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Foreword

IF the electronic digital computer has not already virtually taken over the

world’s arithmetic it will have done so before long. This remarkable
success story  in the field of applied mathematics-much of it very simple
mathematics, admittedly, such as cost calculations-contrasts strongly
with the machine’s very moderate impact so far on pure mathematics.

Obvious economic considerations account for much of this difference:
no one can be surprised that the need to optimize the design of a nuclear
power reactor or to develop a stores holding and purchasing strategy for a
large factory provides more economic drive than, say, the properties of the
partition function. But this can hardly apply in a university environment,
where the pure mathematicians have as much right to the central comput-

ing service as anyone else. The explanation must be the great difficulty of
the problems; the machine offers great powers of logical processing, of
which arithmetic is only a small and not very interesting part, but it is far
from clear how these can be used in the service of anything that can be

called genuine mathematics.

However, work has in fact been going on in various fields of pure
mathematics ever since computers became available. Professor Douglas
Munn, surveying the scene from the point of view of an algebraist, decided
in 1966 that enough had been done on the application of computers to
abstract algebra to warrant the holding of an international conference,
to assess what had been achieved and to identify promising lines of future
research. A frequent visitor to the Atlas Laboratory, he talked about this
with me and my colleague Dr. Robert Churchhouse, and after very little
discussion we found ourselves agreeing that the time was indeed right for
such a conference, that Oxford would be an admirable location and that
the Atlas Laboratory should organize it. We approached Professor Graham
Higman who immediately and enthusiastically agreed to give his support;
and with equal immediacy and enthusiasm had Professor Coulson’s
permission to hold the conference in Oxford’s beautiful new Mathematics
Institute.

The success of the meeting must be judged from the quality of the papers,
reproduced in this volume. I want to record my gratitude to the Science
Research Council, who allowed me to meet some of the expenses from
Atlas Laboratory funds, and to I.C.T. Limited for generous financial
support: jointly, they made it possible to hold the conference. The staff
of the Mathematics Institute were as helpful and welcoming as anyone

il



viitl Foreword

could ever be, Mr. C. L. Roberts and the staff of the Atlas Laboratory
Administration Group ensured that the mechanics went without a hitch
and the whole of the general organization was carried out with great
efficiency by Miss Synolda Butler. I am most grateful to them all, and to
Pergamon Press for undertaking the publication of the Proceedings: and
finally, to Mr. John Leech for so willingly agreeing to be Editor.

J. HOWLETT



Preface

Dr. Howrert has described the genesis of the Conference; here I need
only describe the compilation of this volume of Proceedings. Speakers at
the Conference were invited to deliver manuscripts at or soon after the
Conference, and this volume is based on these manuscripts, substantially
as received. Most authors prepared their papers without reference to the
papers of other authors. This has the result that their notation is not uni-

form and there are overlaps; no attempt has been made to coordinate
papers in this respect. So each paper is a substantially independent account
of its topics, and is capable of being read without reference to other
papers. Readers may find it an advantage to have different authors’

accounts where these overlap. A disadvantage, however, is that cross-

references between papers in this volume are far from complete; the
reader of a paper may check which other papers in the volume are also
relevant.

The sequence of papers in this volume is based on that of the lectures
at the Conference, with minor changes; the large body of papers on group
theory are placed first, beginning with Dr. Neubiiser’s comprehensive
survey, and subsequent papers are placed in roughly the order of distance
of the subject from group theory. To complete the record of the Conference,
I add that Mr. M. J. T. Guy and Professors D. G. Higman, W. 0. J.
Moser, T. S. Motzkin and J. L. Selfridge also delivered lectures at the
Conference, but did not submit manuscripts for publication; this accounts
for a few allusions to topics absent from this volume. The correspondence
between the subject matter of the other lectures and the present papers is
not always close. Professor Mendelsohn’s first paper is based on points
made in discussion and not on a lecture of his own, while the paper by
Professors Krause and Weston was not presented at the Conference.
A bibliography on applications of computers to problems on algebra was
prepared by Dr. Dénes and distributed at the Conference; this is not
reproduced here as all relevant items have been included by Dr. Neubiiser
in the bibliography to his survey paper.

The editorial policy has been that the subject matter and style of papers
are wholly the responsibility of the authors. Editing has been confined to
points of typography, uniformity of style of references, divisions ofpapers,
etc., and, at the request of certain authors whose native language is not
English, some minor changes of wording. (This is a refined way of saying
that I have done as little as I could get away with.)

ix



X Preface

I am indebted to the authors for their co-operation in producing this
volume, to Dr. Howlett for contributing the Foreword, to the S.R.C.
Atlas Computer Laboratory for a Research Fellowship during the tenure
of which much of the work of editing was done, and to the University of
Glasgow for leave of absence both to attend the Conference and to accept
the Research Fellowship. It is also a pleasure to acknowledge the co-opera-
tion of the publishers, Pergamon Press, and it is through no fault of theirs
that events such as the devaluation of British currency (which necessitated
a change of printers) have conspired to delay the appearance of this volume.

JOHN LEECH



Investigations of groups on computers

J . NEUBUSER

1. Introduction. In this paper a survey is given of methods used in and
results obtained by programmes for the investigation of groups. Although
the bibliographies [De 1] and [Sa 1,2,3] have been used, among other
sources, no claim for completeness can be made for two reasons, that
some publications may have been overlooked, and that the conference
itself has shown once more that there are many activities in this field which
are not (yet) covered by regular publications.

1.1. Papers and programmes have not been included if their main objec-
tive is something different from the study of groups, even if groups play
some role in them. Four particular cases of this kind may be mentioned.

1.1.1. Combinatorial problems dealing with things like generation of
permutations, graphs, orthogonal latin squares, projective planes, block
designs, difference sets, and Hadamard matrices. For most of these topics
surveys are available, e.g. [Ha 1,4; Sw 1],

13.2. Theorem-proving programmes. Most of these have been used to
construct proofs for very elementary group-theoretical theorems. There
seems to be only one [No 1] specifically made to handle group-theoretical
statements.

1.1.3. Programmes for the determination and study of homology and
homotopy groups, where the main interest isin the topological relevance
of the results. Such papers are [Li4; Ma 1, 2;Pil] and part of [Ca 23.

1.1.4. Applications of groups in fields like coding theory [Pe 1] or the
use of a computation in residue class groups for the improvement of a
programme described in [Pa 1].

1.2. Although the distinction is not always quite clear cut, it is practical
for this survey to distinguish between special purpose and general purpose
programmes. In spite of the fact that the first category is more likely to
produce significant contributions to group theory, more space will be
given in this report to the second kind, simply because this is the author’s
own field of work.

2. Special purpose programmes. By the first kind I mean programmes
specially made for the investigation of a particular problem; when this

l



2 J. Neubiiser

is solved, the programme may be put out of use. There are a number of
problems tackled in this way, which we discuss in turn.

2.1. The construction of all groups of a particular kind,

2.1.1. A programme of this kind was first suggested as early as 1951
by M. H. A. Newman [Ne 4] for the investigation of the groups of order
256. P. Hall [Ha 7] had introduced the concept of isoclinism for the classi-
fication and construction of p-groups. Newman pointed out that the num-
ber of cases to be investigated for the determination of all groups of order
256 in a simple-minded use of Hall’s ideas would be far too big for com-
puters then (and would be even now). He gave an estimate to show that
by a probabilistic approach it would be feasible to obtain the great major-
ity of these groups in a reasonable time. It seems, however, that this
suggestion has never been followed.

2.1.2. In this conference C. C. Sims [Si 3] gave an outline of a different
procedure by which in principle each group of prime-power order would
be obtained just once. In this a group G of order p”is constructed as an
extension of the last term @,(G) # (1) of its lower @-series, defined by
D6 =G, D,.,(6) =[G, D(G)] ( g° | g € P(G) ). The non-isomor-
phic groups G with fixed @,(G) = K and G/@,(G) = H are in 1] corre-
spondence with those orbits of H*(H, K) under the joint action of both
automorphism groups A(H) and A(K), for which the extensions are groups
with @,(G) = K. Sims has written a programme along these lines which
determined the two-generator groups of order 32 in a very short time.
According to him extrapolation from this experience would indicate quite
bearable computation times (~ 10 hours) for the determination of most
of the groups of order 128. Special methods are probably necessary for
the case that His elementary abelian of order 32 and K elementary abelian
of order 4.

2.1.3. Also in this conference J. Cannon [Ca 3] reported that R. James
(Sydney) is determining the groups of order p® for arbitrary primes p using
isoclinism. The calculations necessary in this set-up to find all non-iso-
morphic groups in a given isoclinism class were done by a computer for the
first few primes and then generalized.

2.1.4. A listing of all primitive groups of low degrees is presently under-
taken by C. C. Sims [Si 2,4]. Earlier hand calculations went up to degree
20. These groups have been redetermined and the previous results found
correct. The calculations will be extended to higher degrees.

2.2. The Burnside problem. A recent survey of the problem is found in
[Ha 3], to which the reader is referred for definitions used and theoretical
results mentioned here. The finiteness of the Burnside groups B(n, r) of
exponent n on r generators is known for n = 2, 3, 4, 6 and all r, but the
order of B(n, r) is known only for n =2,3,6,all nandn=4r=1,2. In
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1962 M. Hall jr. [Ha 1] outlined a programme by which in particular the
order of B(4,3) could be investigated. The idea was to use a Schreier
technique to find generators and relations for a suitable subgroup of B(4,3)
which could be handled. In 1964 M. Hall jr. and D. E. Knuth [Ha 2] an-
nounced that with a programme applicable to arbitrary nilpotent Burnside
groups some results on B(4, 3) had been obtained, e.g. that the identity
(x, y, 2, w, w, w) = 1 holds modulo the seventh term of the lower central
series of this group. J. Leech [Le 2] has used Todd-Coxeterprogrammes (see
§ 3.1) to obtain and to improve systems of defining relations for B(3, 3) and
B(4,2) and of groups of exponent 4 on three generators all or two of which
are of order 2. An investigation along different lines of the groups B(4, k) is
presently carried out by A. Tritter [Tr 1]. He tries to prove that there is a
bound for the classes of the derived groups of the groups B(4, k), which
would be a consequence of a conjecture of G. Higman [Hi 1]. For exponent
5 only the restricted Burnside problem has been solved. The biggest finite
group B*(5,2) of exponent 5 on two generators was found to be of class at
most 13 and order at most 5% Recently, E. F. Krause and K. Weston
[Kr 3], starting from Kostrikin’s calculations, used a computer to establish
that these bounds are in fact attained.

Some of the programmes described in § 3.1 may also give some informa-
tion on the restricted Burnside problem.

2.3. The search for simple groups. So far systematic searches with com-
puters have established only the non-existence of simple groups of certain
kinds.

2.3.1. In 1957 E. T. Parker and P. J. Nikolai [Pa 2] tried to find analogues
of the Mathieu groups My; and M,,. Their computations showed that for
23<p=4079 the cyclic and the alternating group are the only transitive
permutation groups of degree p =2¢+ 1, p and g primes.

2.3.2. In 1961, when the theorem that a group G of odd order is soluble
had been proved by W. Feit and J. G. Thompson only under the additional
assumption that all Sylow subgroups of G are abelian, a large-scale search
for non-abelian simple groups of odd order was carried out by K. 1. Appel,
M. Hall jr. and J. G. Thompson [Ap 1]. A number of restrictions for the or-
ders of such groups were incorporated in a programme, which sorted about
400 “possible” orders out of all orders up to 108, These were eliminated by
individual hand calculation, so that the non-existence of insoluble groups
of odd order = 108 was established.

2.3.3. More recently K. I. Appel and E. T. Parker [Ap 2] have made a
computer search for insoluble groups of degrees p = 4¢ + 1, p and ¢ primes,
and have shown that there are no such groups of degrees 29, 53, 149, 173,
269,293 or 317 other than the alternating groups.

2.3.4. A systematic search is being currently made by M. Hall jr. [Ha 5]
for simple groups of orders < 108,
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2.3.5. Added in proof, July 1968. G. Higman and J. K. S. McKay [Hi 2]
have used Todd-Coxeter and character-table programmes (see §§ 3.1,3.4.5
and 3.4.9) to prove the existence of a certain simple group described by
Z. Janko [Ja 2].

2.4. Characters and representations of symmetric groups. A detailed de-
scription of the representation theory of the symmetric groups is given in
[Ro 1]. As the methods for the computation of characters of symmetric
groups are essentially combinatorial, they have been programmed rather
early. The character tables of the symmetric groups of degree 15 and 16
were determined by R. L. Bivins et al. [Bi 1]. S. Comét wrote a series of
papers on programmes for the determination of characters of the symme-
tric groups, in which in particular he developed techniques specially adapted
to binary computers [Co 1,2,3,4]. He obtained lists of all absolutely
irreducible characters for the symmetric groups of degree = 20 [Co J].
Other programmes have been developed by J. K. S. McKay [Mc 1] and
R. E. Ingram, Dublin (unpublished).

Tables of irreducible unitary representations of symmetric groups (for
applications in physics) have been computed by S. Katsura [Ka 1,2].

2.5. The Hp-problem. Let the prime p divide the order of a group G and
let Hp(G) be the subgroup of G generated by all elements of G not of order
p. D. R. Hughes [Hu 1] has raised the question if Hp(G) is always equal to
(1 ) equal to G, or of index p in G. The question has been answered in the
affirmative for p = 2 and p = 3, and for arbitrary p if G is finite and not a
p-group [Hu 2] or a finite p-group of class <p [Za 1}. G. E. Wall [Wa 2]
showed that for a p-group the question can be investigated by a computa-
tion in a Lie-algebra over GF(p). By a laborious hand calculation he showed
that the answer is negative forp-groups withp = 5. At present a programme
is being developed by J. Cannon [Ca 3] for checking these calculations and
extending them to greater p. Added in proof, July 1968 : The programme is
now working and has confirmed the result for p = 5 and extended it to
p =7 (private communication).

