
Edited by D.A.Duce

~
lEE DIGITAL ELECTRONICS AND COMPUTING SERIES 5

Distribut~d
computing
syst~ms

programm~

Peter PeregrinusLtd. on behalf of The Institution of Electrical Engineers

Distribut~d
computing
syst~ms

programm~
Edited by D.A.Duce

Peter Peregrinu5 Ltd
On behalf of The Institution of Electrical Engineers

Published by: Peter Peregrinus Ltd., London, UK.

© 1984: Peter Peregrinus Ltd.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted in any form or by any
means - electronic, mechanical, photocopying, recording or otherwise -
without the prior written permission of the publisher.

While the author and the publishers believe that the information and
guidance given in this work is correct, all parties must rely upon their own
skill and judgment when making use of it. Neither the author nor the
publishers assume any liability to anyone for any loss or damage caused
the result of negligence or any other cause. Any and all such liability is
disclaimed.

British Library Cataloguing in Publication Data

Distributed computing systems programme -
(lEE digital electronics and computing series 5)
1. Management - Data processing
2. Electronic data processing - Distributed
processing
I. Duce, D.A. II. Series
001.64 HF5548.2

ISBN 0-86341-023-5

Printed in England by Short Run PressLtd., Exeter

Contents

Preface xi

List of contributors xiii

The Distributed Computing Systems Programme 1911-1984
1.1 BACKGROUND
1.2 MANAGEMENT OF DCS
1.3 INFRASTRUCTURE ACTIVITIES

1.3.1 Meetings programme
1.3.2 Conferences
1.3.3 Mailshot
1.3.4 Annual Report
1.3.5 Equipment pool
1.3.6 Technical Backup

1.4 RESEARCH THEMES
1.5 INDIVIDUAL PROJECTS
1.6 SOME STATISTICS
1.1 ACHIEVEMENTS
ACKNOWLEDGEMENTS
REFERENCES

2 The Sussex Broadband LAN Project
2.1 INTRODUCTION
2.2 REQUIREMENTS
2.3 BROADBAND DATA NETWORKS
2.4 THE SUSSEX NETWORK

2.4.1 Low Bit Rate Fixed Frequency Modem
2.4.2 Frequency Agile Modem
2.4.3 High Bit Rate Modem

2.5 CURRENT STATUS AND DISCUSSION
3 Implementation of a High Performance LAN - Centrenet

3.1 INTRODUCTION
3.2 CENTRENET PHILOSOPHY
3.3 CENTRENET ARCHITECTURE
3.4 MARK-l STARPOINT DESIGN
3.5 MARK-2 PORT-CARD
3.6 THE SUPERPORT
3.1 REMOTE LINKS
3.8 LOCAL LINKS
3.9 CONCLUSIONS
ACKNOWLEDGEMENTS
REFERENCES

4 Imperative Languages in Distributed Computing
4.1 INTRODUCTION

4.1.1 Program structuring

1
1
3
4
5
5
5
5
5
6
6
8
9
9
10
11
12
12
12
14
14
11
19
20
21
25
25
26
21
30
31
32
33
35
36
31
31
39
39
40

vi Contents

4.1.2 Communication mechanisms
4.1.3 Making connections
4.1.4 Non-determinism

4.2 IMPLEMENTATION INFLUENCES
4.2.1 Timing problems
4.2.2 Hardware failure
4.2.3 Shared memory

4.3 THE LANGUAGES
4.3.1 Ada and Martlet
4.3.2 Conic
4.3.3 occam
4.3.4 Pascal-m
4.3.5 Path Pascal and PascalPlus
4.3.6 Programming in unhelpful languages
4.3.7 Other languages

4.4 CONCLUSION
REFERENCES

5 A Strongly Typed, Distributed Virtual Memory
5.1 INTRODUCTION
5.2 FACILITIES REQUIRED

5.2.1 Types supported
5.2.2 Manipulation from within a program
5.2.3 Management of the Structured Data Store
5.2.4 Representations
5.2.5 Operations
5.2.6 Distributed Data
5.2.7 Requirements Summary

5.3 THE VIRTUAL MEMORY
5.3.1 Data Structure Accessing Operations

5.4 THE USER INTERFACE
5.4.1 The Type Editor
5.4.2 The Value Editor

5.5 CONCLUSION
REFERENCES
ACKNOWLEDGEMENTS

6 Building Flexible Distributed Systems in Conic
6.1 FLEXIBILITY IN DISTRIBUTED SYSTEMS
6.2 CONIC MODULE PROGRAMMING LANGUAGE

6.2.1 Task Modules
6.2.2 Communication Primitives
6.2.3 Input/Output

6.3 CONIC CONFIGURATION LANGUAGE
6.3.1 Context Definition
6.3.2 Instantiation
6.3.3 Interconnection
6.3.4 Mapping onto Physical Topology
6.3.5 Structuring Configuration Specifications

6.4 DYNAMIC CONFIGURATION
6.4.1 Change Specifications
6.4.2 Configuration Manager

6.5 DISTRIBUTED OPERATING SYSTEM
6.5.1 Station Executive
6.5.2 Utilities
6.5.3 Configuration Operations
6.5.4 Performance

6.6 CONCLUSIONS
6.6.1 Experience of Using Conic

41
42
43
44
44
46
46
46
47
50
53
55
56
57
58
59
59
62
62
64
64
65
65
66
68
68
69
69
70
72
72
79
81
83
85
86
86
88
88
90
91
92
92
93
93
94
94
96
97
97
99
100
101
102
102
103
103

6.6.2 Current Status
6.6.3 Future Work

ACKNOWLEDGEMENTS
REFERENCES

7 The Cosy Approach to Distributed Computing Systems
7.1 CONCURRENT, DISTRIBUTED AND SYNCHRONIZED

SYSTEMS
7.2 DECISIONS INFLUENCING THE DESIGN OF THE

COSY MODEL
7.3 • TOWARDS THE COSY MODEL
7.4 THE COSY MODEL
7.5 FORMAL RESULTS ABOUT THE MODEL

7.5.1 Static Criteria for Adequacy and
Periodicity

7.5.2 Equivalence of COSY Specifications
7.5.3 Mathematical Results about

Vector Firing Sequences
7.6 TRANSFORMATIONAL DEVELOPMENT OF SPECIFICATIONS

7.6.1 Constrained Expansion and
Reduction Rules

7.6.2 Decomposition of Sequential into
Concurrent Systems

7.7 DEVELOPMENT OF A COMPUTER BASED ENVIRONMENT
FOR COSY
7.7.1 The Basic COSY System: BCS
7.7.2 The COSY Dossier

7.8 HIGH LEVEL COSY NOTATION
7.9 APPLICATIONS OF COSY

7.9.1 Operating System Problems
7.9.2 Network Protocols
7.9.3 Train Journeys

7.10 VLSI IMPLEMENTATION OF COSY
7.11 RELATION OF COSY MODEL TO OTHER APPROACHES

7.11.1 Other semantic models
7.11.2 Programming Notations

ACKNOWLEDGEMENTS
REFERENCES

8 Ease of Use Through Proper Specification
8.1 INTRODUCTION
8.2 A FIRST EXAMPLE
8.3 THE FIRST COMPROMISES
8.4 A COMPROMISE AVOIDED
8.5 MODULARITY AND COMPOSITION OF SERVICES
8.6 EXPERIENCE SO FAR
8.7 FUTURE PLANS
8.8 GLOSSARY OF SYMBOLS
REFERENCES

9 Probabilistic Modelling of Distributed Computer
Systems
9.1 GENERAL BACKGROUND
9.2 MODELS THAT CAN BE SOLVED EXACTLY

9.2.1 Multiprocessor Systems with
a Single Job Type

9.2.2 Two Job Types
9.2.3 Network Models

9.3 MODELS THAT REQUIRE APPROXIMATIONS
9.3.1 A Distributed Data Base Model

Contents vii

104
104
105
105
107

107

108
109
111
116

116
116

116
117

117

117

118
118
118
118
119
119
119
119
119
119
120
122
122
122
126
126
126
128
131
134
136
137
137
138

139
139
141

142
143
144
147
148

viii Contents

9.3.2 Local Area Networks
9.4 CONCLUSION
REFERENCES

10 Developing Concurrent Systems with DTL
10.1 INTRODUCTION
10.2 PROCESS ABSTRACTION
10.3 CONCURRENT TRANSLATIONS
10.4 EXAMPLE: SORTING
10.5 SEQUENTIAL TRANSLATIONS
10.6 EXAMPLE: LOGIC NETWORKS
10.7 IMPLEMENTATION OF DTL PROGRAMS
10.8 SUMMARY
REFERENCES
ACKNOWLEDGEMENTS

11 Parallel Algorithm Design
11.1 INTRODUCTION
11.2 NUMERICAL PARALLEL ALGORITHMS

11.2.1 Algorithm Structure
11.2.2 Parallel Methods for the Tridiagonal

Eigenvalue Problem
11.2.3 Analysis of the Alternative

Solution Methods
11.2.4 Results

11.3 NON-NUMERICAL PARLLEL ALGORITHMS
11.3.1 Introduction
11.3.2 The Neighbour Sort Algorithm
11.3.3 The Parallel 2-Way Merge Algorithm
11.3.4 The Complexity of the Algorithms

11.4 CONVERSION OF IMPLICIT METHODS TO EXPLICIT FORM
11.4.1 A New Group Explicit Method

11.5 NEW PARALLEL ALGORITHMS
ACKNOWLEDGEMENTS
REFERENCES

12 Design Study for Active Memory Arrays
12.1 DESIGN AIMS
12.2 RELATED WORK

12.2.1 High integrity design
12.2.2 Microcoding
12.2.3 Parallel arithmetic

12.3 PN SYSTEM
12.3.1 Abstraction
12.3.2 Memory management
12.3.3 Array manipulation
12.3.4 Instruction sequencing

12.4 PERFORMANCE
ACKNOWLEDGEMENTS
REFERENCES

13 Hardware and Software for Parallel Update of
Raster Graphics Images
13.1 INTRODUCTION
13.2 A QUICK INTRODUCTION TO RASTEROP
13.3 DISPLAY LIST APPROACH
13.4 DISARRAY, RASTEROP AND LINE DRAWING

13.4.1 Rasterop
13.4.2 Line Drawing

13.5 A SIMPLE EXAMPLE
13.6 THE ARRAY PROCESSOR

149
152
152
154
154
155
156
157
159
161
165
166
166
168
169
169
169
170

171

173
175
176
176
176
176
176
181
183
185
185
185
187
187
189
190
191
191
192
192
193
194
195
196
198
198

199
199
200
201
203
203
204
204
207

13.6.1 Overview
13.6.2 The Processing Elements
13.6.3 The Basic Array Cycle
13.6.4 The Array Control Unit
13.6.5 The Refresh Controller

13.7 ADDRESS STAGGERING SCHEME
13.8 QUADRANT ADDRESSING SCHEME
13.9 DISARRAY PERFORMANCE
13.10 DISARRAY2

13.10.1 The Next Generation
13.10.2 Surface Shifting
13.10.3 Processor Element Implementation
13.10.4 Other Disarray2 Features

13.11 CONCLUSIONS
REFERENCES
Directions in Functional Programming Research
14.1 INTRODUCTION
14.2 LANGUAGES

14.2.1 Polymorphic Typing
14.2.2 Syntax
14.2.3 Modules and Abstract Data Types
14.2.4 Functional and Logic Programming
14.2.5 Debugging

14.3 PROGRAM TRANSFORMATION
14.3.1 Correctness
14.3.2 Transformation Systems
14.3.3 Specification Languages

14.4 EVALUATION ORDER
14.4.1 Semantic Issues
14.4.2 Pragmatic Issues

14.5 IMPLEMENTATIONS
14.5.1 Reduction Machine Models
14.5.2 Memory System and Garbage Collection

ACKNOWLEDGEMENTS
REFERENCES

15 The Zero Assignment Parallel Processor (ZAPP) Project
15.1 INTRODUCTION
15.2 ARCHITECTURE RESULTS

15.2.1 The Reduction Model of Computation
15.2.2 Process Trees
15.2.3 ZAPP Architectures
15.2.4 A General Model of Divide and

Conquer Algorithms
15.2.5 Using a ZAPP
15.2.6 General Behaviour of a Single-user ZAPP
15.2.7 Experiments

15.3 THEORETICAL RESULTS
15.3.1 Rewrite Systems
15.3.2 Graph Rewriting on ZAPP
15.3.3 A Language for Expressing Parallel

Graph Reduction Algorithms
15.4 CONCLUSIONS
ACKNOWLEDGEMENTS
REFERENCES

16 The Manchester Dataflow Project
16.1 INTRODUCTION

. 16.1.1 A Brief History of the Manchester
Project·

Contents ix

207
209
211
211
211
212
213
214
215
215
215
217
217
218
219
220
220
221
222
222
224
224
225
225
226
227
228
228
228
232
237
237
238
241
242
250
250
251
251
252
254

255
256
257
258
260
260
261

263
266
267
267
270
270

270

x Contents

16.1.2 Tagged-Token Dataflow Computation
16.2 ENGINEERING CONSTRUCTION

16.2.1 System Architecture
16.2.2 Physical Construction
16.2.3 The Inter-Module Interface
16.2.4 CAD Tools
16.2.5 The Matching Unit
16.2.6 The Structure Store
16.2.7 Multi-Ring Systems

16.3 LANGUAGE SYSTEMS
16.3.1 PO and Pascal
16.3.2 Lapse and Mad
16.3.3 Lucid and SASL
16.3.4 DP, CSP and Id Resource Managers
16.3.5 Assembly-Level Languages
16.3.6 SISAL and Intermediate Format

16.4 TEST SYSTEMS
16.4.1 Hardware Test Programs
16.4.2 Software Fault-Tracing
16.4.3 Symbolic Debugging

16.5 APPLICATION PROGRAMS
16.5.1 Small Programs
16.5.2 Physics'Calculations
16.5.3 Computer-Aided Design
16.5.4 Standard Parallel Benchmarks
16.5.5 Program Characteristics

16.6 PERFORMANCE EVALUATION AND TUNING
16.6.1 Preliminary Performance Evaluation
16.6.2 Pipeline Tuning
16.6.3 Future Work

16.7 CONCLUSIONS
ACKNOWLEDGEMENTS
REFERENCES

272
274
275
276
276
277
277
278
278
279
279
280
280
281
281
281
282
282
283
283
283
283
284
284
284
284
285
285
285
286
287
287
288
290
290
290
292
294
296
297
298
299

17 Shells of Functional Operating Systems
17.1 INTRODUCTION
17.2 SIMPLE INTERACTION
17.3 SEQUENCES OF INTERACTION
17.4 INTERACTION WITH DATABASES
17.5 INTERACTING WITH A DATABASE OF PROGRAMS
17.6 CONCLUSIONS
REFERENCES

Index

Preface

This volume is based on papers presented at the Final Conference of the
U.K. Science and Engineering Research Council's coordinated programme
of research in Distributed Computing Systems (DCS), held at the Univer­
sity of Sussex, Brighton, U.K. in September 1984.

Chapter 1 explains the origins and history of the DCS Programme and
gives an overview of the technical development of the programme, emerg­
ing research themes and achievements.

