
SCHOOL OF ARTIFICIAL INTELLIGENCE

UNIVERSITY OF EDINBURGH

POP-2/4100 USERS' MANUAL

By

Raymond D. Dunn

February, 1970
Revised July, 1972

Incorporating Newsletters 1 - 6

This document and all software referred to therein is copyright of
School of Artificial Intelligence,

University of Edinburgh.

© 1970. School of Artificial Intelligence.

INTRODUCTION
POP-2
Multi-POP
Uni-POP
Address for enquiries

THE TELETYPE AND ITS USE
Input buffer
Character editing
Parity checking
Length of lines
Example
Restriction
Automatic stop/start
Suppression of output
Example

LOGGING IN TO MULTI-POP

CONTENTS
1
1
1
2
2

3
3
4
4
5
5
5
5
7
8

8

LOGGING OFF MULTI-POP 10

LOGGING ON & OFF UNI-POP 10

MULTI-POP STORAGE RESERVATION 11
Changing reservatiQn 11
Clearing store 12

PROGRAM INTERRUPT FACILITIES 12

THE STACK 14
Common causes of stack
errors

Resetting the stack

ARITHMETIC
Restrictions
High precision reals
Example

ITEMS AS BIT STRINGS

INITIAL VALUES FOR VARIABLES

INITIALISATION OF FUNCTION
NAMES, AND FNPROPS

SECTIONS

COMMENTS

ERRORS

SETPOP

INPUT/OUTPUT FACILITIES
Files & character
repeaters

Examples
Time limits on devices
Use of specific devices
and file format

The disc system

16
17

17
19
19
20

22

22

22

23

23

24

25

26

26
29
29

30
33

Examples 35
Input/output of Text Items 36
PROGLIST 37
Standard outputting
facilities 38

Format of files when output 38
Functions available 39

COMPILING PROGRAM FILES 40

DISC FILING 41
Initialising tracks 42
Commands 42
Housekeeping 44
Errors 45
Examples 45

PROGRAM LIBRARY 49

FILE EDITING FACILITIES
Edit commands
Editing errors
Examples

DEBUGGING FACILITIES
How to use them
Examples

TIMING FACILITIES

ASSESSING CORE REQUIREMENTS

DEFICIENCIES & DEFINITION
CHANGES

ADDITIONAL AVAILABLE STANDARD
FUNCTIONS

REFERENCES

APPENDIX 1.
A complete session at a
Multi-POP console

49
50
52
53

56
56
59

59

60

61

62

63

64

APPENDIX 2.
POP-2 character set 66

APPENDIX 3.
Error numbers with meanings 67

APPENDIX 4.
OPERATING INSTRUCTIONS
Loading Multi-POP 70
Console messages in Hulti-
POP 72

User disc tracks 74
Updating disc based library 74
Loading Uni-POP 75
Console messages in Uni-POP 76
Uni-POP batch processing 76

INDEX TO ALL POP-2 WORDS 78

- 1 -

INIRODUCTION

I NTRODUCT ION

This manual describes the multi- and uni-access versions of
the conversational programming language POP-2 implemented on the ICL
4100 computer series. Certain sections are only relevant to one or
other of these systems, known respectively as Multi-POP and Uni-POP,
and are clearly marked as such.

The systems described are those in use in the School of
Artificial Intelligence; certain facilities may differ, or be excluded,
in POP-2/4100 systems available at other installations. Details will
be found in the documentation relating to specific installations.

POP-2

POP-2 is a conversational programming language developed
by R.M. Burstall and R,J. Popplestone in the Department of Machine
Intelligence, University of Edinburgh, and is described in Programming
in POP-2 (1971). A working knowledge of POP-2 is assumed in this manual.

Certain facilities described in the Reference Manual are not
available, or are implemented differently. in the POP-2/4100 systems.
It is recommended that reference should be made to this manual before
any facilities are used.

Multi-POP

Multi-POP is a multi-access version of POP-2 based on the ICL
4130. The hardware configuration on which the system is currently
running in the School of Artificial Intelligence, is as follows :-

4130 processor with 64K of 2~s core
control teleprinter
2 paper tape readers
2 paper tape punches
8 channel teleprinter controller
1 real time clock
1 300 LPM lineprinter
3 4 million character disc drives
2 H3l6 computers, one of them connected to

the Department's experimental robot

(32K)
(1)
(1)
(1)

(4 chan ,)
(1)
(-)
(-)
(-)

(The figures given in brackets indicate the minimum hardware requirements
for the system.)

- 2 - INTRODUCTION

A maximum of eight users may use the system simultaneously
and are all permanently core resident, sharing the available Ilo
facilities. Time-sharing between users is by a simple 'round-robin'
mechanism, all users having equal priority.

Uni-PoP

Uni-POP is a uni-access version of the above which can be
run in one of two modes ,_

(a) As a dedicated single user conversational programming system
using the control teletype, or

(b) As a dedicated POP-2 batch processing system using paper­
tape input and lineprinter output,

The minimum hardware configuration is as above without the
multi-teleprinter controller and real time clock.

Errors and changes to specification

. The correction of any er:rors,additions, or changes
specification of any facility described in this manual will be
in the POP-2/4l00 Newsletters which appear from time to time.
may be obtained from the address below, to which all enquiries
also be made :-

to the
published
Copies

should

D,J.S. Pullin,
School of Artificial Intelligence,
University of Edinburgh,
Forrest Hill,
Edinburgh,
ERl 2QL.

Telephone: 031-226-3101 Ext. 29

- 3 - USE OF TELETYPE

ruE TELETYPE AND ITS USE

The console used is a 4100 coded teletype. POP-2 identifiers,
and POP-2 systems words which are normally underlined, are both typed
in upper case without underlines, thus systems words such as VARS.
FUNCTION, END, etc. may not be declared as identifiers.

The standard POP-2 character set is defined in APPENDIX 2.
If any character is typed other than those listed, or whose effect is
explained below, it will normally be ignored, and if it is a printing
character, a back arr.ow (+) will be output to signify this.

The dialect of the ISO code specified for the Edinburgh
Regional Computing Centre may be used with the following substitutions •

for ~ type E
" '" (acute accent) II , (apostrophe)
" 10 " t
II .. (grave accent) " @
" E II

'"" + " (underline).....
Four other characters are used as special control characters

in the system; these are produced using CIRL with another key. and
cause t followed by the relevant letter to appear on the console.
They are :-

CTRL and G
CTRL and 0
CTRL and R
CTRL and T

(called BELL)

(called READY)
(called HALT)

Note when the SHFT and CTRL keys are used, they should be pressed
down first and held down while the other required key is pressed - do
not press both keys simultaneously.

Input buffer

All characters typed on the teletype are stored in a software
'buffer' and are passed to the system as complete lines. A line is
defined as zero or more characters followed by the~uRN keY:--The
system acknowledges this by outputting a LINE-FEED. It is possible to
continue over more than one physical line on the teletype by typing
LINE-FEED immediately followed by RETURN. but note that the maximum
number of characters the system will accept in one line is 128; (the
effect of typing the l28th character is the same as if CR had been
typed. i.e. the line is terminated).

- 4 - CHARACTER EDTING

Note that LINE-FEED followed by RETURN is passed to the
system as a single character.

When HALT is typed, the character TERMIN (see section on
Input/Output) is passed to the system and the line is also terminated.
This can only be used in certain documented cases, and will otherwise
have an undefined result.

The system indicates when it is ready to accept input by
outputting either a colon (:) or two colons (::) followed by a space,
and after typing CR the user must wait for this to be output before typing
anything further. Any characters typed by the user before colon and
space appear are ignored, and + is output by the system after each such
character.

Character editing

Because of the buffering, it is possible to edit lines of
characters before they are passed to the system. This is achieved
by the use of the + and ! characters.

+ deletes the immediately preceding character on that line.
successive use deleting the corresponding numb~r of
preceding characters. Note that space is treated as a
character in this context. If + is typed as the first
character on a line it has no effect.

deletes the whole line up to it; the system acknowledges
the fact by outputting CR/LF followed by colon and space.
and waits for the line to be retyped.

NOTE. The above facilities may be used up to the typing of RETURN,
but as soon as RETURN is typed, the line is passed to the system as
it stands.

Parity checking

All characters are checked for even parity as they are
typed; if an odd parity character is detected, it is ignored, and
the system outputs ~ to signify this. Excessive rejection of characters
in this way indicates a hardware fault in the teletype in use, or a bad
line to the computing system. The latter may often be cleared by
reinitiating the connection.

- 5 - EXAfoft.£ OF INPUT

Length of output lines

The teletype is set to have a maximum line length of 72
characters. When outputting, to avoid.overprinting at the end of a
line, the system substitutes a new line for the first space encountered
after the 65th character has been printed. If no space is found, ·a new
line is inserted immediately after the 72nd character has been printed.

Example of teletype input

: 2+3+4 => (replace 3 with 4)

** 6,
: SORT(9) +!
: SQRT(9) + 5 =>
A+
** 8.0,
: #ABC EF+++DEF' =>

(delete the line)

(character typed too soon)

(note that space is significant)

** ~ABCDEF",

Important restriction

As the input buffer is also used by the system when out­
putting characters, if any output occurs before a line has been
completely processed, the rest of the line is lost.

Thus :-

: 3+2 => 5*3·=>

** 5.

when the first => is encountered, it is obeyed, and the resulting output
causes the remainder of the line to be lost.

This is only troublesome when typing statements in execute
mode, i.e. outside a function body, as no output can take place wh11e
a function is being input. '

Particular care should be taken to note the effects of this,
especially with respect to COMMENTS (see page 23).

Automatic stop/start reader facilities

It is possible to input paper-tapes directly from teletypes
fitted with automatic readers (within School of A.I., all converted

- 6 - AUTOMA~ICSTOP/START

teletypes (i.e. those with 4 lights/buttons on their right hand front)
have this facility).

The mechanics of the reader work as follows :-

The control lever is biased towards the centre. In this position
it can be controlled automatically by the computer. If the lever is
pushed upwards, this starts the reader manually, and tt pushed down­
wards a small amount, this stops the reader manually.

In the fully down position, the tape is free to be moved
backwards and forwards. When using the automatic facilities. the
lever should always be returned to the centre position.

A standard function POPAUTOREAD (€truthva1ue=>(» is provided
to enable the user to set his console into automatic reader mode
(POPAUTOREAD(TRUE» or to return to normal mode (POPAUTOREAD(FALSE».

To have a tape prepared in the manner given below read from
the teletype automatically. the user should load it in the reader,
leave the control in the central position and type POPAUTOREAD(TRUE);CR.
The tape will now be input.

When in automatic reader mode a line of input is terminated
by the X-OFF (CTRL S) character, and RETURN is completely ignored.
X-OFF also has the effect of switching the tape reader off. This
process takes several characters to be fully accomplished. and so
X-OFF on tapes should be followed by at least 3 blank (run-out)
characters. When the system is ready to accept more input, as well as
outputting colon/space, it outputs the X-ON (CTRL Q) character which
switches the reader back on again.

Thus tapes prepared off-line for input to Multi-POP on
teletype readers should be typed with X-OFF followed by at least 3
blanks at the end of each 'buffer' of input. A 'buffer' can be up
to 128 characters long. but users will probably find it convenient to
follow each CR/LF by X-ON/BLANK/BLANK/BLANK except where lines are very
short.

Backarrow (+) and exclamation mark (!) may be used to
edit tapes being prepared off-line in a similar way to their use when
typing on the teletype, however, it should be noted that! causes all
characters before it up to the last X-OFF to be ignored, and CR/LF is
not output.

If a parity error is detected when reading in automatic mode.
the whole buffer which included the error is ignored, the system
outputs : ! on a new-line, and the reader is not switched back on.

- 7 - SUPPRESSION OF OUTPUT

The user can thus type this buffer in again remembering to terminate it
with the X-OFF character, when the rest of the tape will now be read
automatically. Similarly if the tape contains more than 128 characters
before an X-OFF, the whole section from the previous X-OFF is ignored
and the system reacts in the same way as for a parity error.

The HALT character may be used on tapes in the same way
as it would be used when typing except that tT is not output and HALT
does not terminate the buffer.

These differences between typing and reading from the reader
are essential to ensure that the system and the reader are always in
step with each other.

Normally all tapes prepared for use in this way should be
terminated by: POPAUTOREAD(FALSE); CR/LF/X-oFF/RUNOUT. This will
cause the system to revert back to normal mode and the reader to
remain off. If a whole session's input was prepared on tape it could
be terminated by: POPAUTOREAD(FALSE); •LOGOFF; CR/LF!X-OFF/RUNOUT and
thus the user could set his console into automatic mode when logging
on and leave it to complete his run and log him off. This should be
particularly useful for long production jobs.

Output to console in automatic reader-mode : To enable users
to output files in a form suitable for input on the teletype reader.
the system, when in automatic reader mode, follows every CR/LF output
to the teletype by X-OFF/BLANK/BLANK/BLANK. Tapes thus produced may
be re-input on the teletype reader with no difficulties.

Errors: If an error which calls the standard system error
routine occurs, the teletype is automatically switched back to normal
mode.

SETPOP does not reset the the teletype to normal mode.

Suppression of teletype output

It is often useful to be able to stop and start output
appearing on the teletype without affecting the process which is
producing this output (e.g. to stop the monitor printout produced by
the command ON in POPEDIT without affecting the edit process, when one
has forgotten to do an OFF command).

This facility is provided by use of the CTRL p key.

- 8 - SUPPRESSION OF OUTPUT

a) If the console is in the process of printing;

The CTRL P key should be pressed, and then pressed again within
i sec. while the output pauses.

If this is successful, ~P will be printed and the output will
immediately stop (as if an assignment equivalent to ERASE ->
CHAROUT; had been done).

b) If the console is in input mode pressing the CTRL P key has no
effect.

c) If the console is in wait mode (i.e. neither in input mode nor out­
putting) pressing the CTRL P key causes ~P to be printed and,will
inhibit any output occurring.

Output is restored on the console by pressing the CTRL P key a second
time and also after anything is input on the console.

CTRL P may be used to inhibit any output on the console, no matter
what its source. (i.e. from user programs, systems messages etc.)

Example

FUNCTION F; LO: A.PR; A+1 -) A; GOTO LO END;
.A;

1 2 3 4 5 6 7~P~P (CTRL P pressed and then pressed
again after a short time.)

254 255 256tP~P (Output restarts - process bas
been continuing without output.
repeated.)

1567 1568 1569~G (CTRL G pressed to abandon
process.)

SETPOP:

• FF();

COMMENTS [FF~P:
: .LOGOFF;

(CTRL P inhibits the rest of
the comments message and all
the error 37 that is given.)

CPU TIME UStP (Stop rest of logoff message.)

- 8a - AUTOMATIC LOGOFF

Automatic Logoff

Incautious use of the CANCEL facility can make it impossible
for a user to logoff in the normal fashion (see below). To remedy this
the user should hold down CTRL and SHIFT and type K.

This will transfer control to the LOGOFF routine and the
normal message will appear.

It can also be used if a private crunch has occurred
under Multi-POP 70.

If the teletype is outputting, the key will need to be
pressed twice, as described in the previous section.

LOGGING IN TO THE MULTI-POP SYSTEM

After the user has set up his connection to a free channel
of the system (information on which can be found in the relevant
section of the folder 'Multi-POP Information for Remote Consoles' which

- 9 - LOGGI r-lJ ON

accompanies all Multi-POP consoles), he should switch his teletype to
the LINE position. (For teletypes with a SIMPLEX/DUPLEX switch,
DUPLEX should be selected and the ON button pressed).