2.6. Miscellaneous  problems.

2.6.1. H. Brown (unpublished) has written a programme, following a
method of H. Zassenhaus [Za 2], for the derivation of all space groups (in
R,) from given arithmetical (integral) crystal classes. The space groups are
classified up to isomorphism by this programme. By a similar programme
of G. Fast and T. W. Janssen [Fa 1] the space groups of R, are classified
only up to equivalence as extensions of their translation subgroup by their
arithmetical crystal class.

. . ab\ .
2.6.2. Let I'o(n) be the group of all 2 X 2 integral matrices A = (c d) with
det A =1 and ¢ = 0 (mod n) and I'*(n) the group generated by I'e(n) and
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(0 -13, H. Fell, M. Newman and E. Ordman [Fe 1] have tabulated the
n

genera of the Riemann surfaces belonging to these groups for » < 1000
using classical formulae in the programme.

2.6.3. S. L. Altmann and C. J. Bradley [Al 1, 2] have tabulated data for
the irreducible representations of the rotation group of integral weight
(see Gel’fand and Sapiro [Ge 1]) up to weight 20.

2.6.4. Left normed commutators [a, nb] are defined recursively by
[a, Ob] = a, [a, (i+ I)b] = [[a, ib], b]. For a finite group G let m(G) = 0
be the smallest integer such that for all pairs a, & ¢ G there is an integer n
for which [a, nb] = [a, (n+m(G))b]. J. M. Campbell and W. J. Lamberth
[Ca 2] describe a programme for the determination of m(G) for finite
groups G given as permutation groups. For the alternating group Ag of
degree 6, for example, they obtained m(4e) = 120.

2.6.5. Let Z, be the ring of integers mod » and let v and #’ be permuta-
tions of the elements of Z, with z(0) = n’(0) = 0. Let @ and =’ be called
translation equivalent if there exists an element d ¢ Z, such that =(i+ 1)
() = a'(i+ 1+ d) —a'(i+ d) for all i ¢ Z,. A group of permutations of the
elements of Z, is called translation invariant by E. S. Selmer [Se 2] if it
consists of full equivalence classes under the defined translation equivalence.
He has proved some permutation groups to be translation invariant and is
presently also investigating others for this property with a computer.

2.6.6. M. E. White [Wh 1] announced a study of the possibility of present-
ing finite groups as groups of pairs of integers for which a suitable multipli-
cation of a certain restricted kind is defined.

2.6.7. Programmes for the application of crystallographic groups to
computations in quantum mechanics have been developed by S. Flodmark
(A 1,2].

3. General purpose programmes. The’programmes to be mentioned here
are not primarily made to answer a particular question but rather as a tool
that can be used again and again. Some are based on algorithms previously
designed for hand calculation, some are built up by using combinations of
well-known theorems.

3.1. Todd-Coxeter and Schreier methods. The Todd-Coxeter algorithm
[To 1; Co 6] enumerates the cosets of a subgroup U of finite index in a
group G, when G is given by finitely many abstract generators and defining
relations and U by finitely many generators expressed as words in the gen-
erators of G. This algorithm seems to have been first programmed in 1953
by C. B. Haselgrove (unpublished). Since then many other programmes for
this algorithm have been developed which sometimes differ in their stra-
tegy for choosing the next coset to be dealt with. J. Leech [Le 2] gave a very
clear discussion of the different approaches, which is revised for these
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proceedings [Le 4]. So it is sufficient here to give references (partially copied
from [Le 2]). A number of papers give details of programmes [Ba 1; El 1;
Fe 2,3,4; Gu 1; Ma 3; Tr 2,3]. Applications are found in [Ca 1;Le 1,3;
Me 3] and some of the papers mentioned before and hereafter.

The Todd-Coxeter procedure yields not only the number of cosets of
Uin G but also a permutation representation for the generators of G on the
cosets of U. The kernel of this representation of G is K = n g ! Ug Hence

g€G
one can obtain G/K by a programme which generates a permutation group

from given permutations or at least finds its order.

An interesting instance, where an observed periodicity of the output of a
Todd-Coxeter programme led to a proof of the infiniteness of the group in
question, is noted by C. C. Sims [Si 1}.

More recently the Todd-Coxeter technique has been combined with the
Schreier technique, see e.g. [Ma 4], to obtain generators for a subgroup U
from generators of the whole group G and coset representatives of the cosets
of U in G. The algorithms obtained solve the following problem: Let a

group G be given by generators g;, . . ., g; and relations ry(gy, ..., g) =
= ... =r(¢g1,.. ., &) = 1 and let a subgroup U of finite index in G be
generated by words u;, . . ., #, in the g, The Todd-Coxeter procedure

yields coset representatives ¢y, . . ., ¢ of the cosets of U in G. For an ele-
ment w, given as a word in the g;, one has to find the expression w = w*c;,
where ¢; is one of the coset representatives and w* is a word in the #;. Some
different methods for doing this have been discussed [Be 1; appendices to
Le 1,3; Le 4; Me 1,2,3; Mo 1,2].

It would be most useful if these techniques could be extended further.
Given generators and relations for a group G and coset representatives for
the cosets of a subgroup U in G, the Schreier procedure gives generators
and defining relations for U (see [Ma 4; Me 4]). However, their numbers
increase with the index of I/ in G. If one had a method to reduce these num-
bers effectively in cases where this is theoretically possible, the Todd-
Coxeter procedure could be applied again to the subgroup U and so on.
No programme of this kind seems to exist yet.

Another application of the Todd-Coxeter technique was outlined by
C. C. Sims [Si 3]. By systematically enumerating the words that could gen-
erate a subgroup and performing Todd-Coxeter computations for them, he
finds all subgroups of index less than a prescribed bound in a finitely pres-
ented group.

3.2. Generdtion of groups, lattice of subgroyps. A number of programmes
have been developed to compute structural details for a finite group given
by a set of generators. In all these programmes problems arise at three
levels.

3.2.1. First, algorithms for the handling, i.e. comparison, multiplication,
inversion, etc., of the group elements must be defined. These are rather
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obvious if the elements (and hence in particular the generators given as
input to the programme) are permutations, matrices over some ring, affine
transformations, etc. If, however, generators and defining relations are
given, the insolubility of the word problem does not allow general hand-
ling of words in the generators unless the relations are of a restricted type.

If this is not the case, the only way out is to try to get a faithful permutation
representation of the group by the Todd-Coxeter procedure. If the genera-
tors are taken from the factors of a subnormal series of a soluble group, the

relations can be brought into a simple form [Ju 1]. Then by a kind of com-

piler the computer itself constructs optimal programmes for the handling
of normal forms from these relations. Programmes of this kind are de-

scribed in [Li 1, 2; Jii 1; Ne 2].

3.2.2. Next, algorithms for the generation of all elements of a finite
group G from its generators &1, . . ., 8 are needed. If the store of the
machine is big enough to hold all elements of G, the following simple
method [Ne 1; We 1] can be used. Beginning with Uy = (I), form
Uiy1 = (Ui, gi+1) by the following procedure, given in slightly simpli-
fied form here. Form U} =U; U Ujg;,,; beginning with 1 ¢ U;, multiply all
elements in U} from the left by g;,; until an element g*¢ U} is obtained.
Then replace U} by U? = U} | Ug* and repeat the procedure. When left-
multiplication of an U withg;,, yields only elements in U;, we have found
( U;, gi11). The condition, to keep all elements in a (fast-access) store, is a
serious restriction. J. K. S. McKay [McC 2] mentions a variation of the
method in which only the elements u of a subgroup U and coset represen-
tatives ¢ of I/ in G are stored and all elements are expressed (uniquely) as
products UC. This procedure saves store, but at the cost of computing time
for the regeneration of elements by multiplication. In general no essentially
better method seems to be known.

For permutation groups, however, a more effective and store-saving
method exists [Si 3]. Let G be a group of permutations of the integers
1, ..., nand let G; be the stabilizer of 1,2, ..., i, Gy = G. Then coset
representatives are determined for all steps G;, G;.,. From the cycle-decom-
position of the generators of G all images of 1 under G and hence coset
representatives of G; in G are found. By the Schreier technique generators
of Gy can now be computed and the same process repeated for Gi. The prob-
lem is, to keep the number of generators small for all steps. This is done
by working at all steps simultaneously and reducing the number of genera-
tors, obtained by the Schreier process for a subgroup U, by using the coset
representatives of the subgroups of U which are already known at the time.

This method has been programmed by C. C. Sims [Si 3], and in similar
form by P. Swinnerton-Dyer (unpublished) in helping with M. Hall’s
computation [Ha 5] of generating permutations for a simple group of Z
Janko [Ja 2]; another such programme is presently being worked out at

Kiel. Sims’ programme determined a permutation group of order about
CPA 2
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5 X 10% in a very small time; he estimates that it can find the order of any
permutation group of degree = 200 with a “small” number of generators.

3.2.3. When all elements of a finite group have been found, the next
problem is to investigate its subgroups and their properties. A number of
programmes have been developed for the determination of the lattice of
subgroups together with conjugacy relations between the subgroups. W. D.
Maurer [He 1; Ma 5, 6,7, 8, 9], and apparently similarly G. P. Spielman
[Sp 1], have put their main interest in defining a simple language in which
the user can give orders or ask questions to be checked against a file of
examples. The programmes are mainly for demonstration, so the methods
used are rather straightforward and hardly powerful enough to handle
more complicated examples efficiently.

A more sophisticated combinatorial approach has been used by L. Ger-
hards and W. Lindenberg [Ge 3; Li 3]. Basically their programme works as
follows : A subgroup U of a finite group G is uniquely determined by the set
of cyclic subgroups of prime power order contained in [/, Hence [ can be
described by the characteristic function ¢y, defined on the set § of all cyclic
subgroups of prime power order in G, which is equal to 1 for the cyclic sub-
groups contained in U and equal to O for all others. Any characteristic
function on S defines a generating system for some subgroup, hence all char-
acteristic functions are considered in lexicographical order. Once a sub-
group has been generated from a characteristic function, by a number of
combinatorial tricks based on simple group theoretic arguments many other
characteristic functions can be eliminated from being examined, as they
define generating systems of subgroups already known.

Another mainly combinatorial method has been outlined by C. C. Sims
[Si 3]. The elements of G are ordered in a list L: 1= gy, g2, . . ., 8| - Then
for each subgroup U a canonical system of generators x;, . . . , x, is defined
by the requirement that x; is the first element of U-(1) with respect to
the order in L, x;,, is the first element of U—{xy, xs, . . . , x;) with
respect to this order. The task of finding all subgroups is thus equivalent to
that of finding all canonical systems. If {xl, C e xk} is such a system, then
SO is {xl, e xk_l}. Hence, if all ordered systems of elements are ordered
first by their length then, lexicographically, a system {xl, L xk} can be
discarded in the search for canonical systems if either {xl, R x,‘_l} is
not canonical or if in calculating the subgroup it generates an element not
in {x1,....xc_1) is obtained that is earlier in L than x;. This method
has not been programmed yet, but it seems likely that it is rather efficient,
in particular if there is some natural order of the elements which can be
decided upon without searching in lists.

Added in proof, July 1968. Yet another combinatorial programme is at
present being developed by W. Niegel at the Technische Hochschule,
Miinchen.
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A method involving more group theory has been used by J. Neubiiser
and V. Felsch [Fe 5,6; Ne 1,2] and in similar form by J. Cannon [Ca 3] and
by D. R. Hayes and L. C. Biedenharn (unpublished). Subgroups are again
represented by their characteristic functions on the set of all cyclic sub-
groups of prime power order (see above). Let the kth layer& of the lattice of
subgroups consist of all subgroups whose order is the product of k primes.
A subgroup U ¢ X different from its derived group U’ is obtained as a
product of a group V€Z;_; by a cyclic subgroup C & Ng( V) of prime power
order. If the subgroups are constructed layerwise, starting from& one can
ensure by simple calculation with characteristic functions (which can be
handled nicely in a binary computer) that each subgroup is constructed
only once. Perfect subgroups are taken care of by special subroutines for
each of the very few isomorphism types of simple groups of composite
order that can occur in the range of orders allowed by storage and speed
restrictions of the computer presently used. These subroutines can be
extended for bigger machines, as the list of all simple groups is known at
least up to order 20,000. This means that the programme would work at
least up to groups of order 40,000, which at present is definitely out of reach
for any programme of the kinds discussed here that determines the full
lattice of subgroups.

Although more combinatorial programmes have the advantage that
there is no theoretical restriction for their applicability, comparison has
shown the programmes described last to be more efficient than the existing
combinatorial ones. With the present implementation groups up to order
1092 and with up to 2400 subgroups have been handled. Its range will be
increased in a new implementation (in the final debugging state Oct. 1967)
which on a bigger computer uses a 512 K backing store.

Added in proof, July 1968. This programme now works, and has pro-
duced the lattices of subgroups of groups including the alternating group
Ay (order 2520, with 3779 subgroups) and the largest of Dade’s groups
[Da 1 (order 1152, with 519 1 subgroups).

A special programme [Fe 9] for drawing a diagram of the lattice has
been connected with the system of programmes in Kiel [Fe 5,6].

3.2.4. For many problems, such as the determination of crystal classes
[Bii 1, 2], it is sufficient to determine only one representative from each
class of conjugate subgroups in G. A certain variation of the method de-
scribed in [Fe 5,6; Ne 1] is presently being programmed in Kiel. It will
save a large amount of store at a (hopefully slight) cost of time. It seems
that the more combinatorial algorithms cannot very easily be adapted to
this purpose.

3.2.5. Together with the lattice of subgroups, some of these programmes
[Fe 5,6; Ge 3; Li 3] compute properties of subgroups, etc. It is listed, e.g.
by the Kiel programme [Fe 5,6], whether a subgroup U is cyclic, abelian,
20
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nilpotent, supersoluble, soluble or perfect and whether it is normal, sub-
normal or self-normalizing in G. The order, normalizer, centralizer and
classes of conjugate elements of U are found. Also certain characteristic

subgroups such as the upper and lower central series, commutator series
Frattini and Fitting subgroups are determined.