Chapters 2 and 3 are concerned with two approaches to local area net­
works. The Sussex network is a coaxial cable network using the broad­
band approach, whereas the University of Manchester's Centrenet is a
high bandwidth network using optical fibre as the transmissionmedium.

Chapter 4 is a review of the major imperative languages (including Ada
and variants of Pascal) which have been applied to, or developed for,
distributed computing.

Chapter 5 describes a strongly typed, distributed virtual memory
developed at UMIST. This paper shows how it is possible to extend the
data abstraction facilities of modern programming languages to include
all data, both volatile and persistent, local and distributed.

Chapter 6 describes the Conic system, an integrated set of tools for
constructing and managing large distributed computer control systems. A
key feature of Conic is the ability to manage evolving systems. A sys­
tem built using Conic can easily incorporate new functionality in
response to evolutionary changes and existing components can be reorgan­
ized in response to operational changes.

The problem of specification of distributed systems introduced in
Chapter 6 is taken up in the next two chapters. Chapter 7 describes the
COSY system, a system to support rigorously reasoned design,development
and analysis of concurrent systems. Chapter 8 introduces the Z specifi­
cation technique and explores its application to distributed operating
systems.

xii Preface

Chapter 9 is a review of techniques for modelling distributed systems
mathematically. Systems discussed include distributed databases and
local area networks.

Chapter 10 introduces the DTL language for specifying and developing
concurrent systems. Programs are expressed as structured networks of
translations which communicate data on fully synchronized streams.

Chapter 11 discusses the design and performance analysis of parallel
algori thms. Both numerical (eigenvalue problem, hea t-cond uction prob­
lem) and non-numerical (sorting, merging) problems are explored.

Chapters 12 and 13 describe current research work at Queen Mary's Col­
lege, University of London. The first presents the active memory array
concept for the design of high-performance, high-integrity machines.
The second describes a solution to the problem of updating raster graph­
ics images at high speed, based on a regular two-dimensional array of
simple processorl memory pairs.

The remaining chapters are concerned with declarative languages and
non-von Neumann computer architectures. Chapter 14 reviews current
directions in functional programming research. Topics covered include
languages, program transformation, evaluation order and implementations.
Chapter 15 describes the ZAPPproject, which demonstrates how it is pos­
sible to "buy speed" for a significant class of problems by linking
together a large number of computing elements. Chapter 16 concerns the
Manchester dataflow project. Some of the technical problems encountered
in the construction of the prototype dataflow computer are described
along with their solutions. Software and performance evaluation issues
are also covered. Functional operating systems are discussed in the
final chapter, and it is shown how the shell (the component responsible
for structuring the interaction with the system user) of an operating
system can be built as a composition of purely functional programs.

The preparation of this volume has involved a great deal of work on the
part of the contributors, to whomI owe a deep debt of gratitude. This
volume also owes much to my secretaries, Janice Gore and Lilian Vallen­
tine for handling the mountain of correspondence that has crossed my
desk; and to my colleagues Fred Chambers, Gill Jones and Elizabeth
Fielding. Finally, I should like to thank Dick Grimsdale and John Golds
at the Universi ty of Sussex for hosting the Conference which provided
the incentive to produce this volume.

May this volume be a reminder of the enthusiasm and spirit of coopera­
tion which has existed in the DeS Programme and may it serve as a source
of encouragement to present and future workers in the field.

Feast of St Peter and St Paul
1984

David A. Duce

List of contributors

Chapter 1

R Newey
Marconi Electronics
7835 East Redfield Road
Scottsdale
Arizona 85260
USA

Chapter 2

F Halsall
School of Engineering and Applied Sciences
University of Sussex
Falmer
BRIGHTON
BN19QT

Chapter 3

D A Edwards, R N Ibbett & T P Hopkins
Department of Computer Science
University of Manchester
Oxford Road
MANCHESTER M13 9PL

Chapter 4

R Bornat
Dept of Computer Science & Statistics
Queen Mary College
Mile End Road
LONDON
E14NS

Chapter 5 and 10

J WHughes &M S Powell
Dept of Computation
University of Manchester Institute of Science

& Technology
Sackville Street
MANCHESTER
M60lQD

Chapter 6

M Sloman, J Magee & J Kramer
Dept of Computing
Imperial College
180 Queen's Gate
LONDONSW7

Chapter 7

P Lauer
Computing Laboratory
University of Newcastle upon Tyne
Claremont Tower
Claremont Road
NEWCASTLE UPON TYNE
NE17RU

Chapter 8

R Gimson & C Morgan
Programming Research Group
University of Oxford
8-11 Keble Road
OXFORD
OX13QD

Chapter 9

I Mitrani
Company Laboratory
University of Newcastle upon Tyne
'Claremont Tower
Claremont Road
NEWCASTLE UPON TYNE
NE17RU

Chapter 11

D J Evans
Dept of Computer Studies
Loughborough University of Technology
LOUGH BOROUGH
Leicestershire
LE113TU

Chapter 12

J K Iliffe
Dept of Computer Science & Statistics
Queen Mary College
Mile End Road
LONDON
E14NS

Chapter 13

I Page
Dept of Computer Science& Statistics
Queen Mary College
Mile End Road
LONDON
E14NS

List of contributors xiv

Chapter 14 Chapter 16

J R Gurd, C C Kirkham & I Watson
Dept of Computer Science
University of Manchester
Oxford Road
MANCHESTER
M139PL

S L Peyton-Jones
Dept of Computer Science
University College
Gower Street
LONDON
WCIE6BT

Chapter 15
Chapter 17

J R Kennaway &M R Sleep
School of Computing Studies
University of East Anglia
University Village
NORWICH
N04 8BC

P Henderson & S B Jones
Dept of Computer Science
University of Stirling
Stirling
FK94LA

Chapter 1

The distributed computing systems programme
1977-1984

R.Newey

This volume forms the proceedings of a conference on Distributed Comput­
ing, sponsored by the U.K. Science and Engineering Research Council
(SERC)at the University of Brighton, Sussex 5/6 September 1984. The
conference was the culmination of SERC's Distributed ComputingSystems
Programme (DCSP), 1977-84. The papers in this volune come from
researchers funded by the programme. Some papers describe individual
research projects, others review particular areas in the field.

This introductory paper describes the background to the programme,
its modusoperandi, and technical development.

1.1. BACKGROUND

The body principally responsible for funding computer science research
in U.K. Universities and Polytechnics is the SERC. This responsibility
is discharged in the main by the awarding of research grants to institu­
tions. Funds may be requested for staff, travel and equipment, and in
addition investigators may.request access to the council's own facili­
ties, for example computing resources, typically located in one of the
council's laboratories. Research grant applications are considered by
the council's committees, whose membersare drawn from academeand from
industry, together with assessors from other government departments.
Thus the principle of peer review is adopted, within a context which
evaluates the intellectual potential of the proposed research together
with the possibility of, eventual, industrial value.

The council operates mainly in a responsive mode, responding to
applications submitted by its clients, rather than a directive mode in
which the initiative for newprojects rests with the council. Prior to
1977 Information Technology was funded purely in this responsive way,
al though examples of different ways of working could be found in other
areas of the council's activities. There had developed a strong feeling
within the council committees concerned, that it would greatly enhance
the state of computing research in the U.K. if there could be identi­
fied a commonfocus for new activity. At the same time, it was becoming
increasingly obvious that a principal barrier to further development of
computing systems, was the inability to manage the power becomingavail­
able from cheaper, faster hardware; particularly when manyprocessors
were grouped in complex, concurrent networks: that is, distributed com­
puting. The Computer Science committee, recognizing the importance of
distributed computing as a research area, appointed a panel in June 1976
under the chairmanship of Prof. I.. Barron, to consider what action was
necessary to encouragev coordinate or direct research in Distributed

2 Distributed computing systems programme

Computing. This panel was asked to take particular account of the
potentially high cost of such research and the avoidance of unnecessary
duplication of effort.

In its report to the committee in October 1976, the panel recom­
mended that a coordinated research programmeshould be established and
that additional funds should be sought for the programme. Whena draft
programmewas circulated to relevant academic departments for comment,
more than 50 replies were received, the great majority expressing a
desire to participate and offering useful criticisms of the proposed
mechanics and content of the programme. A one-day Workshop, in t1:irch
1977, provided an opportunity for a direct exchange of views on the ori­
ginal proposal and on the research problems to be addressed. The panel,
in response to these helpful interchanges of views, revised a numberof
its original proposals.

The eventual proposal to set up a coordinated programmeof research
into Distributed ComputingSystems was warmlywelcomedby the Ehgineer­
ing Board of SERC. Approval in principle for the programmewas given by
the Board in June 1977; the programmewas initiated in the academic year
1977-78. DCSwas the first attempt by SERCto establish a long term,
extensive, coordinated programmeof research in Information Technology.

The primary scientific objectives of the programmewere to seek an
understanding of the principles of Distributed ComputingSystems and to
establish the engineering techniques necessary to implement such systems
efficiently. These broad objectives reflect the relative immaturity of
the subject when the programmewas founded. In particular the programme
sought to establish an understanding of parallelism in information pro­
cessing systems and to devise ways to take advantage of this.

The practical objectives of the programmecan be summarized [1] as:
to achieve results of practical value to the U.K. industry by directing
research to a key area for the future; to promote relevant Computing
Science research of high quality in academic departments by coordinating
the efforts and achievements of individual research teams, and to ensure
a cost effective research programme.

A Distributed ComputingSystem was considered to be one in which
there are a number of autonomous but interacting ccxnputers cooperating
on a commonproblem. The essential feature of such a system is that it
contains multiple control paths executing different parts of a program
and interacting with each other. Such systems might consist of any
number of autonomous units, but the more challenging problems involve a
large numberof units. Thus, the spectrtm of Distributed ComputingSys­
tems includes networks of conventional computers, systems containing
sets of microprocessors, and novel forms of highly parallel computer
architecture with greater integration of processing and storage.

The motivations for and importance of research into distributed
computing systems are manyand varied. Somemajor ones are:

Distributed computing systems programme 3

Performance: eventually it will be impossible to increase the speed
of a single processor and retain commercialviability. Several pro­
cessors, cooperating on a single task, will be the only way to
greatly enhance performance.

Reliability: a fully distributed system should be able to tolerate
faul ts caused by either software or hardware. Hardware faults can
be tolerated for example, by having more than one of each critical
element. Software faul ts can be reduced by running different algo­
rithms in parallel and checking the validity of results.

Clarity: many problems are naturally parallel. Some problems are
inherently simpler if expressed as a set of interconnected and com­
municating processes. If a problem's solution is expressed in this
way it could be easier to provide a proof of correctness for the
whole solution by breaking the proof task down, first proving the
correctness of individual processes, and then proving the correct­
ness of their interconnection.

Distribution: in areas such as real time control it is often impor­
tant that processor power is available where it is required in
order to minimise the bandwidth requirements of data paths.

Cost: the low cost of microprocessors allows certain tasks to be
performed more economically on sets of microprocessors than on a
single main frame processor.

1.,£. MANAGEMENTOFDCS

We have already mentioned two extreme ways in which SERCoperates,
responsive mode and directed mode. In responsive modethe initiative
for new projects rests entirely with investigators. Submissions are
made to SERCas new ideas are conceived and support becomesnecessary.
The committees reviewing grant applications can only exercise control at
bottom, by accepting or rejecting applications. The other pole to this
model is a totally directed programmein which essentially, the Direc­
tor, issues invitations to research groups to work on particular prob­
lems. The initiative for new work then rests entirely with the Direc­
tor. In practice, of course, neither extreme is fully adopted - any
research programmewhich is to be successful must take account of the
talents and interests of the research community, and equally the commun­
ity must understand that the availability of limited funds makes it
impossible to pursue all lines of research that, at first sight, seem
promising; priorities must be established.

Within this scheme, a coordinated programmefalls mid-waybetween
the two extremes. The aim of coordination is to establish a symbiotic
working relationship between the committee responsible for the manage­
ment of the programme,whose chief concern lies in the proper adminis­
tration of limited resources, and the researchers whose concern is the
pursuit of knowledge in their chosen disciplines. It is essential to
create an atmosphere of mutual understanding and cooperation among the
researchers themselves, and to create an environment in which research
ideas can be discussed and priorities agreed.

4 Distributed computing systems programme

There were two main reasons for adopting a coordinated approach to
research in distributed computing. First reflecting the importance of
the subject to the progress of computing and information technology, it
helps to ensure a reasonable balance of SERCsupport across the various
areas concerned; and a framework facilitating take-up of research
results by industry. Second the substantial costs of much research in
this field, and the limits of funds available, make it essential to pro­
vide support in a cost effective way - without impinging on the neces­
sary freedom of investigators in carrying out fundamental research.

The idea of a fully directed programmewas explored but subse­
quently rejected. (The idea of a directed I. T. programmehas nowbeen
realized in the Alvey programme.)

What then are the practicalities of coordination? Coordination has
been achieved at two levels. First within the programmeitself, there
has been continuing contact with investigators, starting with assistance
in formulating research proposals, and throughout the research period,
by regular interchange of information both spoken and written. Second,
outside the programme, links have been fostered with industrial organi­
zations (including government establishments etc.) likely to make use of
the research in some form.

The coordination team includes an Academic Coordinator (drawn from
the staff of SERCRutherford Appleton Laboratory), responsible princi­
pally for liaison with and monitoring of the research projects; and an
Industrial Coordinator, (from industry) who is also charged with expand­
ing the external contact range of the research, with a view to colla­
borati ve research and technology transfer. The coordinators are sup­
ported by a Technical Secretary and by various support and development
staff maintaining and enhancing the programme's infrastructure. When
the programmewas established it was envisaged that coordination would
not be a very demanding activity and so the first coordinators were
employed on a part-time (1 day per week) basis. It rapidly becameclear
that this 'premise was false and that coordination is a very dananding
activity indeed. Since the earliest days of the programme the Academic
Coordinator has been employed on a full-time basis, but the Industrial
Coordinator has remained a part-time appointment.

The programme has been monitored and controlled by a panel of
researchers and industrialists, appointed by the council, to whomthe
coordinators report. The panel has both evaluated and recommendedaward
of research grants in DeS subject areas, and considered regular six­
monthly progress reports from each group in the progrrurune.

i.3. INFRASTRUCTUREACTIVITIES

A major factor in the development of the DCSprogramme has been the
recognition of the need for a well appointed infrastructure on which to
build research programmes. The infrastructure provided by OCShas
included a meetings programmeof workshops and conferences, a community
wide mail shot , Annual Report, an equipment pool, and a high level of
backup technical support.

Distributed computing systems programme 5

~.3.~.Meetings programme

To be successful, a coordinated programmemust engender a sense of com­
munity in its participants. It must also bring together disparate
groups of researchers in a constructive way, to foster the germination
of new ideas or new approaches to traditional problems. The single most
influential factor in bringing this about within the DCSprogrammehas
been the workshop programme. Some of the most significant pieces of
research in the programmecan be traced back to particular gatherings of
researchers. Considerable experience in organizing workshops has been
built up in DCS. The most fruitful meetings have typically been of 1
1/2 days duration and limited to 25-30 participants. As the programme
evolved and research themes became established, meetings of researchers
in each area were held at regular intervals, to monitor and discuss pro­
gress.