The system is activated by pressing BELL, all other input
being ignored.

MULTI-POP SYSTEM. ISSUE <issue>. <time> <date>.

is output, where <issue> is the issue number of the system in use,
and <time> and <date> are the real time and date of the run. A system
message may then be output, and the demand :-

NAME:

appears. The user should type in his identifying initials (followed
of course, by the CR key). If an acceptable name is not given, the
demand is re-output, otherwise the message :-

STORE <n> BLOCKS FREE:

appears, where <n> is an integer and denotes the number of blocks of
512 words of store currently available for use. The user should type
in the number of blocks he wishes to reserve (0 to <0» which will
normally have been pre-arranged through the system booking scheme.

If a reply is unacceptable to the system, i.e. an integer
in the range 0 to <0> is not input. the store request message will be
re-output. Note that the number of blocks of store available may
change between the store request being printed and the user typing a
reply.

When an acceptable number of blocks have been requeste.i.
the message :-

D1SC TRACK:

is output. The user can type one of three options '-

i) 0 if he does not wish to use the standard
disc filing system, or has not yet got a
track initialised.

ii) an integer <0> which causes the files on track <n> to be
available.

iii) a list of integers which causes the files on all the given track
numbers to be available, and the head of the
list to be the current track.

-10- LOGGINGOFF

(For full details see page 41).

Then the message :-

SETPO!): (see page 25)

is output on the teletype and the system is ready for use.

If a user wishes to return to the start of the logon
process before the disc request is output, he should type the BELL
character.

LOGGING DEE WE f1JLTI -POP SYSTEM

When the user has finished with the system, he should log
off by typing :-

LOGOFFO;

The system ~vil1output the message :-

CPU TIME USED = <time used>.

LOGOFF <time> <date>.

where <time used> is the amount of actual central processor time used
during the runt to the nearest sixteenth of a second, and <time> and
<date> are the real time and date at the finish of the run.

On logging off. the user's workspace is cleared, and all
devices currently allocated to him are closed. Care should be taken
to ensure that any disc files in use have been terminated before
logging off. (See page 41).

LOGGING INTO, AND OFF. DiE UNI-rop SYSTEM

When the system has been input and set up (see APPENDIX 4),
the demand :-

NAME:

appears. The user should type in his identifying initials followed
by carriage-return. line-feed.

SETPOP:

- 11 - STORAGE SCHEME

is output and the system is ready for use. The user's name is required
in Uni-POP both for file identification and for disc use.

To log off the system if another user is about tu use it,

LOGOFF ();

should be typed, the store will be cleared. and the demand .-

NAME:

will be output. ready for the next user.

THE t1JUI-POP STOOAGE RESERVATION SCHEME

When a user logs on to the Multi-POP system, the store he
reserves is not immediately allocated to him. and the user is not
strictly limited to staying within the limit of this reservation. When
a user's program requires store, the system attempts to allocate it
for him, and if none is free, a scan is made to determine if any user
is exceeding his reservation. If such a user is found, he is logged
off by the system, the message .-

** CORE REQUIRED = <0> BLOCKS

I,,·jug printed, where <n> is the number of blocks being used. If more
11,"11 one user is exceeding his reserved amount. the worst offender
i~ 'killed' by the system first. Note, however, that 'joyriders'
(UN~IS who are logged on with a reservation of zero blocks), are killed
before any others.

If, after the above has been carried out. the required
amount of store still cannot be found, the user requiring it is given
error 50, the CULPRIT being the actual number of words of store which
the user required.

A standard variable. COREUSED. holds the number of words
of store currently being used by a user. This variable is automatically
updated by the system every time a garbage collection takes place.
and may be used to determine how many blocks should be reserved for
each job.

C.I':I.ngingMulti-POP store reservation

At any time during a run, the user may change the amount
ut Lore currently reserved for his use by applying the function STORE.

- 12 - PROGRAM INTERRUPTS

STORE«n»; changes the user's reservation to <n> blocks.

The function gives a boolean result indicating whether or
not the store requested was available, e.g.

: STORE(10) =>

** 1, indicates that the user has successfully
changed his reservation to 10 blocks.

: STORE(30) =>

** 0, indicates that 30 blocks are not available,
the user's reservation remains unaltered.

Clearing store

A standard function, CLEARPOP, i~ provided to clear all
workspace currently in use; the dictionary is cleared, the stack is
reset, all devices allocated to the user are closed, and the system
asks for the user's new disc requirement.

ClEARPOP()i

SYSTEM CLEARED, RESTART
DISC TRACK:

PROGRAM INTERRUPT FACILITIES

Full interrupt facilities which allow either continuation
or the abandoning of the current process are implemented and have been
so designed that unintentional interruption, either by the user or
by poor data transmission lines, is almost impossible.

in Uni-POP

Pressing the message key will cause an interrupt. If the
console is in the process of printing, the current buffer will be output
before the interrupt takes effect. SETPOP is then entered as for CTRL G
under Multi-POP.

During a batch run, the effect is slightly different - see
APPENDIX 4.

.• 13 - PROGRAM INTERRlFTS

In Multi-POP

A process is interrupted by pressing either the CTRL G or
the CTRL R keys to give either an immediate call of SETPOP (thus
abandoning the job) or an exit to READY level respectively. This is
done by :-

a) If the console is in the process of printing:

The required key should be pressed. and then pressed again
within! second while the output paus~s.

If this is successful then tG or tR will be printed, other­
wise output will continue and the user should try again.

b} If the console is not outputting:

The required key should be pressed once. This will be printed
as tG or tR.

1f CTRL G is used, the system will now immediately call SETPOP (q.v. page 25
and all current processes will be abandoned. All variables retain their
current value~, and may therefore be interrogated.

If CTRL R is used, the teletype will finish outputting its current
lIutputbuffer (up to 128 characters), if any. The system then enters
the user-definable function POPRDYFN of no parameters, which is set
initially to be IDENTFN. On normal exit from this function. the system
outputs

READY

and waits for input from the console. When at READY level the system
indicates a request for input by outputting 2 colons C::) followed by a
space to remind the user that he is at this level.

If POPRDYFN requires input from the console, the message

READY: :

is output at that time instead of later.

If "GOON" is compiled inside POPRDYFN, the suspended process is re-started
as described below.

The printing of READY signifies the following .-

i) The current process has been suspended.

ii) The stack is 'frozen' at the state it was in at the time of
interruption (its contents are not available to the user).

- 14 - THE STACK

iii) All variables are left with their current values.

iv) Input and output revert to the teletype and ERRFUN is given
its standard value.

The user is now free to start any other process (e.g. he may wish to
change the values of variables, redefine function definitions, turn
bugging on or off, etc., or do something completely unrelated to the
suspended process). This process itself may be suspended by READY or
the last suspended process re-started by typing GOON. This resets the
system exactly as it was at the time of suspension except that all
variables redefined during the suspension keep their new values.

The number of processes which can be suspended simultaneously
is entirely dependent on the stack used by each process.

A standard function POPREADY(€()=>() is available to the
user. When called, this has the same effect as if CTRL R had been
pressed.

JHE STACK

The operation of POP-2 is based on a stack mechanism. This
is a last on-first off storage mechanism, and because of its importance
in the system, a short explanation of how it is used, both explicitly
and implicitly, by the user is given here.

Without exception, the values of variables. elements of data
structures, arguments and results of functions etc., are all accessed
and assigned to via the stack. Consider the statement :-

Xi

This can be interpreted as 'load the value of the variable X onto the
stack'•

Further. the assignment statement :-

X->Vi

can be read as 'load the value of the variable X onto the stack; remove
the top item from the stack and store it in the variable Y'. Thus the
assignment statement '-

->Y;

with no apparent source is meaningful, and the statement ._

- 15 - THE STACK

X. Y->X->Vj

will swap the values of the variables X and Y.

On entry to a function, the values for the formal parameters
are taken from the stack, and any results of the function are left on
the stack, this can be seen by the following two functions which are
exactly equivalent .-

(1) FUNCTION LOGADD X Y => Zi
LOG (X) + lOG (V) -> Zi

END;

(2) FUNCTION LOGADDj
VARS X Y Zi

-> V -> Xi
LOG(X) + LOG(Y) -> Zj
Z

END;

The USe of the variable Z is, of course, unnecessary, and
is only included to make the point clear, the following function (3)
being the most common form of doing the above,

(3) FUNCTION LOGADD X Vi
LOGeX) + LOGCY)j

END;

It should be noted that any possible combination of the
methods used in tbese functions is meaningful, and is legal POP-2.

Finally, it follows from the above, that when a function
is called, its arguments must be supplied on the stack, thus ;-

(a) LOGADOCA,B)
and (b) Ai LOGAOD(B);
and (c) Ai Bj LOGAOOC);

are all equivalent in their effect; they all provide two arguments on
the stack for the function LOGADD. Functions with n arguments may
apparently then be supplied with less than n (e.g. in (b) above), so
long as all the required arguments have been put on the stack before
the function is called. Similarly, more than n arguments may be
supplied, the last n being taken by the function.

Understanding and full use of the stack leads to simpli­
fication and flexibility when programming. The stack may be used to
hold any number of values (subject to the restrictions given below),
either temporarily or semi-permanently.

- 16 - STACK ERRORS

The effective length of the stack is fixed at 330 locations,
and is used to hold function entry information as well as its normal
program use. This information is stored at the opposite end of the
stack from that used by the user, is put there on entering a function
body and is removed on exit from the function. It consists of a two
word link (giving information about the position the function was
called from) and the saved values of all variabLes local to that
function.

The amount of space required is 2+n locations of the stack
for every entry of a function with n local variables (including formal
parameters), and thus the depth of functions to which a program can go
(including recursion) is limited.

This depth is dependent on the number of local variables
of the functions entered and on the amount of stack used by the user
himself. It can be calculated for a particular program from the
figures given.

If an attempt is made either to remove something from the
stack when it is empty, or to add something to the stack when it is
full, an error is given (errors 52 and 51 respectively). For reasons
of efficiency, this checking is done by noting the position of the
'stack pointer' whenever the system executes a function entry, a
function exit, or a backward GOTO. If the 'stack pointer' is outside
the limits of the stack when these mechanisms are obeyed, the error is
given, and the culprit is FNENTRY, FNEXIT or BACKJUMP respectively.
Because several stack operations may take place between checking points.
it is possible for the stack to go out of bounds and return to a legal
state without the system spotting the error, the result being undefined.

Undetected overflow cannot occur unless more than 20 items
are put on the stack between checks, but undetected underflow can be
caused by only one stack unload-load operation.

Common causes of stack overflow and underflow

The most common cause of stack underflow is not providing
enough arguments for a function, and of overflow is an infinitely
recursing function or group of functions.

Note that the compiler and systems routines all use the
stack, and a stack overflow can occur during their execution. Common
instances where trouble is met are listed below ~-

a) COMPILE

If this is used recursively to more than a depth of 3 or 4,
stack overflow may occur.

- 17 - ARITH'1ETIC

b) OATALlST

This function puts all of the components of the data structure
onto the stack before creating a list. The maximum length
of structure it will be able to handle depends on the stack
usage at that particular time, but will be less than 320 in
any case.

c) CHARACTER STRINGS
When the system reads a string, the stack is used to hold
the characters (3 to a location) until the end of the
string is read. This then lhnits the length of strings
to be about 900 characters at the most. However, because
the stack usage is undefinable by the user while systems
routines are in operation, it is wise to keep their length
to below 250 characters.
NOTE. Because of this, if a closing string quotes is
omitted, the compiler will continue reading program as
part of the string, and error 51 will eventually be given.

d) LIST EXPRESSIONS

Each element of the list is put on the stack before the list
is created, thus list expressions producing large lists
may give trouble.

Resetting the stack

The stack is cleared by the function SETPOP (see page 25).

ARIDiMETIC

The 4130 has a 24-bit word, and for normal operations both
integers and reals are held in one machine word. A set of functions is
provided to operate on 48-bit real numbers, using the hardware floating
point facilities. These are described at the end of this section.
Because the POP system requires one or two bits for control purposes
the specification of numbers is as follows :-

Integers lie within the range -221<1<221 i.e. from -2097152 to 2097151.
Reals are held as a 6-bit exponent-and 17-bit mantissa, giving 5 decimal
digits accuracy. Reals must lie in the range -1*231<R«1-2 16)*231,
i.e. from -2147000000 to 2147000000. Because the fifth digit of accuracy
is quickly lost during arithmetic operations, only 4 decimal digits are
shown when reals are printed. The smallest fraction which can be
represented is 2-33 i.e. approximately 10-10•

- 18 - ARITI-IMETIC

High preC1S10n reals have a 9-bit exponent and 39 bit mantissa
giving 10 to 12 digits accuracy. The range is from -4.3~l076 to
5.8*1076, the smallest number being approximately 4.3*10 78

Arithmetic is handled interpretively, i.e. the type of
the arguments (real or integer) are determined at run time, the follow­
ing operations being available :-

Operation Precedence Explanation Arguments Result

< 7 less than Integer or real Truthva1ue

> 7 greater than Integer or real Truthva1ue

=< 7 less than or
equal Integer or real Truthvalue

>= 7 greater than
or equal Integer or real Truthvalue

+ 5 add Integer or real Integer or real

5 subtract Integer or real Integer or real

* 4 multiply Integer or real Integer or real

/ 4 divide Integer or real Real

/1 4 integer divide
with remainder Integer Integer

l' 3 exponent Integer or real Real

+, - and * produce an integer result if both arguments are
integer, otherwise a real.

II produces two integer results, the remainder and the
quotient in that order.

If an operation on two integers gives a result outside the
range of integers, the number will automatically be converted to type
real.

ERROR 45 is given if any of these operations (or other
arithmetic function) is applied to a high precision real.

The other arithmetic functions provided are :-

- 19 - HIGH PRECISION REALS

Function Explanation Argument Result

INTOF Entier (Integer part) Real Integer

REALOF Convert to real Integer Real

SQRT Square Root Integer or real Real

SIGN -1. 0, or +1 according
to sign Integer or Real- Integer

SIN Trig function Integer or real Real
(In Radians)

COS Trig function Integer or real Real
(In Radians)

TAN Trig function Integer or real Real
(In Radians)

LOG Natural logaritlun Integer or real Real

EXP Natural anti-logarithm Integer or real Real

ISNUMBER Test for number Any item Truthvalue

ISREAL Test for real Any item Truthvalue

ISINTEGER Test for integer Any item Truthvalue

Note that INTOF produces the integer part and not the
nearest integer as specified in the Reference Manual.

Restriction

The representation of zero is the same for both integer
and real, and thus a type change may be experienced in a variable if
its value was real and passed through zero.

High precision reals

A set of standard functions is provided to allow double­
length (48-bit) floating point operations to be performed.

As these items require 2 words of core per number, a
storage allocation would normally be required after each operation,
making them slow and inefficient. Because of this, the facilities
have been kept separate from the normal arithmetic operations, and
have been implemented as 'pseudo machine-code' instructions in which
each user has his own floating point accumulator (FPA)

In the following specifications.

- 20 - HIGH PRECISION REALS

number

is the users' floating point accumulator.
is a standard POP-2 integer or real.
is a record containing a 48-bit real.
It has no selectors or updaters, and has
the dataword "HPREAL".
is either a simple or a hpreal.