3.2.6. Two sets of programmes developed by R. Yates [Ya 1] and R.
Segovia and H. V. McIntosh [Se 1] determine the lattice of subgroups
and some of these structural details for groups of special types.

3.2.7. Some more extensive applications of such programmes have been
made. R. Biilow and J. Neubtiser [Bii 1, 2] determined all integral classes of
4X4 integral matrix groups by analysing the 9 classes of maximal 4 X 4
integral groups, found by E. C. Dade [Da 1]. A catalogue of the lattices of
subgroups, etc., of the groups of order =< 100, omitting orders 64 and 96,
has been compiled by J. Neubtiser [Ne 3] using the Kiel programmes.

3.3. Automorphism groups. W. D. Maurer’s system of programmes
[Ma 8] also contains a programme which checks for the existence of an
isomorphism between two given groups by constructing partial isomor-
phisms in a tree-of-trial-and-error procedure. Programmes for detecting
isomorphisms of graphs [Be 2; Su 1] may also be used in such a way.

The only programme known to me [Fe 5,7, §] for the determination of
the automorphism group A(G) of a finite group G uses the structural data
obtained by the subgroup lattice programme [Fe 5,6]. The basic idea is that
an automorphism induces a lattice automorphism on the lattice of sub-
groups which preserves order, conjugacy, centralizers, etc. If a subgroup U
is chosen it is usually rather easy by visual inspection of a diagram repre-
senting the lattice of subgroups to find all candidates for images of U under
automorphisms of G. This vague idea has been made precise by introducing
and studying certain equivalence relations on the set of all subgroups which
are then used in the construction of A(G).

For a soluble group which is not of prime power order L. Gerhards
[Ge 2] gives an outline of a programme based on P. Hall’s results [Ha $§]
about Sylow systems. In this programme (which is not yet implemented)
the automorphism group of G will be constructed from “extensible” auto-
morphisms of the Sylow subgroups in a Sylow system and inner automor-
phisms.

34. Characters and representations.

3.4.1. There are a number of programmes for the determination of the
absolutely irreducible characters of a finite group G. Most of these start
from the class multiplication coefficients and lead to some kind of numer-
ical computation. For the theoretical background to this procedure see e.g.
[Cu 1I

LetCl, . . .. C, be the classes of conjugate elements in G, Cy = {1}, 4;
the number of elements in C;, 4%, . . . , y" the absolutely irreducible charac-
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ters, d; the dimension of 2, and x{ the value of 4/ for an element of C;. The
class multiplication coefficients are defined by

CiCj = z’: cl'jkck¢

k=1
h;
d,
,1=I=r, belonging to the sth character satisfy the r? equa-

r
Defining wi = — 45 one has wiwj = ¥ cyw;. Henceforeachs, l=s=r,
k=1

the r values wj
tions

Z (C,’jk—- (Sika)xk =0fori=jj=r, (*)
k=1
Considering for each jo, 1 = jo =< r, in turn the r equations obtained by fix-
ing j = jo, one sees that the vector w*= (wj, . . . , w;) is an eigenvector of
the matrix (cy) belonging to the eigenvalue W}, and further that these
vectors w', 1 = § = r, are (up to factors) the only common eigenvectors of all
these matrices (c;u), 1 < jo <.
3.4.2. [Cu 1]: If for a certain jo the matrix (c;,,) has r different eigen-
values, the eigenvector spaces are one-dimensional and hence yield uniquely
(up to scalar multiples) the vectors w*, ] = s =< r. These factors are deter-

h
mined from wj = -—lxsl = 1. From the orthogonality relations of the charac-
ters one has "

o owinl
DY |G-
From this d1, . . . , d, are found and then the characters. As there are simple
examples in which none of the matrices (cjx) has r distinct eigenvalues,
this method is not always applicable.

Essentially this method is applied for all matrices (¢;y) in a programme
by S. Flodmark and E. Blokker [F13] to obtain irreducible characters. These
are then used to reduce the regular representation into representations
Ei, ...,E,ofdegree d}, ... . d? respectively. E; contains the d; copies of the
jth absolutely irreducible representation that are contained in the regular
representation. For further reduction of the E; into irreducible representa-
tions, according to a private communication of S. Flodmark, a “numerical
iteration procedure” is used. The author regrets that he cannot supply

details about this, as he heard about the programme only when this article
had already gone to press.

3.4.3. For hand computation W. Burnside [Bu 1] gives the following
method: Multiplying the equations (*) with a fixed j by an indeterminate J;
and summing over all j yields

r

r r
b (E Ciiyi— O Y. x,-y,-) x = 0.
f=1 =t

k=1
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r
For 1 <5 <r, w' is an eigenvector of (,Z c,.jky]) belonging to the eigen-
i~

v

value ii.,” = wiy;. These eigenvalues A% are r different solutions, and

J——-
hence are all the solutions, of the characteristic equation

det (Z ci,-ky,-—é,-kl) = 0.

If one can factor this as a polynomial in A with coefficients from the ring of
polynomials in the indeterminates yi, . . ., y,, one has found the w} and
hence the characters.

3.44.J. K. S. McKay [Mc 2, 3] in his programme replaces the indeter-
minates y; by random numbers g, of uniform distribution in [0, 1] and pro-

ceeds for the matrix (cj) = ( Y cya; s described in § 3.4.2 for a single
j=1

(¢). The set of r-tuples (ay,. . . , a@,) for which (c},) has multiple eigen-
values is of measure zero in the hypercube of all r-tuples, but numerical
difficulties can occur if two eigenvalues are close together. Restrictions on
the programme are given by the number of classes in G rather than by the
order of G, as long as the ¢y can be calculated. McKay has been able
[Mc 3] to recalculate the character-table of Z. Janko’s first simple group
[Ja 1] from a matrix representation of it.

3.4.5. One can also use the property that the w’s are the only common
eigenvectors of the matrices (cyx), 1 <j, =< Kk, in the following way. First the
eigenvector spaces of (c;;) are determined. After n- 1 steps let V4, ..., ¥V,
be the subspaces of common eigenvectors of the matrices (¢y), - - - 5 (Cimg)-
Then each V; of dimension = 2 is mapped by (¢; ,qx— OAf™?), where
A7** runs through all eigenvalues of (c;,,,,), and thus split into a direct
sum of subspaces of common eigenvectors of (ci5r), - - -+ » (Ciny1x)-

In the programme of J. D. Dixon [Di 1] this procedure is further simpli-
fied and the calculation of eigenvalues is avoided in the following way. Let e
be the exponent of G, ¢ a fixed primitive eth root of unity, and p a prime such
that e[p— 1. Then there is an integer z such that z has order e modulo p.
The mapping @ : f(¢) ~f(z), where f is any polynomial with integral coef-
ficients, is a ring homomorphism of Z(e) onto the prime field Z,, which
can be used to translate the whole problem of finding common -eigenvectors
into the corresponding one over Z,. This can be solved much more easily.
By choosing p appropriately one can ensure that the characters in the com-
plex field can be determined from the solutions found in Z,.

3.4.6. D. R. Hayes [Ha 9] has proposed to solve (*) by constructing
successively partial solutions in a kind of tree-of-trial-and-error procedure.

The method described by him has not yet been programmed.
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3.4.7. A rather different approach has been used by C. Brott and J.
Neubiiser [Br 1,2]. In their programme all monomial absolutely irreducible
representations are found as induced representations of one-dimensional
representations of certain subgroups and the corresponding characters as
induced characters. For a big class of finite groups, including all p-groups,
all absolutely irreducible representations are monomial; if this is not the
case for a group G the remaining characters are found by one of the methods
described above, taking advantage however of the characters already
known.

For groups of order 2?, another programme to find the absolutely
irreducible representations by the process of induction has been written by
P. G. Ruud and E. R. Keown [Ke 1; Ru 1,2].

Added in proof, July 1968, According to the summary printed in Mathe-
matical Reviews, N. N. Alzenberg and A. A. LetiCevskil [Ai 1] “have
developed algorithms for computing matrix representations and characters
of an interesting class of finite groups”.

3.4.8. All these programmes require that the group is completely known
in some detail. However in many hand computations, e.g. [Fr 1; Ja 1, 2],
character tables are found from rather poor information about the group,
in fact the character table is used as a step in establishing the existence of
a group with certain properties. It seems to be very worth while to build up
a programme, possibly for on-line use and man-machine interaction from a

remote console, which would incorporate the routine computations used in
such work.

3.4.9. Addedinproof, July 1968. In their proof of the existence of Janko’s
group of order 50 232 960, G. Higman and J. K. S. McKay [Hi 2] use some
programmes which find rational and permutation characters from a given
character table.

35. Miscellaneous  programmes.

3.5.1. In [Ha 6] P. Hall introduced the so-called “commutator collect-
ing process” for the study of an expansion

(gh)" = g"h"[g, h]7®. . .

of the nth power of a product of two group elements into a product of cer-
tain commutators. He showed in particular that the functions @/n) are
polynomials in n of degree not exceeding the weight of the commutator
whose exponent they are. Hall’s formula has been the object of a few pro-

grammes. A very straightforward simulation of the collection process was

used by H. Felsch [Fe 2] to obtain the g«n) for the first few i. J. M. Camp-
bell and W. J. Lamberth [Ca 2] have more recently written a more elabo-
rate programme for the same purpose as a tool for the investigation of free
nilpotent groups of finite exponent. E. F. Krause [Kr 1,2] has used some
theoretical improvement of the collecting process to study groups of expo-
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nent 8. Together with K. Weston [Kr. 3,4] he studied a similar process in
Lie rings and applied a programme for it in the study of Burnside groups of
exponent 5. D. W. Walkup [Wa 1] announces that he has used a computer
(in a way not further described) to show that a certain commutator iden-

tity is best possible.

3.5.2. H. J. Bernstein, 0. Moller and E. Strasser Rapaport [Be 3]
describe a programme for finding factorizations of finite groups.

3.5.3. D. A. Smith [Sm 1] gives an algorithm for the determination of a
basis of a finitely generated abelian group.

4. Acknowledgements. The author wishes to express his indebtedness to
Mr. C. Brott, Mr. V. Biilow, Mr. V. Felsch and Mr. J. K. S. McKay for
help in compiling and preparing the material for this article and to the
editor of these proceedings who patiently waited for its completion.
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Coset enumeration

JouN LEECH

1. Introduction. In 1936 Todd and Coxeter gave a method (7], also
described in [1], ch. 2) for establishing the order of a finite group defined
by a set of relations satisfied by its generators. They enumerate systematic-
ally the cosets of a suitable subgroup whose order is evident from the defin-
ing relations for the whole group. (To be precise, what the method does
is to establish the index, when finite, of a subgroup of a finitely presented
group. The finiteness of the whole group is not necessary for the success of
the method.) They describe the method as being ‘““purely mechanical”, and
since that date the advent of electronic computers has led a number of
people to programme the method for automatic execution. I have given an
account [2] of such of this work as was known to me in 1962.

The present account is based in part on my former paper [2], but does
not include the historical details there given. It includes also a discussion of
the necessity for the termination of the process, and an application of it to
the following word problem. If a coset enumeration shows that certain
elements generate a subgroup of finite index in a finitely presented group,
and that an element, given as a word in the generators of the group, is an
element of the subgroup, it is required to express it as a word in the genera-
tors of the subgroup.

2. Hand calculation. The basic procedure when enumerating cosets by
hand is to set out each relation in extenso at the head of a table. The lines of
the table are filled with coset numbers so that the numbers fall in columns
between the letters of the defining relation, the cosets in adjacent columns
being related by the generator at the head of the space between the columns.
If (as I assume hereafter) each relation equates a word in the generators of
the group to the identity, then the first and last columns of the table for
each relation will be identical. It is convenient to keep also a multiplication
table showing the effect on each coset of each generator, and also of the
inverse of each generator which is not involutory, as these are determined.

Initially entries are made so as to define the subgroup which is chosen as
coset 1. As the work progresses, more cosets are defined and entered in the
tables, and whenever a line of a relation table is completed, further entries
are made in the multiplication and other tables. The enumeration is com-
plete when the tables are full, leaving no space for the definition of further
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cosets, and exhibiting every coset in every significantly different position
in each relation table. A worked example is given is § 11 below.

3. Coincidences. It may be found in the course of the work that two
differently numbered cosets are in fact the same; this is commonly called a
coincidence of the cosets. In such an event the greater of the numbers is
replaced throughout by the smaller, and any consequent coincidences
between other cosets are then dealt with similarly. If the tables are still
incomplete after this, the enumeration continues as before. In hand work
this replacement is inconvenient, and, with practice, skill is gained at defin-
ing cosets in such an order that coincidences are infrequent, and many enu-
merations can be carried out without the occurrence of coincidences. But
there are many examples where coincidences are unavoidable. Thus if the
defining relations are inconsistent, then the group consists of the identity
element only, and any coset enumeration will reduce to only one coset.
Usually it will have been necessary to define several cosets before the work-
ing shows that these are not distinct. The following two examples are of a
non-trivial group (the simple group LF (2, 7), Klein’s group of order 168).
Attempts to enumerate the 24 cosets of the subgroup generated by B in this
group as defined by the relations

B? = (AB)? = (4 ~1B)* = (A2B2)* = E
or B = (AB)? = (A 1By = (4B = E

will result in the definition of many more than 24 cosets before the working
shows that these are not all distinct.

4. Computer implementation. It is extremely inconvenient on a computer
to store the incomplete lines of working in the relation tables and to locate
places for insertion of new entries. It is much simpler to recompute the
whole of a line in which a new entry is to be placed. In practice, therefore,
the main working table stored in the machine is the coset multiplication
table. Each line of the relation tables is then constructed as required from
the entries in the multiplication table. It is in the nature of the working that
access to this tableisrandom and unpredictable, and it should be held in the
immediately accessible part of the store. The number of cosets definable is
then limited by the amount of such storage available, and if this limit is
likely to be approached, the following steps should be taken to economize
in its use.