~.3.£. Conferences

As the programme matured, it became appropriate to hold an annual
conference, attended by all the research groups within the programme
plus other interested researchers and practitioners from both industry
and academe. In March 1983, as well, a special conference was held at
the NCCin Manchester entitled Distributed Computing - A Review for
Industry [2], to acquaint senior technical management in U.K. industry
with the work of the programme.

~.3.3.Mailshot

From the earliest days of the programmea monthly mailshot was sent to
all participants. The mailshot is a collection of papers submitted by
the participants themselves and its contents ranged from draft technical
papers for commentthrough to announcements of forthcoming meetings. A
particularly valuable feature has been the inclusion of trip reports.
It was made a condition of overseas travel that a trip report should be
produced for themailshot.This has proved a very valuable way of keep­
ing the programmeabreast of developments overseas.

From the start, the programmehas produced an Annual Report, containing
an overview of each project within the programme [1]. This has proved a
very valuable introduction to the programme for both industry and
academe.

~.3 ..5.. EguiOOlentPool

At an early stage the DCSpanel decided to establish an equipment pool
from which investigators could borrow. Initially the pool was stocked
with magnetic tape decks, VDU'sand modemsto improve communicationsand
software interchange between research groups. A key decision was to
provide Unix (TM) licences for the programme. As time has passed the
pool has grown and now includes local area network equi.pnent (Cambridge
Ring), X25 connections and high performance single user workstations
(Perqs).

6 Distributed computing systems programme

Electronic ocemuntoataons between projects within the programme
have steadily improved, through the provision of hardware to link to
either the Universities/ Research councils X25 network, JANET,or Brit­
ish Telecoms PSS network. X25 software for the Unix operating system
has been produced by the University of York. This is a good example of
one of the benefits of coordination: recognizing the need for this
software, the DCSpanel funded just one site to produce it. Without
coordination there would have been a real danger of many sites embarking
upon the same project with consequent wastage of effort.

1 ..3..Q_. Technical Backup

SERCoperates a mmber of laboratories to provide specialized services
and facilities to SERCfunded projects. Within the computer science
area, SERC's Rutherford Appleton Laboratory (RAL)provides, for example,
large mainframe computers and microelectronics design and fabrication
facilities.

The DCSprogrammehas been supported by RALsince January 1978.
The AcademicCoordinator and Technical Secretary are on the staff of RAL
and other RALstaff provide software and hardware support for the pro­
gramme. RALsupport has included:

Support for the Unix operating system used by the majority of DCS
investigators.

Provision of software to couple the Unix troff text formatting
software to SERC's III FR80microfilm recorder.

Assembly and distribution of software to drive the cambridge Ring.

Construction of 6 Cambridge Rings for the DCSequi.pnent pool and
procurement from industry of a further 10 6-node ring systems.

Procurement, distribution and maintenance of the equipment pool.

Support and operation of the programme's electronic mail facility.

l.~. RESEARCHTHEMES

Whenthe DCSprogrammewas first established, the DCSpanel categorized
the research into five major topic areas, representing a progression
from fundamental theory to novel applications. The areas were:

Theory and Languages: Anadequate theoretical basis for Distributed
ComputingSystems.

Resource Management:Distribution of control, allocation, schedul­
ing and organization.

Architecture.

Distributed computing systems programme 7

Operational Attributes: Particularly reliability and performance.

Design, Implementation and Application. Hardware and software
techniques for development and implementation.

As the programmeevolved, projects have clustered around emerging ways
in which to structure distributed systems which may be claimed reason­
ably as emerging ground themes:

1. Loosely-coupled distributed systems. Such systems are multicom­
puter configurations that do not share immediate memoryand can be
dispersed over wide geographical areas. Research in this area has
been concerned with the overall structure of such systems, require­
ments for operating systems appropriate to this environment and
related programminglanguages.

2. Closely-coupled distributed systems. Typically systems which do
share a commonmemory. Again research has been concerned with
archi tecture, operating systems, programminglanguages and applica­
tions.

3. Nonvon-Neumannarchitectures. Research in this area has been con­
cerned with alternative ways to provide high speed numerical com­
puting and with architectures to support the efficient evaluation
of declarative languages.

A fourth major theme in DCShas been concerned with theories of parallel
computation and with the development of notations and techniques for
specifying and verifying such systems.

The work on loosely-coupled systems can be traced back to the work
of Wilkes, Needhamand others at Cambridgewhich led to the construction
of the Cambridge Distributed Operating System [3]. A key component in
this work was the design of the Cambridge Ring local area network, the
design study for which was published in 1975. This work commencedprior
to DCS,but later Cambridgework was DCSfunded. From Cambridge, this
approach spread to the University of Kent and other Sites, including
York, Keele, Oxford, Strathclyde and Newcastle; all of whomhave made
their particular contribution to knowledge in this area. Aparticularly
important step came early in 1980 when DCS constructed 6 Cambridge
Rings, each of four nodes, to the Cambridge Mark 2 design. The demand
for this equipment from research groups was considerably in excess of
supply and the panel, recognizing the opportunity to foster the take-up
of this result by industry, placed a contract with U.K. industry for the
construction of further Ring hardware. This was a fonnative step in
establishing the supply of Ring equipment in the U.K. Theavailability
of commonhardware for the pursuit of research in this area had a very
beneficial effect in drawing research groups together.

Workin the tightly-coupled systems area can be traced back to pro­
jects in Evans' group at Loughboroughand Aspinall's group at SWansea
(nowat tMIST). Grimsdale' s group at Sussex were subsequently funded to
work in this area. Dixon at Hatfield Polytechnic and Evans have
explored the application of such systems to various classes of numerical

8 Distributed computing systems programme

problEms.

The non-von NelJllannarchitectures work can be traced back to pro­
jects at Manchester, Newcastle and Westfield COllege, concerned with the
dataflow approach. A seminal event in this area was a W:>rkshopat New­
castle in 1979 which brought together the dataflow researchers and
researchers in the fields of applicative and logic languages. This led
to a rnmber-of proposals for ways to exploit parallelism for efficient
execution of such languages and for further language developnent work.
DCShas been largely responsible for the creation of the strong U.K.
research communityin this field.

OUr fundamental understanding of concurrency has been greatly
enriched by the work of Milner and Plotkin at Edinburgh and Lauer at
Newcastle. It is only proper to acknowledge the great contribution of
Hoare's group at Oxford to this field, though this was not funded
entirely by DCS. The recent work by Hoare's group on the specification
of distributed systems has been funded by DCSand is described in the
chapter by Morgan and Gimson. Cunningham, Kramer and Abramsky at
Imperial College have also made significant contributions to this area.
Design methodologies for distributed systEmSare discussed in the papers
by Hughesand Powell, and Slomanand Kramer.

Performance modelling of distributed systems has been extensively
investigated by Mitrani at Newcastle and a review of the area appears
later in this book.

.1.5.. INDIVIDUALPROJECTS

It is useful to describe a small mmber-of the projects funded by DCS,
by way 'of illustration and to set in context the subsequent chapters in
this book. Descriptions of all the projects funded maybe found in [1].

The Manchester Dataflow Project has dEmonstrated the viability of a
parallel computing systEm based on the dataflow model of computation,
which exploits irregular parallelism at the instruction level. It
allows a wider range of applications than the more rigid vector and
array processors. The prototype machine has demonstrated performance
Impr-ovenent.sthrough concurrency almost lineal for up to 10 processing
el.ement.s, This project has delivered concrete results where previously
there was only speculation. The prototype hardware is being used both
by research institutions and by industry to assess the direction of
future dataflow products.

In the declarative architectures field, the ALICEProject is inves­
tigating the developnent of applicative languages, their use in real­
world probl ens , formally based developnent systems and implementations
on highly parallel architectures. This project has received a great
deal of public interest and has produced signif'icant papers on language
destgn , programmingmethodology and computer architecture.

Turner (Kent) has made great contributions to the areas of declara­
tive language design (SASL,KRe,Miranda) and evaluation (combinators).
Henderson (Stirling) has explored the problems of prodUCing purely

Distributed computing systems programme 9

fUnctional operating systems. Sleep (East Anglia) has also explored the
distributed evaluation of applicative languages.

Within the loosely-coupled systems field, the Unix United work of
Randell's group [4] has received wide acclaim. This devel.opnent, was
fUnded by DeS and is being exploited commercially. Distributed file­
stores and operating systems have also been investigated at Keele (Ben­
nett), York (Wand), and Strathclyde (Shepherd). Bornat and Coulouris
(QMC)have investigated one approach to the construction of such systems
(Pascal-m)

The main groups in the tightly-coupled systems area are
Aspinall (UMIST),Evans (Loughborough) and Grimsdale (Sussex).
constructed a model system and explored its applicability to a
problems.

those of
Each has
range of

The work of Milner and Plotkin on theoretical models of concurrent
systems has received world-wide acclaim. Several U.K. companies are
exploring the applications of these techniques to their application
areas. Cunningham's group (Imperial College) and Hoare's group (Oxford)
have made significant advances in the specification of concurrent sys­
tems.

1..Q_. SOMESTATISTICS

The box (Fig 1.1) illustrates the scale and breadth of involvement which
DCShas created and managed over the past few years. In particular, we
believe that the investment which the programmehas made in infrastruc­
ture and coordination, amounting to about 27%of the funds expended, has
enhanced the overall value of the activity enormously.

1..1. ACHIEVEMENTS

The major achievement of the DCSprogrammehas been to create a strong
research communityin the U.K.

It is not too strong to claim that without DCS the discussions
which lead to the formation of the Alvey programmecould not have taken
place. DCShas also established new research groups where none previ­
ously existed and has enabled a nunber of young researchers to become
established in the field much more rapidly than otherwise would have
been the case. The humaninterface between the managementpanel and its
clients through the coordinators has been a key factor in bringing this
about.

The establishment of the U.K.'s strong position in declarative sys­
tems research owesmuch to DCS.

Nowthat the DCSprogrammehas ended, the work funded by DCSwill
continue through either the Alvey Directorate or the SERC'sComputing
Science Sub-committee as appropriate. Research ideas fostered by DCS
are appearing in products through the Alvey programme.

Many of the lessons learnt in the OCS programme have been

10 Distributed computing systems programme

Normal research grants awarded 103
Cooperative grants awarded 3
Visiting Fellowships awarded 20

Universities holding DCSgrants 23
Polytechnics holding DCSgrants 3

Numberof research staff employed (approx) 150

Total value of grants awarded 6. 3M
Expenditure on coordination 0.4M
Expenditure on infrastructre 2.OM
Total expenditure 8.7M

Fractional spend on infrastructure 23%
Fractional spend on coordination 4.6%

Fig.1.1

incorporated in the Alvey programme, for example the need for full-time
technically competent staff to manage the programme and the need for
infrastructure both in terms of a workshop programme and computing
resources.

This book, plus the research publications of the participants in
the programme, mark the intellectual achievement of the programme. In
terms of contribution to knowledge, the programme should claim, for
example: the advance and earliest use of local netsor-kirig technology
through the Cambridge Ring; the development of new architectural tech­
niques, particularly for Iataflow and Graph Reduction systems; creation
of some of the first techniques for specifying and describing concurrent
computation; and methods for performance modelling and analysis in com­
plex systems.

Technology transfer to industry is much harder to estimate. The
main products of the DCS programme are ideas and demonstrations of
ideas, rather than systems that can, and should, be turned directly into
commerical products. Trained manpowerhas also been a major product of
the programme, and it is through this avenue that technology transfer is
best being achieved. More than one company, has benefitted directly
from DCSmanpower!

1.~. ACKNOWLEOOEMENTS

The DCSprogrammehas involved a very large nunber- of talented research­
ers, whose contributions to the programmeI wish to aclmowledge globally
here. I also wish to acknowledge the contributions made by the former
chairmen of the DCSpanel, Iann Barron, Ian Pyle, and Roger Needham,
together with all whohave served on the panel; and above all the coor­
dinators of the programme, Bob Hopgood, Gill Ringland, Rob Witty, Jeremy
Tucker, Iavid Duce and Fred O1ambers.

Distributed computing systems programme 11

REFERENCES

1. OCSAnnual Report, available from Dr D. A. D.lce, Computing Divi­
sion, Rutherford Appleton Laboratory, Chilton, Didcot, aXONOX11
OQX

2. Distributed Computing - A Review for Industry, Proceedings avail­
able from Dr D. A. D.lce, address as above.

3. R. M. Needhamand A. J. Herbert, The Cambridge Distributed Comput­
ing S¥stem, Addison-Wesley, 1982

4. D. R. Brownridge, L. F. Marshall and B. Randell, The Newcastle Con­
nection - or UNIXes of the World Unite, Software Practice and
Experience, Vol. 12, No. 12, December 1982

Chapter 2

The Sussex broadband LAN project
F.Halsall

2.1 INTRODUCTION

This project evolved from a studv conducted some time
ago into the provision of a flexible data transmission
system for use on the University campus. All the existing
data transmission services on the c~ous at that time had
been provided by installing ad hoc wire systems as each
requirement arose with the effect that each new requirement
necessitated the installation of a new set of cables. The
planned expansion in the type and range of computer services
to be provided over the next fe\Ol years meant that it was
essential to investigate the provision of a flexible under­
lying data transmission system "Thich, ideally, could support
not only the existing and planned services but also have
sufficient flexibility and capacity to allow for future
requirements to be met without the major upheavals that are
currently involved.

At the time the early investigations were being made,
there was much interest being shown into exploiting the use
of coaxial cable networks similar to those already in wide­
spread use in the Community Antenna Television (CATV)
industry as the basis for providing a wide range of alter­
native data transmission services on a single cable network.
Unfortunately, however, most of the systems being offered at
that time were of overseas origin, even though much expertise
in this field was available in this country. This project
evolved, therefore, as a collaborative venture with a local
company - Rediffusion Engineering - aimed at providing the
various additional equipments whLch are necessary to exploit
the use of a CATV-based coaxial cable network to meet the
planned and future data transmission services of an estab­
lishment similar in size to a university campus.

2.2 REOUIREMENTS

Before describing the Sussex network, it is perhaps
heloful to first outline the data transmission ~equirements
of an establishment like a university campus. The tradit­
ional and still the major service supoorted at ~ost uni­
versities is concerned with providing--a dLstrr Lbia t.ed community
of low bit rate «9607 bps) terminals accessing one or more

Sussex broadband LAN project 13

computer systems which are normally located in a centralised
building known as the Computer Centre. To add flexibility,
many Centres have installed Terminal switching Exchanges
(TSEs) which then allow the terminals to gain access to any
of the Centre's machines on switched basis.

As the cost of computing hardware has fallen over the
past few years, there has been a trend for some of the
larger computer user departments to acquire their own
systems can normally meet most local computing needs, how­
ever, there are also instances when a user connected to one
of these systems also requires access to the more extensive
range of services provided on one of the Centre's machines.
To meet this type of requirement, either those user term­
inals which require this facility are connected, not directly
to their own local computer, but rather to the Centre's TSE
together with a number of terminal ports from the local
computer. In this way the user may then login through the
TSE either to his own local machine or to one of the Computer
Centre's machines. This assumes, of course, that the cen­
tral TSE has sufficient spare capacity. An alternative
solution, certainly if the demand for this type of service
is high, is to install a spare satellite TSE in the remote
building which is then connected by means of a high bit
rate link (typically 1.5 Mbps) to the central TSE. In this
way, a user may login either to his own local machine(s) or
to one of the Centre's machines via the central TSE.
Multiple satellite TSE's may be installed and used in a
similar way.

