5P instructions
plus !instruction for each object card loaded
plus If execution is required: 100 instructions.

Thus, for a job containing 800 source statements. requiring a source listing and object
cards, the number of instructions spent in compilation and loading would be about

150+ 4000+ 400+ 400+ 100

= 5050 INSTRUCTIONS

i. e. about 30 SECONDS

The figures given above are only approximate and may be exceeded under certain
circumstances: e.g. where a job consists of a large number of short routines, or
where there are a large number of complicated statements. However, no job is likely
to be as much as twice as slow as the above estimates.

A8.3.5 EXECUTION time

Whena job uses magnetic tapes, a certain amount of time is spent in manipulating
(e.g. REWINDing)these tapes. This tape manipulation time is specified separately
from the COMPUTINGtime, and is knownas EXECUTIONtime. The difference

185

between EXECUTION and COMPUTING times is usually small, but will vary according
to the number and type of the jobs in the machine.

A reasonable guide is to specify 50 per cent more execution time than computing time.

Examples: EXECUTION 5 MINUTES
EXECUTION 2.4 MINUTES
EXECUTION 100000 INSTRUCTIONS

Note that the Fortran V compiler does not itself use magnetic tapes, and therefore
execution time need only be specified when the program itself uses them. If the
execution time is exceeded, then the job is terminated with the message

E TIME EXCEEDED

A8.3.6 STORE requirements

This specification gives the maximum number of storage blocks (each of 512words)
which are to be used:

(i) in execution (n1)

and (ii) in compilation (n2)

The form is

If n is not specified (i. e. if the STOREline is omitted) then 20 blocks are allowed in
exetution. If n2 is not specified, the line is written as

STOREn1BLOCKS

and 80 blocks are allowed in compilation. Note this standard allocation is subject to
any changes made in the Supervisor. 80 blocks is sufficient for programs up to about
400 statements, if the program is longer than this then the allowance (n2) should be
increased at the rate of 3 blocks for every 100 statements above 400. Again, this is an
approximation, and may not always be sufficient. However, programs are not likely
to exceed the above estimate by more than 10 blocks.

Compile store is dependent on the size of the whole program (plus object routines), and
not merely on the size of the largest routine. There is thus no limit on the amount of
storage which could be required for a compilation.

Savings in compilation storage may be effected by using the COMPILEoption on the "RUN
directive (see section 12.1); if this is done the compile store used will depend only on
the length of the largest routine.

Whencalculating execution storage, 6 blocks should be allowed for library routines, and
one block for each input and output stream.

If either of the storage specifications is exceeded, then the job is terminated with the
message EXCESSBLOCKS.

186

AB.3.7 A complete job description

Examples:

(a) A simple Job Description is:

JOB
LXS99PQR, WELLER BUBBLECHAMBER
OUTPUT
o LINE PRINTER 1000 LINES
15 CARDS 200 LINES
COMPUTING1 MINUTE
COMPILER FORTRAN
*RUN... etc.

(b) A more complex job:

JOB
LXS99PQR, WELLER ROTATE AXIS
OUTPUT 0 LINEPRINTER 2000 LINES
6 LINEPRINTER 1000 LINES
15 CARDS2600 LINES
14 CARDS200 LINES
3 SEVEN HOLE PUNCH5 BLOCKS
INPUT
5 LXS99PQR, WELLER AXIS DATA
3 LXS99PQR, WELLER STREAM 3DATA
COMPUTING70000 INSTRUCTIONS
EXECUTION 100000 INSTRUCTIONS
TAPE
4 LSI0l *INHIBIT
TAPE IBM
1 LS002 WELLER IBMVALUES 556 DENSITY PERMIT
STORE 65/100 BLOCKS
COMPILER FORTRAN
* RUN etc.

The input documents for streams 5 and 3 must be provided.

The order of the lines in the Job Description is not significant provided that all OUTPUT,
all INPUT, and all TAPE specifications are kept together.