First, as in hand working, no column should be used for the inverse of an
involutory generator. A convenient implementation of this is to number the
columns and to include with the data a short list showing which column is
inverse to which; this will list the column for an involutory generator as
being the column for its inverse. Whenever reference to the inverse of a
generator is made, it is made through this list. No other part of the pro-
gramme has then to take account of whether a generator is involutory, and
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problems in which none, some or all of the generators are involutory are
handled uniformly.

Next, in computers with a fixed word length, it may be desirable to pack
the multiplication table entries with several in each word, so that the whole
of a line of the multiplication table may occupy only one or two words. If
the word length is variable, a suitably short length can probably be chosen
which will obviate further packing. In the author’s experience, packing and
unpacking do not add seriously to running times, and he has found that
limitation on immediately accessible storage space has always been more
important than running time.

The relations defining the group are conveniently stored as lists of inte-
gers, each of which denotes the column of the multiplication table corre-
sponding to the generator or its inverse appearing at the corresponding
point in the relation, suitably terminated (by a zero, perhaps) to indicate
the end of the relation, with a count or other indication of whether it is the
last relation. If storage space is extremely limited, it may be desirable to
pack the relations with several letters in each computer word, but this is
less likely to be important than packing the multiplication table.

Programmes for computer implementation of coset enumeration differ
mainly in the choice of algorithm for determining the sequence in which new
cosets are defined. It is not possible to implement the human judgement
that can be applied to conduct enumerations without coincidences, as this
often depends on examining the state of the relation tables, which the
computer does not store. Most programmes follow, more or less closely,
one of the two algorithms described in the following sections. The natural
order for describing these is the reverse of the historical order adopted in
[2], so the present “first and second algorithms” are the “second and first
methods” of [2] respectively.

5. First algorithm. This follows rather closely the hand method as
described in § 2. We examine each entry in the multiplication table, in the
order in which they are made, in the following way. Suppose it has been
found, by definition or deduction, that aS; = b, where a and b are coset
numbers and S; is a generator. We have to examine each relation involving
S; or its inverse, for each significantly different occurrence of either, to find
out whether insertion of aS; = b or bS;' = a at that point would com-
plete a line of the relation table.

Suppose the relation is Ry R»...R, = E, with R; = §;. Working in the
backward direction, we extract the entries aR;%, aR;4R7%, ..., con-
tinuing until either an undefined coset is sought (i.e. a blank entry is found
in the multiplication table) or the beginning of the relation is reached. In the
latter event we continue by extracting aR;:Y RZ%...R{ R Y, aR7ARZS ...
R{AR;IRY,, ..., continuing until either an undefined coset is sought or
the entry aR7AR7L...R°'R;'R;1,...R;}} is reached. This should
be b; if it is not, a coincidence has been found. If an undefined coset has
CPA 3
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been reached, we make a similar examination in the forward direction,
extracting the entries bR;.;, bR Riys, ..., DR 1Riys.. . RRy, ...
until either an undefined coset is sought or the backward working is met.
There are three possibilities. The forward and backward working may fail
to meet, and no information can be deduced at this stage. Or they may just
meet, so that the final cosets reached in the forward and backward working
are related by a generator, and a new entry is made in the multiplication
table. Or they may overlap, in which case different entries have been found
for the same place in the relation table, and a coincidence has been found.
(In this last case the coset numbers cannot have been the same in the two
directions, otherwise the backward working would have completed a full
cycle and no forward working would have been done.)

As new entries are made in the multiplication table, they are also placed
in a list of unworked table entries. When the current entry has been exam-
ined in all significantly different positions in all relation tables as above, it is
removed from the list and the next entry is examined similarly. When the
list is empty, the multiplication table is examined. If this is complete, then
the enumeration is finished, and the result is available. If not, then there are
some blank entries in the multiplication table, and a new coset is defined
by making an entry in one of these blanks and creating a new line of the
table with anentry in the column inverse to thatin which the blank was filled.

In hand calculation the choice of which blank to fill at each stage is a
matter for human judgement; usually we fill a blank which leads to comple-
tion of one or more lines of relation tables if possible. On a computer, for a
general-purpose programme, we have to adopt a simpler rule, such as
always defining a new coset to fill the earliest blank in the multiplication
table. For this reason we except to encounter coincidences more frequently
than in hand work. Since coincidences are sometimes unavoidable, any
programme should be able to deal with them, and it is no great disadvan-
tage that it has to do so more often than in hand work.

6. Second algorithm. This is less similar to hand calculation than the
first algorithm, and was devised to simplify the programme as much as
possible. It was the first to be programmed, and this was for machines with
very limited storage space, so that it was of importance to make the pro-
grammes as short as possible in order to maximize the space available for the
multiplication table.

We construct the lines of the relation tabies in a systematic order by tak-
ing each coset in turn and beginning a line of each relation table with it. We
extract the entries aR;, aR1R,, . .. successively, and if any of these is unde-
fined, we define new cosets to complete the whole line of the table. The last
entry in the line should be the same as the first; if it is not, as will always be
the case when new cosets have been defined, then there is a coincidence
between these cosets, and the programme deals with this and any conse-
quent coincidences before continuing.
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The programme for this algorithm is simpler than for the first algo-
rithm as it has only to work through the relations in the forward direction,
and there is no division into cases corresponding to that in the first algo-
rithm where the workings may fail to meet, just meet or overlap. The co-
incidence procedure handles these cases uniformly. However, coincidences
are much more frequent with this algorithm, occurring whenever new
cosets are defined, which results in uneconomic use of space for the mul-
tiplication table. This is not only the space used for cosets defined to com-
plete a line and eliminated at once by coincidence. Those surviving are defin-
ed in an inefficient order, which may result in the definition of many more
of them. For example, in enumerations of the 448 cosets of the octahedral
subgroup {42, A71B} in the group of order 10752 defined by the relations

A® = B7 = (AB? = (4~1B)* = E,

a programme using the first algorithm had a maximum of about 1300 cosets
defined at one time, while one using the second algorithm had 2176 cosets
defined at one time. The presentations of Klein’s group given in § 3 would
probably give more disparate figures, but these are not available. However,
there is some reason to believe that examples of this kind are of infrequent
occurrence in practice. (They may be recommended for use in programme
checking.)

7. Computer handling of coincidences. This is the logically most compli-
cated part of any coset enumeration programme. When it has been found
that two cosets, numbered a, b say, with b>a, are the same, we have to
replace occurrences of b in the multiplication table by @, and deal with any
consequent coincidences similarly. We examine each entry in line b of the
multiplication table. If any such entry is blank, we take no action and pass
on to the next entry. If we find an entry bR; = b, then we replace this by a.
But if we find an entry bR; = ¢ #% b, then we know that line ¢ contains an
entry cR;! = b. In the first instance we delete this, rather than replacing it
by a, to avoid having two occurrences of a in the same column. Then,
whether bR; = b or not, we examine aR,. If this was not defined, then we
copy bR, there. But if it was defined, then if aR; = b we replace it by @, and
in any case we set up a new coincidence between bR; and aR;, and place
it in a list of coincidences to be dealt with. In either case, if (@R)R;* is
undefined, then we set it equal to a. In the first algorithm, if aR; was unde-
fined, the transferred entry bR; = ¢, now aR; = c, is placed in the list of
unworked table entries.

When ali the entries in line b have been dealt with, the line is deleted and
becomes available for the definition of a new coset. In the first algorithm,
any entry in the list of unworked table entries which involves b may be
deleted. If aR; had been undefined, the transferred entry aR; = ¢ will pro-
duce all the corresponding working, while if it had been defined, this entry
30
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will have been dealt with in its own right or will be in the list awaiting
working.

It is also necessary to ensure that there remains no occurrence of b in the
list of coincidences to be dealt with, any such being replaced by a. A con-
venient way of avoiding such occurrences, and also avoiding storage of
redundant information in this list, is the following. The list is kept as a list
of pairs of numbers, the greater on the left, stored in decreasing order of
left-hand number. At each stage we deal with the first entry in the list,
which has the greatest left-hand number, so this number b cannot occur
elsewhere in the list. When a new coincidence is to be placed in the list, a
search is made for the place appropriate to its left-hand number. If a pair in
the list has the same left-hand number, then the right-hand numbers of the
old and new pair are paired, the greater on the left, and this pair replaces
the original pair in the search for the place in the list. Eventually either a
pair is found whose left-hand number is not equal to that of any pair in the
list, which we then place in the list, or a pair is formed of two equal num-
bers, indicating that this coincidence did not give any new information,
and no entry is made. In this way the list never contains redundant informa-
tion.

When the coincidence between b and a has been fully dealt with as
above, the next coincidence in the list is treated similarly, and we continue
until this list is empty. We then return to normal working, beginning with
the first algorithm, with the list of unworked multiplication table entries,
and continue until the tables are complete or another coincidence occurs.
An example which illustrates the handling of coincidences is given in § 12.

After a coincidence and its consequences have been dealt with, there will
be a number of blank lines in the multiplication table, which are available
for the definition of further cosets. It is not advisable to use these in their
original position, however, except for those following the last undeleted
coset, as the numerical sequence of cosets would depart from the logical
sequence, and a sequence of operations based on the numerical sequence
would become inefficient. The table can be closed up by transferring and
renumbering the undeleted lines, retaining their original order. Experience
suggests that it is uneconomic in time to do this every time a coincidence
and its consequences have been dealt with, and that it is sufficient to do it
when the enumeration is complete or when the storage limit is reached.
(But with the second algorithm it is advisable to ensure that at each stage
the next coset to be defined follows next after the last undeleted coset, using
again any subsequent lines that have been used for cosets now deleted.)

8. Form of data. Essentially the data comprise only the relations defining
the group and the elements generating the subgroup. In practice it is con-
venient to supply also a list of inverses, as suggested in § 4, or some other
specification of the number of generators or the number of columns of the
multiplication table. If the list of inverses is supplied, then it is unnecessary
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to include relations specifiying that generators are involutory with the
defining relations, as these are implied by the list of inverses. It is convenient
to supply the list of elements generating the subgroup next, as these are
required for making the initial entries in the multiplication table and are
not used again after the use of the defining relations has begun. With the
second algorithm, these elements can be handled exactly like defining
relations, the equivalent of a line of a relation table, beginning and ending
with coset 1, being formed for each element. Then they are replaced by the
defining relations, and the main working continues as described. A similar
procedure can be used with the first algorithm.

9. Termination of the process. Proofs have been given by Mendelsohn
[5] and Trotter [8] that algorithms approximating respectively to the first
and second algorithms above terminate in any case of a subgroup of finite
index, but I shall not reproduce these here. It must be emphasized that these
proofs cannot give a bound for the number of cosets which it may be neces-
sary to define, even in the case of an inconsistent set of relations leading to
the trivial group, as it is known that there is no algorithm for deciding wheth-
er a given finitely presented group is trivial or finite or infinite [6]. If a
bound could be obtained, as a function of the order and the defining rela-
tions, for the number of cosets which have to be defined for any group
which is finite, this would provide such an algorithm. All that can be shown
in this case is that if the index of the subgroup is finite, then the enumeration
process cannot continue indefinitely.

10. A word problem. In addition to the basic purpose of exhibiting the
index of a subgroup in a group, there are a number of uses to which the
result of a coset enumeration can be put. For example, the columns of the
multiplication table give a permutation representation for a group which
will not infrequently be the whole group when this is finite. I shall not
describe here applications such as this which make use only of the resulting
tables. The problem which I discuss in the next two sectionsis the following.

Suppose that a coset enumeration has shown that a subgroup is of finite
index in a given group, and that a certain word W in the generators of the
group satisfies 1 W = 1, so that it is an element of the subgroup. The prob-
lem is to express this as a word in the generators of the subgroup. The final
multiplication table does not enable us to find such an expression, but we
can do so by keeping and using an explicit record of the steps taken in per-
forming the enumeration. In its simplest form, the present algorithm is
applicable only when the coset enumeration has not involved the definition
of redundant cosets and their subsequent elimination by coincidences. An
€xample of this is worked in detailin § 11. A modification of this algorithm
1S proposed which allows an extension to cases where coincidences are met
In ;hle course of the enumeration. An example of this is worked in detail
in 2.
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Another problem which can be solved by this algorithm is that of express-
ing an arbitrary element of a group as the product of an element of the
subgroup by a coset representative. The subgroup element can be found by
multiplying the chosen element by the inverse of the coset representative
and applying the algorithm to this product. A set of Schreier coset repre-
sentatives can be obtained by using the definitions of the cosets which were
used in the enumeration. Each coset is defined as the product of an earlier
coset by a generator, and by repeated application of this we obtain a defini-
tion as a product of coset 1 by a word in the generators which is the required
representative. Clearly every leading subword of this word is itself a coset
representative.

11. A worked example. In this example I enumerate the six cosets of the
subgroup {4} in the octahedral group defined by the relations

A* = (4B = B3 =E.

A systematic record is kept of the order in which the entries in the multipli-
cation table are made and of the relations used in deducing them. First we
insert the entry 14 = 1, which defines coset 1 to be the subgroup {4}. Next
we define 2 = 1B and 3 = 1B~!. On inserting these entries into the rela-
tion tables, we find that two lines are closed, allowing us to deduce
24 =3 from (4B)) = E and 2B =3 from B® = E. Next we define
4 = 247! and 5 = 34, and deduce 54 = 4 from 4* = Eand 5B = 4 from
(AB)? = E. Lastly we define 6 = 4B and deduce 6B = 5 from B3 = E and
then 64 = 6 from (4B)? = E. The enumeration is now complete, and we
have the multiplication and relation tables given below. The small figures
in the relation tables denote the deductions made by the closures of, these
lines, numbered in the order in which they were made, and the same figures
are affixed as subscripts to the entries in the multiplication table.