FPA
simple
hpreal

HPROF € simple c> hpreal. Does not affect the FPA.
HPRLD e number => loads the FPA.
HPRADD, HPRSUB, HPRMUL, HPRDIV

all E hpreal => the respective operation between
the FPA and the hpreal to the FPA.

HPRLT. HPRGT. HPREQ, HPRLEQ, HPRGEQ all e: hpreal ::> truthvalue
i.e. compares the given bpreal with the FPA and gives
truthvalue for the respective operations corresponding
to <, >, =. =<, >=. .
These operations do not affect the FPA.

HPRUNLD e: () => hpreal
i.e. forms a HPREAL record from the FPA.
Does not affect the FPA.

HPRST E hpreal => puts the FPA into the given hpreal (i.e. a non­
constructive unload).
Does not affect the FPA.

HPRRLOF e: hpreal c> real
i.e. converts a hpreal to a real.

Notes:

i) An hpreal is never equal to a simple.
ii) An hpreal is a compound item.

iii) Hpreals cannot be input or output directly, the functions
HPROF t HPRLD and HPRRLOF must be used.

iv) No type checking is done except in the case of HPRST. This
further improves efficiency.

v) The functions are much faster than their equivalent real
operations.

vi) HPRRLOF will give ERROR 33 is an attempt is made to convert
an hpreal which is too large to represent by a real. It will
give zero for hpreals too small to represent by a real.

Example of use

Let us first define some operations and a macro to simplify
the use of these instructions :

VARS OPERATION 1 (++ -- ** III && --> »);

- 21 - HIGH PRECISION REALS

HPRGT -> NONOP»i
HPRADD -> NONOP++i
HPRSUB -> NONOP--;
HPRMUL -> NONOP**;
HPRDIV -> NONOPIII;
HPRLD -> NONOP&&j
HPRST -> NONOP-->j
MACRO -»j MACRESULTS«(;.HPRUNLO->]) END:

Note that -» causes a 'constructive' assignment, i.e. an
HPREAL record is formed, whereas --> causes the FPA to be put into an
existing HPREAL record.

We can now do for example :

&&0 -» Aj (load the FPA with 0, create an HPREAL from
the FPA and assign it to A)

&&1.56 -» C -» Dj

(The above does not affect the FPA, this produces
another HPREAL of 0 and assigns it to B)

(Load the FPA with the high precision value of
1.56, create 2 l~REAL records of it and assign
to C and D)

-» B;

: D =>
** <HPREAL>, (D is an HPREAL record)

: D.HPRRLOF -> (Print its real value)

.* 1.56,
HPRRLOF(7.S)-> E;

: --E --> Aj
: A.HPRRLOF =>
** -6.06,
: »E =>

(Create an HPREAL of 7.5 and assign to E)
(Subtract E from the FPA and put the result
in A without creating a new record)

(Print the real value of A)
(Do a test equivalent to FPA>E)

** 0, (False, i.e. -6.06<7.5)

If we now want to do the equivalent of the arithmetic expression:
(A + B) * (C - D/2) -> E; we proceed as follows, remembering that these
are equivalent to machine code instructions, and no rules0f precedence
can exist. (Assume At Bt Ct 0 and E are hpreals as above).

: -» WS; (Create an hpreal from the FPA (contents not
relevant) and assign to WS as a workspace
record)

&&2 -» TWOi (Load the FPA with 2 and create an hpreal
assigning it to TWO)

&&O///TWO --) WSi (Load the FPA with D and divide it by TWO
non-constructively storing this in WS)

&&C--WS --> WSj (Load the FPA with C, subtract D/2 from it and
store back in WS)

&&A ++ B ** WS --> E; (Load A. add B, multiply by C-D/2 and store the
result in the hpreal E)

- 22 - VARIABLE INITIALISATION

ITEMS AS BIT-STRINGS

All the functions defined in the Reference Manual to operate
on bit-strings are implemented as standard. They may be applied to any
item, but when they are, that item will be regarded as a positive
integer with a maximum size of 222_1. Bits 23 and 24 will be set to
zero.

INITIAL VALUES OF VARIABLES

When a variable is declared, the system initialises its
value to be a pair whose FRONT is the name of the variablet and whose
BACK is the word UNDEF. Macros and operations are initialised to
a call of ERROR 37. Thus:-

VARS TEST;
TEST =>

** (TEST. UNDEF],

INITIALISATION OF FUNCTION NAMESAND USE OF ENPRQPS

The FNPROPS of a function is used by the system to hold the
name of a functioDt and is also used to hold the SPEC information for
the debugging routines (see page 56). When a user wishes to use the
FNPROPS for his own purposest he shouldt to avoid inconsistencies,
take this into account, and leave the FNPROPS in a format which can be
handled by the systems routines. The format of FNPROPS is initialised
by the system to be as follows :-

a) With anonymous functions FNPROPS is set to be NIL.

b) With functions which are input in the form :-

FUNCTION <name>•••i

END;

The FNPROPS is set to be a list whose head is <name>.

I~en a function is SPEC'ed the FNPROPS is set to be a list
whose head is a list in the form :-

[<name>[<parameter names>][<result names>]]

- 23 - SECT! ONS - CD'MENTS

Thus when the system wishes to access the name of a function
(e.g. to print it). it assumes that it is either the head of the
FNPROPS or if this is a list, then the head of the head.

The user should thus always use the tail of the FNPROPS,
and if this is NIL, a list whose head is NIL (or a name defined by
the user) should be created when inserting user information.

SECTIONS

Sections have been implemented differently from the description
given in the Reference Manual. The discrepancies are :-

i) Sections must be given a name.

ii) The external list may be divided in two by the identifier 0>.
Only those elements which follow the :> are included in the macro
expansion of the section name.

iii) Users' identifiers in the text enclosing the section may not be
used inside the section unless they appear in the external list.

iv) Syntax words and standard identifiers which cannot be re-defined
by the user are made internal to each section; those which can
be re-defined are treated as though they appeared in the first
part of the external list.

v) Users' identifiers which are used inside the section without
appearing in the external list, are internal to the section,

-and cannot be accessed outside it.

OO11ENTS

Whenever the compiler encounters an identifier which it has
not met before (i.e. has not been declared), it is added to the user's
dictionary as a new name, global for the current SECTION. If the standard
variable POPCOMMENT is set to TRUE, the name is added to a list of such
names, and as soon as the end of the current statement, if in execute mode,
or the end of the current function, has been reached, the word COMMENTS
followed by this list will be output to the teletype. If POPCOMMENT is
false. no output occurs.

- 24 - ERRORS·

ERRORS

On the detection of an error, either at compile time or run
time, the system calls the standard function ERRFUN. This is normally
defined to output a message of the form :-

ERROR <number>
IN FUNCTION <name>
IN SECTION <name>
CULPRIT <offender>

If the standard variable POPDOTRACE is set to TRUE the function POPTRACE
is entered. which outputs :-

CALLING SEQUENCE:­
FUNCTION -
FUNCTION -

FUNCTION POPVAL

POPAUTOREAD(FALSE) is obeyed and concrol reverts to the teletype by
i.l (:11I 1 of SETPOP.

<number> i; the number of the error condition.

<name> is the name of the function and section(s)
(if any) in which the error was detected. and

<offender> ia the illegal item met. The actual
significance of this depends on the
error given. and is normally self­
evident.

A full list of error numbers with their meanings can be found
in APPENDIX 3 of this manual.

In some cases it is not possible for the system to output
either one, or both, of the function name and culprit (e.g. if arithmetic
overflow occurs, the offending number is already too large to handle,
and cannot be printed).

POPTRACE can also be called
output the calling sequence. The last
always be POPVAL (i.e. the compiler);
active (including anonymous ones) will
systems functions.

by the user at any time and will
function shown in the trace will
all user functions currently
be shown as will relevant active

- 25 - s~p

ERRFUN may be redefined by the user. It is given two
arguments, the culprit and the error number, ~n that order, and may
be defined to exit by the call of a function produced by JUMPOUT (see Ref.
Mar-ual). If a user defined value of ERRFUN is allowed to exit normally
(i.e. through its end) vhen called by the system, the function SETPOP
will be entered. This restriction is required because the system
routines are not designed to be able to continue after an error
condition has been met.

The uSer may call either the standard value or his own
value of ERRFUN from his program. In this case, the function SETPOP
is not entered.

A call of SETPOP resets ERRFUN to its standard value.

SEIFQP

When called, the function SETPOP has the following effect :-

a) The current process is abandoned.

b) The stack is cleared.

c) All active SECTIONs are exited from.

d) All barriers set up by BARRIERAPPLY are abandoned, and subsequent
attempts to REINSTATE any previously created state will cause an
error.

e) CUCHAROUT, the current output device, is reset to CHAROUT.
i.e. output reverts to the teletype.

f) ERRFUN is reset to its standard value.

g) DEBSP is set to zero (see page 58).

h) Any names on the COMMENTS list are output.

i) The word SETPOP is output on a new-line.

j) Input reverts to the teletype and PROGLIST is reinitialized.

Note that the current values of local variables are not
affected, and that SETPOP does not alter any device allocation. However,
because CUCHAROUT is reset, users should take care that character
repeaters are not lost (see page 38).

- 26 - INPUT/OUTPUT

INPur/ourpuJ fACILITIES

Files and character repeaters

Information may be supplied to the POP-2/4100 system from
files, and similarly the user may output information to files.
ASSOCiated with each file is a device.

The basic facility supplied for handling such files is the
character repeater.

An input character repeater is a function of no arguments,
which when applied, produces as its result the next character from its
associated file.

An output character repeater is a function which, when given
a character as its argument, outputs that character to its associated
file.

To make this clear, consider the on-line teletype. 'Files'
associated with the teletype are known as the Standard Input File!
and the Standard Output File. Two functions are supplied for trans­
ferring characters to and from these files :-

CHAROUT

is the input character repeater for the
teletype.

is the output character repeater for
the teletype.

CHARIN

Thus the instruction CHARIN()->X; will cause the system to
read a character from the teletype and assign its value to the variable
X.

Similarly, CHAROUT(33); will cause the character A to be
output to the teletype. (NOTE: characters are handled as integers -
their internal code representation, see APPENDIX 2). e.g. the word FOX
could be output to the teletype by the sequence: CHAROUT(38); CHAROUT(47);
CHAROUT(56); (easier methods of doing this will be discussed later).

Before a file associated with any device other than the tele­
type can be accessed, it must be opened, after which characters may be
transferred one at a time until the file is closed. Every file has
a name, which is any list of words and/or numbers.

The standard function POPMESS is used for controlling file
operations. To open a file. POPMESS is supplied with one argument, a
1ist whose head is the device name and whose tail is the name of the
requi~ed file; its result is the required character repeater.

- 27 - INPUT/OUTPUT

The device names available are :-

1. PTIN For paper tape input (ISO code). Each tape character
is decoded to POP-2 internal code as it is read.

2. PIOUT For paper tape output (ISO code). Each character is
encoded from the POP-2 internal code to ISO code.

3. PTBININ For binary paper tape input. Each character is read as
an 8-bit binary number. 8-, 7- and 5-hole tapes may
all be read by this facility.

4. PTBINOUT For binary paper tape output. Each character is output
as an 8-bit binary number.

NOTE that there are two readers and two punches available, so that
each of the above two input and output facilities is available on both
readers and both punches respectively.

5. LP80 For printing to the lineprinter. A new line is auto­
matically inserted after the 80th column.

6. LPl20 For printing to the lineprinter. A new line is auto­
matically inserted after the 120th column.

7. ROBOT For communicating with the experimental robot.

8. BI0316 For communicating with the Honeywell H3l6 in the Bionics
Laboratory.

9. OPERATOR For sending messages to the computer control-teletype.

For example, the following two lines open a paper tape
input file called [PROG DATAJ and a lineprinter output file called
[PROG RESULTSJ, and assign the character repeaters produced to the
variables DATAIN and RESOUT respectively.

POPMESS([PTIN PROG OATAJ)->OATAINi
POPMESS([lP120 PROG RESULTSJ)->RESOUTi

A file may be closed in one of several ways. There is a
standard variable, TERMIN, which when output as a character, closes the
appropriate file. In the case of input files, reading the terminating
character causes the file to be closed, and the result TERMIN to be
given by the repeater. In this way the user can easily determine when
the end of a file has been reached~ In the example below, the input
file is closed when its terminating character is read by IN; IERMIN
is assigned to X which is then output by OUT. closing the output file;
the TERMIN is detected and an exit is made from the function.

- 28 - INPUT/OUTPUT

Files may also be closed at any time by applying POPMESS
to a list of two items. the first being the word CLOSE. and the second
being either the character repeater for the appropriate file. or the
identifier which holds the repeater. e.g. if CR is a character repeater
for a file, it can be closed by POPMESS([7."CLOSE",CR.%]);or POPMESS([CLOSE CR1);.
This is useful when a user does not wish to read a complete file - it can
be closed at any time.

Three further facilities exist under POPMESS •

i) POPMESS([CLOSEALL);

Closes all devices currently associated with the user.

ii) POPMESS([STATUS <device name>]);

Obtains the status of the device. The results are

o
1

UNDEF

device available
device in use
device unknown to the system.

For instance,

L1: IF POPMESS([STATUS LP80J)
THEN GOTO L1 CLOSE;

would wait for the lineprinter to become available. but should not
be done ber.aus e

iii) if a device is in use when an attempt is made to open it, the
message

WAITING FOR <device>

is printed and the user is swapped out until the device becomes
free. unless the current user is also the previous user, when it is
immediately re-assigned.

CTRL G or CTRL R can of course be used to do something else while
the device is busy.

When the user is swapped back in, the message

<device> OPENED

is printed.

- 29 - 1/0 EXAMPLES

Examples

To copy a file from any input device to any output device,
we can write a function such as :-

FUNCTION TRANSFER IN OUT:
VARS X:
LO:
INO->Xj OUT(X):
IF X = TERMIN THEN EXIT;
GOTO LO

END:

this can be used for example to print up a paper tape file, by doing :-

: TRANSFER(POPMESSC[PTIN<name 1>J),POPMESS([lP80<name 2>]);

where <name 1> is the name of the paper tape input file and <name 2> is
the required name of the output file.

It could also be used for punching a paper tape from input
typed on the teletype by, for example :-

TRANSFERCCHARIN,POPMESS«(PTOUT TEST 1J);

this gives the output file the name (TEST IJ, which will contain all
the characters typed in on the console, being terminated when the HALT
key is pressed (giving the character !ERMIN).

Any number of character repeaters may be used simuLt.aneousLy
(the limit being the number of devices available), and, for exampLe,
output can be got on several devices. The line :-

IN()->X: OUT1(X); OUT2(X):

copies a character from one input device to two output devices etc.
and could be used in the function TRANSFER above for this purpose.

Time limits on devices

A user is normally only allowed to use a device for a
maximum of five minutes. If a longer or shorter time is needed, this
can be specified by replacing the device name in the POPMESS statement
by a list of two items, the devlcename and the time in minutes for which
the device is required.

e.g. POPMESS([[LP80 20] TeST 1])->CR;

- 30 - DEVICE USE

opens a lineprinter file with the name {TEST 11, giving a maximum time
of 20 minutes for its use.

After the time limit has expired, the device is not closed
for use by the user unless another (or the same) user calls for that
device, in which case the original file is closed and any further use
of its character repeater will result in an error being given.