More recently, there has been a trend towards individ­
ual users and departments obtaining various personal comput­
ers (PCs) to I.support word processing and other services.
Although these are currently being used as single-user stan~
alone systems, local user communities with such systems are
already planning to be interconnected to share some local
resource such as a printer or file system. Moreover, some
users are also expressing a wish to use their systems to
gain access to wider computing resources from, say, one of
the Computer Centre machines. The currently favoured
approach to meet this type of requirement is to install a
local basedband network-Ethernet, token ring, etc. in each
building to allow users in that building to communicate and
access local shared resources and then to provide a
bridging node into a campus-wide high bit rate (10 Mbps) ne~
work. The latter will then also be used to provide a campus­
wide facility for computer-to-computer communication.

In summary, the data transmission requirements of a
university campus are extremely varied but, it is felt,
typical of many similar establishments. When planning a
data transmission system to meet the range of services out­
lined, therefore, it is essential that the selected system
has a high degree of flexibility and capacity to ensure that
it meets not only the existing and planned requirements but
also possible future requirements. The use of a broadband
coaxial cable network of the type to be described has this
capability.

14 Sussex broadband LAN project

2.3 BROADBAND DATA NETWORKS

There is currently much interest in exploiting the very
wide bandwidth available in a coaxial cable to derive a wide
range of data transmission services form a single coaxial
cable network. With a baseband cable network-Ethernet,
Token Ring, etc. the available bandwidth is used to provide
a single, high bit rate channel typically of 10 Mbps. The
latter is then time shared between multiple users using a
particular media access method. The major use of baseband
coaxial cable networks, therefore, is for interconnecting
distributed communities of computer-based equipments which
can operate and exploit this high bit rate capability.

An alternative way of utilising the high available
bandwidth of a coaxial cable, is to use frequency-division­
multiplexing (fdm) techniques to divide the total available
bandwidth into a number of sub-frequency bands or channels
each capable, with the aid of a suitable pair of r.f.
modems, of satisfying a particular data transmission service
This approach is known as broadband working and the same
principle is currently in widespread use in the CATV indus­
try to multiplex a number of TV channels onto a single
coaxial cable. A schematic of a typical CATV system is
shown in part (a) of Figure 1. Each TV channel is allocated
a particular frequency band, typically of 6 MHz bandwidth,
and the received video signals are then used to modulate the
selected carrier frequencies. The modulated video signals
are then transmitted over the cable network and received at
each subscriber outlet.

In a similar way it is possible to derive a range of
data transmission channels from a single cable by allocating
each channel a portion of the total bandwidth; the amount
of bandwidth for each channel being determined by the
required data rate. For data communication, however, a two­
way (duplex) capability is normally required. This may be
achieved in one of two ways: either the transmit and
receive paths are assigned two different frequency bands on
the same cable - single-cable-system - or, two separate
cables are used, one for the transmit path and the other for
the receive path - dual-cable system. A schematic of each
type of system is shown in parts (b) and (c) of Figure 2.1.
The main difference between the two systems is that a dual­
cable system requires twice the amount of cable and cable
taps to install. Nevertheless, with a dual-cable system
the total cable bandwidth - typically 5 to 440 MHz - is
available in each direction. Moreover, the headend equip­
ment is simply an amplifier whereas with a single-cable
system, a frequency translator is required to translate the
incoming frequency signals associated with the various
receive paths to the corresponding outgoing frequencies used
for the transmit paths.

2.4 THE SUSSEX NETWORK

A schematic layout of a cable network suitable for the
Sussex Campus is shown in Figure 2.2. AlthougbL in principle

Sussex broadband LAN project 15

COUf'6r (Tal")

'-... F.-d&.,..
Cab'-

i[£:J'-'-' -----,. ,
I ,. ,
!_'_" L H !

c) Dual CablE-.

Fig. 2.1 CATV Network Alternatives

16 Sussex broadband LAN project

~ 1Km~ ~

r--\

-----------•
'SId,!! :L I

I
I
I
I
I
: 111'Mad•••• s

I
I - I'- ...J

Fig. 2.2 Broadband Distribution
Network

2.Krn

Sussex broadband LAN project 17

a single coaxial cable is used, as can be seen, in the
planned system the basic trunk network is a tree topology
with the Computer Centre at the root node (headend). The
layout of the distribution cable in each building will vary,
of course, and hence the aim in the first instance will be
to establish a campus-wide trunk network of the type shown
with trunk solitters and local distribution amplifiers at
the entrance to each building. Sufficient spare signal
capacity will then be provided at the entrance to each
building to support both the current and projected data
transmission requirements in that building. Hence once the
trunk cable network has been layed, all future cabling will
be constrained to within each building.

Most of the equipment shown in Figure 2.2 is readily
available from any of the many manufacturers of CATV com­
ponents. The major part of the work associated with this
project, therefore, has been concerned with the design and
production of a range of r.t. moderns suitable for use with
this type of network. The prototype moderns currently being
evaluated are:

- a low bit rate «19.2 Kbps) asynchronous/synchroncrs
duplex modern for use with a set of dedicated point-to­
pOint or multidrop channels;

- a low bit rate «19.2 Kbps) microprocessor-control­
led frequency agile modern for providing a switched
communications facility between a community of devices;

- a high bit rate (10 Mbps) CSHA/CD modernto provide
a high bit rate channel suitable for computer-to-com­
puter communication.

The design of each type of modem will now be described.

2.4.1 Low Bit Rate Fixed Frequency Hodem

For ease of implementation and minimum cost, this mod­
ernuses simple FSK modulation. Each 19.2 Kbps full. duplex
modernrequires a total of 80 KHz of bandwidth - 40 KHz for
the transmit path and teh same for the receive path. Thus
a 6 MHz band - as used for (U.S.) television - can support
75 such moderns. To achieve flexibility, the transmit and
receive frequencies of each modern are derived from a
frequency synthesiser whose frequency is controlled by a
suitable binary control word set on a pair of DIL switches
within the modern.

A schematic of the r.f. circuitry within this modernis
as shown in Figure 2.3. The data to be transmitted are
first modulated - part (3) - onto a fixed intermediate
carrier frequency and the resulting modulated signal is
then band-limited and filtered. This signal is then mixed
with the output of the frequency synthesiser which shifts
the mixed signal into the desired output frequency band.
A bandpass filter is then used to suppress the unwanted
mixing products.

18 Sussex broadband LAN project

tJl'TA ,"

~.F
0""

l'1odem 1

c.~.•r "'DATA
1)e~.c.t OUT

c.) Democl.uLato •....

Fig. 2.3 LOTti Bit Rate ModemSchematic

Sussex broadband LAN project 19

A reciprocal process is used in the receiver section.
The receiver takes the form of a superheterodyne: the in­
coming signals are mixed with the frequency synthesiser
which places the desired signal in an I.F. 'window' after
which F.M. demodulation takes place using standard phase­
lock-loop techniques. Such a system, tuned by a single
frequency synthesiser, would mean that the receiver would
also be tuned to the transmitter frequency. For full-duplex
operation, however, two separate frequencies must be used as
shown in part (b) of the figure. To achieve this, a dual
conversion is performed in the demodulator - part (c). The
second local oscillator is switched up or down in frequency
by one channel spacing by means of a switch within the modern
thus providing the necessary shift between the transmit and
receive frequencies. The receiver design shown is intended
for a dual cable system but a single-cable design is readily
achieved by down-converting the receive frequency band to
its original transmit frequency before demodulation. A
standard RS-232C interface is provided at the user interface
to the modern.

2.4.2 Frequency Agile Modern

This design of modern is intended to provide users with
a low bit rate «19.2 Kbps) switched communication facility
between a community of devices which support a basic RS-232C
interface port; in this instance the cable is being used to
provide a form of distributed switch.

The r.f. section of this modern is very similar to that
just described except that the transmit (and hence receive)
frequency is controlled by a microprocessor rather than
simple switches. The control protocol of the modems is
similar to that used for CM radio: there is a common signel­
ling channel - operated using CSMA/CA techniques - to which
all other moderns are tuned when not in use. Each modem has
a unique network-wide address and, whenever a user wishes to
communicate with another user, the user enters the required
destination address. The controlling microprocessor (with­
in the modern) first scans the available channels to find a
free channel. It then creates a frame with the required
destination modem address and the selected channel number
within it and broadcasts this on the common signalling
channel when the latter is free (quiet). It then controls
the r.f. circuitry to move to the-selected channel to wait
for a response.

Assuming the called modem is not busy, it receives the
calling frame on the common channel by detecting its own
address in the frame header and then causes the r.f. cir­
cuitry to move to the selected channel. It then responds
with an acknowledgment frame on the selected channel.
Both micorporcessors then connect their RS-2320 ports to the
input of the r.f. section and communication between the two
user devices can then commence, the presence of the r.f.
modernsbeing transparent to both users. Either user can
close the connection at any time simply by pressing a key
on the modern. Also, there is a timeout mechanism operated

20 Sussex broadband LAN project

by the microprocessor: if there are no transmissions on
either channel for a set period of time, the connection is
automatically cleared and the user informed.

Contention on the common signalling channel is resolved
using a technique known as Carrier Sense ~-1ultipleAccess
with Collision Avoidance (CSMA/CA). ,.lhenin the calling
state, both the transmit and receive sections of the modem
are tuned to the signalling channel. The receiver is used
therefore to provide the carrier sense signal. 'i'lhen the
originating modem has found a free channel and wishes to
send a connection request frame on the signalling channel,
it first waits until the carrier sense signal becomes false.
It then waits a further short random time interval and, if
the channel is still free, sends the frame. In addition,
the calling modem remains on the sigllallingchannel until
it receives the connection request frame back via th c bl
headend. Then, if this is corrupted, it will repeat h
calling procedure again. If it is correct, however, i
moves to the previously selected channel to await th t
of an acknowledgment frame from the called modem.

If a correct acknowledgment is received th proc
is as above. If no acknowledgment is received wi hin
time interval, the called modem is assumed to b i h
or disconnected. The calling procedure is therefor r
a second time but if the called modem does not rc pond to
the second connection request a 'destination-not- v il bl '
response is fed back to the user.

2.4.3 High Bit Rate Modem

The two previous types of modem are intendcd for low bit
rate applications. In addition, however, it is h im 0
produce a range of high bit rate modems «1 Mbps) suit bl
for both dedicated point-to-point applications nd 150
switched applications. With respect to the latter pro­
totype modem design is now operational which supports
10 Mbps CSMA/CD (Ethernet) channel on the cable nd i 5
design will now be outlined.

The aim of this design is for the modem to pr s n
transparent interface to the host system; in practic ,
user interface is the same as that used for a tranceiv r
unit connected to a baseband cable. An important asp ct 0
the modem design, therefore, is to perform the collision
detect function. With a baseband system this is readily
performed since simple electronics within the tranceiver
detects if the signal present on the cable is different from
that being transmitted and, if it is, the collision-detect
control line is activated and the host ceases transmission.
In the broadband system, however, the transmit aLnd receive
channels are different. Moreover, data transrnit:tedon the
transmit channel are not received until the sigr1al has
propagated through to the headend of the cable aLnd back
again; collision detect by ins.tantcomparison of the trans­
mitted and received signal is therefore not poss;ible.

One obvious solution is to retain a copy of a certain
number of bits transmitted in, say, a shift regJLster and to

Sussex broadband LAN project 21

compare the contents of the shift register with the bit
stream being received. Problems arise with this method,
however, since the received signal levels of the two (or
more) colliding modems (stations) may differ by as much as
6 dB - a feature of the cable design. This means that the
modem with the higher signal level still receives the data
correctly as it dominates the channel and hence only the
modem with the lower signal level can detect the collision.

The solution adopted, therefore, endeavours to over­
come this problem by exploiting the modulation technique
being used. High bit rate channels such as Ethernet - which
employs Manchester encoding - require a significant portion
of the cable bandwidth. To minimise the amount of bandwidth
utilised, therefore, duobinary AM-PSK modulation is used.
Normally, with this method only the amplitude of the demod­
ulated signal is recovered to derive the baseband data. By
also examining the phase variations of the received signal,
however, a reliable method for determining non valid - and
hence corrupted - duobinary AM-PSK signals can be obtained.

A block schematic of the CSHA/CD modem is shown in
Figure 2.4 and Figure 2.5 illustrates a typical set of wave­
forms produced by the modulation and demodulation circuitry.
The baseband data are first passed into the precoder. The
funciton of the latter is to count the number of l's in the
incoming data stream; when there is an odd number, the out
put is high (1) else it is low (0). This signal is then
passed to the PSK generator which produces a bi-phase PSK
signal corresponding to the states of the precoder output.
Finally, the PSK signal is fed to a bandpass filter. The
filter is .an important element in the modulator since it
performs the function of adding the PSK signal of the pre­
vious bit to that of the current bit. This has the effect
of producing an AM signal whose amplitude corresponds to the
baseband data. Another function of the filter is to limit
the bandwidth to a minimum; for example, a 10 Mbps channel
requites only 5 MHz (3dB) of bandwidth.

The recovery of the baseband data from a duobinary
AM-PSK signal is straightforward and hence needs no further
explanation. As has been mentioned, however, it is also
possible to use the phase variations associated with this
type of signal as a means for detecting a collision. Care­
ful examination of the waveforms shown in Figure 2.5 will
show that the phase variations of the encoded waveform are
related to the data stream: when there is an odd number of
l's between two strings of O's, there is a 180 degree phase
shift in the carrier representing the two strings of 0's i
if there is an even number of l's there is no phase shift in
the carrier. Hence, by recovering the phase variation infor­
mation from the received signal and comparing this with the
recovered baseband data, it is possible to detect when a
corrupted AM-PSK signal has been received. Since the noise
level of a broadband cable is very low, this can reliably be
interpreted as an occurrence of a collision on the cable.

2.5 CURRENT STATUS AND DISCUSSION

At the time of wr~ting this paper (April 84), a number

22 Sussex broadband LAN project

-p·s·1<. •••••
1h"",ess
Co••"•••.•io ••
F;lt••.

't>uobin.t'"Y
AM/PSK
S~"'.L. 01'

1)vobi"""
I'I"""&IC
S''en""".x,., .

c!'"".lof'. ~'t'/T.,.ai"'(' bIIT
r- O.mool~La.t.I·.'" ~~+ract"ol"l.

CI..-IL- "iMi~

~
O'f

'Y ~'Y

s,ut 'Ph.,.
....•. ?has. 'Dctac-tion rCol\'i Si••••

~••••••• IO.tacti•••.
V.riatL- t.

I

Fig. 2.4 High Bit Rate Modem
Schenatic

Sussex broadband LAN project 23

[EJ

ENVELOPE DETECTOR
TTL LEVEL GENERATOR

[OJ

TRANSMISSION

[AJ ~,---0 __ 0---, ° °
[8J

[CJ

[OJ

[EJ ~_. 0__ 0 . ° a

Fig. 2.5 Duobinary M1-PSK Princi:91es

24 Sussex broadband LAN project

of modems have been built based on the outlined designs and
are currently being tested on a laboratory experimental
cable system. When these tests have been completed, it is
planned to test the modems on a skeleton trunk cable net­
work which effectively links two buildings to the Computer
Centre. All indications to date are that the modems will
operate satisfactorily and coexist on a more substantial
network. Since most of the trunk and feeder cable compon­
ents are know to be very robust, it is strongly felt that a
broadband coaxial cable distribution network of the type
outlined offers a viable alternative for meeting the wide
and diverse data transmission requirements of an establish­
ment like a university campus.