A A7 B B A 4 4 4 A B 4 B
1 1 1 2 3 1 1 1 1 1 1 1 2,3 1
2 3 4 3 1 2 3 5,4 2 3 5,4 2 3
3.5 %1 2 6 6 6 6 6 5 4 666 5
4 2 5 6 5
5 453 4 6 1321:331
6 6 6 55 4 4 6.5 4

In this example, the cosets have been defined in the sequence of the first
algorithm above, the earliest blank in the multiplication table being filled
at each stage, so, except for retaining the relation tables and annotating the
deduced entries, we have done the work exactly according to the first
algorithm. In this simpls example no coincidences are encountered.

We are now in a position to deal with word problems such as the follow-
ing. The word (BA~1B)~14(BA~'B) is an element of the subgroup {4},
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as we see by writing it in full with the coset numbers beneath, beginning with
coset 1, like a line of a relation table, thus:
B 4 Bl 4 B A' B
1 3 S5 566 6 5 5 31

and noticing that it ends with coset 1. The small figures 5 and 6 indicate that
the relations 5B~! = 6 and 64 = 6 were obtained by deduction, the
others, 1B~1 = 3, etc., having been made by definition. We deal first with the
later numbered deduction 64 = 6, which was deduced from (4B)? = E.
We replace this 4 by B-14=1B~1 cancel an adjacent pair B~1B, and obtain
Bl 4 Bl B71 471 A1 B
1 3 556 435 3 1°

Again we have two entries made by deduction and we deal first with the
later numbered deduction, namely 5B~ = 6, which was deduced from
B3 = E. We replace this B! by B2, cancel an adjacent pair BB~1, and
obtain
Bt 4 B A*A4A' B
1 3 5,435 3 1

Continuing in this way, always replacing the letter corresponding to the
latest numbered deduction with the remainder of the relation from which
it was deduced, and cancelling any adjacent mutually inverse letters, we
obtain successively
B™1 B 471 471 4+ B
1 32,2 435 3 1

B1B1 A B
1 32233 1°

B 4 B
1 2,3 1’

A~
1 I

The work is now complete, as all the deduced entries have been replaced,
and we have shown that (BA~1B)~14(BA~1B) = A~l. The procedure
adopted has been that at each stage the replacement made is that which
corresponds to the latest deduced entry in the multiplication table. If this
entry occurs several times in the word, the replacement is made at all occur-
rences. After a finite number of stages (which cannot exceed the number of
deduced entries in the multiplication table), all deduced entries have been
eliminated, and we have a word containing only entries made by definition,
these entries being just those made in defining the subgroup. So although
this word is still in the generators of the original group, its expression in
terms of the generators of the subgroup is immediate.
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I have programmed this algorithm for use with a hand-calculated coset
enumeration, and have made substantial use of it [3]. However, it is capable
of improvement in the following two ways. .

First, any two or more deductions which could have been made inde-
pendently in any order, such as 24 = 3 and 2B = 3 in this example, can be
given the same number and dealt with at the same stage, since the result of
substituting for any one of them cannot be to leave a substitution for
another of them to be done. (This was done implicitly above when giving
the same number to both of a pair of inverse entries, such as 24 = 3 and
34~1 = 2 above.) This reduces the total number of stages to be carried out.

The second modification may be convenient if several words are to be
dealt with from the same enumeration. As the enumeration is being done,
we form a list of substitution words corresponding to the deduced entries
in the multiplication table, each embodying the results of previous substitu-
tion words, and we use these instead of making substitutions of the remain-
der of the relations as above. This avoids making the same, possibly long,
sequence of substitutions several times over, as may happen if several words
are to be dealt with. In the example above, we would have the following
substitution words. As no further substitutions are done on thesp Wordq
the coset numbers do not have to be recorded.

A _ B 14711
2n 3 =

B _ B
2 5 B

A _ A1 A1 471 A"1BABA™!
5545 3,2 47

B A1 Bl 471 _ A"1B24-1
5,455 3,2 4°

B Bl Bt _ B-14B~A
6 556 445"

A B~ A1 B-' _ B-14B4-1BA7'B

6 66 6 43556

With such a list available, we need only one stage of substitution for
each word being dealt with, simplifying this part of the work, which has to
be done for each word, at the expense of complicating the preliminary work
which has to be done once only. Thus with the example above we obtain

Bl 4 B A4 B A' B

1 3 5566655 3 1
= B LA.A71B24A7 BB 4B A *BA"*B.B"*AB 24.A~1.B
= A%

I have used the first modification above with my original programme, as
its use with a hand-calculated coset enumeration involves only preparing
the data, recording the hand work, slightly differently. The second modifi-
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cation would involve substantial fresh programming which I have not yet
done. T hope to do so and to incorporate the extension to enumerations
involving coincidences proposed in the next section. It could then be used
with a computer coset enumeration programme, as there would then be no
special need to avoid coincidences.

12. An example with coincidences. I have not found an example of a
coset enumeration which involves coincidences unavoidably, which reduces
to more than one coset, and which is sufficiently simple to allow full exhi-
bition of the working in a reasonable compass. The example I give is bor-
rowed from Mendelsohn [5], and is to enumerate the five cosets of {X} in
the group defined by the relations

Xt = X?24XA "2 =FE.

Mendelsohn thought originally that coincidences were unavoidable in this
example, but subsequently found that this was wrong. It would be difficult,
however, to devise a computer procedure to find the sequence of definition
which has to be adopted to avoid coincidences in cases such as this (in this
example we must avoid defining 14; the definitions 2 = 1471, 3 = 2X,
4 = 3Xand 5 = 4X are suitable). I give the working as it would be done by
the first algorithm (§ 5), dealing with coincidences as in § 7. In addition to
the substitution words, obtained as in § 11, we obtain coincidence words,
which are used rather similarly in the working.

The first part of the working, up to the discovery of the first coincidence,
follows exactly the lines of the example of § 11, and need not be given in
detail. Defining new cosets so as always to fill the earliest blank in the mul-
tiplication table, we define 1X = 1,2 = 14,3 =14 71,4 =2X,5 =2X "1,
6 =3X,7=3X"18=234"1 and deduce 24 = 4,8X = 7 and 6X = 8.
At this stage we have the tables and substitution words given below, omit-
ting incomplete lines of relation tables.

X X1 A4 47 X x x X
1 1 1 2 3 o111
2 4 5 4 1 3 638 7 3
3 6 9 07 B8
4
5 2 2 & X X 4 X 4147
6 8 3 1 1 1 2 4,;2 1
7 3 8 8,7 3 1 1 3 8
8 T, 6 3 3 6§ B * 2 1 3
A = ATIXAX
2,4
X = A2X"147ix1
8 57
X = Xhxaxd =xXl4x4—

6 38 6 3 7,8
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We now find that the space in the relation table marked by an asterisk
can be filled from either 84 = 3 or 2X—1 = 5, so we have a coincidence
between cosets 5 and 3. We record this, and deduce from it a coincidence
word in the same way as a substitution word, finding

E X A1 4™ X X 4

54375 2 1 3 638 3
= XA LA LX X 14XA2 A4
= XA™1XA™L
(This proves that the given relations imply (X4~1)2 = E.) Next we deal
with the coincidence as in § 7. In line 5 of the multiplication table we find
the entry 5X = 2, so we delete the entry 2X—! = 5fromline 2. Then we ex-

amine 3X and find 3X = 6, so we have a coincidence between cosets 2 and 6.
We record this, and construct the coincidence word

E X1 E X ATIXATIX.

2562 543 6
This completes the working for line 5, as it has no other entry, so we delete
line 5 and deal next with the coincidence between cosets 2 and 6.

In line 6 we find first the entry 6X = 8, so we delete the entry 8X—1 = 6
from line 8. Then we examine 2X and find 2X = 4, so we have a coinci-
dence between cosets 8 and 4, from which we construct the coincidence
word

E _ X' E X
8¢64 836 52 4
= A2XTIA-IX XTI4AX 14X
= A2X24X.

Continuing along line 6, we find the entry 6X-t = 3, so we delete the entry
3X = 6 from line 3. Then we examine 2X-! and find this to be undefined
(the entry 2X—1 = 5 was deleted when we dealt with line 5), so we insert
the entries 2X~1 = 3 and 3X = 2, and construct the substitution word
X _ X E = AX"A.
3,273 6352

This completes the working for line 6, so we delete it and deal next with the
coincidence between cosets 4 and 8.

In line 8 we find first the entry 8X = 7, so we delete the entry 7X~1 = 8
from line 7. Then we examine 4X and find this to be undefined, so we insert
the entries 4X = 7 and 7X-1 = 4, and obtain the substitution word

X E X

457 448,17
= X"1A7IX?4 2 A2X 471X
= X714 x471x 1,
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Continuing along line 8, the entry 8X~! having been deleted, we find
84 = 3, so we delete 34~1 = 8 from line 3. Then we examine 44 and find
this to be undefined, so we put 44 = 3 and 34~! = 4, and construct the
substitution word

A _ E 4
443448 3
= X"1A1X242 4
= X"1471X241,

This completes the working for line 8, so we delete it. There are no further
coincidences to be dealt with, so we return to normal working.
At this stage we have the following multiplication table.

X X1 4 A7t
1 1 2 3
4 3 4, 1
2; 7 1 4
Te 2 3¢ 2
3 44

Nh W~

The list of unworked table entries contains the entries 3X = 2, 4X = 7 and
44 = 3. (It would be possible at this stage to renumber coset 7 as coset 5
and to delete the superseded entries from the list of substitution words,
including all the coincidence words, renumbering those remaining. To
avoid confusion, I have not done this here.) In the course of normal work-
ing, we construct the line
X X A X A1 47,
2 4 747 3 4 2

which gives 74 = 7, from which we obtain the substitution word
A X1TX1 A4 A X!

7107 T4 2,443 7
= XAXIAX X1 A" X2AX X"1471X24 1L X 1
= XAX3471X1

The multiplication table is now complete, and completion of the ordinary
working shows that the relation tables can all be filled consistently without
further coincidences. We also have a complete set of substitution words for
the deduced entries in the multiplication table, so we can now put into
effect the modified algorithm of § 11 for expressing elements of the sub-
group as words in its generators. For example

A A A A = AATX2AXX1471X2471.4
1 2:443 1
= X4,
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This example illustrates that the algorithm does not necessarily obtain the
shortest word in the subgroup generators, and it may be possible to simplify
it by use of the relations for the subgroup. In this example we have X* = E,
so we have proved the relation 4* = E for this group.

In this algorithm, coincidence words are obtained in three ways. When a
coincidence is met in normal working, the relation from which it was de-
duced gives the coincidence word, as with cosets 5 and 3 above. When a
coincidence is deduced from another, as when we found above that both
5X and 3X were defined, we construct the coincidence word

E Xt E X

2 62 5 3 6

by adjoining 5X and 3X to the previous coincidence word. The third way
did not occur in the example. Suppose we deduce a coincidence between
cosets b and a, with b= a, obtaining the corresponding coincidence word,
and find when placing this coincidence in the list of coincidences to be dealt
with that the list contains a coincidence between cosets b and ¢, with b>c,
whose coincidence word is available already. We replace our coincidence
between b and a by one between cand a in our search for the place in the list,
and construct the coincidence word

E E E

c a ¢ b a

This operation may be repeated as the search continues.

Substitution words are obtained from entries in normal working as pre-
viously. They are obtained from entries transferred by coincidences as the
product of the former substitution word and the coincidence word, as was
done above when we obtained the substitution word

X _ XE
32736 2°

A programme to implement this algorithm would need substantially
more storage space than a programme to implement only the coset enumer-
ation, because of the need to store the substitution words. These could be
packed with several letters to each computer word, but there would be
complications as the length of these substitution words seems to be practi-
cally unlimited. Some economy can be effected by deleting the words cor-
responding to superseded entries and coincidences. The coincidence words
could be listed separately, as it is known that they will all be superseded.

Such a programme could be used for proving relations in groups, either
by discovering them (as with (X4~1)? = E above) or by proving suspected
relations (such as A* = E above). In either case a formal proof could be
printed out from the substitutions made in the course of the working. It
would be of interest to apply such a programme to a problem such as the
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following. The relations
A® = B’ = (A4B)? = (A™'B* = E

imply (A42B%*)® = E, but the only known proof is of surprising length.
A proof could be obtained from the enumeration of 448 cosets of the
octahedral subgroup {42, 4-1B}, which is believed to involve coincidences
unavoidably (cf. § 6), and this could be compared with the published
proof [4].

13. Acknowledgement. The early part of this account reproduces almost
exactly the corresponding part of my former paper [2]. I am indebted to the
Council of the Cambridge Philosophical Society for permission to repro-
duce this.
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Some examples using coset enumeration

C.M. CAMPBELL

Introduction. A modification of the Todd-Coxeter coset enumeration
process [1] has been described by Campbell [2], Moser [3], and Benson and
Mendelsohn [4]. In this note we give some examples that illustrate the way
in which this modification is used.

Let G be an abstract group with a finite number of generators and rela-
tions, and let Hbe a subgroup of G. Assume further that the index [G : H]
of Hin G is finite. Let E denote the identity and let () denote the inverse
of an element.

THEOREM. If from the relation R = E, where E is the identity and

R=ay...a,...0,... a5, 1=r=5=p,

we win the neaw informalion

AXBAriyeee Qs = ﬂ,

where each a; is a generator g; orits inverse and a, { are integers denoting
cosets, then
od... a = W/,

where w=W, W oe.. WiWyeooWsia

is a word in the subgroup and a, § are now thought of as cosel represeniatives.
Proof. Express the relation R = E in the form

a...a=0 14 2...da ... a.,
Then
Clreee =0l 1y geee A1y« dsi1-
From previous information in the tables we find «.7,_; expressed in the
form W,_;-y (@and y are now thought of as coset representatives and W,_,
is a word in the subgroup H):

o0y... @ = Wr_]_'y.dr_z eee 610—1, cee ﬁs+1,

Now, again from the tables, y-d,_g = W,_,- .
Therefore
= W,__1Wr_2a.a,_3 co e dldp oo ﬁs+1.
37
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Repeating the process,
Cpeee @ =W iWe oo WilW,... Wyu.@s11.
Finally, from the tables,
‘ul-ﬁs+l = WS-!-l“B'
Therefore
x.d,... a, = Wr—IW—Z Y Wle “ oo Ws+1,
and hence

wdy... Uy = WP

The Todd-Coxeter process leads to an enumeration table and from the
modification and our theorem (withp = 1) we obtain a table carrying addi-
tional information (see Example 1).