Use of specific devices and the format of files

PTIN

This is used for inputting ISO-coded paper tapes, each
character being decoded to its POP-2 equivalent.

The tape must begin with its name, which is any list of
words and/or numbers, e.g. [TESTlJ,[PROGRAM FILE] etc., and must be
terminated by a HALT character (STOP-CODE on Flexowriters). On tapes
produced on off-line equipment, the character following the HALT should
be blank tape or erase, as tapes produced by the system have a check
sum following the HALT (see PTOUT).

All characters, including carriage-return, erase, blank
tape and lower case letters, which are not included in the POP-2
character set, will be ignored on input.

Files are opened on this device by using pOP~mss in the way
described previously, and are closed either by using the CLOSE facility
of POPMESS, or by reading up to and including the HALT character on
the tape. The file will be closed by the system and an error message
given if an odd parity character is detected, if the checksum fails
(see PTOUT), or if the reader is unloaded while the file is being read.

PTOUT

This is used for outputting ISO-coded paper tapes, each
character being encoded from POP-2 to ISO-code on output. Line feed
is output as RETURN followed by LINE-FEED.

The characters output are preceded by a list which is the
name given to the file in the POPMESS statement, and when the file is
closed, a HALT character followed by a two character sumcheck for the
tape is output followed by a length of blank tape. The first character
of this check is the sum of all characters on the tape including the
HALT, and is punched as six bits with correct parity, the zero sum
being punched as bits 7 and 8. The second character is a character
count, again being punched as six bits with correct parity.

- 31 - DEVICE USE

When tapes produced by prOUT are input under PIIN, these
check characters are read and compared against their computed values,
any discrepancy causing an error message. If a tape which fails to
check is still required to be read, the character just after the HALT
should be erased with a uni-punch. When either erase or blank-tape
immediately follows the HALT, no checking takes place on input.

Files are opened on this device by using POPMESS in the
standard way. and are closed either by using the CLOSE facility of
POPMESS, or by outputting the character TERMIN. Ihe file will be
closed by the system and an error message given if the punch runs
out of paper tape.

PIBININ

This is used for inputting any paper tape as 8-bit binary
numbers, i.e. the character is input as read. no decoding taking
place. 8-, 7- and 5-hole tapes may be input by this method, and in
the case of 7- and 5-hole tapes. the unused positions are read as
binary ones, except the position corresponding to the edge of the tape,
which is undefined.

No file name is required on the tape, or in the POPMESS
statement, but if given in the latter will aid the operator in loading
the correct tape. The file must be closed using the CLOSE facility of
POPMESS.

PTBINOUT

This is used for outputting characters as 8-bit binary
numbers, i.e. the bottom eight bits of the item given to the character
repeater is punched on the tape. Files are opened in the standard way.
but here again no file name is punched on the tape, and can be omitted
from the POPMESS statement. The file must be closed using the CLOSE
facility of POPMESS.

LP80

This is used for outputting files to the lineprinter when
80 character width paper is in use, this being the standard paper
size in the School of Artificial Intelligence. A newline is automatically
inserted by the system after the 80th character has been output to a line.

The rest of the specification is as LP120.

LP120

This is used for outputting files to the lineprinter when
120 character width paper is in use. This will not normally be available

- 32 - DEVICE USE

during a standard Multi-POP session in the School of Artificial
Intelligence. A new line is automatically inserted by the system
after the l20th character has been output to a line.

Files output to the lineprinter start at the top of a new
page and are preceded by the real-time and date when the file was
output, the user's identifying initials, and the name of the file
as given in the POPMESS statement. For example, if a file is opened
with the name [RESULTS 1) the first page of output would be preceded
by :-

15.30HRS. 10 JAN 1970
[RESULTS 1]

RDD

where RDD would be the user's identifying initials.

Two special facilities are provided with the lineprinter :-

If the integer 64 is output as a character, the lineprinter
will print the next line of output at the top of a new page. Normally
a new page is selected after every 60th line has been printed.

If any negative number is output as a character, this has
the effect of carriage-return without line-feed and can be used for
over-printing of lines.

Files are opened on this device by using POPMESS in the
standard way, and are closed either by using the CLOSE facility of
POPMESS, or by outputting the character TERMIN. The file will be
closed by the system and an error message given if the printer goes
into a non-recoverable error state - e.g. 'NO PAPER' or 'YOKE OPEN'
etc., 'PAPER LOW' is detected, and a suitable message is output to
the operator to load more paper.

This device is used for controlling the on-line experimental
robot under development in the School of Artificial Intelligence.
Its USe is described in the documentation of the program [LIB LINK
EXEC] which can be found in the folder 'POP-2 PROGRAM LIBRARY' which
accompanies all Multi-POP consoles.

BI0316

This device i~ identical with the Robot; except that it
uses BI03l6STATUS as its doublet.

- 33 - lHE DISC

OPERATOR

This provides a facility for transmitting messages to the
computer operators via the control-console.

e.g. POPMESS([OPERATOR ~MY CONSOLE IS ON FIRE~]);

will cause the given string to be printed on the console in the computer
room. The POPMESS leaves no results (although the Fire Brigade may be
called) •

THE DISC SYSTEM

The system uses 3 4 million character random access disc
units. These behave like one disc, divided up into 300 tracks, numbered
from 0 to 299; each track has 160 sectors numbered from 0 to 159.
A sector contains 256 characters.

Each user of the system is allocated one or more tracks
for his individual use, and although he may read information from any
part of the disc, he may only write to those tracks allocated to him
Each file must start at the beginning of a sector and can thus be
regarded as occupying an integral number of sectors.

Functions are available to treat disc files as character
repeaters similar to those of POPMESS and to manipulate them in various
ways. These are described in Disc Filing (page 41).

Functions to treat disc files as compound structures are
described in the library program [LIB EASYFILE STRUCTURES] whose documenta­
tion can be found in the folder 'FOP-2 PROGRAM LIBRARY'.

For users who will wish to carry out operations not provided
by disc filing or [LIB EASYFILE STRUCTURES], the basic facilities are
described here.

POPMESS is not used for disc files. Instead, two funct.ions
DISCIN and OISCOUT are provided for opening input and output character
filea respectively. These functions take two arguments, namely the
track number and sector number of the starting position of the file
on the disc; their result is the corresponding character repeater.

e.g. to obtain a character repeater to output a file
starting at track 25 sector la, one would do :-

: DISCOUTC25,10)->CROUTi

where CROUT would then be the required character repeater. and the
file would extend from sector 10 upwards. Note that a file must

- 34 - lliE DISC

terminate before the end of a track is reached, continuation onto
the next track does E£! take place, and an error is given if this
is at~empted.

Characters are stored on the disc in their POP-2 form, and
output files are closed by outputting TERMIN in the normal way~ TERMIN
is stored on the disc as decimal 19.

It is important to note that a 256 character buffer is
used for disc transfers. The information is only written up to the
disc immediately the 256th character (or multiple thereof), or TERMIN.
is output, i.e. every complete sec~or. Thus if a file is not terminated,
up to 255 characters may not have been written to the disc. This should
be remembered particularly if a process involving disc transfers is
interrupted for any reason.

In a similar way, to input a file starting at the same
position on the disc, the character repeater is obtained by :-

: DISCIN(2S,10)->CRINi

The file is closed when the input repeater reads the TERMIN at the
end of the file, and again a 256 character buffer is used in ~he input
process, each sector being input to store when its first character is
read.

Because of the buffering involved, it is possible to edit
a file on the disc in situ - reading the file and outputting it again
to the Same place in a different form - so long as the editing process
does not mean that the new file is more than 255 characters longer
than the old, at any time during the process.

Two functions exist to provide facilities for transferring
complete struc~ures to and from the disc :-

DTOSTRUCT c TR. SECT, W, STRUCT => W, SECT
STRUCTTOD E TR. SECT. W. STRUCT => W. SECT

where TR is the track for transfer
SECT is the starting sector for transfer
W is a starting offset within this sector in words.

(64 words to a sector). Thus if W = 8 then the
transfer starts 8 words from the beginning of sector
SECT

STRUCT is the structure to be transferred to the disc
for STRUCTTOD, or the structure into which the transfer
from disc is to go for DTOSTRUCT. STRUCT can be any STRIP,
RECORD or ARRAY (of any dimensionality) whose components
are not compound (i.e. they can be numbers or items of
size <22).

- 35 - EXAMPLE OF DISC USE

and the results Wand SECT give the position on the disc immediately
following the block transferred.

One further function is provided - DSECTOR. This function
takes a disc character repeater as its argument, and produces as its
result the number of the sector currently referred to by the repeater.
If it is called immediately after TERMIN has been input or output,
this will be the next available sector. In this way then the user
can determine the extent of his files on the disc.

Examples

As the disc uses character repeaters just as the other inputl
output devices do, its use is exactly the same as them.

e.g. again using a version of the general purpose function
TRANSFER introduced on page 29.

FUNCTION DTRANS IN OUT;
VARS Xi
LO:
IN()->X; OUleX);
IF X = TERMIN THEN DSECTOR(OUT) => EXIT;
GOTO LO;

END;

In this case we have inserted a call of DSECTOR, so that when
the file is closed, the number of the next free sector after the file
will be printed.

The following statement allows a user to type a file from
his console to disc, starting at track <t>, sector <s> :-

CTRANSCCHARIN,orSCOUT«t>,<s»);

as before, the file is terminated by pressing the HALT key.

Similarly, to input a paper tape file [FILE] and WTite it
to the disc :-

DTRANS(POPMESS([PTIN FILE]), OISCOUT«t>,<s»);

or to output a disc file to a paper-tape file [FILE] :-

TRANSFER(OISCIN«t>,<s».POPMESS([PTOUT FILEJ»;

or to type out a disc file to the console :-

- 36 - 1/0 OF TEXT ITEMS

TRANSFER(DISCIN«t>,<s»,CHAROUT):

In the last two examples we have reverted back to the original function
TRANSFER, because of our use of DSECTOR with the output function in
DTRANS.

Remember that any number of input/output operations may be
combined, and any number of files to, or from, the disc may be open at
anyone time, although care must obviously be taken to ensure that
input files are not inadvertently overwritten by output files.

Input/Output of Text Items

Text Item repeaters may be created from character repeaters
by applying the functions INCHARITEM and OUTCRARITEM to them. for input
and output respectively.

Thus we may read Text Items from a file whose character
repeater is INC, by defining a function, say INITEM, by :-

INCHARITEM(INC)->INITEMj

Successive applications of INITEM will now produce the sequence of text
items from the file, just as the use of INC would produce the sequence
of charac ters.

Similarly, if OUTe is an output character repeater for a
file then we may define OUTITEM by :-

OUTCHARITEMCOUTC)->OUTITEM;

so that OUTITEM("FOX") will output the characters of the word FOX to
the file through the character repeater OUTe etc.

When an input item repeater is applied, the characters
read by the character repeater are formed into an item under the rules
given in sections 9.1 and 2 in the Reference Manual. It is important
to note, however, that it is necessary to read the character immediately
following each item as it is read to determine whether it is part of
the current item. This character is stored in the workspace of the item
repeater and is used when the item repeater is next applied. This can
create difficulties if the character repeater is used between calls
of the item repeater, as this character will still be taken as the next
one by the item repeater even though the character repeater has stepped
the input on by several characters. Also if this character is in fact
not required, it can not be deleted (e.g. in a conversational type
program where a user types a reply terminated by some character other
than space or new-line - this character would be taken as the first
character of the next reply).

- 37 - PROOLIST

The former difficulty may be alleviated by always separating
items by spaces in files used in this way. and the latter can be over­
come by recreating the item repeater whenever it is wished to particularly
avoid troubles with terminating characters. When an item repeater is
created, this 'next character' is initialised to be a space. which is
ignored at the start of an item.

As an example of this, consider a file. character repeater
INC, containing the characters.

99ALPHAi BETA

and consider the following operations on this file '-

INC~ARITEM{INC)->INITEMi
INITEMO=>

** 99,
: INCO=>

(produces the number 99)

** 44, (produces the character L.
the A having been read and
stored in the buffer of the
item repeater)

: INITEMO=>

** APHA, (Note that the A is used and
that the L has already been
read from the file)

At this point, the item repeater is holding the semi-colon
character in its 'buffer', and will produce this as its next item,
however, if we now create a new item repeater, the semi-colon will be
lost, i.e. :-

INCHARITEMCINC)->INITEMi
INITEM 0 =>

** BETA.

PROGLIST and input to the compiler

The compiler takes its input from the text item list PROGLIST.
This is initially set to be the dynamic list .-

FNTOLIST(INCHARITEM{CHARIN)i

i.e. input is taken from the teletype, but may be set by the user for
compilation from other sources (either directly, or indirectly using
POPVAL or COMPILE (see page 40).

- 38 - CUCHAROUT

Three functions are provided to allow the user to read from
this list :-

a) ITEMREAD inputs the next text item from PROGLIST.

b) NUMBERREAD inputs the next text item from PROGLIST and
checks that it is a number, otherwise it gives an error.
Numbers may be signed.

c) LISTREAD inputs the next list constant from PROGLIST. An
error is given if anything other than a list is encountered.
Any number of sub-lists may be given within the list.

Standard outputting facilities

The system provides several general and special purpose
outputting functions which are given below. All these functions use
the variable CUCHAROUT (CUrrent CHARacter OUTput device) to determine
to which file characters-are to ~utput. The device associated with
the value of CUCHAROUT is known as the current output device.

CUCHAROUT is initially set to be CHAROUT (i.e. the console),
and is reset to this by SETPOP, but can be assigned any value by the
user. Thus the lineprinter can be specified as the device to which
output is to be routed merely by assigning the character repeater
obtained from a POPMESS statement, to CUCHAROUT, e.g. :-

POPMESS«(LP80 RESULTS FILE])->LPi
LP -> CUCHAROUTi

It is always safer to use an intermediary variable (e.g.
LP in the above) rather than assigning directly to CUCHAROUT, other­
wise if a call of SETPOP occurs the character repeater will be lost.

It should be noted that CUCHAROUT can take as its value
any function which has one argument and produces no results, allowing
processes other than outputting to be applied merely by 'printing'
items (e.g. it is possible to 'print' characters into data structures
or to create complex formatting routines in this way).

Format of items when output

The format of specific items when printed by any output
repeater or general purpose printing function is as follows :-

a) Integers

are output preceded by one space if posLtLve, or a minus
sign if negative, with no decimal point. e.g. 50. -123, 12379.

- 39 - PR[NTI NG FUNCTI ONS

b) Reals

are output preceded by one space if positive, or a minus
sign if negative. The number is rounded to four significant figures
and the decimal point is output with at least one digit before and
after it. e.g. -5.023, 754300.0, 0.001.

c) Words

The characters (up to a maximum of eight) are output with
no preceding or following spaces.

d) Strings

Are output with their opening and closing string quotes.

e) Lists

The complete list is output, including all sublists, with
elements separated by spaces. The list brackets are output. e.g.
[1 2 3[[4][5 6)]7J.

f) Pairs
If a pair does not contain NIL as its BACK and is not a

dynamic link (when it is output as a normal list) then it is output
in the format :-

[<front> <back>]

g) Functions

are output in the following format :-

FUNCTION <name>

where <name> is the name as given in the FNPROPS (see page 22).

h) General data structures

A general data structure is output as its DATAWORD enclosed
by the characters < and >. e.g.

<PRECORD>

Functions available

a) PR (X) outputs the item X to the current output device. It
produces no results.

b) PRINTCX) outputs the item X to the current output device
leaving X as its result.