Chapter 3

Implementation of a high performance LAN
-Centrenet

D. A. Edwards, R. N. Ibbett, T. P.Hopkins

3.1 INTRODUCTION.

Historically, there have been two main motivations for
the interconnection of processors to form a network.
Firstly, users on different machines, often on different
sites remote from one another, have had the need to exchange
data on an irregular basis. This has led to the development
of wide-area-networks (WANs) of varying complexity,
typically using telecommunications technology for the
interconnections. Such links have tended to be slow and
used primarily for file transfer operations; latterly
electronic mail and "bulletin board" activities have become
increasingly important.

The second motivation for networking has been that
users, local to one site, have wanted to be connected
together in order to increase the facilities or computing
power available to all. The local interconnection may be
that of a number of processors tightly-coupled in order to
form a high speed multi-computer system. An example is the
MUScomputer system (Morris and Ibbett (l» designed and
built in the Department of Computer Science. In other
cases, the local interconnection is a loose coupling of a
number of processors to provide a sharing of expensive
resources (fast line pr Lnt.er s , archiving facilities,
number-crunching CPUs etc) • This form of network is
generally referred to as a local-area-network (LAN), and has
become increasingly important as the cost of processing
power has decreased, and computing resources have become
more decentralised. LANshave generally traded the speed of
tightly-coupled multicomputer systems for increased size and
flexibility. The differences in use between WANsand LANs
have become blurred. Wide-area networks support resource
sharing either of hardware or of software packages; for
example SERCI S Rutherford Appleton Laboratory provides VLSI
design facilities for remote users. On the other hand, LANs
are used for file transfer between disparate machines and
operating systems and for network mail. An aspect of
networking which should not be overlooked is the extent to
which a user community is fostered.

26 High performance LAN-Centrenet

The Department of Computer Science has a long history
of the design and implementation of hardware and software
for large computer systems (Lavington (2)). The successor
to the MUS system is a hierarchical multicomputer complex
known as MU6 (Edwards et al (3)). The MU6 proposal required
high speed interconnection of processors, but with more
flexibility than that provided by the MUS switching scheme,
the MUS Exchange. An investigation into the hardware
required, and an examination of existing LAN technology
(Hopkins (4)), resulted in a realisation that a more general
approach should be adopted.

3.2 CENTRENET PHILOSOPHY.

The MU6 project is but one of a number of many research
activities in progress in the Department. Each research
group typically makes heavy demands on its own set of
resources but occasionally needs to attach itself to other
computers or peripherals. The situation existing within the
Department is a reflection of that existing on the campus
generally. Here there are many groups of users who are
concentrated in a number of buildings, which are scattered
over several kilometers. Most have computer facilities of
their own but need to communicate with UMRCC (the University
of Manchester Regional Computer Centre). A network capable
of catering for all these users would have to provide not
only a large number of machine connections, but also a very
large number of terminal connections. The environment
described above is also true of many large industrial sites
which have computing units in different buildings.

In addition, therefore, to meeting the needs of the MU6
complex, it was decided that any network chosen should
reflect the actual topology of usage: localised clusters of
users requiring communication with other clusters. Higher
transfer rates are required for local traffic (i.e. within a
cluster) than for remote communication (intercluster
communication) . Thus both high connectivity, in order to
accommodate the potentially large number of terminal
connections, and high localised bandwidth is required. It
was felt that existing LANS such as the Ca.mbridge Ring
(Wilkes and Wheeler (S)) and Ethernet (MetcaL fe and Boggs
(6)) did not reflect the real topology of usage described
above. They have the disadvantage that, for various
practical reasons, large numbers of connections may only be
obtained by linking together subrings, or subnets by means
of gateways or network bridges. A further drawback of both
these systems is that bandwidth is shared among all users.
This may be of little consequence if the main ~urpose of the
network is file transfer, even if the files involved are
large, but the origins of Centrenet were in the tightly­
coupled multicomputer system where bandwidth sharing could
be a severe disadvantage. Indeed, one of the purposes of
the network was to act as an enabling techno.1ogy to allow
other groups to investigate fully-distribu~ed computing
including such aspects as demand-paging across the network.
Concurrent with these investigations into pos sible network

High performance LAN-Centrenet 27

architectures, interest was being shown in the Department in
the emerging technology of fibre-optics. Data transmission
by optical fibre has a number of advantages. In the context
of civilian computer traffic, the most important are the
absence of ground-loops, electrical isolation, the absence
of induced noise on long cable runs and for links between
building, the freedom from lighting-strikes. Conventional
copper wire systems across the campus have suffered from all
of these problems. An additional benefit of optical fibre
transmission is a greatly superior bandwidth-distance
product compared with co-axial cable systems. High speed
communications can be maintained between sites several km
apart without the need for repeater stations. Cambridge
rings have been implemented with optical fibre and an
interesting version of Ethernet known as Fibernet (Rawson
and Metcalfe (7» has been built, but neither of these
networks is especially suited to fibre-optic technology,
which is best adapted to point-to-point links. For these
reasons it was decided to investigate the design of a new
LAN incorporating optical-fibre technology which would
enable the Department to gain some expertise in this area.

3.3 CENTRENET ARCHITECTURE.

Centrenet is organised as a tree-structured hierarchy
of high speed packet switches as shown in Fig. 3.1. Each
node of the tree is known as a Starpoint. Connections
between Starpoints are serial and based on optical fibre
links; processors may be attached either directly to a
Starpoint or by an serial 1ink. Until recently star-type
networks have not been very popular, presumably because of
fears that should the central node fail, the whole network
ceases to function. Interest in this topology of network
has increased and a number have been described in the
literature (Sikora and Franke (8), Lee and Boulton (9».
The Centrenet architecture has the following properties:

1. It is modular.
2. It supports "computing clusters". Clusters may be

several km apart.
3. It has high localised bandwidth.
4. It has high potential connectivity.
5. It is suitable for implementation in fibre optic

technology.
6. It should have high reliability. Furthermore, should a

Starpoint fail, the effect is to partition the network
into two parts. Only communications which pass through
that Starpoint are affected.

7. Each node incorporates "intelligence".
8. There is only one route between any two connections.
9. The network is asynchronous; different links in the

network can operate at different speeds.
10. Handshaking of each packet occurs at each stage of its

transfer across the network. There is an optional
facility whereby a packet may cause an end-to-end
acknowledge and/or echo of the packet. This facility is
built into the hardware and requires no overhead on the

28 High performance LAN-Centrenet

Fig 3.1 The Centrenet Hierarchy.

Level 0
·1 Node

Level 1
-maximum of
16 Nodes

Level 2
-rnaximum of
256 Nodes

Level 3
-maximumof
4096 Nodes

High performance LAN-Centrenet 29

part of the attached device.

In order to achieve high bandwidth at the nodes,
parallel switching of packets is required. This is achieved
by a conventional bus design which is easy to implement.
The bus may be designed so that in the event of a particular
port on the bus failing, normal operation of the rest of the
system is unaffected. The reliability of such a system is
high, being similar to that used in many computer systems.

The choice of a parallel switching node influences, because
of engineering constraints, much of the rest of the network
architecture. The Starpoints are built around 4-layer
treble Eurocard (9U) PCBs. This large board size has become
a Departmental standard allowing high-complexity systems to
be partitioned on to one PCB, and gives a reasonable number
of connector pins (3 sets of 64 signal pins). Nevertheless,
if parallel switching is employed the packet size is
limited. Increasing the packet size increases the cost of a
system by increasing the number of connector pins required
and the number of integrated circuits required in the packet
registers. A packet must contain addressing information to
identify both the source of the packet and its destination,
a number of control bits associated with flow control and
error checking, and the user data itself. These fields are
conveniently manipulated in multiples of 8 bits. An 8 bit
address field limits the number of connections to 256 which
is too small for with the environment envisaged. A 16 bit
address allows 65536 connections which is probably adequate.
It was felt that at a Starpoint no error checking bits were
required and thus the control field is only 8 bits
concerned mainly with handshaking of packets across the
network. A Centrenet packet therefore has an "overhead" of
40 bits. A, large data field increases the efficiency of
block data transmissions, but is inefficient for single
character traffic such as that generated by terminals.
However, in the context of the high performance anticipated
from Centrenet, such inefficiencies are irrelevant. Thus it
is desirable to make the data field as large as is possible.
If the data content were to be 16 bits, the packet
utilisation efficiency would be only 28.5%, whereas a 32 bit
data field would increase this figure to 44.4%. A 64 bit
data field would be even better, but the cost of
implementation would then become too high. The Centrenet
packet size is therefore a compromise, consisting of a 16
bit source address, a 16 bit destination address, a 32 bit
data field, and an 8 bit control field.

A Starpoint consists of 15 ports, 1 uplink port, a
Network Intelligence Module (NIM) and a microprogrammed bus
controller card which also acts as a NIM interface card.
The NIM is a single board microprocessor concerned with
set-up procedures, fault-reporting and local name-serving.
It does not stand directly in the path of any packet
switching. A Starpoint may be used in a stand-alone
configuration, or may be connected to another by linking the
uplink port to the port of another Starpoint. In a fully

30 High performance LAN-Centrenet

connected system, a 4-level tree is constructed allowing
50,625 connections at the lowest level. In a partially
populated system, the tree need not be symmetric. The link
between two Starpoints is knownas a "remote link", since it
is anticipated that Starpoints could be spread across the
campus. The Starpoint concept and implementation has
changed since the start of the project and it is interesting
to note its evolution.

3.4 MARK-ISTARPOINTDESIGN.

Connection between processors and the Starpoint is via
a "port card". A port-card is essentially a set of
registers under microprogram control. The port-card can
raceave a packet either from the Starpoint bus or from the
device attached to the port-card. Two interfaces are
provided on the mark-l port-card: a 72 bit parallel packet
port and an RS232serial port. If the device attached to
the parallel port wishes to send a packet to another port on
the Starpoint, it must first load the packet to be
transmit ted into its own transmit packet-buffer register.
The transmitting device must then assert a "Tx Request" bus
control line. This instructs the Starpoint interface of the
port-card to place the packet on the Starpoint bus the next
time the port is polled by the bus controller. One of the
other ports in the Starpoint will recognise the packet
destination address and accept the packet. This port will
send a "FrameAck" signal back along the bus a fixed number
of clock periods later to indicate the receipt of the
packet. The transmitting port-card will then assert a
"Packet Sent" signal to the attached device, which must then
de-assert the "Tx Request". The port-card then deasserts
"Packet Sent" and the port is then ready to send another
packet.

Whena packet is received from the internal bus by a
port-card, it asserts an "Incoming Packet" signal to the
attached device. The device interface must assert a "Busy"
interface signal and the port-card will write the received
packet into the device's receive packet-buffer register.
The device must then remove the packet before de-asserting
"Busy". The incoming packet handshake sequence is then
completed.

The essential feature of this mechanism is that each
packet transfer across the Starpoint is explicitly
acknowledged, and this principle is extended to each stage
of a packet's transfer across the network. If no
acknowledgement is received, the transmitting port-card
retries at the next opportunity. Eventually, if the
transmission can not be carried out the port-card times-out,
reports the error to the NIMand discards the packet.

If the attached device uses the serial interface, the
mechanismis essentially the same, however onLy one byte of
the data field is used.

High performance LAN-Centrenet 31

The rate at which packets may be routed between any
pair of ports will depend on the speed at which the
receiving device can react to the "Incoming Packet" signal.
Also, transmissions will be slowed down if more than one
port is sending to the same Starpoint port. However
transmissions which do not have either source or destination
addresses in common will not degrade one another I s
performance. The mark-l port-card is not able to support
simultaneous transmit and receive to/from the same pair of
ports so that a maximum of eight transfers may take place in
parallel without affecting the system I s performance. The
time taken for an individual transfer depends on precisely
when "Tx Request" is asserted. Under the most favourable
circumstances 20 clock cycles are required (=3.2 microsecs),
however if the request just misses the previous bus slot,
the port-card must wait until it is polled again. At
present polling is carried out on a round-robin basis so
that a further 17 clocks are required before the device is
able to transmit. It should be noted that the actual
polling sequence is table driven and can be dynamically
changed by the NIM allowing the possibility of adaptive
polling. The average transmission rate is therefore 15.8
Mbits/sec giving a maximum throughput across a Starpoint of
126.4 Mbits/sec.

3.5 MARK-2 PORT-CARD

The mark-l port-card has a number of disadvantages.
Much of the logical complexity of the port card is due to
the fact that there is both a serial interface and a
parallel interface on the same card. Whilst direct terminal
connection on to Centrenet is considered important,
dedicating a port-card to a single serial channel is an
extremely expensive method of achieving this goal. In order
to reduce the cost of terminal connections. two terminal­
muLtiplexing designs have been investigated. One is a 16
channel bit-slice processor design and the other is a
cheaper, more flexible, microprocessor design supporting 8
channel operation but with inevitable performance
limitations. It seems likely that the latter design will be
adopted. Since a separate terminal-multiplexor was
available, it is sensible to remove the serial channel from
the port-card. The board has been redesigned taking
advantage of more recent semiconductor technology: this has
reduced the chip-count for the packet registers by a factor
of four. The control logic has been redesigned using PAL
technology, which has allowed both a further reduction in
the chip-count and the number of clock cycles required for
the packet switching operations. The Starpoint clock at
present runs at 5 MHz. Only 4 clock cycles are required for
a transmit sequence and 6 cycles for a receive sequence.
Since these operations are performed in parallel, the
transmit time 1S dominant, and thus under best-case
conditions, a packet may be transferred in 1.2 microseconds,
giving a maximum bit-rate through one port of a Starpoint of
60 Mbits/sec. The calculation for the maximum throughput
across the Starpoint with all channels active is slightly

32 High performance LAN-Centrenet

different from that of the mark-l Starpoint. Firstly it is
now possible to support simultaneous duplex transmission
between a pair of ports, and secondly the round-robin
polling time (=17 x 200 nsec) is greater than the time taken
to switch a packet. Thus, under the most favourable
conditions, 8 sets of two-way transfers could be occurring,
giving an overall capacity of 338 Mbits/sec.

The reduction in the number of chips required for the
packet switching function has meant that board area has been
freed for other uses. The new port-card logic has been laid
out in an extremely compact manner on a 4-layer printed
circuit board, it consumes only about 10% of the board area.
The rest of the board is a general purpose wire-wrap board
so that a variety of processor interfaces can be
accommodated on the same design of port-card. Some
interfaces need to be replicated several times. In these
cases a printed circuit board is designed in which the
port-logic layout may be incorporated without change.