Examples. In [2] an algorithmic proof is given to show that the two
relations

RS%2 = S%R, SR?= RS
imply that R = S = E, where Eis the identity. This has been generalized by
Benson and Mendelsohn [4] who show that the two relations
RS = S"R SR*-1 = R"S
again imply that R= S = E.

We consider two examples that arise from the previous two.

Examrie 1. Let G = {R, S, T, U} be subject to the relations RS = ST,
ST = T?U, TU = U2R,UR = R2S.Then G is cyclic of order 5.

Proof. RS = ST 0y
ST = T?U 2
TU = UR 3
UR = RS 4
ST2U = RS (5) from (1), (2)
STU = R (6) from (3), (4), (5)
where, as before, (-) denotes the inverse
SU = RST (7) from (3), (6)
ST = E (8) from (1), (2), (6)
SRS = E (9) from (1), (8)
U2=R (10) from (4), (9)
ST = RU (11) from (6), (10)
S =Rs (12) from (7), (11)
U=R (13) from (4), (12)
T=R (14) from (1 1), (12), (13)
Ri=E (15) from (10)
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This algebraic proof follows algorithmically from the modified Todd-
Coxeter process with the following enumeration and information tables.
New information is found from the underlined positions in the tables in the
order numbered.

R STS § STUTTlTURUl_I URG SRR
L1 23 2 1]l 2 5 |1 4 1|1 412 1 11
2. 3 2(2 3 23 5 22 5 1 1 5522 5 )
3 (3 6 1 52 33 2 313 3
4 2 3 4 |4 4 |4 41481 1 2 4
5 55 55 2 4 1®5]|5 11 5
Coset Representative R S T U
1={(R}) 1=E IR=R1 1S=E2 LU =EA4
2=18 2=5 28 =E3 2T=E5 2u=R5

3 =2s 3=’ 3T=R2

4=1u 4=y 4R = R2 4U =RI
5=2T 5 =S8ST 5u = al

From the positions numbered 3, 6, 7 we have, using our theorem, the
additional information

5.TU = R.2,
38T = E1,
2.RS = E.l.

In the above tables 4. U = Rl and 5. U = R. 1, which implies that 4 and 5
are the same coset, and in terms of coset representatives 5 = R2.4. Replac-
ing 5 by R2.4 in the information tables gives

R S T U
LR = R LS =E.2 lu = E4
2S5 = E3 2T = R4 2u=R4
3T =R2
4R = R*2 4U=R.1

From these tables 1. U = E.4 and 2. U = R%4, and it now follows that
1 and 2 are the same coset. Repeating the process as before leads finally to
complete collapse.

CPA 4
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The new information 4R = 2 and 3.T = 2 reduce to equations (1) and
(4) but from the new information 5.7U = 2 equation (5) is obtained. In the
first of the two calculations below we work with the coset representative as
an integer and in the second we think of the coset representatives as a word
in the group.

5.TU = 5TST ST.TU = ST.TST from (2)
= E2.8T = ES.ST
= EE3.T = EES®T
= EER.2 = EER.S

5.TU = R2 = R.S from (1)

This is equation (5). In a similar manner we obtain equations (6)-(10).
Equation (11) comes from the first coincidence when cosets 4 and 5 are
identified.

5= R1.U from 5u= Rl
= RR4.UT from 4U = Rl
= R24,
or, in terms of coset representatives,
ST = REU from (6)
= RRUUU from (10)
= R,

and this is equation (11). From the other coincidences we obtain equations
(12)-(14).

ExampLE 2. The relations SR? = RSRS and RS? = SRSR imply that
R=S=E.

Proof. The proof is again obtained algorithmically as in Example 1.

SR® = RSRS (0
RS2 = SRSR )
SR3 = R®S? @) from (1), 2)
S?RSR = RSR®S (4) from (1), (2)
§% = RS*R? (5) from (1), (3)
SR2SRS = RS?R (6) from (1), (3)
S?R:S = S?R? (7) from (2); (3), (5); (6)

whence S=Eand R =E.

The following question now arises. Given SR* = R*“1SRS and RS" =
= S""1RSR, do these relations imply R = S = E? (True for » = 1, 2.)
One further example is the following: show that the group generated by five
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generators a B, ¢, 9, e subject only to the relations ab=c,be=d,cd = ¢,
de = a,ea = b, is cyclic of order 11. This problem was discussed in the

American Mathematical Monthly [5].
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Defining relations for subgroups of firite index
of groups with a finite presentation

N. S. MENDELSOHN

THIS note solves the following problem. Let G be a group with a finite pres-
entation. Let H be a subgroup of G which is generated by a finite set of
words in the generators of G and which is known to be of finite index. Find
a set of defining relations for H.

To solve this problem we need the following lemma.

LEMMA. Let G be a group with presentation
G={x1, Xg+- % ¢ Ri(Xy,-+. ¥)=...= Rfx1,. .. %) =1}

Suppose glso that G is generated by 11,1, . .., tnand that each t is expressed
as a word in the xX’s and that each x is expressed as a word in the ts. Then a set
of defining relations expressed entirely in terms of the ts can be found.

Proof. Let x; = Wity ta, . . ., t)i=1,2,.. ., randlet = wxy,
X954y %) j=1,2,. ..) m. We abbreviate these as x; = W(r) and ¢; =
= w;(x). We now carry out Tietze transformations as follows. To the pres-
entation G = {x; : R, = 1} adjoin the generators # and the relations
t{ w (x)}~1 = 1, obtaining

G= {xi> t: Rn(xh cee Xr) = tj{Wj(xl,. o x,)}_l =1 }

Now replace each x; by Wi(¢) and delete the generators x;. We then obtain
the required presentation with generating relations

Rn( Wl(t)9 WZ(’); Cies Wr(t)) = tj{wj( Wl(t), ey W,-(t))}—'l =

We note, in passing, that it is not generally true that the “inherited” rela-
tions R,( Wi(t), Wit),. .., W,(t)) = 1 are an adequate set of defining rela-
tions. We give later an example where the “extra” relations t{w/{ W(z),. .-,
W(1))}~* = | cannot be deleted.

We now return to the solution of the main problem. Since the subgroup
His defined by a finite set of words and is of finite index, the Todd-Coxeter
coset enumeration process must close (see Mendelsohn {3]). Also by Men-
delsohn [3], a set of Schreier-Reidemeister generators for H can be obtained
and a rule for determining in which coset of Ha word in G lies. With this
information we can write down a set of defining relations for H (as given,

43
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for example, in [2] pp. 86-95). Also by Benson and Mendelsohn [1] the
Schreier-Reidemeister generators can be expressed as words in the originally
given generators of H. We now start a second coset enumeration using the
Schreier-Reidemeister generators as the defining generators for H. This
enables us to write the originally given generators of H as words in the
Schreier-Reidemeister generators. Now, by the use of the lemma, we are
in a position to write defining relations for H in terms of its originally given
generators.

Remark. 1t appears that we have given an extremely roundabout proce-
dure for obtaining defining relations for H in terms of its given generators.
Why introduce the Schreier-Reidemeister generators at all?

The following appears to be a plausible direct procedure. Every relation
in G can be written as a product of conjugates of the given relations R;=1.
Hence, the group H inherits as relators the conjugates of R; when expressed
as words in the generators of H.

It would appear that it is sufficient to take as conjugating elements one
from each coset of H. Hence H inherits the relators oj ! R0; where R
ranges over the defining relators of G, g; ranges over a set of coset repre-
sentatives and ¢; ' R,0;is expressed as a word in H.

The following counter example shows that these inherited relators are
not necessarily a set of defining relators for H. The group was studied by
Baumslag and Solitar.

Let G={A, X: X 142X = A3}. Let H be the subgroup generated by X
and 4%, By Benson-Mendelsohn [1], H = G and in fact

A= ABX 14 “8XABX %A ~8X TLABXA ~8XASX 1A TRXARX.

Calling the right side of this equation Wit is seen that in terms of Xand A%,
the group G inherits the relation X “2W2X = W3. Also, since G has only
one coset and one defining relation no more than one relation can be obtained
from coset enumeration. However, G. Higman has shown that in terms
of X and A8 the group G requires two defining relations. Hence the extra
relation (in this case A% W —8 = 1) cannot be deleted.

REFERENCES

1. C. T. Benson and N. S. MENDELSOHN: A calculus for a certain class of word problems
in groups. J. Combinatorial Theory 1 (1966), 202-208.

2. W. MAGNUS, A, KARRASS and D. SoLitar: Combinatorial Group Theory (Interscience
Publishers, New York, 1966).

3. N. S. MENDELSOHN: An algorithmic solution for a word problem in group theory.
Canad. J. Math. 16 (1964), 509-516; correction 17 (1965), 505.



Nielsen transformations

M. J. DuNxwooby

Ler G be a group with »n generators. Let 2 be the set of ordered sets of »n
greraos of G

If 7 is a permutation of the set{ 1, 2, . . ., n} then a, will denote the per-
mutation of X' such that

(gl; “ves gn)an = (gln’ g2n) oy gnn)-

Ifi,je€{l1,2,...,n}, i +j, then «_;, a;; will denote the permutations of Z
such that
(1> o Bn)ami = (81, 820, ., &i—1> &7, &iv1 .. -, &)

(gla P . gn)ai:j=(gh vy 8i—1, &ifjs gj+1’ B -5gn).

Let A be the group of permutations of 2 generated by all the above.

It is sometimes useful in group theory to know the transitivity classes of
2 under A. Let F be the free group on generators xj, X3, . . ., X, If
(81, 82 ..., &) (hi, he, ..., h,) belong to X' and R, S are the kernels of the
respective homomorphisms 6, ¢ of ,F onto G such that x,0 = g;, x;¢ = h,,
i=1,.... n, then there is an automorphism y of F such that Ry = S if
(g1, g2 . . -, &), (h1, by, . . ., h,) belong to the same transitivity class of X
under A. When such an automorphism of F exists there is for instance an
isomorphism  induced between FJ[R, R] and F/[S, S, these groups need not
be isomorphic if (g1, &2, . . . , &), (h1, k2, . .., h,) belong to different tran-
sitivity classes under A.

The problem I consider is the following:

If G has n- 1 generators, then in every transitivity class of 2’ under A is
there a set of generators one of which is the unit element?

The answer to this question is yes if G is finite and soluble; in fact one has
the following :

TueoreM. If G is a finite soluble group with n- 1 generators, then A is
transitive on X,

Proof. The proof is by induction on the length c of a chief series of G. If
¢ = 0, the theorem is trivial. Assume then that ¢>0, and that the result is
true for c- 1.

Suppose now that

E=My<Mi<Ms<.,, <M, =G
4h
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is a chief series for G. Let A1, . . ., h,_1be a set of n- 1 generators for G.
Let (g1,.... g,) € 2, by the induction hypothesis on G/M; there exists
a ¢ A such that

(€1 ..., g)x=(m, mhy, mohs,  Mu_1h,_1)

where m, Mmi, Mo,e . ., My 1€ M. If m= e, then mihy, mah,,.. ol my,_1h,_1
generate G and by using a product of the a;,; ‘s and their inverses we obtain
a set of generators in which the first element belongs to M, and is not e.
Therefore it can be assumed that m =+ e.

Now, since M is abelian, if

g=why b ... h1)€G
then
g7img = why, ooy hy_D) tmw(ha, ..., hy_ 1)
= w(mihs, 5 o o s Mip_ 1h_1) " imw(mihy,. .., My,_ 1ha_ D).

It follows that there is an element a’ in A such that
(gl; ey gn)“’ = (mg’ mlhla P mn_lhn_ 1)-

Now using «;,;,; Or its inverse the (i+ 1)th term can be changed to m®mh;
or m~&m;h;. However, since M is minimal normal, each m; is a product of
conjugates of m or its inverse. Hence by repeating the above process enough
times it can be seen that there exists a” in A such that

(gI, IS g,,)oc” = (m, hl; h29 R hn_l)-

However 4i,. .., h,_; generate G and so by using a product of the a;,’s
and their inverses we see that (g4, . . ., g,) belongs to the same transitivity
class under A as (e, h1,hs, . . ., h,), which proves the theorem.

To find a counter-example for the non-soluble case a computer might be
employed. If G is the alternating group on five symbols and 2 is the set of
sets of three elements which generate G, then 2’ has 120X 1668 elements
[1]. These are partitioned into 1668 transitivity classes under the action of
automorphisms of G, and A can be regarded as acting on these classes
rather than on the elements of X. If A is not 19-ply transitive on these
classes, then the direct product of 19 copies of G, which can be generated
by two elements, would have a set of three elements which generate it but
which could not be reduced to two elements by Nielsen transformations.
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Calculation with the elements of a finite group
given by generators and defining relations

H. JURGENSEN

1. Preliminary remarks. The system of group theoretical programmes
working at Kiel [4] consists of programmes which are independent of, and
others which depend on, the special way in which the elements of the group
to be calculated are represented. The latter are, roughly speaking, concemed
with reading the input data and printing, multiplication of, and inverting
elements.

I shall give an outline of some difficulties which arise with multiplication
and inverting programmes, when the elements are represented by words of
abstract generators, and of some ways to overcome or avoid them.

In 1961 Neubiiser [3] described a programme by which these problems
were, to a certain extent, solve8 for finite p-groups. In 1962 and 1963
Lindenberg published ideas [1] and a detailed description of a programme
[2] for solving them for finite soluble groups.

Thus in a certain sense no theoretical difficulties were left; but, as exper-
ence proved, the practical problem of “minimizing” the time needed for
computing the product of two elements, when just the necessary input data
would be given, was not yet solved sufficienfly. Hence some firther refine-
ments had to be introduced.