REFERENCES

1 American Standard FORTRANU.S.A. Standards
Institute. X.3.9 March 7 1966.

2 Atlas Fortran Manual (Part 1) by E. J. York.
HMSOAERE R 4599 (1964).

3 IBM7090/7094 IBSYSOperating System. Version 13.
Fortran IV language. July 1965. Form No. C28-6390-1
File No. 7090-25.

4 IBM7090/7094 Programming Systems. Fortran II
Programming. August 1963. Form No. C28-6054-4.
File No. 7090-25.

5 IBMSystem/360. Fortran IV language. 1966.
Form No. C28-6515-4. File No. S360-25.

6 Science Research Council. Atlas Computer Lab.
Hartran System Note No.4. May 1965.

7 I. C.T. Atlas 1 Computer. Programming manual for
A.B.L. List CS 348A. January 1965.

8 I. C.T. Ltd., "Preparing a Complete Program for Atlas I"
TL 1254. List CS460March 1966.

INDEX

A

adjustable
arrangement in storage
declaring size of (see also Type statements)
dynamic
efficiency of ..
elements of ..
exceeding bounds of
names (identifiers) of
subscripts
unsubscripted (see also 'short list') ..

ASSIGNstatement
and block structure

Assigned GOTOstatement
and block structure

..

61
122
86
94
77

125, 126
18
12
9

50

86
27
42
27
34
91
101
145

17
94
18
18

113
165, 166

17
17
17
28
28
40

110
41

110

135, 150
9

152, 153

A format conversion
Accumulator overflow
Actual arguments
Adjustable dimensions
Adjustable FORMAT's
AFTERR library subroutine
Allocation of storage
Alphanumeric characters ..
American Standards Association (A.S.A)
Ampexmagnetic tape devices
AND(see logical operators)
Apostrophe (see prime)
Arguments
Arithmetic expressions
Arithmetic IF statement
Arithmetic operators
Arithmetic replacement (assignment) statement. .
Arithmetic statement function
Arrangement of COMMON
Arrangement of routines
Arrays

Assignment statements (see Replacement statements)
Asterisk in column 1
Atlas Fortran (Hartran)
Atlas internal code

B

Bformat conversion
Backspace character

in data
in source program

BACKSPACEstatement

62

78
149
82

in data
in source program

145, 146
90

79, 80
107

145, 146
55

101

59.. .. 11

67, 68
39
17
11

104
105

16
31, 32

20
17

60
90

159

BAScards ..
Basic external functions
BCD(formatted) input/output statements
BEGINstatement
Binary (object) cards
Binary (unformatted) input/output statements
Blank COMMON
Blank lines

Blanks
in data
in labels
in names
in statements

Block COMMON(see COMMONstatement)
BLOCKDATAstatement
Block structure
Blocks (see program blocks)
Boolean constants
Boolean intrinsic functions
BOOLEANstatement (see also FUNCTIONstatement)
Bounds (of arrays)
Brackets (see Parentheses)
Buffer (I/O)
Built-in functions

list of

c

*

11, 150
97

132

60
145
11

137, 140
61

151
11

146
36

135, 150
11, 150
11, 150
12. 150

60

11
150
99

100
101
100
lIS
103
183

90
29

C in column 1
CALL statement
Calling sequence
Cards

for data
for object program
for source program

CARDSoption on * FORTRAN
Carriage control (for printer)
Character set

complete
standard

Checksum
CLEAR statement
Column 1 characters:

C
7r
X

Commas in FORMATstatement
Comment lines:

on cards
on paper tape

COMMONstatement
array declarations
blank (unlabelled) COMMON..
block (labelled) COMMON
and block structure

COMMONjEQUIVALENCE interaction
CommonTapes
Compatability with other Fortrans

of functions ..
of truncation.

Boolean (octal)
complex
double precision
integer
logical
real
text (Hollerith and primed)

Constants (standard values)
Continuation cards
CONTINUE statement
Control Cards (see Directives)
Control specifications (in FORMAT)

p. Q. R (scale factors)
S (sign printing)
T. Y (column position)
X (blank fields etc) ..
Z (zero printing control)

CONTXQ library subroutine
Conversions, FORMAT (see field specifications)

135, 136

14
20

43, 112
41

12. 141, 150
13
16
14
14
13
15
13
15

175
11
47

71
71
72
74
73
74

125

COMPILEoption on *RUN
Compiler directives (see Directives)
Complex constants
COMPLEXstatement (see also FUNCTIONstatement)
Compound logical IF statements
Computed GOTOstatement
Computing time (see Job description)
Conditional compilation (X in Column 1)
Constants

D

*BAS
*END
*ENTER
*FORTRAN
*INPUT
*LBEND
*LIBRARYTAPE
*MAKELIBRARYTAPE
*RUN

Disjoint blocks
Division (see also arithmetic operators)