3.6 THE SUPERPORT.

In order to achieve high speed data transfer from a
processor to a Starpoint, hardware is needed to interface
the processor bus to the Starpoint port-card. So far one
such design, known as a Superport (Hopkins (10», is
operational and provides an interface to the OEC POPII
Unibus. A Superport provides a mUltiplicity (16) of network
addresses to a processor via a single network connection.
The multiple channels may be used to support either
terminal-to-processor connections or processor-to-processor
connections. A Superport has three modes of operation:
1. Block Mode, is used to transfer large blocks of data

(i.e. files) at high speed. A header packet is sent
giving details of the transmission to follow. On
receipt of an acknowledgement from the receiving device,
the transmitter transfers the data in "short blocks" (4
bytes packed into one packet). When the packets are
received, they are autonomously transferred into a
buffer area using DMA techniques. The final packet of
the transfer contains a Cyclic Redundancy Check (CRe) to
ensure the integrity of the transmitted data. Once the
transfer is complete, the processor is interrupted and
if the data is correct, an acknowledgement packet is set
to the originating processor.

2. Character Mode is used for terminal traffic that
requires single character transmission. When a
character is received, it is placed in a buffer in
memory and the processor is interrupted. Dnly when the
character has been processed is the ack:nowledgement
packet sent.

3. Line Mode is a variation of Character Mode, transmission
is similar to Character Mode, however the receiving
Superport only interrupts the process -or when a
predefined end-of-line character occurs.

High performance LAN-Centrenet 33

The observed bit rate from a Superport is 3.0
Mbits/sec. Whilst this is much less than the available
channel capacity of the Starpoint, it should be pointed out
that the Superport hardware and microcode were designed for
ease of commissioning and a primary objective was to gain
experience of such a device in an operating system
environment. Several conclusions can already be drawn. The
device needs to more programmable than it is; the microcode
should be both wider and deeper than at present. Secondly,
it has proved difficult to take advantage of the multiple
channel block-mode facility. The problem is in the
complexity required in the operating system software of the
host machine. On the the other hand, the ability to support
both a single-channel block-mode transfer and mUltiple­
channel single-character transfers has proved valuable.
These points are discussed in more detail elsewhere (10).

3.7 REMOTE LINKS.

While a Starpoint may be operated as a stand-alone
network, more generally it will be connected to other
Starpoints. The distances between Starpoints within the
same building may not be large, but connecting different
buildings on the campus may involve distances of several km
because of the lack of suitable direct ducts. The Remote
Link {Train (II)) has therefore been designed with the
following objectives.

1. The link should be an integral part of Centrenet and
should follow its design philosophy; in particular each
packet should be explicitly acknowledged.

2. The link should be a high speed serial link which should
not slow down the operation of a Starpoint.

3. The link should be capable of operating over distances
up to 1.5 Km.

4. The link should be based on optical fibre technology
using readily available components.

5. The link should incorporate error-checking and recovery.

The remote 1ink was designed concurrently with the
mark-l port-card and was designed to be able to deal with
the .situation of one port requesting transmission every
cycle when polled on a round-robin basis, .i v e, every 2.72
microseconds (17 x 160 nsec). In practice the link runs at
40 Mbit/sec, with the Centrenet packet enveloped into a
remote link super-packet (RLSP) of 112 bits, and a request
can be serviced every 2.8 microseconds. The time of
transmission over 1.sKm of optical fibre is 7.2
microseconds. If transmission of the next packet had to
await the return of an acknowledgement packet, (i.e. a total
delay of 14.4 microseconds) the system performance would be
grossly degraded. However, in order to be consistent with
Centrenet philosophy, each packet has to be acknowledged at
each stage of its transfer through the network. The
solution is to provide buffering at both receiver and
transmitter. At the receiver buffering is required because
a Starpoint port can only hold one packet at a time. If no

34 High performance LAN-Centrenet

buffering were included, any delay in placing the received
packet on to the Starpoint bus would result in lost packets.
At the transmitter, a buffer is required to store packets
that have been sent, but which have not yet been
acknowledged. The Remote Link super-packet contains a
checksum: if an RLSP is found to be corrupted, an error RLSP
is returned to the transmitter and a retry is initiated.
The transmitter has an 8-deep buffer, allowing up to 8
packets to be sent over the remote link before awaiting an
acknowledgement. The link is thus kept full, with no
penalty imposed by the time-of-flight of the packet.

The protocol used by the remote link is based fairly
closely on the HDLC procedures [I8076J. The remote link
super-packet contains the following parts:
1. A flag, which is a unique sequence (01111110) of bits

indicating the start of a packet frame. In order that
this bit pattern cannot occur anywhere other than in the
true flag, an extra 0 has to be inserted during
transmission after five consecutive l's have occurred.
This process is known as bit stuffing. At the receiver
a complementary operation, unstuffing, has to be
performed.

2. A frame-header, which contains address and control
information. The address field is actually irrelevant
because the remote 1ink operates on a point to point
basis, and therefore there can only be one address for
the super-packet. The control field identifies the type
of packet that is being sent, i.e whether it contains
genuine data or is an acknowledgement packet, and
provides a labeling scheme to number each packet. A
numbering scheme is required in order to be able to
acknowledge or to reject individual frames.

3. The data field containing the Centrenet packet.
4. A CRC for error checking.

The packet buffers required by the remote-link operate
on a first-in, first-out (FIFO) principle. An eight-deep
FIFO is used for both transmit and receive buffers, and is
constructed from TTL RAMs with a controller built from
discrete MSI parts to simulate a true FIFO.

The use of optical fibre for the transmission medium
has several implications for the system. One of the
advantages of using optical fibre is noise immunity.
However while problems of electrical interference are
eliminated along the length of the cable run, the problem is
exacerbated at the receiver. The signal current from the
receiving diode is very small (of the order of microamps).
Early attempts to mount the receiver circuitry on the PCB
proved rather susceptible to noise generated by the large
switching currents generated by the TTL logic. It became
necessary therefore to fabricate a receiver module in its
own shielded metal box: this solved the immediate problem
but caused a packaging problem in that the modules were too
large to be directly mounted on the PCB. In order for the
superpacket to be sent serially down the fibre, it has to be

High performance LAN-Centrenet 35

encoded to include sufficient timing information to
regenerate the clock at the far end. Furthermore, the
average DC level of the encoded signal should vary as little
as possible. This restriction arises because the small size
of the received current constrains the receiver amplifier to
be AC-coupled. Any shift in the average DC level of the
signal effectively reduces the noise immunity of the level
discriminator at the receiver. An obvious coding technique
to employ is Phase Encoding (PE) or Frequency Modulation
(FM); both schemes are relatively easy to implement.
Unfortunately, both methods are expensive in their use of
bandwidth and a 40 Mbit/sec transmission rate would not have
been obtainable with the optical components (Honeywell
"Sweet-Spot" LEDs) which were used. A variety of coding
schemes were investigated in detail (MFM, 2/3 codes), but
the simplest scheme is to encode a '0' by a transition
(NRZI-S coding). The bit-stuffing, which limits the number
of 'l's ensures that sufficient timing information is
included and limits the amount of DC-wander to an acceptable
level.

The NRZI-S scheme requires minimal logic to implement.
Effectively, the complexity of coding has moved to the bit­
stuffing system. Overall, about 200 integrated circuits on
two treble Eurocards, were required to implement a
transmitter-receiver station of a remote link.

3.8 LOCAL LINKS.

Processors may be physically attached to the Starpoint
via an appropriate interface such as a Superport. This
arrangement, while giving maximum performance, is rather
inelegant, involving the extension of the processor's bus to
the Starpoint. In a tightly-coupled computer environment
this may acceptable, but in general machines will be further
apart than the maximum distance that a processor's bus can
be extended. The local link is a point-to point serial link
which allows processors to be placed some distance from the
Starpoint to which it is connected. The links have been
implemented in both optical fibre and co-axial cable in
order to compare the two technologies. Like the port-card,
the local link has been redesigned. The experience gained
in the implementation of the remote link suggested that a
much simpler, more cost effective scheme was required. The
philosophy behind the local link was that it should be
invisible to any of the existing hardware or software. In
other words, it should be possible to connect a Superport
either directly to a Starpoint, or indirectly through a
local link, without any other changes to the network.

In order to simplify the link, the buffering and
packet labelling used in the local link is omitted. In the
first version, however bit-stuffing, the NRZI-S coding
scheme and a primitive form of automatic error recovery were
retained. A second version of the link is even more
simplified; the need for flags has been eliminated and
consequently so has the need for bit stuffing. The coding

36 High performance LAN-Centrenet

scheme used on the new local links is Phase Encoding. The
handshaking sequence for the port-card described earlier is
simulated by the link; further packets may not be sent until
the acknowledgement has been returned from the far end.
Consequently, the serialisation time of both packet and
acknowledgement causes an extra delay. At the link rate of
15 Mbits, this adds an extra 8.9 microseconds to the minimum
time between successive packets. The cable delay over the
distances likely to covered by a local link is comparatively
insignificant. The serialisation delay is inherent in any
scheme without buffering which retains the hop-to-hop flow
control of Centrenet.

3.9 CONCLUSIONS.

At the present time hardware for a pilot Centrenet
system has been implemented and connects 2 PDPlls to a
single Starpoint via two local links. A VAXrunning the
MUSSoperating system is to be attached shortly and will
give experience in realistic traffic rates. The reliability
of the present network appears to give an error rate of
better that 1 error in 2 * 10**10. The local links are
switchable to either co-axial cable or optical fibre. No
significant difficulties have been found with the optical
system, its reliability appears to be at least as good as
that of the co-axial cable. A prototype remote link has
been demonstrated over a distance of 1.2 Km. The aim of the
Centrenet project was to achieve a high performance LAN.
This was to be achieved not only by raw hardware speed and
parallel switching techniques, but also by putting as much
functionality as possible into the hardware. In one
respect, this latter approach has not proved cost-effective.
An attempt was made to provide extensive error-checking. In
particular attempts were made to guarantee, in hardware, a
packet's arrival. This has proved difficul t to engineer
successfully. Reducing the specification to provide a
reliable transport mechanism, and shifting the burden of
error recovery to the software of the atttached processor
greatly simplifies the hardware required.

The existence of two varieties of ser ial links is
rather unsatisfactory, and arises because increased
performance can only be achieved by the provision of
buffering. Recent advances in semiconductor technology in
the form of high performance cascadable FIFOs have greatly
reduced the cost of providing a buffering scheme. This,
together with the simplification of the hardware protocols,
will allow the development of a new serial connection common
to both local links and remote links.

Work is proceeding in a number of areas _ An IEEE-488
interface is being built which will allow machines with this
bus to be connected to Centrenet. Work has started into the
transmission of voice and video traffic over Centrenet. As
a resul t, one of the bits in the control field of the
Centrenet packet now allows the receiving device to
interpret the rest of the packet as it chao ses. In this

High performance LAN-Centrenet 37

manner datagram activity
transmission of voice over
demonstrated, and work has
port-card which will allow

is supported by Centrenet. The
the network has been successfully
started into a new interface to a
the transmission of video data.

This paper has concentrated on the hardware aspects of
designing a high-performance LAN. This does not mean that
the software issues have been neglected. Studies (Bondi and
Jackson (12)) have been initiated into the means by which
Centrenet protocols may be matched to the layers of the OSI
model (13). Work in this and a number of related areas, is
still continuing. and will be published in the near future.

Acknowledgements.

The authors would like to thank Professor D. B. G.
Edwards for provision of funding and support for the
Centrenet pilot project. Some support has also been
received from GEC and current work is being funded by the
SERC as part of its Distributed Computing Systems programme.

References.

1. Morris, D., and Ibbett, R. N., 1975, 'The MUS Computer
System', Macmillan, London, England.

2. Lavington, S. H., 1975, 'A History of Manchester
Computers', NCC Publications, Manchester, England.

3. Edwards, D.
1980, from
Proceedings,
Architecture,

G. B., Knowles, A. E., Woods,
a Mini-sized Computer', ACM

Seventh Symposium on
161-171.

J. V, May
Conference

Computer

4. Hopkins, T. P, 1980, 'An Investigation of Hardware
Requirements for the Impiementation of Communications
within a Multi-Computer System', M.Sc. Thesis, Dept of
Computer Science, University of Manchester, England.

5. Wilkes, M. V., and Wheeler, D. J., 1979, Symposium,
Boston Mass., 47-60.

6. Metcalfe, R. M., and Boggs, D. M., 1976, CACM, 19 7
161-166.

7. Rawson, E. G, and Metcalfe,
IEEE Trans. on Comms., 26 983-990.

R. M., 1978,

8. Sikora, J. J, and Franke, D. C., 1983, 'A LAN Based on
a Centralized-bus architecture', Proceedings of
Localnet '83, New York, 1983, 147-157.

9. Lee, E. S, and Boulton, P. I. P.,
Selected Areas in Communications,

1983 IEEE Journal
SAC-I, 5 711-720.-- - -

on

10. Hopkins,
Network' .

T. P.,
Ph.D.

'The Design of a Local Area Computer
Thesis, Dept. of Computer Science,

38 High performance LAN-Centrenet

University of Manchester, England - to be submitted.

11. Train D. A., 1982, 'An Optical Fibre Communications
System for a Campus-Wide Local Area Network'. Ph.D.
Thesis, Dept of Computer Science, University of
Manchester, England.

12. Bondi, D, and Jackson A. R., 1984, 'Low Level Centrenet
Protocols' . Internal Report, Department of Computer
Science, University of Manchester, England.

13. ISO, 1981, ISO/TC97/SC16 Data processing - open systems
interconnection basic reference manual,
Computer Networks, 5 81-118.

Chapter 4

Imperative languages in
distributed computing

Richard Bornat

4.1. INTRODUCTION

There isn't very much distributed computing about -
certainly I found less than I expected to while researching
this review. To the programmer 'distributed computing' is
still a problem, not yet a solution. We can't use
'distributed computing' as a tool or a description device in
solving our programming problems in the way that we can use,
say, recursion, repetition, conditional choice - or even
concurrency. Instead it is a puzzle set for us by others,
inspired mainly by advances in hardware design and
production.

The problem is to control concurrency in a system which
includes several processors. This is by no means a new
problem, but solutions to it began to be practically
important when it became cheap to print processors on
silicon with very little labour input. It seemed
immediately possible to use concurrent programming
techniques to make a collection of cheap slow(ish) printed
processors perform as fast as an expensively soldered and
wired conventional machine. Networks of machines have
existed for years, especially in finance and banking: cheap
hardware made it seem reasonable to build smaller-scale
networks which would behave as a single 'system'. Our
experience so far seems to show that these things are
certainly possible but are surprisingly difficult to bring
into use.

Somehow or other 'imperative', when attached as an
adjective to 'programming', seems to have acquired something
of the meaning of 'pragmatic' or 'practical' - though
adherents of other programming traditions might choose less
flattering adjectives to describe our eager adoption of
other people's objectives. We take it as the task of the
language designer to help programmers solve problems which
the 'real world' - of hardware designers, in this case - has
thrown up. .

Different uses for concurrent action could be expected
to point different directions in language design. At the
two ends of the hardware spectrum there are the
multiprocessor and the geographically distributed network.
The multiprocessor - in which processors share memory and

40 Imperative languages

may share an input/output interface - is intended to run the
parts of a single program concurrently; the problem is to
make the processors behave together as if they formed a
single 'machine'. The geographically-distributed network -
many machines with no shared memory and non-reliable
communication hardware - is intended to provide a reliable
computing service in several places while sharing
information and hardware resources; the problem is to permit
each machine to use the rest of the network as if it is an
extension to its own capacity.