2. Input data. Let G be a finite group and e the identity element of
G. An AG-system of G is a system of n generators @, a,_;,..., a; 0of G
and of n(r+1)/2 words g (i = 1(1)j; j = 1(1)n), for which the following
conditions hold :

gij€U~_1=gp(e, al, ds, . ..,8_1)CG;, l=<i<j=n (RI)
a}P_-,- = §jjs l<j=n (RZ)
la;, a;] = gij; l=i<j=n R3)
¥ > 1integer; af ¢U;_1; I <7 < y;; l=<j=<n R4)

For a group G there exists an AG-system defining G, if and only if G is a
finite soluble group.
Proof. 1et an AGsysem defining G be given. According o (R3) and (R1)
8 (1=j<n)is an element of the normalizer Ny,_, of U,_j,i.e. U_; < U,
47
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Because of (R1), (R2), and (R4) U;/U;_, is a finite cyclic group of order
greater than 1; hence G is a finite soluble group.

Now let G be a finite soluble group. If G is cyclic, it will be defined by the
generator g; with g1; = e and y; = |G|. If G is not cyclic, there exists a
finite chain of subgroups Uo, Uiy . . ., U,of G with: Up = gp(e) U,=G;
U,_; < U,-;U/ _,1s cyclic and f1n1te of order Uj:U,_,>1(1 <] = n). For
j=11)n g; is selected in such a way that gp( Uj_1, q;)) = Uj; 9; will be
defined as Uj : U;_; ((R4) holds). Then the words g; can be found such
that (R1), (R2), and (R3) hold. For the proof that G is defined by an AG-
system chosen like this we define:

A word a"’"’m a¥mr 8”1 €G(l<v =n; ¢, integer; i = 1(On), for
which the followmgl; condltrons hold, is called a normed word:

Vi < Vig1; l=<i<m (ND)

0 <g¢,, l<i=m (N2)

&, < Yy, l=sis=m (N3)

If only (N1) and (N2) hold, the word is called seminormed.
As g4 U;_jand g;¢ Ny, _, (1 < j = n), U; can be decomposed into cosets:

Uj = Uj_1+ajUj_1+a,2Uj_1+ S +a}’f‘1U,-_1
Hence for every word in G there exists a normed word, which is equivalent
to it. Since |G| = Hw,, the set of words of G can be represented uniquely

by the set G* of normed words in G, and G is defined by the AG-system.

As a secondary result of this proof we have : Let an AG-system defining G
be given; the words g; can be written as normed ones.

3. Multiplication algorithm. In the following text the symbol U will
denote the set of normed words in U;. According to the proof from above,
(R1) may and for practical purposes will now be replaced by the stronger
condition:

NSRS i) o
gij:ajl_—llaJ2---q_1 €Ur,<G; l<i<j=<n (R1)

As far as finite groups defined by AG-systems are concerned, the word
problem is no obstacle.

There exists a well-defined finite algorithm by which the product be € G* is
obtained for any two words B, ¢ € G, where bis seminormed, ¢ is normed,
and G is a finite group defined by an AG-system.

Proof. Use induction on ¢ with b, ¢ € U,. The algorithm itself will be de-
fined by the proof.

(1) t=1: b c € Uy have the forms b = a3t (seminormed), ¢ = a’ (nor-
med). The normed product ¢ ¢ U is defined by

be = a{11+51~!°1 entier ((£340)/yy)
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The proposition holds.
(2) Let the proposition be proved for | <t< k<n.
(3) t=k:b ¢ c U, = U, have the forms

b=apaxz. .. g3 (seminormed)
c=a¥kalky...a}  (normed).
be € U} is obtained by norming the words w1, Wy, . . ., W of the sequence

ajic = aiwo= Wy, aEwi= W, .. ., GFW,_; = Wi = be
To obtain ajiw,_, € Uf (1 < i< B) ¢; times products of the form
aaralg ... ah
with
apai—r. .. an €Uy
have to be normed.

(3.1) i=k: We define
+1 —1. 4 1 *.
alﬂ%ﬂ;’c"_ﬁl cee a;’l = {aﬂk aZk a;l € Uk ? nk+1 = Y
Bt e e e Al Mt =y
For 7 + 1 =y the proposition follows from assumption (2).
(3.2) i<k : Proof by induction on 7.
(3.2.1) n;, = 0 : The proposition follows from assumption (2).
(3.2.2) Suppose the proposition has been proved for 0 < 7, <A<y,
(3.2.3) m, =7 : The word to be normed has the form
aaal—i... M,
which is equivalent to
aag, @t . .. gh
According to assumption (3.2.2) the proposition holds for

= A—1 Mg 17
§ gxkak akk 1eoo all,

which will be normed to a word

p)

Crpr—

where (= A— 1, since § € U¥_,a} U, a}c
According to assumption (3.2.2) it holds or
a;

A—1 ylp—:
aay ak__ll oo

and hence the proposition is proved.



50 H. Jirgensen

4. Multiplication programme. A machine programme which strictly
follows this algorithm will be rather slow; the reasons are that it is recur-
sive, and that the input data, i.e. the words g; and the integers y; and n,
which are constants throughout all calculations with the elements of a given
group, have to be looked up for every multiplication again and again.

We could naturally save some computing machine time if a special mul-
tiplication programme was written for every AG-system. For a trained pro-
grammer this might take less time than doing all the group calculation by
hand.

As had been realized for groups whose orders are powers of 2 by Neubii-
ser, and with a different sort of defining systems for finite soluble groups by
Lindenberg, a compromise would be to write a programming programme
C, which will generate the multiplication programme M needed according
to the special AG-system given.

I shall give a rough sketch of C in terms of M. C has been running at Kiel
since 1965.

M is generated in two steps. First a multiplication programme M* and an
inverting programme INV are generated, for which just the input data, i.e.
the AG-system given, are used. Then M itself is generated as an improved
version of M* in such a way that parts of M* are replaced by new ones
according to further relations which will be computed by M*.

M and M* both consist of a main programme H, the structure of which
is the same in M and M*, and a set of subroutines P(i, j, k).

4.1. The programime H (see flow chart). The normed elements ajra;r-1
... ait € G* are uniquely represented by the integers

n i-1
& _*_AZ (6‘.. ]‘[ Q1+entier (log,(ap,-—l)))

i=2 J=1

With 27 binary digits per machine word of the electronic computer used by
us (Electrologica X1) the group elements can normally be stored in one
word each, when this representation is used.’

In the beginning of H the exponents ¢; of b and §; of ¢ @ = 1(1)n) are
isolated and stored to separate machine words.

tThe number of binary digits needed for the elements of a group G is
n+ 3 entier (logy(y;— 1)) < n+‘Z1 entier (log, ¥;) < N + entier (log,‘l'll )
i=1 = -

= n+entier (log, |G}).
The representation which will need the fewest binary digits is

n i-1
&t Z (85‘ II 'l’i)?
i=9 J=1

for a binary machine; however, isolating the ¢; will generally take more time, because
divisions instead of shifting operations will be needed for the elements stored like this.
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3,- yentier LR 3
%

(81 80-ts--, 3))=> be

Then for i=1(1)n the element w; = aalal;.. . alt is normed ¢; times in
such a way that the machine words, where the exponents §; are stored, will
afterwards contain the exponents of the result.

For i = 1(1)k and k= 1( 1)n we define the natural number 6(i, k) by:

g w e =€ if 0(G,k)<1+60G,k)<k )
g ok * e ori = 00 k). @

Since from g; = e (i<j) follows ga) = afig;, norming w; is equivalent to
norming w; = a,-agggf;‘;vaggg‘;;g—ll ... a and leaving d,, Op_y, . . - 5 Ogg pypa
unchanged.

What H actually does for norming w; is to call the subroutine
P, (i, n), Vog, ny)-

Since gi1; = e in any AG-system, the generator g, is treated in a special
way throughout Af* and M: It is not necessary to reduce 0; modulo ;
whenever §; = y1; but this is done once at the end of H only. Furthermore
if @; is an element of the centre of G, ie. 6(1, m) = 1, calling
K1, (1, n), poq »y €1 times is replaced by adding &; to 0;.

Before His returned from, the exponents §; will be “compressed” and
lftorcsd to one machine word again as representation of the normed product

c.
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W(e)

Yy em,e'(f%'t)»¢'
1

b =)
c=>(8)
o+ -y, entier (122 2y

(3)=~ be

+
%

gi=> w™

)

' S
Go To.
‘l.&(t.l-l)&mw’) 30
tsi<jgn
st =i su-u=i ey TSI
o i®d ol =0
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gl =1
o * O

>
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o
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4.2, The subroutines P(i,j, v;) (1 <i<j=n). These subroutines just con-
sist of a “go-to-instruction”, which will lead to the subroutine P(j, j, 6;)
for ;=0 and to PG, 6(, j—1)s ;) for & = 0, according to the
actual value of §; (see flow chart).

4.3. The subroutines P (i, j, k) (1<i<j=n; 1<k<yj). The element
agiait ... ap will be normed. P(j, j, k) will (in most cases) call further
subroutines according to g, (see flow charts).

Peijk> n M*

1g1<ygn, 1<k<\;/,
8i,j)=1 e 3,15
ol 40 8l1j)=1 1<8(t,1)<)
1

ol
: i GALL CALL
o)+ 8,8 Pet, 81, 1) ¥y > Pel,j k-t>
v a2 . :7‘(“’)

T H
CALL CALL times
Pt 8] ¥igyq 13> Pet,j, k=1>
=

——

: H2,i)<)
32, =)
CALL CALL
P<2,8R2, W ¥s12,1)> P<2,j,k-1>
H H vz(i" Yy mes
CALL CALL ;
P<2.8(2.i)l Y55 1> pP<2,jk-1>
'
T Y H
S(-1,)<} : SU-14)71 .
'
CALL ;
Pe)1, i k=1> H
s i
H L H a:‘_ :’umes
CALL CALL
Pt S >

4.4. The subroutines P (j, j, y;) (1 <j < n). The element galia}-; . . .
al* will be normed. P@, j, y;y will call further subroutines according to
gy if 6+ 1 = y; (see flow chart).?

4.5. The inverting programme (scc flow chart). When M* is finished an
inverting programme INV will be generated.

The word w = a/ai*}.. . a* € G* is inverted by successively norming the
following words

al,""l”'"e =w
a?,al,“:iﬂ“""-*wl = Wy

... el lmw,  =w = wl

t All those subroutines P, j, ) will be generated for M, for which
(@ l<i=j<nand k=y, or (b) l<i<j<nand l<k=<y; and g, +e¢, or
©i=j=1andf(l,n)+1and k = y,,
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It is important here that the multiplication algorithm is defined for
seminormed words as left factors. For computing |¢;| (i = 1()n) M* is used.

4.6. M developedfrom M*. What proved to be most time-consumingwis
that with an AG-system given the number of steps to be taken for norming
the word aaPai41» .al will in general increase rather fast, when §; is
increased.

As a remedy further normed words Ay = [a; aj"] A=i<j=mn
2 = k< vy;) are introduced, if there exist i and j (1 =< i<j=mn) such that
y; + 2 and g; + e. For computing these normed words A7* is used.

In M* norming a,a¥a%-;.. .a* for j<j and §;>1 is based on the equa-
tion

aayai .4 = a,-a,-g,-,-af”la}?’_i Co.a
The subroutines P (i, j, k) of M* for i<j and 1 <k<vy;, which norm the
words aafa~. . .al can be replaced by others, which use the equation

& 6 & 6, 0;_ 6,
aia,-’ajif. = ajfa,-hij 5jajj_i. .. al‘,

when the words /; have been computed; in this way M is generated.+

- When Neubiiser and Lindenberg wrote their programming programmes,
the problem of introducing further relations, which are not part of the input
data, did not occur. The programme of Neubiiser worked only for groups
whose order is a power of 2, and y; = 2 for j = 1(1)n; hence no words /A
existed. Lindenberg, on the other hand, uses defining systems as input data,
which contain not only those words which correspond to the words g; in
an AG-system, but also those which correspond to the words A; and hence
can for soluble groups be deduced from the rest.

5. Some extensions planned.

(a) For C it has been assumed that in an AG-system the words g; are
normed ones. It is easy to prove that there exists a well-defined finite
algorithm, by which the normed equivalents of the words g;; in any 4G-
system will be obtained, if they are of finite “length”. Programming this
will make the preparation of input data less troublesome.

(b) In defining systems conjugates of the generators instead of commu-
tators may be used (K-system).

(c) Although there does not exist an AG-system defining the alternating
group of order 60, for example, there exists a system with products instead

tAll those subroutines P (i, j, k) will be generated for M, for which
(a) l<i=j=<nand k=y; or (b) I<i<j<nand k=1,y, and g;+*e or
(¢) l1si<j=nand l<k<y; and hy +eor (d)i=j=1and 6(1,n 4+ 1 and
k =y,

CPA 5



Defining systems:

AG K P extended P
G, 4, k)
olind) o o Fasi)
ad gp(esaa"'9aj—l) aj 8 .gp oy o=t = 1(1
R1) | gy €gple, ay, as, ..., 8 ) |gy€ | ' i<j |&m€ i<jik=1(y,-1 }: 181
» P — 7 gp(e’ ay, '-'yaj-—l)
gole, ay, ..., ;1) i = j 5= Bl
(R2) af’ = gy a;.p T = gin j=1n
k . .
. -1 _ . aa, = g 1= 1(])]—'1
R3) |l [a, 4] = gy | a, "aia; = g aq; = gy k‘; 1(1):;:_1 j=2n
(R4) v 1;4; ¢ gple, ay, as, ..., ay_1); T = 11— 1 j=1n

finite soluble groups

soluble and some non-soluble finite groups

9¢
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of commutators by which it may be defined.? Such systems (P-systems)
exist as defining ones for every finite soluble group and even for some finite
groups which are not soluble. If ¢f>2 = 1 @G=1(1)j— 1; j = 2(1)n), i.e. the
group is soluble, there exists a well-defined finite multiplication algorithm.