- 40 - COMPILE

c) ~> If used in execute mode, causes every item on the
stack to be printed to the current output device,
the item on the top of the stack being output
last. The output is preceded by rwo new-lines
and **; each item is terminated by a comma. The
stack is cleared.

If used inside a function definition it causes the
top of the stack to be output on a new line to the
current output device, preceded by ** The item
is removed from the stack.

=> can be regarded as an operation, with an implied
semi-colon before and after it.

d) PRREAL(X,N,M) causes the number X to be output on the current
output device with N figures before the point and
M figures after the point. If M=O then the decimal
point is not output. The number is preceded by one
space if positive, and by a minus sign if negative.
If X is an integer then REALOF(X) will be output.
If the number is too large to be output in the format
specified, it will be output followed by a decimal
exponent.

e.g. PRREAL<125.6,4,3);
125.600

PRREAL(720.9.2,4);
72.090°10+01

e) PRSTRING(N) outputs a string without the string quotes.

f) SP(N)

g} NL(N)

outputs INTOF(N) spaces to the current output device.

outputs INTOF(N) new-lines to the current output
device.

COMPILING PROGeAM FIleS

There is a special function, COMPILE. for use with files.
It is used for compiling a file of source program. and is applied to
the character repeater of the file.

e.g. assume a paper-tape program file with the name [TEST
PROG) is to be compiled. This can be accomplished by :-

POPMESS([PTIN TEST PROG1)->INi
COMP!LE(IN);

- 41 - DISC FILING

This is equivalent to :-

POPVAlCFNTOLIST(INCHARITEM(IN»<>[GOON])i

but is implemented in a more efficient manner.

l~en the file has been compiled, it is closed, and control
returns to the teletype.

The text of the file to be compiled must not end with an
uncompleted imperative expression, function definition, lambda
expression or list expression. If it does, the result will be
undefined.

The flexibility of character repeaters can again be shown
by the following example :-

Assume that a lineprinter listing of [TEST PROG] is required
simultaneously with the program being compiled. We can do this by :-

FUNCTION CR;
IN()->Xi OUTCX); X

END;
POPMESS([PTIN TEST PROG])->IN;
POPMESS([lP80 TEST PROGl)->OUT;
COMPILECCR);

It can be seen that the function CR is an input character
repeater which has the side effect of outputting characters by the
function OUT. Again any number of simultaneous input/output operations
are possible by combining character repeaters in this way, and files
may be edited simultaneously with compilation and output (see section
on File Editing).

A further function, CARRYON, is provided for use when
compiling. This is used to restart the compiling process after a
syntax error has been given. The effect of applying CARRYON to a
character repeater is that the file is read and copied to the teletype
until the word END is read, when COMPILE is again applied to the
repeater. This then, allows recovery from compilation errors and also
provides a monitor to the teletype of the section of program immediately
following the position of the error. (Note that if an error is detected
outside a function body, or on reading its END. it is more sensible to
use COMPILE to restart; if CARRYON is used, the code up to the next
END - i.e. a complete function definition will be copied and ignored).

DISC FILING

A set of standard functions exists to assist with the
manipulation of character files on disc.

- 42 - INITIALISING DISC mACKS

Initialising disc tracks

The first ~ime this filing system is used with a disc track
it must be initialised to the format required. To do this, type :-

DISCININ([<nl><n2>···])i where<nl>,<n2>, ••• are the numbers
of the tracks to be initialised.

The system is now ready to accept and handle files in this and
subsequent POP-2 sessions. The first n sectors of each track so initia1ised
are used by the system for storing the track's file directory. n is held
in the standard variable DISCSTART and is set ini~ially to be 10. The
rest of the track will be used for your files. You may a~ any time add
further tracks to your filing system by calling DISCINIT again.

Changing tracks

There is a separate directory for each track in use.
change from one track to another by typing :-

You may

DTRACK(<n»i where <n> is the number of the track
you wish to use. (See example 3).

The standard variable DISCUSER holds the number of the current
track.

The standard variable DTRS holds either an integer or a list
of integers. If an attempt is made to input a file which is not on the
current track, all the tracks in DTRS will be examined before an error
is given.

Commands available

In this description <filename> denotes a file name (e.g.
RMB THEOREMS or AFAP SYS 4).

A. Commands which create new disc files

DREAO([<filename>])i reads
a halt-code is depressed (CTRL and T).
file (on disc) called <filename>. If
exists on any of ~he tracks in DTRS it
read from the console.

characters from the console until
The characters are pu~ into a

a file with this name already
is lost when the halt-code is

DPTIN«(<filename>])i inputs the file <filename> from paper
tape and creates a disc file with the same name.

- 42 A - DJOIN
DJOIN([<filel>1,£(file2>l,[<file3>]); creates a new disc

file which contains the characters in <filel> followed by the characters
in <file2> and calls it <file3>. The two originating files are not
affected unless <file3> is the same name as one of the others, when the
original file is deleted.

- 43 - DISC FILES

OREPIN«(<filename>J,<charrep»i creates a disc file with
the name <filename> from the character repeater <charrep>. This command
can be used to put files already on disc into the filing system.

DCOPV([<filenamel>J.C<filename2>])i copies the file
<filenamel> to the file <filename2>.

DEDIT([<filename])i is a command which creates a new disc
file. Its use is described below under D.

When the transfers involved in the above commands have been
completed (i.e. when a halt-code or TERMIN has been read) the message

[<filename>J<discend>

is output on the console. For the significance of DISCEND see
below under HOUSEKEEPING. If a transfer to the disc is interrupted
before it is terminated (e.g. by pressing CTRL and G) then the new file
is not entered in the directory.

B. Commands to copy a disc file onto another device

DTYPE([<filename>l)i outputs to the console the file <filename>.
To interrupt just depress CTRL and G.

DLP80C[<filename>J)i lists <filename> on the lineprinter.

DPTOUT([<filename>])i outputs <filename> onto paper tape.

C. Commands for compiling disc files

DCOMP{[<filename>]); compiles the file <filename>. When
the compilation has been completed the message :-

[<filename>]COMPILEO

is output on the console.

D. Commands for editing disc files

DEDIT([<filename>J)i edits a file discarding the previous
version. It expects edit commands from the keyboard in the format of
POPEDIT (see File editing facilities). When the editing has been
completed, the message :-

«filename>] <discend>

is output on the console. For the significance of DISCEND see below
under HOUSEKEEPING. The original file is not lost until this message

- 44 - HOUSEKEEP I NG

bas been output and it is therefore possible to recover from an obviously
wrong edit merely by interrupting it - depressing CTRL and G. (To
recover after the message has been output DRECOVER will have to be used -
see belo;r:-

DRECOVER([<filename>])i puts back into the directory the
version of <filename> which has just been displaced by editing. The
edited version is discarded. DRECOVER can only be used successfully
if there has been no intervening call of DEDIT, DTlDY (see below) or
DTRACK. If there has been such a call. or if the file is wrongly
named. then the message :-

SORRY CANT RECOVER [<FILENAME>]

is output.

E. Other commands to handle files

DIN([<filename>J); has as result the input character
repeater of the file <filename>. DIN is analogous to DISCIN.

DOUT([<filename>])i has as result the output character
repeater of the file <filename>. DOUT is analogous to DISCOUT.

DKIll([<filename>]); discards the file <filename>. The
area of disc on which it was stored will become available for other
files.

Housekeeping

Files are added to the disc track consecutively, and the
sectors freed by editing or killing files are not automatically made
available for re-use. To do this you must give the command :-

.DTlDY;

which shuffles the files and makes the freed space available. (See
example 6). It is desirable to use this command whenever your track
is in danger of becoming full. The variable DISCEND points to the next
free sector on the track being used. Whenever a new file is added to
the track the new value of DISCEND is printed so that you may know how
full your track is. DTIDY also prints the new value of DISCENDo' (There
are 160 sectors on a disc track).

The system uses a directory which stores the actual position
and size (in sectors) of each file and free area.

DISCDIR =>

- 45 - EXAMPLES

prints out this file directory. (See example 6).

A standard variable DDIRSTART, set to zero by the system,
contains the sector number in which the directory starts. This can be
altered by the user, but files from other users' tracks cannot then be
accessed. DDFI and DDF2 contain the input and output streams respectively.
A full description is given in the library documentation of EASYFILE •

.Errors

An attempt to call a file by a name which is not a list
causes ERROR 54. An attempt to access a file which is not in the directory
produces ERROR 57. o.verfilling the track causes ERRDR 79.

Suggestions for efficient use of the system

It should be more convenient to keep a large program as a
lot of short files with the master file to compile them (or list them).
(See example 5). Not only is editing much easier, but also the progress
of compilation of a large program is indicated by the messages output
as each subsidiary file is compiled, also, if a large file is more than
80 sectors long, it will not be possible to edit it, as two copies of
the file cannot exist on the 160.sectors of the track.

Examples

In the examples which follow, a halt-code (depressing CTRL and
T) is indicated by ltl). Characters typed in by the user are underlined,
to distinguish them from output from the machine.

Examfle 1 Initialising a track, reading a file in from the console,
edit~ng and compiling it.

OJSCINIT(C94J);
DREAD (tAPA 1]);

THE CAT SAT ON THE MATJ.HD.PRi
:@
[APA 1) 11
: OTYPE«(APA 1]);

THE CAT SAT ON THE MATJ.HD.PRi
: OEDIT([APA 1);
EDIT:-

- 46 - EXAMPLES

IS[

SH
[APA 1] 12

: DCOMP(CAPA 1])i

THE
[APA 1] COMPILED:

EXample 2 A subsequent POP-2 session. Reading in a file from disc.
Use of DRECOVER.

: DTRACK(94)i
: DREPIN«(SYSTEMJ, DISCIN(94,100»i
[(SYSTEM] DISCEND 38]

: DEDIT({SYSTEM])i
EDIT:-

FL THEN
DC X
SH

EDITED
[SYSTEM] 45

: DCOMP([SYSTEM])j

ERROR 22
IN FUNCTION SYS
CULPRIT CLOSE

SETPOP:
: DRECOVER([SYSTEMJ)i
: DCOMP([SYSTEMJ)i
[SYSTEM] COMPILED:

(Bring file SYSTEM under
the control of the filing
system from track 94
sector 100 on the disc.)

(Edit this file.)

(Attempt to compile the
new file SYSTEM uncovers
a syntax error in it.)

(Recover the old file SYSTEM.)

(This file compiles correctly.)

Example 3 Changing tracks (supposing that 93 and 94 have been initialized
at some earlier POP-2 session}.

: DTRACK(94);
: DPTIN([APA 2]);
CAPA 23 141

- 47 - EXAMPLES

: DTRACK(93)j
: DPTIN([THEOREMS])i
[THEOREMS] 33

(Change the track on which
the system is currently
operating from 94 to 93,
and read in a paper-tape
file to that track).

Example 4 Use of DTIOY.

:DPTIN([SYSTEM 2J);

[SYSTEM 2] 152
: .OTlDY:

DISCEND 127

Example 5 Storing a large program as several ~ll files. Assume that
there are on the disc the files [APA SYSIJ, ••• (APA SYS6] and they
together comprise a program [APA SYSTEM). Make up a master file
[APA SYSTEM] as follows :-

:DREAOC(APA SYSTEM);
GENFUN([APA SYS1J); GENFUN([APA SYS2]); (GENFUN is an arbitrary

name for a function
which can be redefined
so that the file can
perform various
actions.)

: GENFUN([APA SYS3j)i

: GENFUN([APA SYSS]);
[APA SYSTEM] 97

GENFUN«(APA SYS4J);

GENFUN([APA SYS6])j dD

If you wish to compile [APA SYSTEM]

:DCOMP -> GENFUNi
: DCOMP«(APA SYSTEM]);
(APA SYS11 COMPILED
[APA SYS2) COMPILED

(Define GENFUN to be
OCOMP. This will
cause the various
sub-files to be com­
piled when SYS is
compiled.)

tAPA SYS6J COMPILED
[APA SYSTEM] COMPILED

If you wish to list [APA SYSTEM] on the lineprinter do .-

- 48 - EX/IJ'IlPLES

: OLP80 -> GENFUNi OCOMP([APA SYSTEM]);
[APA SYSTEMJ COMPILED

(GENFUN is defined to
be DLP80, this will
cause a listing of
the sub-files.)

If you wish to copy [APA SYSTEMJ to paper tape do :­

: DPTOUT -> GENFUNi DCOMP([APA SYSTEM]);

etc.

If you wish to edit [APA SYSTEM] you need only edit the relevant sub­
sidiary file - say (APA SYS4J. Since the new version of [APA SYS4J has
the same name, you do not need to alter your master file.

Example 6 The disc file directory and DTIDY. This example shows bow
the directory develops, starting from a newly initialized track.

DISCINIT([94J);

DISCOIR =>
** NIL.
: DPTIN([APA 1]);

[APA 11 15
: DPTIN([APA 2]);
[APA 2] 27

: DISCDIR =>
** [[[APA 2J 15 12J[[APA Al 10 5]],
: DPTIN([APA 1J);
(APA 1] 32
: DISCDIR =>
** [[[APA 1] 27 S][[APA 2] 15 12](FREE 10 5]],

: .DTIDY;

DISCEND 27
: DISCOIR =>
** ([(APA 1] 22 5][[APA 2J 10 12]1.

- 49 - PROGRAM LIBRARY - POPEDIT

por:2 PROORAM LIBRARY

This is a collection of both utility and research programs,
the first word of whose name is always LIB. e.g. [LIB SETS]. They are
available both in paper tape form and are also stored on the disc,
for which a standard function LIBRARY is provided to access them;
LIBRARY takes a program name as its argument and produces the corres­
ponding character repeater as its result.

e.g. LIBRARY([LIB SETS]) -> IN;
or COMPILE(LIBRARY([LIB EASYFILEJ»;

For convenience the word LIB may be omitted when using the
function LIBRARY.

If the paper-tape copy is required, POPMESS should be used
in the standard way, the word LIB must be included.

e.g. POPMESSC[PTIN LIB SETS]) -> IN;
or COMPILECPOPMESS([PTIN LIB EASYFILEJ»;

A list of programs available, and their documentation,
can be found in the folder 'POP-2 PROGRAM LIBRARY' which accompanies
all Multi-POP consoles.

Alternatively, a list of the current programs and a short
synopsis for each may be obtained by compiling the library program
[LIB CONTENTSJ •

e.g. COMPILECLIBRARY([CONTENTS))i

FILE EDITING FACILITIES

A set of standard functions are provided for sequential
editing of POP-2 files. The file to be edited, and the editing instructions
may come from any input device. and the edited file may be output to any
number of devices.

Two functions, POPGOBBLE and POPEDIT, are provided. These
give all the required facilities.

POPGOBBLE takes an input character repeater as its argument,
and applies this until the end of the associated file is reached. It
is used to 'drive' the editor when no compilation is required; this is
made clear by examples later.

- 50 - POPEDIT

POPEDIT takes three arguments. These are.

1) The character repeater of the file to be edited.
2) The character repeater of the edit commands.
3) An output character repeater, or a list of such

repeaters for the devices to which the edited file
is to be output (this may be NIL).

The result of POPEDIT is the character repeater of the edited
file, and when it is used (e.g. by COMPILE or POPGOBBLE), it produces
the characters of the original file·modified by the edit commands,
copying the characters to th~ output devices as a side effect.