In practice language development has been held up by
difficulties of implementing mechanisms of communication.
Few languages have contributed much in the way of
program-structuring ideas and most designers seem to have
concentrated on how to balance the advantages of
implementing particular mechanisms against the costs of
doing so. Much of my review, therefore, concentrates on
those mechanisms and on the restrictions and caveats in
language design, often put there for the sake of an
efficient implementation.

4.1.1. Program structuring

Most of the languages reviewed here (occam (3) is the
most important exception) are developments of Pascal (27).
In Pascal, as in any 'procedural' language, the important
units of execution are the program, the procedure and the
instruction. At a particular level of description a program
execution is a collection of procedure executions. If an
instruction calls for a new procedure execution then one is
created and starts operating; meanwhile the calling
execution pauses and waits for the new one to terminate.
Thus only one procedure execution can ever be operating at
one time. Even coroutine languages, like Modula-2 (15) or
BCPL under TRIPOS (14), are sequential according to this
model (although the procedure executions don't wait in line
in quite the same way there can only be one of them
operating at any time).

In concurrent languages more than one thing can happen
at one time. Every language uses a different terminology to
describe those executions which can be operating
concurrently: I have chosen to use the word process. A
concurrent program execution may contain more than one
operating process execution.

One particularly simple extension of the procedural
model identifies a process as a collection of procedure
executions. This is the approach of Martlet (9) , of
Pascal-m (4l and of Conic (7): processes in such languages
are each the same as an ordinary sequential program except
for the way in which they communicate with their
environment. There is a simple hierarchy of executions from
program through process and procedure to individual
instruction executions.

An alternative approach allows an operating execution to
'fork' into several concurrent executions which]_ater 'join
back into one. This is essentially the approach of
PascalPlus (26) and Ada (10). There is no longer a simple

Imperative languages 41

hierarchy of executions: instead procedure and process
definitions can be seen as alternative structuring
mechanisms.

Occam (3) takes this second approach farther than any
other of the languages reviewed here. The instruction
execution is the basic unit, just as in the more
conventional languages, but instructions can be composed as
easily in parallel as in sequence. Iteration and guarded
commands are alternative ways of composing executions.

In scoping and visibility rules most of the languages
are rather old-fashioned. Martlet, Path Pascal and Pascal
Plus use Pascal scoping; occam uses straightforward
hierarchical scoping. Ada is of course more adventurous but
its 'package' and 'generic' mechanisms are too well known to
require discussion here. Conic and Pascal-m have a 'module'
mechanism which constrains the interconnection of processes.
Modula-2 has modules, BCPL, Coral and C are just ordinary
procedural languages.

4.1.2. Communication mechanisms

It is normal to make a distinction between language
mechanisms and implementation devices. In principle any of
the mechanisms used in any of the languages could be
implemented in terms of any of the others. But designing
the implementation of particular mechanisms - i.e. finding a
device which fits a chosen mechanism - has often affected
the choice of mechanism and has been an important influence
on the design of most of the languages reviewed. To
understand the designer's choice of mechanism it is usually
necessary to understand what devices have been invented.

The presently popular language mechanisms are shared
memory (including monitors in PascalPlus and objects in Path
Pascal), Remote Procedure Call, buffered message-passing and
synchronised message-passing. Each of these mechanisms
involves the transmission of information, though some
procedure calls in Path Pascal can be used as pure
synchronisation operations.

Shared memory, or more strictly shared information, is
the oldest of the mechanisms. If the 'naming space of
several processes simply overlaps so that the effect of an
assignment by one is visible to the others then
communication between them is obviously possible. It is
always essential to ensure that assignment and access
actions never overlap because in general they can't be made
atomic operations of the underlying hardware. Both
PascalPlus monitors and Path Pascal objects wrap shared
memory object declarations with definitions of procedures
which must be used to update or access the value of those
objects; then they control the use of procedure executions
so as to constrain or eliminate overlap. The monitor
mechanism makes critical procedure executions effectively
atomic, while Path Pascal allows the description of a degree
of concurrency between executions. Shared memory
communication isn't synchronised, though processes must
often wait to be permitted to create or to complete a
procedure execution. Communicating processes aren't paired

42 Imperative languages

- information is genuinely shared between whatever process
puts it there and whatever processes inspect it.

In a Remote Procedure Call one 'sender' process provides
the parameters for a procedure execution created by another
'receiver' process. The sender communicates with the
receiver by providing parameter information and by receiving
results. The receiver communicates with the sender by
sharing memory with the procedure execution. The two process
executions each wait for the completion of the procedure
execution. Processes are obviously paired and communication
is synchronised in that a sender is delayed until the
receiver offers to create the execution; conversely a
receiver is delayed until there is an appropriate sender.

In buffered message-passing a sending process fires off
a message and doesn't wait for a receiver to be ready to
accept it. Conceptually the receiver holds a queue of
messages sent to it but not yet inspected. Sometimes there
may be a priority scheme to order messages in the queue and
often a receiver may be able to detect whether its queue is
empty and hence may be able to choose whether or not to
suspend execution so as to wait for a message. Processes
need not necessarily be paired: there can be more than one
receiver process for a single send, as in Conic (7,29),
which will produce a limited kind of 'broadcast' effect.

In synchronised or unbuffered message-passing a sender
must wait until a receiver is ready to accept the message;
conversely a receiver must wait for a sender. This kind of
message-passing is synchronised and paired though typically
a receiver may choose between many potential senders before
communication occurs.

Buffered message-passing can cause a problem of memory
starvation because each message sent requires buffer space.
It is easy to see that over a period every process in a
system might send more messages than it receives and the
system might then deadlock because buffer space is
exhausted. Synchronised communication - either
message-passing or Remote Procedure Call - has the advantage
that sending a message usually needs no storage apart from
that allocated in the participating processes: the
compensating disadvantage is that it can be difficult to
synchronise processes on different machines, though language
restrictions can help to reduce this difficulty by
restricting the ways in which synchronisation can come
about.

4.1.3. Making connections

Languages which don't exclusively use shared information
must allow senders to name receivers and/or vice-versa. The
issue is how to name a process execution and whether to do
so directly or indirectly. '

In all the languages reviewed which use Remote Procedure
Call a sender names the receiver process directly, names the
procedure to be executed within the receiver and gives
argument values; a receiver offers to create an execution
for any sender naming the correct procedure_ It is
unnecessary for the receiver to name the sender and the

Imperative languages 43

connection pattern in every language is therefore
any-to-one. The receiver's offer may be continuous, as in
Ada 'task procedures', or intermittent, as in Ada 'task
entries'. In principle a sender might name a receiver
indirectly, giving only the procedure name and argument
values so as to be paired with any receiver offering to
create an execution of that procedure - i.e. any-to-any
connection. This isn't a facility of any of the languages
reviewed but something like it has been provided in the
MINAS operating system (17).

All the message-passing languages reviewed here use some
form of indirect channel addressing (called 'ports' in
Conic, 'mailboxes' in Pascal-m, 'channels' in occam).
Communication is sent to or received from a channel and the
partner is whatever process makes the opposite communication
on the same channel. Channels can be typed to constrain the
messages which may be sent or received through them. A
channel mechanism makes it possible for a sender or a
receiver to select between different sets of potential
partner processes. In occam the decision to use channels
may have been made because the design of the language makes
it impossible to name a partner execution. In Conic and in
Pascal-m process executions can be named directly but in
each case the designers adopted a channel mechanism to
facilitate dynamic reshaping of the process-connection
pattern.

Indirect naming, whether by channels or by procedure
names, has an analogy with information-hiding. If sender
and receiver have a client-server relationship, as they
often do, then directing communication to a process means
that the programmer who designs the client process must have
more information about the server than is strictly
necessary. Directing communication through channels gives
far more potential for modular programming.

Both Conic and Pascal-m use a form of module construct
to control the connection of processes to channels. Conic
uses a configuration description to link ports on different
modules and, potentially, to unlink them again. Pascal-m
modules use an import and export mechanism to control the
visibility of mailboxes across module boundaries.

4.1.4. Non-determinism

Non-determinism is inherent in a concurrent program with
several operating executions because the program text
specifies only a partial order of program events.
Non-determinism arises when processes are connected
any-to-one because a receiver cannot control which of all
the potential senders will succeed. Similarly in one-to-any
connection a sender cannot control which receiver will
accept and in any-to-any connection neither partner has
control.

Non-determinism can also arise in languages using
synchronised communication from the program construct called
a guarded command, first introduced as a communication
construct in CSP (26). A guarded command allows a process
to make several simultaneous offers to communicate. Each

44 Imperative languages

offer is written so as to label, or guard, an instruction;
the first offer to succeed triggers execution of the
instruction it guards and all other offers are cancelled.
The guards themselves can be protected by Boolean formulas
to control which of the offers are actually made in a
particular execution of the guarded command. So, for
example in occam (3) a guarded command with three
alternatives could be written as follows:

ALT
x /\ y<O & cl?f

11
c2?g

12
z=3 & c3?h

I3

Communication is offered on channel c2 by every execution of
this command, on channel c3 only if z=3 and on channel cl if
x is true and y is negative. Whichever communication
happens first causes the instruction following it to be
executed and then the guarded command completes.

4.2. IMPLEMENTATION INFLUENCES

Pseudo-concurrency, in which a concurrent program is
executed on a single processor, .is rather easy to implement.
It's easy because on a single processor only one thing
happens at a time, so that implementing a virtual machine
which provides concurrent communication primitives becomes
rather like implementing a coroutine machine.

On concurrent hardware the trick isn't so easy, and here
we can distinguish two distinct difficulties. The first is
that there is no global clock. Since information travels
between machines at a finite speed it is impossible to
decide in general whether an event in one machine occurs
before or after a different event in another. The problem
arises naturally when deciding whether an offer of
communication made from one machine has been accepted in
another and affects the design of languages using guarded
commands and also those which use so-called 'time-out'
limits on the duration of a communication attempt. A second
difficulty arises because some distributed systems are
organised so that part of the system may break dC)wn while
the rest is capable of continuing without it.

4.2.1. Timing problems

If several processes make offers of communicCltion to
each other at about the same time there is a prolJlem of
arbitrating whatever conflicts arise. If proces~ A offers
to communicate with Band C, B with A and C, C wjLth A and B
then at most one of the three possible pairings ~an take
place. The problem isn't too hard to resolve on a
uniprocessor because there can be a single arbite=r and while
it executes the processes don't. With several p~ocessors -

Imperative languages 45

one each for A, Band e, say - the difficulty is that none
of them knows the current state of any of the others, but
only their states in the recent past.

It is possible to avoid the timing problem and recreate
the communication characteristics of a unlprocessor
implementation by having some controlling hardware device
such as a section of shared memory or an arbitrating
processor which acts as a global synchroniser. So, for
example in the implementation of Martlet (9) each
multiprocessor station contains a shared memory, a control
processor and a number of application (task) processors.
When a process, running in a task processor, offers a
communication a marker is deposited in the shared memory and
the task processor waits. The control processor arbitrates
its next action - typically, it schedules some other
process for execution.

Synchronising hardware can obviously be a bottleneck in
execution if too many processes consult it at once or if it
takes too long to consult. The hardware is also uniquely
important to the system as a whole: if it breaks the whole
system stops.

An alternative is to establish some protocol conventions
by which autonomous processors negotiate to decide which
communication to perform next. This becomes difficult if an
offer once made can easily be withdrawn. If an offer from
process A, running on one machine, is sent to process B on
another machine that offer will take some time to reach B.
B's acceptance, if the offer is eventually accepted, will
take some further time to return to A. During that time
process A may have received alternative, perhaps more
attractive, offers to communicate or the interval may be so
long that it simply decides to 'time out' (i.e. to give up
the attempt1. Then B's acceptance may have to be rejected.

Without care in the design of a protocol there is the
possibility of 'livelock' in which processes never agree.
Taking the example of processes A, Band e once more:
suppose that A decides to accept B's offer (in effect
withdrawing its offer to e), B decides to accept e and e
decides to·accept A. Each process will send an acceptance
to one which has already decided to reject its offer and
there will be no pairing and no communication. Even if they
start allover again from the beginning the situation can be
repeated indefinitely.

Protocols have been published which use
process-numbering to avoid livelocked cycles of processes -
for example recently (30) - but they are relatively
complicated to implement and expensive to operate. Most
language designers have restricted their languages to avoid
the problem. If only one sort of communication - typically
receive - can be offered in a guarded command then only that
sort of communication can be withdrawn. The other sort of
communication - i.e. the send - must be offered
unconditionally, without even a time-out alternative. Then
a process executing a guarded command can examine the send
offers made to it without any need to negotiate: whichever
it decides to accept will still be in force when it accepts.
Yet another alternative solution is to ignore the problem

46 Imperative languages

and to push it back onto higher-level software - for example
in (7,29) and (19) an offer to send which is withdrawn by
time-out may already have succeeded, undetected by the
sender.

4.2.2. Hardware failure

The difficulty of programming a system which may
partially break down concerns some language designers. In a
uniprocessor system if one component stops the whole machine
stops. Then programmers don't have to consider what to do if
part of the machine, carrying part of the program, should
break down or be isolated from the rest by communication
hardware failure. If any computing system, distributed or
otherwise, is seen as running a single concurrent program
and doing it concurrently because that is just a nice way to
program a solution, then component failure can be treated
just as on a uniprocessor. But if a system is made up of
potentially autonomous machines, or if concurrency is being
used to provide a reliable computing service, then component
failure must not stop the system. (7,29), (4), (17) and
(19) address this issue in different ways.

4.2.3. Shared memory

Shared memory seems a rather unlikely implementation
mechanism for a geographically distributed system. The
monitor, the most commonly-used mechanism for interleaving
access and assignment in a pseudo-concurrent implementation,
seems to have no intrinsic advantages over the Remote
Procedure Call. Path Pascal provides an alternative
interleaving and synchronisation mechanism which does claim
some advantages over the RPC so perhaps shared memory may
have a future after all. The UMIST experience of
implementing PascalPlus (23) leads that group to conclude
that shared information rather than shared memory is the
useful linguistic notion.

4.3. THE LANGUAGES

In this section I consider how some of the languages
which have received a significant implementation effort, or
which are used to a considerable extent, match up to my
Procrustean criteria. Non-mention of a language here
shouldn't be taken as a mark of criticism in itself, merely
as evidence for the damage caused by my own myopia.

I concentrate mainly on the communication mechanisms
which the languages use. Most of the languages are
developments of Pascal in any case, so that their
program-structuring facilities are broadly similar.
Naturally I try to point out important points of difference.

Imperative languages 47

4.3.1. Ada and Martlet

A group at the University of York (11,12) have used Ada
(10) as the basis of the PULSE distributed computing
project; a group at the University of Sussex (9) has
incorporated some of the Ada language into Pascal, producing
Martlet. Because the languages are so similar I discuss
them together, giving most attention to Ada. Martlet is
Pascal without i/o and file types, plus some of the Ada
communication mechanisms and some of the its exception
mechanism. Crucially Martlet does not include Ada
conditional and timed entry calls and it prohibits pointers
in arguments to entry calls - that is, it leaves out just
those features which may make Ada unsuitable for use as a
distributed computing language.