(d) Some non-soluble finite groups may be calculated, when an “extended
P-system” is given. As far as P-systems are concerned, the extended ones
seem to be the “weakest” with a well-defined finite multiplication algo-
rithm existing.

A new version of the programming programme, which is just being writ-
ten, will allow the input data, i.e. the defining system, to be a mixture of
AG-, K-, P-, and extended P-systems, and the words to be not necessarily
normed ones.
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Vet =ai=a} = af = e, 48y = Ayay, G105 = A3as, 410y = 650,00, Q583 = y044y,
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On a programme for the determination of the
automorphism group of a finite group

V. Fersca and J. NEUBUSER

Tue programme A for the determination of the automorphism group A(G)
of a finite group G is part of a system of programmes for the investigation
of finite groups implemented on an Electrologica XI at the “Rechenzen-
trum der Universitit Kiel”. A detailed description [3] of A has been published
in Numerische Mathematik. Therefore here we give only a short summary.
Notations are as in [1].

The programme A makes use of information about the lattice of sub-
groups of the group G, provided by a programme P described in [2]. The
programme A works as follows.

1. A system of generators and defining relations of G is determined. It is
used later to decide whether a mapping from G onto G is a homomorphism.
There are three cases:

1.1. If G is soluble, a system of generators g9 = 1, @1, .. ., @ is chosen
such that the subgroups U; = ( @y, . . . , g;) form a subnormal series.
For i = 1( Dr, let «; be the least positive integer with afi € U;_;. Then

ar' =1, @i =a' .. atit, i=2(r,
and
aa; = aet L aet ax, l=i<ks=r,

are defining relations of G.

1.2. If G is nonsoluble, A searches for generators a¢= 1, a1,..., @ of
G with the property: For i= 1(1)r there exist integers «;=>1 such that each
g€ U, =(ay,....a ) is obtained exactly once as g = aj!. . . & with
0 = ¢=a; forj = I(Di. Defining relations of the form

: . v g .
a;l = 17 a?‘ = aﬁ"‘ v a[‘_'illy 1= 2(1)",

and
afa; = g FBA . L L gffeBik l<i<k=<r, 1=f8<au,

are then determined.

1.3. If G does not possess such generators, then generators and defining
relations must be provided as input by the user of the programme.
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2. The coarsest equivalence relation, ~ say, on the set of all subgroups
of G, with the following properties is constructed:

(1) Each group of the lower and upper central series and of the commu-
tator series of G forms a complete --class.

(2) U~Vimplies: [U| = |V]; No(U)~Ng(V); Co(U)~Cy(V); Uand V
are both or are both not cyclic, abelian, nilpotent, supersoluble, soluble,
perfect, normal in G, subnormal in G, or selfnormalizing ; for each ~ -class
®, U and V contain, are contained by, and normalize the same number of
subgroups belonging to { respectively.

3. For each element g ¢ G the set H(g) of all 4 ¢ G with (h)-(g) is deter-
mined. H(g) contains the set J(g) of all images of g under A(G) and can be
shown to be a “good approximation” of J(g).

4. Generators by, . .., b, of G with minimal d = HlH( ;)| are selected.

Then a list L of d bits is setup in 1 — 1 correspondence to the d different
systems by, . . ., b with b} ¢ H(b ;). Systems by, . . ., b; not generating G are
marked in L.

5. Generators ¢y, . . ., g, of the subgroup I(G) =< A(G) of inner auto-
morphisms are determined from G/Z(G). For each ¢ ¢ I(G) the system
b, . ... bypis marked in L.

6. Let A, =I(G), 4; = A,,, the subgroup of A(G) already calculated, and
b1, ..., b; the first system not marked in L. Using the relations determined
in § 1, it is checked if b;—b; defines an endomorphism of G. If so this is an
automorphism ¢;; ¢ 4;. Hence 4;,; = (4;, ¢;;;) is constructed, and all
systems by, . . ., bgp wWith ¢ € 4;.;— 4; are marked in L. Otherwise no
automorphism of G maps, for any ¢ ¢ 4,, all b; onto b;p, and hence all sys-
tems bip, . . ., byp with p € 4; are marked in L. All elements of A(G) are
obtained as soon as the number of unmarked bits in L is less than the order
of the greatest known subgroup 4; < A(G).

7. The order of and generators for A(G) are printed. A typical running
time for the combined programmes ® and A is 8.5 minutes for a group of
order 72 with automorphism group of order 3456.
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A computational method for determining
the automorphism group of a finite solvable group

L. GerHArRDS and E. arruass

Many problems in the theory of finite groups (especially of the extension
theory) depend on the knowledge of the structure of the automorphism
group A(G) of a finite group G. In [2] a computer program for determining
A(G) of a finite group G has been given. With a view to the computational
construction of A(G) it seems to be profitable to develop systematically
methods for determining A(G) by “composition” of “allowable automor-
phisms” of special subgroups of G.

The main result of the present paper is a method for constructing the
group A(G) of a finite solvable group G of order |G| = g2*. . .¢*" by compo-
sition of special inner automorphisms of G and allowable automorphisms
o P,(i=1,...,1), where the P; are the Sylow subgroups of a complete
Syiow besis of G

The paper consists of three parts. In the first part (A, § 1), using the
investigations of [1], ch. II, § 1, based on results of the theory of Sylow sys-
tems ([4], [5]) and general products ([1], [8], [9]), we explain a theoretical
algorithm for constructing A(G) by composition of A(P)) (i =1,...,r)
A, §2).

: In th)e second part (B, § 5), using results obtained by the determination of
the lattice V(G) of all subgroups of G ([3], [6]), a computational method for
constructing A(G) will be developed by realization of the theoretical inves-

tigations of part A. In B, § 4, questions about computational representation

of auomorphisms are also discussed.

Finally in the third part (C, § 6, 7) possibilities for rationalization and
extension of the program system to not necessarily solvable groups will be
explained.

A. BASIC RESULTS FOR THE DETERMINATION
OF A(G) FROM THE AUTOMORPHISM GROUPS A(P)
OF A SYLOW BASIS P, .. .,P, OF G
1. Some results of the theory of Sylow systems and general products.
(a) Sylow systems and Sylow system normalizers ([4], [5]) Let G be a
solvable group of order |G| = g5+ . . . *¢;" (¢; primes). Then G contains for
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every ¢;a g;-Sylow-complement K; @=1,. .., r) of order Kj|= ]_[ g7, and
118
J#l
every complete system & = Ki,..., K, of g-Sylow-complements gener-
ates a complete Sylow system & consisting of 2° subgroups K, = () K,
ice

K, = G, defined by all subsets ¢ of the set of integers {1, ..., r}.If ¢/
denotes the complemented set of g relative (1, . . ., 7, then |K,|= gy and
jee’
for o, 0 S {1, . . ., 1} we obtain the relations
(@ Ky, = K,NK, (1.1)

B) Kono = KeKs = KK,

Every two Sylow systems ©, &* of G defined by &, §* are conjugate in G,
and every Sylow system © of G contains a complete Sylow basis, ie. a sys-

tem Py, ..., P, of Sylow subgroups of G such that G = P,..... P,,
PP, = PkP (1, r;i + k). Additionally we obtain K,= [] P;
(99{1,...,ﬂ)fora11KE@ i€e

The system normalizer (@) defined by (@) = {x ¢ G/xKx = K,,
for all K, € &} can be represented as the intersection of the normalizers
N(K; € G) or N(P; € G):

RS) = () NKE ) = ) NP € G). 12)
i=1 i=1

N(S)is the direct product of its Sylow subgroups P, MK, G) (i=1,..., p:
NOG) = PINNKLSG) x... XP,NN(K,EG). (1.3)
An automorphism a € A(G) of G maps the Sylow basis Py,..., P,of Gon a
conjugate one P¥, ..., P}, that means there exists an element g € G such that
aP;=PF=1@P; G=1,.... ©(g)clG)! (1.9
The automorphism 8 = 7(g™%) 0 a € A(G) maps P;onto P;(i=1, ..., 1),

and the restriction of § on P; yields an automorphism n; € A(P,) of P..

(b) General products ([8], [9], [1], ch. I). A group G is called a general
product of the given abstract groups H; @i =1, 2) (or factored by Hi) if and
only if Gcontains two subgroups Hi such that Hf ~ H;and G = HfHy =
= HyHY, Hf N\ Hf = {eg}.

Let G be factored by H; @=1, 2), then to each 4; ¢ H; there corresponds
a mapping #;  from H; into H; defined by:

hi2 hy = Hihshi N He for all Ay € H,, (15)
hy t hy= hohyHs(\ Hy for all Ay ¢ H;. (1.6)

t We denote by z(g) the automorphism of the inner automorphism group Z(G) of G
induced by transformation by g € G.
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The mappings #;x @ k = 1, 2; i + k) together with the defining relations
of H; @ = 1,2) determine the structure of G; for multiplying the relation
(b7 *heH1 N Hy)' hy2 hy = eg with hyh; from the left we obtain the following
law for changing the components of an element of the general product G:

}12,11 H l12 1 hl'h12 kg. (1.7)

By (1.7) multiplication in G is completely determined.

Conversely, if Hi, Hs are given groups and if according to (1.5), (1.6)
each h; ¢ H; @ =1, 2) is associated with a mapping b,k G, k=1, 2; i+ k)
from H; into H,, then the set G = {(h1, ha)/h; € H;, G = 1, 2)) of all
pairs (hy, hs) of elements h, ¢ H; with the multiplication law

(ha, ho)-(hy, hy)y = (hyhythy, hy2ho-hy) (1.8)
forms a group if and only if the following relations are valid :
(@ e;2hs = hy esthy= Iy
B) hi2es = e3 hylei= e;
0) (hh)zhy= W2(uzh) |Gk Th=hor(yihy) B9

6) hi2(ha h}) = (hythy)2ha-hy2hl | hat (hy b)) = hathy-(hi2hy) 1 B,

The correspondence hy < (f11, es), hy < (€1, hy) determines the isomor-
phism Hy= Hf = {(h, es)/hy € Hy}, Ho= Hi = {(e1, ha)/hs € Ha} re-
spectively. Because of G = HfHy, Hf | Hy = {{e1, e2)} = {ec}, h¥ khi=
= (h;*h)* Gsageneral product and conversely every general product can
be represented in this way.

From (1.9 @, ) it follows that the mappings #4;x form a permutation sub-
group II; ;€ Sy, of the symmetric group Sz, of degree |Hy|. The maximal
invariant subgroup N; = {h;¢ H;/h;kh; = h, for all h ¢ H} of G con-
tained in H; determines the homomorphism 7;  : H; +II; x from H; onto
H,-, - Hence !

and the mappings (/;#;) ¥ with »; ¢ N; define the same permutation on H,.
Another important subgroup of the general product G is the “fix group”
F; of Il ; defined by F;={h; € H,/hi h;= h;, for all k¢ H}, containing
all elements #; of the component H;, which are invariant against all map-
pings hy i related to all elements f, € H;. For F; we obtain:

F,=NH.CGNH; NHSG = FH,=HF. (11

If G is a solvable group with Sylow basis P,, . . ., P,, the theory of gen-
eral products is applicable to the subgroups Gi; = PPy = PP, of G.
Important for the construction of the automorphism group A(G) are the
maximal invariant subgroups N of G, ; contained in P, and the fix groups
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FP of I, ;. From (1.11) we obtain:

Fk = n Fg) = N(P1° “ e 'Pk—IPk+1°° . .'P,QG)mPk
j=1
itk

and according to (1.3) F= F;X... XFg is the Sylow system normalizer
related to the Sylow basis Py,..., P, of G.

2. Determination of A(G) by composition of allowable automorphisms.
Let the composed mapping a = @;-... ® Z, with 7, € AP)G=1,...,7r)be
defined by

alpi ... pr) = Wp1*. . WDy (pi € Py).
Then (cf. [1}, ch. II, § 1):
THEOREM 2.1. a € A(G) if and only if

7k 0 pik o gl = ())& /\ ) 2.1)
Lk=1....r
itk
Proof Since P,P, = P, P; we obtain a ¢ A(G) if and only if for i< ks

a7
a(prpd) = (P pi* Pi kpr) = a(pPx 1 P) (pi k pi) = (epi)- (xp:)

= (op) 1 G- 02 (32,
hence :  alpr 1p) = (epe) i(aps) and  a(p; kpi) = (aps) * (apy).

Because of the definition of a, these relations however are equivalent to (2.1).

From the point of view of computation it seems to be profitable to reduce
the number of the relations (2.1), for which we have to decide the equality.
The following theorem is fundamental for this reduction, and therefore for
the construction of A(G):

Tueorem 22, The sign of equalily is valid for dll relations @.1) if and only
if for all generators p” of a generating system{p{"} Of P. the images of the
mappings W, © p; k o ;! applied on the dements p{) and 7, p) qagmautug
system {p{’} of P, are the same as forthe mappings (t;p,)x G, k=1, , B
i*hk.

Proof. 1t is sufficient to prove the relations :

m o (PV-p®) ko mit = (m (PP-pPN k. (0P, PP € (PP, (22
e o piko ”k1 (pf,l) p(z)) (mp.) k ( pgcl) piz)) ( p(l) pgcz) E{Pfc”)})- (2.3)

Then it is easy to give a complete proof of Theorem (2.2) by induction on
the powers of the generators p{” and py” of {p{”} and {p{} respectively, and
by induction on the length of the words in those generators representing the
elements of P; and Py respectively. By the realization of this proof the same
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calculation as below will show that (2.1) is valid on z,(p{" - p?’), We obtain
for k<i:t
o (Bf0-pfP) x omg? 02 i 0Bk ok ot
= mopDk omlom, op®k omy !
since p{V, p{? ¢ {p"}
= (mp(") k o (wp®) &
a2 ((pt?) (rpf?)

= (PP PP £,
proving (2.2), and because of
apopik o mg (PR pP) = mpopiko[ag (0P pP)]
=