Examples of the use of POPEDIT and PQPGOBBLE are given later.

If the edit commands are being typed in from the console,
(i.e. the character repeater for the edit commands is CHARIN), the
program outputs the following message after the character repeater
supplied by POPEDIT has been called :-

EDIT:-

The first edit command should now be typed in, followed by
carriage-return. When this command has been obeyed, ":" is output and
the next command should be given, etc.

If the edit commands are being given off-line, (i.e. from
a paper-tape or disc file), they are read automatically when required.

When the file being edited has successfully been read to its
end, all the input and output files are ~losed, and the following
message is output to the console :-

EDITED

Edit commands

The type of ~dit commands available are the same 8S those
in the Elliott program "EDIT4l".

An edit command consists of three parts: a function part,
a space (which may be omitted), and a string of characters. Two
characters specify the function, and after the space, the remaining
characters up to, but not including the next new line character, form
the string.

The edit "functions" provided are .-

FL DL FC DC FE DE IS IL IS SH

- 51 - POPEDIT

These have the following effects :-

Fl - Find line: The input file is copied until a line beginning with
the edit string is found. The last character copied is the last
character of the edit string.

DL - Delete to line: The input file is skipped until a line beginning
with the edit string is found. The last character skipped is the
last character of the edit string.

Fe - Find characters successively: If the characters of the edit
string are Cl, C2•••C , then the input file is copied until C1
has been copied, and ~en further until C2 has been copied and
so on until C has been copied.n

If DO edit string is given, one character is copied.

DC - Delete to characters successively: If the characters of the edit
string are Cl, C2•••Cn, then the input file is skipped until Cl
has been skipped, and then further until C2 has been skipped,
and so on until Cn has been skipped. If no edit string is given,
one character is deleted.

FE - Find end of line: The input file is copied up to, but not includ­
ing the next new line character. The new line character is read
and stored, and will always be regarded as the next character
from the input device.

DE - Delete to end of line: The input file is skipped up to but not
including the next new line character. The treatment of this
new line character is the same as for FE.

IS Insert on same line: The edit string is copied.

IL - Insert OD a new line: A new line character is output and then
the edit string is copied.

18 - Insert a block: The edit string, including new line characters
is copied. The string must be terminated by a combination of a
new line followed by a II.,." character. The new line and "t"
characters are not output.

SH - Reads the remainder of the input file up to and including its
terminating character.

Ignorable characters

Spaces are copied, but are ignored for search purposes. For
example, when searching for a line which is indented, it is Dot necessary

- S2 - POPEDIT

to put the preliminary spaces into the edit string, but if spaces are
given at the beginning of a line which is to be inserted, they will be
output; remember that if 4 spaces are required, 5 should be given
after the edit function as a space is expected to separate it from
the string.

Additional commands - ON and OFF

The commands ON and OFF can be inserted in the edit commands.
They do not have any edit string and are used to monitor the editing
process.

ON causes the edited stream to be copied onto the console in addition
to any other devices which are being used to copy the output.

OFF causes the copying onto the console to stop.

Errors during editing

If an unacceptable edit command is read, then the following
message is output :-

POPEDERR CULPRIT <x> where <x> is the offending character.

If the edit stream is being input from the teletype, then

TRY AGAIN

is output and the user should retype the edit command. If, however,
the edit stream was coming from another device. the message ._

CONTINUE BY TYPING EDIT COMMANDS

is output, the edit file closed, and the edit file reverts to the
teletype. The user must continue his edit by typing in the commands
from the teletype.

If the end of the source file is read while any command
other than SH is being obeyed, then the message :-

END OF SOURCE FILE. OUTPUT FILES CLOSED

is output. and the edit is terminated. The user must take any necessary
action to recover the original files. This error is most likely to be
caused by a FL command, the string given not being correct.

- 53 - EXAMPLES OF POPEDlT

If the end of the edit commands file is reached before the
end of the source file is reached, the message :-

END OF ED'ITFILE. CONTINUE BY TYPING COMMANDS

is output. The user must complete the edit by typing commands from
the teletype.

Doub le editing

It is not possible to do double editing using POPEDIT.

Examples of use of file editing facilities

In the following examples, it is assumed that the file to be
edited (the source file) is represented by the character repeater
INFILE, various output files are represented by the character repeaters
OUTLP, OUTPT, OUTDISC etc., and the file of edit commands is either
the character repeater CHARIN, if the editing is being done on-line,
or EDITCOMMANDS.

These character repeaters are all created in the standard
way :-

e.g. for paper-tape

POPMESS([PTIN INPUTFILE]) -> INFILE;
POPMESS([PTIN EDITS]) -> EDITCOMMANDSi
POPMESS([PTOUT EDITED FILE]) -> OUTPTi

e.g. for disc

DISCIN«t>,<n» -> INFILE;
OISCOUT«t>,<n»->OUTDISCi where <t> and <0> are the

required disc track and sector
numbers.

e.g. for lineprinter

POPMESS([LP80 EDITED FILEl) -> OUTLPi

A) On-line editing

1) To edit a file using the teletype, and to compile the edited
file without outputting it to any device, type :-

COMPILECPOPEDITCINFILE.CHARIN,NIL»;

- 54 - EXAMPLES OF POPED1T

This should be followed by the edit commands.

2) To edit a file using the teletype, to compile the edited
file ~ to copy the new file to the disc, type '-

COMPILE(POPEDIT(INFILE,CHARIN,OUTDISC»;

This should again be followed by the edit commands.

3) To edit a file fram the teletype, to compile the edited
file, and to copy the new file onto both the disc and the
lineprinter, type :-

COMPILECPOPEDITCINFILE,CHARIN,[%OUTDISC,OUTLP%]»j

Again, follow this with the edit commands.

4) If simultaneous compilation, as above, is not required, COMPILE,
in all cases, should be replaced by POPGOBBLE.

For example, to edit a file without compiling it, but
producing a new file on disc, a paper-tape copy, and a listing to the
lineprinter, the user would type :-

POPGOSBLE{POPEDIT{INFILE,CHARIN,[%DISCOUT,OUTLP,OUTPT%]»;

followed by the edit commands.

B) Off-line editing

If the user wishes to use an off-line file of edit commands,
e.g. a paper-tape which he had typed up previously, in all cases in the
above examples, the character repeater for the teletype, CHARIN, would
be replaced by that for the file of edit commands :-

e.g. COMPILE(POPEDIT(INFILE,EDITCOMMANOS,OUTLP»;

If the edit is successful. then the message :-

EDITED

will be output, otherwise an error message as described, will be given.

Complete examples of the use of POPEDIT

The following file is assumed to be on track TR sector N of
the disc :-

- 55 - EY#"PLES OF POPEDIT

FUNCTION SIGMA L;
IF L.NUlL THEN 0 ELSE l.HD + SIGMA(Tl(L)
CLOSE

END;

FUNCTION FACT Nj N*FACT(N-1);
END;
"A" -> A;
1.2.3 -> L;
FACT(A) =>
SIGMA(LISn =>

It is required to edit this file. compiling it, and copying
it back to disc track TRI, sector NI. producing a paper-tape copy.

The required input on the teletype is given below, assuming
editing is to be done online. and for clarity, the user's output is
underlined

VMS AA BB CC;
DISCINCTR,N) -> AA;
DISCOUT(TR1,N1) -> BB;
POPMESS([PTOUT EDITED FILE]) (Giving the paper tape

file the name [EDITED PILE]
COMPIlECPOPEDITCAA,CHARIN,[%BB,CC%]»; (Calling POPEDIT

-> CC;

EDIT:- (Output by POPEDIT to
inform user that he may
start typing in commands

FL END
FE
ONn·-'

FUNCTION FACT N; : IL IF N=O THEN 1 ELSE (Output due to the ON
command followed by the
next edit commandsIF N=O THEN 1 ELSE : FC)

N*FACT(N-1) : IS CLOSe-­
CLOSE: OFF
: FC Ei --
:~

after the ":"

(Switch off teletype
output

VARS· A LIST;
2 -) Ai [%1,212,3%J -> LIST;

OL 1
DE
SH

{Inserted block terminated
with 1"

- 56 - DEBUGGING FACILITIES

** 2, (Output due to the two print
statements in the source file

** 8.0,

EDITED

The new file produced by the above edit commands on the given
file is given below. Ihis file will have been punched to paper-tape,
and also written onto the disc :-

FUNCTION SIGMA L:
IF L.NUlL THEN 0 ELSE L.HD + SIGMA(TL(L»
CLOSE

END;

FUNCTION ~ACT Ni
IF N=O THEN 1 ELSE N*FACT(N-1) CLOSE;

END;

VARS A LIST;
2 -> Ai [~1,2'2,3%]-> LIST;

FACTCA) =>
SIGMA(LIST) =>

DEBUGGING fACILITIES

The DEBUG system is a set of standard macros, functions, and
variables, which allow the user to trace specified functions by outputting
the values of selected parameters and results, as the functions are
obeyed.

How ~o use the debugging facilities

The user first specifies any functions he may wish to have
traced, by using the macro SPEC.

For example, consider the function :-

FUNCTION ADD X Yi
X+Y

END;

Using the output local list facility in the language, this
can be written as :-

- 57 - DEBUGGING FACILITIES

FUNCTION ADD X Y => RESULT
.X+Y -> RESULT;

END;

To specify ADD one would do :-

SPEC ADD X Y => RESULT;

NOTE: The function specified does not need to be written in
the second form (using the output local list facility), in order that
it may be specified.

Similarly, if the function F has four arguments, say A, S,
C and D, and produces three results, say X, Y and Z, then F may be
specified by doing :-

SPEC F ABC 0 => X y Z;

It is not necessary to specify all parametenand results,
just the last m parameters, and n results may be specified if desired
(m > O,n > 0).- Also, if in the specification, a parameter or result
is given as the item *. then that parameter or result will not be
printed when tracing.

For example, if with function F above, it is only required
to trace the values of C, X and Z, then the specification would appear
as :-

SPEC F C * => X * Z;

Specifying a function has no effect on its running speed,
and only uses a few words of store for each function, so that it can
well be done after each function, or group of functions, when writing
the program in the first place. The FNPROPS (see page 22) of the
function is used to hold the information.

To cause a particular function, or functions, to be traced,
the macro BUG should be used in the following way :-

BUG ADO;

BUG ADD F1 F;

will caUSe the function ADD to be traced,

will cause the functions ADD, FI, and F,
to be traced.

etc.

From then on, tracing will occur on entry to, and on exit
from, the bugged functions provided that the variable DEBUG is set to TRUE.

- 58 - DEBUGGING FACILITIES

Thus the tracing can be controlled over all functions
bugged, by setting the variable DEBUG to FALSE, for no output, or
TRUE, for output.

The printout given while tracing is, on entry to the function,
the name of the function on a new line, preceded by the symbol ')',
and followed by the names of the selected arguments and their values.
On exit from the function the name of the function is printed on a new
line preceded by the symbol '<', and is followed by the names of the
selected results and their values.

If a function which has not been specified with SPEC is
bugged, then the printout consists of the name of the function only.

On each function entry the printout is indented by one space,
and on exit the indentation is reduced by one space, the amount of
indentation being held in the variable DEBSP. The user may change
the value of this variable during a trace if a special lay-out is
required. DEBSP is automatically set to zero if a call of SETPOP
occurs, but may be assigned values by the user.

The values of parameters and results are printed during
tracing by the function DEBPR, which initially has the value PRo
This function may be redefined by the user if it is required to print
special values. arrays, or records for example. The definition given
to DEBPR must be a function which takes one argument and leaves no
results. If this is not done the result of the debugging will be
undefined.

To stop tracing a particular function, or functions, the
macro UNBUG should be used in a similar way to BUG, e.g.

UN6UG ADD; will cause the debugging mechanism to be
removed from ADD,

UN6UG FF GETY; removes the debugging mechanism from the
functions FF and GETY.

etc.

It should be noted that BUG and UNBUG affect the function
stored in the function variable, and if the value of the function has
to be taken out and used elsewhere, e.g. by partially applying it, or
tying it up in a data structure, they will not affect the incorporated
function.

POPTRACE (see page 24) can be used to list the calling
sequence of currently active functions, and if POPDOTRACE is set to
TRUE this will be entered by the system when an error occurs.

- 59 - EXAMPLE OF DEBUGGI NG - TJ MI NG

Examples of the use of the debugging facilities

FUNCTION ADO X Yi
X+Y

END;

SPEC ADD X Y => SUM; (Specify the function ADD)

FUNCTION ADD3 U V W;
ADCCU.AOD(V,W»

END;

SPEC ADD3 V * => SUM3; (Specify the function ADD3.
V is the only argument whose
value is required)
(Set the debugging mechanism
on ADD and ADD3)
(Switch on the debugging
mechanism)

BUG ADD ADD3;

TRUE -> DEBUG;

ADD3(1,2,3)=>

>ADD3 V= 2, *,
>ADD X= 2, y= 3,
<ADD SUM= 5,
>ADD X= 1, y= 5,
<ADD SUM= 6,

>ADD3 SUM3= 6,

** 6,

UNBUG ADD;
ADD3(2,3,4) =>
>ADD3 V= 3, *,
<AD03 SUM3= 9,

** 9.

(Reset the function ADD)

TIMING FACILITIES

The amount of processor time used during a session is held
in the standard variable POPTIME as an integral number of time units.
Each unit represents one-sixteenth of a second, POPTlME being incre­
mented every 'tick' of the real-time clock.

Any process may be timed by comparing the values of POPTIME
before and after the process is run, but because of the rather large
size of the unit, POPTlME should always only be regarded as an approx­
imate measure of the time taken, particularly for short processes.

- 60 - TIMING AND CORE USED

A further facility, POPDATE, is provided. This is a
function which produces as its result a list of the real-time, the
day, the month and the year.

e.g. : POPDATE() =>

** [12.35 25 JAN 1970J.

A standard variable LAPSETIME holds a count of real-time
since the system came on the air. It is incremented every 16th of a
second.

e.g. : POPTIME,LAPSETIME =>

** 23,1716.
: POPTIME,LAPSETIME =>

** 24,1793.

PROGRAM CORE REW IREM;NTS
Lisced below is the amount of core required by standard

data structures. These figures can be used to determine roughly bow
much core a program and ics workspace will occupy, but it should be
noted that during the construction of many of these structures,
functions in particular, much more core will temporarily be required.

STRUCTURE CORE REQUIREMENT IN WORDS COMMENTS

ARRAYS 36+3d+el(2+e2(2+
•••ed-l(2+ed»···)

where d m No. of dimensions
and el No. of elements in

first dimension
e2 No. of elements in

second dimension
etc.

DOUBLETS When two functions are combined to produce a
doublet, no extra core is required.

CLOSURE
FUNCTIONS

6+2n where n • No. of frozen formals.
For doublets this figure should
be doubled.

FUNCTIONS A good approximation to the amounc of core required for
a function can be obtained by counting the number of

- 61 - DEFICIENCIES

STRUCTURE CORE REQUIREMENT IN WORDS COMMENTS

words in the function definition including everything
other than labels, brackets, commas, semi-colons and
the word CLOSE; count in the number of formal parameters
twice and add six.

LISTS 3 words/cell i.e. for each PAIR

REFERENCES 2

RECORDS

I+c

when the record class if
created, and for each
record created where
C = No•.of components in
the record class.

when creating a new strip
class, and
for each strip of n full
size components, and
for each strip of n components
of size s bits.

when a word is used as a variable
name, another 2 locations are
required. When the MEANING of
a word is first updated. another
3 locations are required. The
first time that MEANING is used
for any word an extra 65 locations
are required.