66
14, 66

78
23, 24

49

13, 14
66, 67

108
49

167
120
18
94
18
17

145, 146
142
141
137
142
144
144
143
135
106

D format conversion
D exponents
Data documents (see Job Description)
Data on paper tape
DATAstatement
Data-link
Decimal exponents

in constants
in data

Declarations (see also specification statements)
in block structure

Device (I/O)
Diagnostics

in source program
in execution:

DIMENSIONstatement
adjustable dimensions
layout of storage

Dimensions, exceeding bounds of
Directives

integer division
truncation of

Division overflow
DO level
DO statement

index of
parameters of
range of
step of

DO-implied loops
in DATA statement
in I/O list

Documents (see Job Description)
Dollar sign (or 7r) in column 1.
DOUBLELENGTHstatement (see also FUNCTIONstatement)
Double precision constants
DOUBLEPRECISIONstatement (see also FUNCTIONstatement)
Dummyarguments
DUMPand PDUMPlibrary subroutines
Dynamic arrays

29, 31
29

122
137
45
46
46
46
46

24
51

11, 150
20
14
20
86

176
113

E

E exponents
in constants
in data

E format conversion
Efficiency

13
66
66

165

165

85
106
142
82
82

141
140

22
ll5

78
149, 150

120, 122
167

28, 29
33, 34

105, 106
121
138

156, 157

120, 122
165

27, 31
122

of compilation
of execution

Embedded blanks (see blanks)
ENDstatement

and block structure
"'ENDdirective
ENDFILE statement
End-of-file processing
"'ENTERdirective
Entry point of routine
EQ (see relational operators)
EQUIVALENCEstatement

and block structure
Erase character

in data
in source program

Errors
in execution
in source program

Evaluation hierarchy
Arithmetic
Logical

Example
of block structure
of error trace
of source listing

Executable statements (list of)
Execution

errors during
efficiency of
time required (see Job description)

Explicit declarations (see Type statements)
Exponentiation
Exponent overflow

Exponents

Extensions

13, 14
66, 67

27
33
32

100, 103
9

96
115

in constants
in data

Expressions
arithmetic
logical
relational

of a COMMONblock
to the Fortran language

EXTERNALstatement
and block structure ..

F

F format conversion
FALSE (see also logical constants)
Field specifications

A
B
D
E
F
G
H
I
K
L
o
, (prime)

Field termination (see commas in FORMAT)
Fixed point (see integer)
Flexowriter characters ..
Floating point (see Real) ..
formal parameters (see Dummy arguments)
Format free input
Format specifications

control specifications
non-numeric
numeric

FORMATstatement
format and list interaction
punching of
records defined by
variable format

Formatted I/O statements
PRINT
PUNCH
READ
READINPUTTAPE
WRITE
WRITE OUTPUTTAPE

68
65

56, 57
61
62
66
66
68
69
63
70
62
65
70
63

function names
I/O statements

Fortran IV ..
function names
I/O statements
logical IF

Fortran V compiler
Fortran program

152, 153

75
57
71
61
65
56

59, 79
150
59
77
79
80
80
79
79
80
80

90, 159
55, 56, 79, 80

90, 159
55, 56, 79, 80

43
9

85

Fortran II

*FORTRANdirective
Free format input
FUNCTIONstatement
Function subprograms

and block structure
Functions

basic external
compatibility with Fortran II and Hartran
intrinsic
library
list of
reference to
statement functions

FUNCTIONSstatement

G

G format conversion
GE (see relational operators)
Global variables and labels
GOoption on *RUN
GOTO statements

assigned
computed
unconditional

GT (see relational operators)

H

H format conversion
Half-inch (IBM)magnetic tape
Hartran function names
Hartran logical IF
Hierarchy of operations

arithmetic
logical

Hollerith constants (literals)

I format conversion
Identifiers (see names)
IF statements

arithmetic
compound
logical (Fortran IV)
logical (Hartran)

Imaginary number (see complex constant)
IBM(! inch) magnetic tape
Implicit declarations in block structure
Implicit type declaration
IMPLICITstatement

and block structure
Implied DOloops (see DOimplied loops)
Initialisation of variables (see also CLEARstatement)

by DATAstatement
by Type statements

In line functions (see intrinsic functions)
In line machine code statements
Index

of DO
of implied 00

.. •• II

137
75
92

89
105, 106

89
90
90

90, 159

86, 175
159
89
91
90

69

108, 109
135, 136

41
41
41

6~
49, 183
90, 159

44

28, 29
33, 34

15

70

42
43, 112

43
44

49, 50, 183
108
18
19

116

24
20

131

45
24, 51, 52

Inner blocks
*INPUT directive ..
Input list
Input on paper tape
Input/output conversions (see FORMAT specifications)
Input/output list ..
Input/output records
Input/output statements

formatted
unformatted

Input streams (see also Job Description)
Integer constants
Integer division
INTEGER statement (see also FUNCTION statement)
Interaction of store allocation statements
Internal Code (see Atlas internal Code ..
Internal subprograms (see program blocks)
Intrinsic (built -in) functions

list of

106
142
51
78

51
51

79, 80
55, 56

50
13

29, 31
20

103

90
159

J

JobDescription
Documents
OUTPUTstream
INPUTstream
magnetic tapes
COMPUTINGtime
EXECUTIONtime
STORErequirements

179
179

49, 180
50, 181
50, 182

184
184
185

K

K format conversion 63

L

of source program
of generated object program

65
40
39

99, 100
11, 39

108, 109
144

39
140
175
143
144
137

137, 139
137, 140

137, 138
140

51
51
24

L format conversion
Label assignment statement
Label variables
Labelled COMMON
Labels (statement numbers)

and block structure
*LBENDdirective
LE (see relational operators)
Leading zeros (in labels)
Length of routine
Library subprograms (see also Functions)
Library (private)
*LIBRARYTAPEdirective
Line number
Limits on values of numbers (see constants)
List of identifiers and properties
LIST option on *FORTRAN
Listing

Lists
input list
I/O list
in DATAstatement

Literal constants (see Text constants)
Literals in FORMAT (see H and Primed conversions)
Local labels and variables
Logical constants
Logical expressions
Logical IF statement

Fortran IV type
Hartran type

Logical operators
Logical replacement (assignment) statement
LOGICAL statement (see also FUNCTION statement)
Logical statement function
Looping (see DO statement)
LT (see relational operators)

108, 109
15

32, 33

43, 112
44
33

36
20
91

M

Machine language instructions
Magnetic Tape (see also Job Description)

half-Inch (IBM)
one-inch (Ampex)
manipulation of
notes on use of

Magnitudeof numbers (see constants)
Main program
*MAKELIBRARYTAPEdirective
MAP(of routines), option on *RUN
Masking operations
Mathematical functions (see Functions -list of)
Mixedmode expressions
Modeof expressions

131

49, 50, 183
49, 50

81
82

85
43

135
31

30
30

N

Named COMMON(see labelled COMMON)
Named labels
Names:

of arrays
of functions
of label variables
of subroutines
of variables (scalars)

NE, NG, and NL (see relational operators)
Negative field width (in Format)
Nested DOloops
Nested implied DOloops
Nested subprograms (see Program blocks)
Nesting of Format specifications
Newline character

in data
in source program

Non-executable statements (list of)
Non-numeric Format conversions
Null (omitted) labels
Numeric format conversions

39

17
90, 159

39
94
17

75
46

24, 52, 53

57, 58

78
149

156, 157
61

41, 42, 44
65

o
o format conversion
Object (binary or BAS)cards
Object listings
Oblique (see Slash)

70
145
140

Octal constants (see Boolean Constants)
Octal digits
Operands

arithmetic
logical > •

Operators
arithmetic
logical
relational

Options
on *FORTRAN
on *RUN

OR (see logical operators)
Order of computation

of arithmetic expressions
of logical expressions

Order of statements
Outer blocks
Outer set characters
Output (I/O) lists
Output records
OUTPUTstatement
Output stream (see also Job Description)
Overflows

division (by zero)
exponent (too large)

p

P format specification
Paper tape

characters
for source programs
for data
library subprograms for reading

Parameters
of DO statement
of subprograms

Parentheses
in arithmetic expressions
in FORMATstatement
in logical expressions

PAUSEstatement
PDUMPand DtJMPlibrary subprograms
Pi (11") in column 1 (see Dollar)
Pi (value of)
Precedence of statements
Prime (') conversion
Primed text constant
PRINTstatement
Printed output

carriage control
length of line

Private library
Procedures (see also Subprograms)
PRODUCTION option on *FORTRAN
Program
Program blocks
Program docllmeuts (see Job Description)
Program segme-ts
PUBUC_re.eot

_'1IIDc::k auw::uu:e
PUNCHstal ~

16

27
33

27
33
32

137
135

28, 29
33, 34

155
106

151, 152
51

51, 59
83, 128

49

... 122
122

71

152, 153
149
78
177

45
86

27, 28, 29
57, 58
33, 34

47
176

175
155
63
15
80

..