23+20c

STRIPS 25

2+n

3+INTOF(n*s/24+0.5)

WORDS 6

ADDITIONAL DEFICIENCIES AND CHANGES IN DEFINITION

In addition to those specified in their relevant sections in
this manual. the following deficiencies and changes in definition exist
in this implementation of POP-2 :-

1) SECTIONs have been re-defined (see page 23).

2) Machine code is not allowed.

3) POPVAL must be given text which is a completed imperative
sequence, otherwise the result is undefined.

4) The components of records always occupy one full location
irrespective of their size as given in RECORDFNS.

- 62 - ADDITIONAL FUNCTIONS

5) Concatenation of two lists using the infix <> copies the
list which is its first argument, e.g. in performing A<>B,
the list A is copied. (This produces a useful method for
copying a full list - e.g. A<>NIL). It should be noted that
methods for appending items to a list which take the form
L<>[%A%] are thus very inefficient.

6) Strips may be created with components whose size lies within
the range 0 (full items) to 22 only.

ADDITIONAL AVA ILABLE STANDARD FUNCTIONS

All the optional functions mentioned in Appendix 2 of the
Reference Manual are provided, except arctan (which is in library program
[LIB INVTRIG).

EQ(X,Y);

ISNUMBER(X);

OCPR(X);

POPKEWSj

SWAPOFFOi

POPUSERj

POPEXECUTEi

equivalent to NONOP=(X,Y);

equivalent to ISINTEGER(X) OR ISREAL(X)

prints the item X to the current output device
as an 8 digit octal number

A standard MACRO which causes a current Multi-POP
news message to be printed on the console.

a function which when applied. causes the user's
current time-slot in the scheduling of Multi-POP
to be terminated (mainly for use in systems type
programs).

A standard variable which contains the users
logging-on identifier.

A standard variable which is false during compilation
and true otherwise.

- 62 - ADDIT I ONAL FUNCTIONS

5) Concatenation of two lists using the infix <> copies the
list which is its first argument, e.g. in performing A<>B,
the list A is copied. (This produces a useful method for
copying a full list - e.g. A<>NIL). It should be noted that
methods for appending items to a list which take the form
L<>[%A%J are thus very inefficient.

6) Strips may be created with components whose size lies within
the range 0 (full items) to 22 only.

ADDITIONAL AVAILABLE STANDARD FUNCTIONS

All the optional functions mentioned in Appendix 2 of the
Reference Manual are provided, except arctan (which is in library program
(LIB INVTRIGJ).

EQ(X'Y)i

ISNUMBEReX);

OCPR{X);

POPNEWSi

SWAPOFFO;

POPUSERi

POPEXECUTEi

equivalent to NONOPa(X,Y);

equivalent to ISINTEGER(X)OR ISREAL(X)

prints the item X to the current output device
as an 8 digit octal number

A standard MACRO which causes a current Multi-POP
news message to be printed on the console.

a function which when applied, causes the userls
current time-slot in the scheduling of Multi-POP
to be terminated (mainly for use in systems type
programs).

A standard variable which contains the users
logging-on identifier.

A standard variable which is false during compilation
and true otherwise.

- 63 - REFERENCES

REFERENCES

Burstall, R.M., Collins, J.S. and Popplestone, R.J. (1968) POP-2 Papers.
Edinburgh: Edinburgh University Press.

Burstall, R.M., and Popplestone. R.J. (l97l) POP-2 Reference Manual.
Programming in POP-2 (ed. R.M. Burstall) Edinburgh: Edinburgh
University Press.

Burstall, R.M. and Collins, J.S. (1971) A primer of POP-2 Programming,
Programming in POP-2 Cede R.M. Burstall) Edinburgh: Edinburgh
University Press.

antES DOCUMENTATION

Anderson, B. (1970) Programming in POP-2, Computer Weekly. (A series
in Computer Weekly based on Programming in POP-2).

Barnes, J.G.P., Steel, R. (1968) System 4 POP-2 Users Guide. Edinburgh:
School of Artificial Intelligence.

Marsh, D.L. (1970) An introduction to POP-2: Computer Weekly, 172, 6 & 7.

"POP-2" Information booklet published by Conversational Software Ltd.,
--rz-Queen Street, Edinburgh, EH2 lJE. (1970).

Popplestone, R.J. (1968) The design philosophy of POP-2. Machine
Intelligence 3 (ed. D. Michie) Edinburgh: Edinburgh University Press,
pp. 393-402.

Pullin. D.J.S. (1967) A plain man's guide to Multi-POP implementation .•
Mini-MAC Report No.2. Edinburgh: School of Artificial Intelligence.

Scott. J.J. (1968)A supplementary manual for the Lancaster POP-2 1900
System. University of Lancaster. .

- 64 - APPENDIX 1

APPENDIX 1. A CQ\1PlETE f:ijLTI-pre SESSION

'l'G (User hits bell to activate console).

MULTI-POP SYSTEM. ISSUE 21/11/69. 16.46HRS. 25 JAN 1970

NAME: ROO (System requests name and
amount of store required)

STORE 30 BLOCKS FREE: 3

DISC TRACK: 0

SETPOP:

: 12+2.5*(1.5+2.5) => (Simple arithmetic)

** 22.0.

VARS A B SUM;
2*2 -> A; 3*A -> Bi A*A+B*8 -> SUM;
SUM =>

(Declare and give values to
some variables)

** 160.
FUNCTION SUMSQ X Yi
X*X+Y*Y

END:
SUMSQ{A,B) =>

(Define function for computing
the sum of the squares of two
numbers, and test it)

** 160,

FUNCTION FACT N; (Define factorial function)
IF FAC!
IF N=O TH8M+N 1 ELSE N*FACTCN-1) CLOSE

END;
FACTCFACT(3» => (Test factorial function)

** 720,

: 1 -> I; (Assign value to variable 1)

COMMENTS [11 (System commenting on use of
undeclared variable)

VARS U;
[%I,I+1,~DOG~.-CAR+T-%] -> U;
U =>

(Create a list, assign to U)

** [1 2 DOG CAT],

: [1 2 3 41<>U => (Concatenate two lists)

** [1 2 3 4 1 2 DOG CAT],

- 65 -

FUNCTION TAB F LO STEP HI;
LOOP:
1.NLj PR(LO)i PR(F(LO»; LO+STEP->LOi
IF LD;<HI THEN GOTD LOOP CLOSE

END;

TAB(SQRT,1,100)i

ERROR 52
CULPRIT FNENTRY
SETPOP:

: TABCSQRT,1,1,100)j

1 1.0
2 1.414
3 1.732
4 2.0
5 2.236
6 2.449
7 2.646
8 2.828
9 3.0

10 3.162
11 3.317
12 3.464
13 3.606
14 3.74tG
SETPOP:
: POPMESS([LPBO SQUARE ROOTS) -> LP;

COMMENTS [LP)
LP -> CUCHAROUTi

TAB(SQRT,1,1.100)i

TERMIN.LP;
CHAROUT -> CUCHAROUT;

2+2 =>

** 4.
: •LOGOFF;

CPU TIME USED = 0 MINS 3.313 SEes.

LOGOFF 16.58HRS. 25JAN 1970

APPENDIX 1

(Declare function for tabulat­
ing any uni-argument, uni­
result function over a given
range)

(Too few arguments provided)

(Caused Interrupt by pressing
CTRL G twice. Output stops
at once)

(Open lineprinter file)

(Output results to lineprinter)

(Close lineprinter file and
reset CUCBAROUT to the console)

(Log off the system)

APPENDIX 2 - 66 -

STAN[}ARD pop-2 CHARACTER SET

CHARACTER SET

Internal Value Internal Value
Character Decimal Octal Character Decimal Octal

0 a 00 .. 32 40
1 1 01 A 33 41
2 2 02 B 34 42
3 3 03 C 35 43
4 4 04 D 36 44
5 5 05 E 37 45
6 6 06 F 38 46
7 7 07 G 39 47
8 8 10 H , 40 50
9 9 11 I -, 41 51
: 10 12 J 42 52
; 11 13 K 43 53
< 12 14 1 44 54
= 13 15 M 45 55
> 14 16 N 46, 56
10 15 17 0 47. 57

Space 16 20 P 4~ 60
Newline 17 21 Q 49 61

" 18 22 R 50 62
RESERVED 19 23 S 51 63

f. 20 24 T 52 64
% 21- 25 U 53 65
& 22 26 V 54 66.• 23 27 W 55 67
(24 30 X 56 70
) 25 31 y 57 71
1(26 32 Z 58 72
+ 27 33 [59 73, 28 34 $ 60 74- 29 35] 61 75. 30 36 l' 62 76
/ 31 37 Shift 63 77

NOTES

The reserved character (decimal 19) is used by the system for
file termination, and will produce an undefined result if output
directly by the user.

The shift character (decimal 63) may be used by the user as a
special purpose marker, as no out-shift facilities are envisaged. If
printed this character will be output as a space.

If decimal 64 is output to the lineprinter, a page throw will
be given, on all other devices it will be interpreted as the digit 0,
if a negative number is output as a character to the lineprinter, this
has the effect of carriage return without line feed and can thus be
used for overprinting.

APPENDIX 3 - 67 - ERROR LIST

pop-2 ERROR NUMBERS

1
2
3
4
5
6
7

Impermissible use of :
Illegal position for a label
More than one label with the same name
Type clash in variable declaration
Impermissible use of ->
Impermissible operation in execute mode
MACRO definition not at execute level, or attempt to
specify formal parameters in a MACRO definition.
Impermissible use of =>
Missing "
OPERATION not followed by precedence, or
followed by impermissible precedence
NONOP not followed by an operation, or . not followed by an
identifier
Impermissible use of CANCEL
GOTO with undefined label
Attempt to SWITCH on impermissible item, i.e. non-integral.
non-positive or too large
Illegal mnemonic (M!C code)
Illegal variant (M/C code)
Illegal address for short instruction (M/C code)
Illegal offset (M/C code)
Missing semi-colon (M/C code)
Missing separator
Impermissible separator or expression terminator
Impermissible closing bracket
i.e. missing END, THEN, CLOSE, J, >, %], %) or ENDSECTION
Attempt to JUMPOUT or REINSTATE over a SECTION boundary
GOON at execute level with the stack empty
Impermissible use of systems name
Type clash (Loader)
Impermissible control character (Loader)
Non-function argument for FNTOLIST
"" "" update part of UPDATER

,. UPDATER

8
9
10

11

12
13
14

15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31

" " II

Attempt to assign non-function to an OPERATION or MACRO-type
variable, or to an updatable system function
Non-function argument for INCHARITEM or OUTCHARITEM
Arithmetic overflow
Integer overflow (INTOF)
Last argument for CONSWORD or CHARWORD is not a legal
positive integer
Attempt to look up item other than in dictionary (System error)
Attempt to obey undefined function, or non-function
Assignment with non doublet. i.e. attempt to obey undefined
update part of function

32
33
34
35

36
37
38

- 68 - ERROR LIST

39
40
41
42
43
44
45

Impermissible argument - SQRT
" " - SIN
" " - COS
" " - TAN
" " - EXP
II " - LOG
" II - general selector or updating function

e.g. HD, TL, etc.
46 Impermissible argument - DESTWORD
47 Non-number argument for arithmetic operation
48 Attempt to partially apply a non-function
49 Non-integer argument for II or second argument of PRBIN

or PROCT is not a legal positive integer
50 No room in store for required operation

(Can be caused by any operation requiring store. Continuation
is impossible until required amount of store becomes free.
The culprit given is the number of words of store which was
being looked for)

51 Stack overflow
52 Stack underflow
53 Impermissible component size «0 or >22), for record class

- RECORDFNS
54 Item read by LISTREAO is not a list, or

item read by NUMBERREAD is not a number
55 Attempt to use a file which has been closed
56 Peripneral device in error state, or parity error
57 Wrong file loaded by operator, or non-existent EASYFILE file
58 POPMESS of wrong format
59 Device requested by POPMESS not available
60 Impermissible argument - FNPROPS
61 JUMPOUT fail
62 Impermissible argument - structure processing function

e.g. DATALIST, COPY
63 Impermissible component size - Strip update function
64 Impermissible argument - Strip initiator function
65 Impermissible component size - STRIPFNS
66 Impermissible strip class - Strip selector fUDction
67 " "" - Strip update function
68 "subscript - Strip selector function
69 " "- Strip update function
70 "use of %, 10 or string quotes
71 Ambiguous use of the item •
72 Error in 2: or 8: integers
73 Impermissible subscript - array access
74 II It - array update
75 "bounds1ist - array declaration
76 FROZVAL fail (Impermissible subscript, or attempt

to apply to non-closure function)
77 Attempt to update FNPART with non-function
78 Attempt to apply FNPART to non-closure function

- 69 - ERRM LIST

79 Attempt to read or write beyond the end of a disc track
80 Attempt to write onto a disc track which is not assigned to you
81 Disc transfer failed (hardware error)
82 Attempted disc transfer using non-existent track or sector
83
84 Attempt to transfer an illegal structure between disc and core
85 Impermissible sector offset given for transfer between disc

and structure
86 Corruption detected - DOTRACE

150 Attempt to apply APPSTATE or REINSTATE outside their proper
barriers

151 Attempt to REINSTATE an item that is not a state

- 70 - OPERATING INSlRUCTIONS

APPENDIX 4', pop-2L4lCOOPERATING INSmUCTIONS

MULTI-POP CfERATING INSTRUCTIONS

1. Paper-tape version

The system is distributed as a set of numbered 5CB paper­
tapes, plus a small 'tail' tape.

(a) Load the 5CB tapes under Initial Instructions in numerical
order. The final tape will trigger to the **MES: routine
of NICE.

(b) Load the 'tail' in Reader 1.

(c) Continue as from (c) in the instructions for the disc system.

2. Magnetic-tape version

The system is distributed as a core dump under an SBLI
lable on a magnetic tape in the standard Elliott format, and may be
packed either at 200 bpi or at 556 bpi, this being determined by its
labelling. A combined paper-tape trigger and 'tail' is also supplied.

(a) Load the magnetic tape on handler O.

(b) Input the trigger under Initial Instructions. The dump
will be input to store and control triggered to the **MES:
routine of NICE. At this point, a program DUMPOP is available,
which when entered, will cause the core to be redumped as the
last 5BLl dump on a magnetic tape on handler O. OT. if given
a-pirameter, e.g. DUMPOP, <0>., will cause the nth dump to
be overwritten by the core, making this the last one on the
tape. A trigger is output. (cf DMPALG).

(c) Continue as from (c) in the instructions for the disc system.

3. Disc version

~he system is distributed as a core image on tracks 4 to 7
inclusive on a disc pack. Also supplied is a combined paper-tape
trigger and 'tail'.

(a) Load the disc pack on handler specified, and other packs for
users' files.

- 71 - li'ADING MUwTl-PQP

(b) Input the trigger under Initial Instructions. The dump
is input from the disc and control triggered to the **MES:
routine of NICE.

(c)· Clear all sense keys and type POP2. If monitor output is
required. leave sense key 1 set.

The tail will be read, and after a short delay, the follow­
ing sequence of messages is output. Note that all input should be
terminated by carriage-return, and that the standard line-editing of
POP-2 (+ and !) can be used to correct errors.

MULTI-POP SYSTEM. ISSUE <issue no.>

USERS: type in the maximum number of channels to be connected
to the system during this run (NOTE: this restricts the
use to channels 0 to <n-l> during this run, where <n> is
the figure typed).

TIME: type in the real time as a four digit integer, e.g. 1430·

DATE: type in the date as three separate items separated by
spaces or new lines, e.g. 15 NOV 1969

NEWS: whatever is input here will be output to all consoles during
this run, at logon time. If no message is required a full
stop should be typed, otherwise a message, enclosed in
string-quotes (' and '), should be input, e.g. 'SYSTEM
RUNNING UNTIL 1730' or •

<time> SYSTEM RUNNING

is now output, and channels 0 to <n-l> as above will now
be active and users may log on (see page 8).

It should be noted that apart from the initial loading
sequence. NICE software is not used by this system, and after the tail
has been read, it is not possible to return to NICE control. Further,
pressing the MESSAGE Key will kill the POP-2 system (except in Uni-POP
where it is used as the interrupt key). The control teletype is used
only as a message displaying device during Multi-POP. any input
causes a + to be output. BELL (CTRL and G) should ~ be typed.

In disc systems, the disc must not be unloaded or switched
off during a run as any subsequent disc transfers will fail.

- 72 - CONSOLE MESSAGES

MESSAGES OUTPllT TO CONTROL TELEJYPE DURING MULTI-POP

Messages are of two forms, either informative, or requ~r~ng
some action on the part of the operators. All messages are output on a
new-line and are preceded by the time. if this has changed since the
last message, and the name of the user initiating the message. These
two items are not included in the descriptions below, the user's name
being represented by <name>. The control teletype's bell is run to
draw attention to action output.

a) LOGON <c> BLOCKS. FREE <f>

Indicates that <name> has logged on, on channel <c>. for
 blocks. There are <f> blocks of store still free. (4
block being 512 words).

b) LOGOFF <c> CPUT <e> FREE <f>

Indicates that <name> has logged off channel <e>, has used
<t> units of CPU Time (a unit is the setting of the Real
Time Clock), and there are now <f> blocks of store free
on the system.

The following messages (c to f) are output directly or
indirectly by a user call of POPMESS.

c) <device name>[<file name>]

In the case of input devices, the operator should load the
file with the name <file name> on the device <device name>.

In the case of output devices, this is an indication that a
file with the given name is being output on this device.

e.g. RDR1 - [TEST PROGRAM]
LPRINTER - CTeST PROGRAM]

d) [CLOSE <device name>J

This indicates a file (input or output) has been successfully
transferred, and that the operator should take appropriate
action (e.g. unload the reader or punch, or tear off the
lineprinter output).

e.g. [CLOSE PUNCH2J

e) [ABANCON <device name>J

The transfer of a file on <device name> has failed. The
device should be unloaded.

- 73 - CONSOLE MESSAGES

f) [ERROR <device name>]

The device <device nrone>is in an error state (e.g. lineprinter
in manual. or no paper in punch). The operator should rectify
the fault.

g) [KILLED)

This indicates that user <name> is exceeding his store
allocation and is about to be logged off.

h) Garbage messages.

When the storage allocation scheme runs out of store, a
'Garbage Collector' is called to recover free store. This
causes output on the control-console in the following format ;-

<cell size> I 2 2 3 <total core in use><total function
space in use>

<cell size> is the size (in number of locations) of the cell
currently being allocated.

<total core in use> is the amount of store currently being
used by the system and users (after the garbage collection).

<total function space in use> is the amount of system and
user core which is occupied by functions and closures.

The figures 1 2 2 3 indicate the progress of the garbage
collector. No explanation is given here, and in some
systems these figures may not be output.

If a garbage message is output in any other format, an
addressing error has occurred, it may recover. but the
system is likely to crunch!

If garbage collection fails to find enough space, COLLAPSE
is entered. It is also entered if 10 garbage collections
have occurred since the last collapse. The message

COLLAPSE 123456

is output on the control console. The figures indicate the
progress of the collapse.

If the storage allocation scheme fails to find a cell even
after a collapse, it checks to see if any user is exceeding his store.

- 74 - DISC USERS

If there is, this user is 'KILLED', and the cell is searched for
again. The operator is also in a position to 'KILL' such a user,
if sense key 5 is set, the user exceeding his store allocation by
the largest amount will be logged off after the next garbage collection.

DISC SYSTEM- HOWTO fv1AKEDISC TRACKSAVAILABLE Ere USERS TO WRITE TO

The system allows users to read from any part of the disc,
but only to write to those tracks which have been allocated to him.
This section is intended to show how a disc track can be allocated
for use by a particular user, the disc facilities themselves being
described on page 33.

A disc file of the following format exists on the LIBRARY
tracks :-

[<user name><track No.><track No.> •••]
[<user name><track No.> •••l

where <user's name> is the name as given by the user when logging on
to the system and <track No.> is the number of the disc track being
allocated to him. Note that a user can be allocated any number of
tracks, and that any track may be allocated to any number of different
users.

An example is :-

[RDD 20 21 22]
[JM 21 30 37]

When the system is initialised this file is read into core and is used
to decide whether a transfer to disc is legal.

A method is available which will allow a user to write to
any track, and is normally used when this file is to be altered.

HOd TO UPDATE THE LIBRARY SYSTEMSTORED ON DISC

Certain of the disc tracks are reserved for library programs.
These are filed under the disc filing system with DISCSTART set to 3, but
are accessed by LIBRARY in a different way.

There is a fixed file held in the library called [LIB DIRECTORY].
This contains a directory for the starts of all the files in the library.
It is updated by compiling the library program [LIB CONSDIR] which scans
the EASYFILE directories for all the library tracks and writes the new
library directory back to disc.

- 75 - LOADI NG UtU -pop

Hence a call of library results in this fixed directory
being searched,

A new library program can then be added during a MULTIPOP
session by creating the library file and updating the directory,

A listing of the file directories for the library tracks
will be supplied with every disc system, and from this it can be seen
which of the above tracks are actually in use (at the time of writing
only tracks 94 - 99 were occupied). Further tracks can be added as
and when the need arises by preparing a tape in the format given below
and inserting it at the beginning of the tail as described above (it can
go before or after the DISCUSERS list).

e.g. to add track 93 to the library tracks ,-

F135 'LIBTRACKS KC 'CONS KCE 'LIBTRACKS KA

(note 135 is 93 in octal)

This is equivalent to 93::LI~TRACKS->LIBTRACKS; in POP-2.

NOTE: Tracks should not be added to LIBTRACKS in this way unless they
have previously been initialized by EASYFILE.

UNI-POP OPERATING INSTRUCTIONS
To load Uni-POP, proceed as for the appropriate system in

Multi-POP, up to the point where the 'tail' is read, when the following
sequence of messages will be output. Note that all input should be
terminated by carriage-return/line-feed, and that the standard line­
editing of POP-2 (+- and !) can be used to correcterror s•

UNI-POP SYSTEM. ISSUE <issue number>

TIME: type in the real tUne as a four digit integer, e.g. 1430

DATE: type in the date as three items separated by spaces or
new lines, e.g. 15 NOV 1969

NAME: type in your user name, e.g. ROD, this is used on line­
printer headings, and is required for disc track usage.
If a batch system is to be run, type BATCH

- 76 - BATCH PROCESSING

SETPOP: is now output and the system is ready for use. NOTE that
the message-key should be used as the break key as opposed
to CTRL and G in Multi-POP.

CONSOLE MEssAGES IN UNI-eop

The only messages output to the console by the operating
system are those giving device load/unload commands initiated by a
POPMESS, and are similar to those in Multi-POP except that the time
and user's name are omitted, and asterisks are output to distinguish
them,

e.g. **LPRINTER[FILE ONE]*.

UNI-POP BATCH PROCESSING

At any time while using Uni-POP, a batch operating system
may be initiated by typing BATCH;, the specification is as follows :-

The standard input device is set to be reader 1, thus a
program to be run should be loaded in this reader. CHAIUN will take
its characters from this device.

The standard output device is set to be the lineprinter
(LPl20), thus any characters printed when CUCHAROUT is set to be
CHAROUT will be output to this device. The job file heading on the
lineprinter will be the file-name of the program tape loaded, if
there is one, otherwise it will be [POP BATCH JOBl. Also included in
the file heading is the time and date of the run. If a file-name
is used, it must be followed by the user's name, if this is omitted,
the first item-Dn the program will be taken as the name and errors will
occur.

Note that only 'erase' or 'run-out' are allowable characters
after the halt code on paper tapes unless the tape has been produced
by the system (see PTOUT).

Any POPMESS occurring in the program being compiled will
cause an appropriate message to be printed on the control teletype,
e.g. **RDR2 [RDO TEST PROGRAMl**. It should be noted that reader 1
and the lineprinter will not be available in this way, and that during
batch operation the control teletype is not available as an input/
outp.ut device.

- 77 - BATCH PROCESSING

A standard function POSTMORTEM is entered after any error
(i.e. call of ERRFUN). Normally this function is set to be CARRYON,
but may be redefined in the batch program.

A halt-code being read on reader 1 will automatically
terminate that program, all current devices are closed, the core is
cleared, and the message :-

JOB FINISHED. LOAD NEXT (a)

is output. The next program to be run should be loaded in reader 1.

A standard function ABANJOB is available for use by
programs running under the batch, When called. ABANJOB causes that
job to be killed and has the s~e effect as if the halt-code had been
read on the end of the tape,

A batch job may be terminated at any time by pressing the
message key. This causes the store to be cleared, and the message

JOB ABANDONED, LOAD NEXT (b)

to be output.

To terminate the batch and return to on-line mode, the
message key should be pressed while reader 1 is waiting for the next
program to be loaded, i.e. immediately after either message (a) or (b)
above. The message :-

BATCH STREAM TERMINATED

NAME:

is output, and the system is back to normal console input/output. waiting
for a user's name to be input.

- 78 - INDEX

IW~ IQ ALL POp-2 1t.ORDS

This index lists all standard functions, variables, and
syntax words specified in both the Reference Manual and this manual.
Each word is followed by a letter which denotes its type and which
have the following meanings :-

F denotes a Function
M denotes a Macro
0 denotes an Operation
S denotes a Syntax word
V denotes a General Variable

The page numbers relating to this manual are given, .and
R denotes that a description is also given in the Reference Manual.

WORD TYPE PAGE WORD TYPE PAGE

ABANJOB F 77
AND S R DATALENGTH F R
APPDATA F R DATALIST F R,17
APPLIST F R DATAWORD F R
APPLY F R DCOM!' F 43
APPSTATE F R DCOPY F 43
ATOM F R DDEND F
BACK F R DOFI F 45
BARRIERAPPLY F R DOF2 F 45
BATCH M 76 DDlO F
BI03l6STAT F 32 DOIRSTART V 45
BOOLAND F R DDMP F
BOOLOR F R DDIO F
BOUNDSLlST F R DEBPR F 58
BUG M 57 DEBSP V 58
CANCEL S R DEBUG V 57
CARRYON F R,41 DEDIT F 43
CfiARIN F R,26 DEST F R
CHAROUT F R,26 DESTPAIR F R
CHARWORD F R DESIREF F R
CLEARPOP F 12 DESTWORD F R
CLOSE S R DIN F 44
COMMENT S R DISC F 44
COMPILE F 40,16 DISCDIR V 44
CONS F R DISCEND V 44
CONSPAIR F R DISCIN F 33
CONSREF F R DISCINIT F 42
CONSWORD F R DlSCOUT F 33
CONI F R DISCSTART V 42
COpy F R DISCUSER V 42
COPYLIST F R DKILL F 44
COREUSED V 11 DLP8a F 43
cas F R,19 DOUT F 44
CUCHAROUT F R,38

- 79 - INDEX
WORD TYPE PAGE WORD TYPE PAGE

DPTIN F .42 HPRUNLD F 20
DPTOUT F 43 IDENTFN F R
DREAD F 42 IDENTPROPS F R
DRECl F IF S R
DRECOVER F 44 INCHARITEM F R,36
DREPIN F 43 INIT F R
DSECTOR F 35 INITC F R
DTIDY F 44 INTOF F R,19
DTOSTRUeT F 34 ISCOMPND F R
DTRACK F 42 ISFUNC F R
DTRS V 42 ISINTEGER F R,19
DTUE F 43 ISLlNK F R
ELSE S R ISLIST F R
ELSEIF S R ISNUMBER F 19,62
END S R ISREAL F R,19
ENDSECTION S R ISWORD F R
EQ F 62 ITEMREAO F R,38
EQUAL F R JUMPOUT F R
ERASE F R LAMBDA S R
ERRFUN F R,24 LAPSETIME V 60
EXIT S R LENGTH F R
EXP F R,19 LIBRARY F 49
FALSE V R LISTREAD F R,38
FNCOMP F R LOG F R.19
FNPART F R LOGAND F R
FNPROPS F R,22 LOGNOT F R
FNTOLIST F R LOGOFF F 10
FaULL S R LOGOR F R
FRONT F R LOGSHIFT F R
FROZVAL F R LOOPIF S R
FUNCTION S R MACRO S R
GENOUT F R MACRESULTS F R
GOON S R MAPLIST F R
GOlD S R MEANING F R
HD F R NEWANYARRAY F R
HPRADD F 20 NEWARRAY F R
HPRDIV F 20 NIL V R
HPREQ F 20 NL F R,40
~PRGEQ F 20 NONMAC S R
BPRGT F 20 NONOP S R
HPRLD F 20 NOT F R
HPRLT F 20 NULL F R
HPRMUL F 20 NUMBERREAD F R,38
HPROF F 20 OCPR F 62
HPRRLOF F 20 OPERATION S R
HPRST F 20 OR S R
HPRSUB F 20 OUTCHARITEM F R,36

- 80 - INDEX

WORD TYPE PAGE WORD TYPE PAGE

PARTAPPLY F R STRIPFNS F R
POPAUTOREAD F 6 STRUCTTOD F 34
POPCOMMENT V 23 SUBSCR F R
POPDATE F 60 SUBSCRC F R
POPDOTRACE V 24 SWAPOFF F 62
POPEDIT F 49 SWITCH S R
POPGOBBLE F 49 TAN F R,19
POPMESS F R,26 TERMIN V R,27,4
POPNEWS M 62 THEN S R
POPRDYFN F 13 It F R
POPREADY F 14 TRUE V R
POPTIME V 59 UNBUG M 58
POPTRACE F 24 UNDEF V R
POFUSER F 62 UPDATER F R
POPVAL F R VALOF F R
POSTMORTEM F 77 VARS S R
PR F R,39 S R
PRlHN F R (S R
PRINT F R,39) S R
PROeT F R S R
PROGLIST V R,37 S R
PRREAL F R,40 [% S R
PRSTRING F R,40 %] s R
REALOF F R,19 [S R
REeORDFNS F R) S R
REINSTATE F R (% S R
RETURN S R %) S R
REV F R = 0 R
ROBOT STATUS F 32 1= 0 R
SAMEDATA F R 0 0 R
SECTION S R,23 0 R
SETPOP F R,25 -> s R
SIGN F R,19 < 0 R,18
SIN F R,19 > a R,18
SP F R,40 =< 0 R,18
SPEC M 56 >= 0 R,18
SQRT F R,19 + 0 R,18
STACKLENGTH F R 0 R,18
STORE F 12 * 0 R,18

I 0 R,18
/I 0 R,18
l' 0 R,18
=> 5/0 R,40