61
60

143
111

137, 141
85
166

85, 105
98
US
80

Q

Q format specification
Query (7) character
Quotation mark (see prime)

71
78, 150

R

R format specification
Range of a DO statement
Range of subscripts
READ statements

READ (formatted)
READ (unformatted)
READ INPUTTAPE
READTAPE

Reading of FORMATs (see variable FORMAT)
Real constants
REAL statement (see also FUNCTIONstatement)
REAL*8 statement (see DOUBLEPRECISIONstatement)
Records
Reference

71
45
17

79
55
79
55

13
20

51, 59

to functions
to variables

Relational expressions
Relational operators
Relocatable object cards
Replacement statements

arithmetic
logical

RETURN statement
REWINDstatement
*RUNdirective
Run time

89
155
32
32

145, 146

34
36
9S
81

135

efficiency
errors
tracing

165
120

117, 119

s
7-8 punch in column 1
7 -9 punch in column 1
S format specification
Sample program
SAVEPROGRAMinstruction
Scalar identifiers (see Variable names)
Scale factors (in Format)
Scratch tapes (see Common Tapes)
Segments
Sequence (order) of source statements
Shift characters
Shifting functions
Short list

145
146
72

138
142

71

85, 105
155

78, 151
32

in CLEAR statement
in DATAstatement ..
in I/O statements
in OUTPUTstatement

Side effects in functions
Simple I/O lists ..
Slash (/) in FORMATs
SOURCEoption on *FORTRAN
Source Program .•

errors in
example of

37
24

52, 53
84
93
51
59
137

167
138

"z.-- ••••~ •.~......•.... .
listing of
punching of (on cards)
punching of (on paper tape)

Special characters
Specification statements

COMMON

138
11

149
11

155
99
24
18
22
96
98
20

114
79, 80

91

DATA
DIMENSION
EQUIVALENCE
EXTERNAL
PUBLIC
Type statements

Stack
Standard I/O unit assignment
Statement functions
Statement numbers (see labels)
Statements

order of
punching on cards
punching on paper tape

STOPstatement
Storage allocation
Store requirements (see Job Description)
Stream Number (see also Job Description)
Sub-expres sions

arithmetic
logical

Subprograms
SUBROUTINEstatement

and block structure

155
11

149
48
18

49

Subscripts

28, 29
33, 34
85, 86

93
105, 106

17, 28
28
28
28
49
159

form of
meaning if omitted
number of

Symbolic I/O designation
System Functions (list of)

T

T format specification
Tabulate character
Tape errors
TEST mode compilation
Text constants
Text in FORMATS
TEXT statement (see also FUNCTIONstatement)
TRACE PATHstatement ..
TRACE statement
Tracing of variables at run time
Trapping of execution errors

alternative procedure
standard action

Transfer statements (see control statements)
TRUE (see also logical constants)
Tnmcation
"l1llJNCATION statement ••
Type specification

.espticit (see Type statements)
n ,tWit (see also IMPLICITstatement)
tII. ••••D3IlIJeS

TJIe--

74
78, 149

122, 123
12, 141

15
63
20

119
117
117
120
125
120

65
29
29

18
89
20..

...•..-,;,

u
Unconditional GO TO statement
Unformatted I/O statements

READ
WRITE

Unlabelled (blank) COMMON(See COMMONstatement)
UNLOADstatement

41

55
56

82

v
Variables (see also array)

names of
scalar
subscripted

Variable dimensions (see also Dynamic arrays)
Variable FORMAT
Vertical line spacing (see Carriage control)

17
17

17, 28
94
77

w
WRITE statements

WRITE (formatted)
WRITE (unformatted)
WRITE OUTPUTTAPE
WRITE TAPE

80
56
80
56

x
X in column 1
X format specification

12, 141, 150
73

y

Y format specification 74

z
Z format specification
Zero field width (in format)

74
76

Deslgna'dand produced by A. B. Saunders Associates Ltd
Printed in Great Britain by Megaron Press Ltd