As to Ada then: it is difficult to give a fair review to
a language whose main claim to acceptance must be the active
support of one powerful computer purchasing organisation,
but I shall try. The size of the language means that I can
review only a tiny part of it.

The process-structuring construct is the task. In
Martlet a program is a set of tasks, so that in effect the
language has the program, process, procedure instruction
hierarchy described in section 4.1. Ada tasks can be
created more freely, in procedures, packages, blocks and so
on. The creating execution can't terminate before the task
it creates have also terminated, so the mechanism is a sort
of fork-join.

The communication construct is remote procedure call.
Task definitions define 'procedures' and 'entries':
procedures may always be called, entries are in effect
procedures which can be called only when the task is
executing an appropriate accept instruction. Task type
definitions have two parts: the header declares the
procedures and entries which the task type provides, the
body gives definitions of the actions of those procedures
and entries. So, for example

task A is
procedure P(a: out integer);
entry U(b:in y);
entry V(c:out z);

end;

defines the interface of a task-type A. The body of A shows
how it permits sequences of UV and VU pairs; procedure P
returns the number of pairs that have completed. The first
of the accept entries for V is inside the accept for U;
likewise the second U is inside the second V. The accept
entries act like procedure declarations and the scopes nest
in the normal way.

48 Imperative languages

task body A is
count: integer:=O;

procedure P(i:out integer) is begin i:=count end;

begin
loop

select accept U(q: in y) do .. q is in scope
accept V(r: out z) do

q and r are in scope ..
end V;

end U;
or accept V(s: out z) do .. s in scope ..

accept U(t: in y) do
sand t in scope

end U;
end V;

count:=count+l;
end loop;

end A;

Other tasks can now communicate with A using procedure calls
such as A.P(j) - which always succeed - or entry calls such
as A.U(f) and A.V(g) - which will only succeed in this
example if used at the right time. Because the accepts are
nested the process which succeeds with the first U entry or
the second V entry is held in synchronisation until the
matching entry in the UV or VU pair is made by another
process. This extended synchronisation is a peculiar
feature of the remote procedure call mechanism: the select
statement could be rewritten to use procedure calls more
like message operations, though with different effect:

uc:=O; vc:=O;
loop

select when uc<=vc =>
accept U(q: in y) do .. q is in scope •.

uc:=uc+l;
end U;

or when vc<=uc ->
accept V(r: out z) do .. r is in scope

vc:=vc+l;
end V;

count:=count+l;
end loop;

As defined in Ada the communication mechanism is adapted
to a shared memory implementation: pointer ('access') values
can be passed as arguments in remote procedure calls and
there are conditional and timed versions of the eTltry call

select <entry call> else <instruction sequence> end;

- the <instruction sequence> is executed if the
entry call can't be immediately accepted

Imperative languages 49

select <entry call> or delay <interval> end;

- the select terminates if the entry isn't
accepted before the interval expires

Use of pointer values requires some other form of
communication underneath the rendezvous mechanism - shared
memory seems the most likely candidate. The language
provides no mechanism to restrict or control simultaneous
access or assignment to memory shared in this way though the
language definition, under the heading of 'aliasing', warns
the programmer to take care. The conditional entry call
would seem to be of doubtful utility inappropriate in a
geographically distributed implementation because the time
it takes to find out whether a receiver is ready to accept
an entry call will often be comparable with the time it
takes the receiver to change state from unready to ready.
The timed version of the entry call is difficult to
implement for the reasons given in section 4.2.1 above.

The naming mechanism of Ada forces sender to name
receiver task in an entry call. An important criticism of
both languages must be that this makes the process
connection pattern much too fixed. A more abstract
interface, some kind of port mechanism perhaps, would make
it possible to decouple the request for service initiated by
a sender from any particular receiver task.

The use of procedure call as a communication mechanism
ties sender and receiver together for the duration of the
call. It has the advantage that the receiver can give
replies to the sender via out parameters in the entry call
without knowing the sending task identity. It has the
further advantage that no process-switching is required to
transmit a reply from original receiver to original sender.
It makes it impossible, though, to receive a reply from any
but the process to which the entry was made. And in (12)
the York group show how difficult it is to program a
receiver which may not want to make an immediate reply to
every send.

Using procedure calls in the style of messages might
overcome some of these problems but would require a receiver
to know the sender's identity, which can be tricky to
arrange even with shared memory and pointers to tasks.

Ada as it stands seems to be a pseudo-concurrent
language or at best a language for multiprocessors with
shared memory. I'm sure it would be possible to implement
the full language for a more loosely coupled system but I'm
equally sure that it wouldn't be easy and that the
implementation wouldn't be particularly efficient. Without
the nasty bits an implementation is much more feasible - as
shown by the Martlet implementation, which has been running
for some years.

Either language makes it possible to write fully
type-checked programs for a multiprocessor machine, whether
network connected or shared-memory. They don't aim at the
construction of multi-program systems for a multi-computer
network (a fact, not a criticism: those are distinct aims
and certainly no language reviewed in this paper solves both

50 Imperative languages

problems). Fixed process connection patterns make it
difficult to see how to cope with any sort of partial
hardware failure or dynamic network configuration.

The PULSE project aims at the construction of an
operating system for a multi-computer network, thus using
Ada for a purpose to which it is manifestly unfitted. As a
result the York group have had to resort to the standard
subterfuge: they use Ada as a pseudo-concurrent language
within each station of the network and use buffered
message-passing between stations. To communicate with
distant station a process makes an entry calIon one of
several special tasks, called 'Mediums', which are in eff
network handlers. The types of message which can be p ss d
between stations are necessarily fixed - one for each kind
of special task - and can't be varied at the whim of th
programmer.

4.3.2. Conic

Conic (7,29) is a language designed for a particul r
problem area, a certain kind of physical-process con rol.
It is a development of Pascal. It is in use at Imp r' I
College and being evaluated by more than one industri I
backer for commercial use. It was partly funded by th
National Coal Board for use in mines where horribl hings
happen to electrical machinery - hence perhaps the
designers' attention to network reconfiguration and
communications hardware failure.

In a Conic network each machine is reasonably r Ii bl
but the system as a whole is less reliable: it may b
reconfigured at the whim of its human controllers or 't m y
partially break down. Some machines observe measuring
devices and report their value at intervals to oth r
machines. Some machines control physical devices ccording
to a defined tactical program. Some machines hav st at g'c
responsibility, altering the tactics of others according to
information received from devices or from other machines.
Some machines have all three functions.

A crucial point is that the machines in a Conic network
should be viewed as potentially autonomous and should be
programmed to continue alone if they become isolated, eith r
by hardware failure or by reconfiguration of the network.
An isolated observing machine should then continue to
observe and continue to try to send its reports until it is
re-integrated into the network. An isolated controlling
machine can do something useful if it obeys the last tactic
it was ordered to follow. An isolated strategy machine must
sit on its computational thumbs until the fault is repaired.
The kind of messages exchanged - status reports Gind
change-tactics commands - are by their nature idempotent, so
repeated transmission is a reasonable behaviour.
Unreliability of hardware and the impossibility C)f
completely ordering events are burdens which seem to be
bearable within this problem domain.

The process-structuring constructs are the mC)dule and
the task. A Conic program is a collection of moc3ules,
each ---orwhich is a collection of tasks. A task .:islike a

Imperative languages 51

Pascal program in that it consists of a collection of
procedure executions, only one operating. Tasks within a
module share an address space but can only share memory if
they pass messages to each other which contain pointers.
Pointers are prohibited in messages between modules.

Tasks communicate through ports: a task definition
declares certain ports and all its communication must be
directed to its own exitports or from its own entryports. A
separate configuration specification describes how the ports
of one task are linked to those of another. So, for
example, a simplified Conic module which reports a
temperature setting at defined intervals and which can be
ordered to change the interval:

task thermometer(i:interval);
entryport interval: integer;
exitport report: temperature;

begin
repeat

select receive i from interval => skip
or timeout i => send temp to report
end

until false
end;

The select instruction is a guarded command which allows
several receive alternatives: here it is used trivially with
a single timeout alternative.

The configuration specification can now connect the
thermometer task to another task, or even to two different
tasks, provided that the port types match. Tasks
communicate if they address matching communications to ports
joined by the configuration description. Potentially, but
not yet in practice, the port connection pattern can be
altered while the system is running. Separation of
configuration description from operational description is
claimed to make for modular programming and certainly seems
to do so.

There are two kinds of co~unication ports. One is a
notify port, clearly designed for the reporting and
broadcasting of status information. Both ports of the
thermometer example above are notify ports. The connection
pattern is one-to-many: a single notify exitport can be
connected to several notify entryports and all those
entryports will receive any message sent. The messages are
buffered, but the splendidly eclectic design of the language
avoids the problems of buffer exhaustion and the overheads
of buffer allocation by making each receiver allocate space
for a fixed number of messages. So, for example, a module
which was connected to the thermometer module might have
declared an entryport

entryport heat: temperature queue 5

and be able to buffer five incoming messages. New messages
just overwrite the ol~est ones if necessary, so that a

52 Imperative languages

receivercan see only the newestmessagesin a sequencesent
to it, and only the latest message if it allocates a single
buffer, which is the default. It seems that accurate
up-to-date information is more important than a complete
history in the world of process-control. Senders are never
suspended on a notify port: receivers may be if the queue is
empty but a process can discover whether the queue is empty
or not by using a special form of select instruction.

The second kind of Conic port is the request-reply
which has two types, one for the request and one for the
reply. So, for example

exitport faster: speed reply boolean

allows a process to send a message of type 'speed' and
receive a boolean reply, indicating perhaps whether a
distant process was able to alter some device to work at
that speed. In operation a sender sends a message to an
exitport and waits for a reply or a failure through the same
port:

send <message value> to <exitport>
wait <reply variable> => <instruction sequence>
fail <timeout interval> => <instruction sequence>

If it gets a reply it executes the instructions following
wait; if the timeout interval expires, or the communication
hardware breaks, or the exitport isn't linked to any
entryport the second instruction sequence is executed
instead. The program can discover the reason for failure if
necessary.

A receiver accepts messages, constructs a response and
sends it back through the same port:

receive <message variable> from <entryport>
... <instruction sequence> ...

reply <reply value> to <same entryport>

Communication is synchronised and unbuffered: a sender can't
proceed until its offer is accepted or until its delay
expires or the connection seems to fail. Request-reply
receive instructions can be used in a guarded command.

Timeout occurs in a sender if the r~ doesn't arrive
in time (cf. Ada in which the timeout occurs if the entry
isn't accepted in time), which by no means implies that the
message wasn't sent or wasn't accepted. Evidently a message
might be sent, actually get through, be processed and a
reply be transmitted but the sender timeout before the reply
arrives. Such delayed replies are by definition discarded,
and programmer's are warned that a timeout doesn't mean a
message wasn't sent. Likewise, communication failure may
have occurred before, after or during mes sage transmission.
In the world of process control this sort of uncertainty is
apparently acceptable.

Conic is too ad hoc for my taste, but I am impressed
with the way that it tackles the practical problem of how a
language should treat reconti.qur-at ion of a network, failure

Imperative languages 53

of the network hardware, failure of a receiver to keep up
with its senders and the impossibility of synchronisation of
processes on different machines within a particular universe
of application. Conic is fine if you want to program the
sort of system its designers envisage and it certainly
allows you write type-secure programs for process control
networks. If you are running on reliable hardware then
obviously some features of the language become less useful.

Because communication is indirect through ports then, if
modules can be written to operate autonomously when they
become isolated, it is potentially possible to reconfigure a
running system to cope with partial hardware breakdown. I
understand that Conic will continue to be developed in that
direction.

4.3.3. occam

I feel impelled to say that occam (3) is a beautiful
language. Indeed nothing so lovely has happened in language
design for ten years. It is so nice that I feel
irresponsibly light-hearted about it. So, some
irresponsible jokes: why do I have to write occam with a
small o? - because it's a natural naming-progression from
FORTRAN through Pascal. And why must I write each
instruction on a fresh line? - so that the compiler-writers
can measure the compilation speed in lines per minute and at
last compete with IBM FORTRAN on level terms (as an
ex-compiler-writer myself I half believe that one).

Seriously, though: occam isn't based on Pascal, which iti
a fine relief for this reviewer. The language is amazingly
simple: the official definition is about fifty pages, most
of which is taken up by blank space and example programs.
Most of all it resembles a productive cross between BCPL
(24) and CSP (26). It inherits from both its parents
elegance and simplicity of design and an intense
concentration on ease of implementation within its chosen
area. Everything is pared down to ensure that occam
programs use a fixed amount of space: this is a language
targeted at arrays of microprocessors running a concurrent
program with the minimum of 'underlying mechanism'.

So occam prohibits recursion because, when there are
several programs running in a machine, recursion needs an
underlying mechanism which can rearrange the allocation of
memory whenever execution stacks collide. It uses
synchronised communication because that mechanism requires
no buffering, and hence no global buffer-allocation
mechanism. Its channels are one-to-one connections because
that means no queuing - again, no underlying mechanism
required. Its guarded commands have receive guards only
because that simplifies implementation of synchronisation.
The number of processes in every parallel composition, and
the number of guards in every guarded command, is fixed and
can be counted by the compiler and therefore it can allocate
fixed space to every process no matter how complex its
execution structure.

You might expect that such concentration on efficiency
would produce a linguistic straitjacket. Not so: what you

54 Imperative languages

get instead is a language in which parallel composition,
because it is so efficient, can be used as freely as
sequential composition. So every instruction-execution is
an occam 'process' and you write each basic instruction on a
separate line to emphasise the point. There is no
bracketing: instead you write a composition-phrase like SEQ,
PAR, ALT or WHILE on one line and the instructions it
composes on following lines, indented to show their
dependence. Lifting an example from the occam manual:

CHAN c [n+l]:
PAR i = [0 FOR n]

WHILE TRUE
VAR x:
SEQ

c[i]?x
c[i+l]!x

- which describes the parallel composition of n+l processes,
the ith of which which takes input from channel ci and
passes it to ci+l' Together they form a sort of n-stage
shift register. Longer examples are equally easy to parse:
here is one of my own, which is part of a protocol
description

CHAN alldone:
PAR

SEQ
SEQ i = [1 FOR n]

ms [i] !CNCL
alldone!ANY

VAR finished, x:
SEQ

finished:=false
WHILE NOT finished

ALT
ALT i = [1 FOR n]

g[i] & mr[i]?x
g[i] :=false

alldone?ANY
finished:=true

- a composition of two parallel processes, one of which
sends n messages on channels mSi and then signals to the
other that it has finished; its partner waits in a guarded
command listening to some of the n channels mri and
simultaneously awaiting the termination signal.

The language has straightforward hierarchical scope - no
fancy module syntax here. There is a top-level
configuration language, which allows processes to be
allocated to individual hardware processors within the
system and the inter-processor channels to be declared.
Processes are then hierarchically decomposed: if a process
forks into several parts then they all run on the same
machine, as you would expect.

Because the language has hierarchical scope the

Imperative languages 55

name-spaces of two processes composed in parallel will
overlap. Indeed they must overlap if they are to
communicate over a shared channel, as in both the examples
above. But sharing memory objects (variables) is trickier.
Processes may freely access a shared memory object provided
that none of them assigns a value to that object, says the
language definition. No compiler can enforce such a
restriction completely, because of the tricks a programmer
can play with array indices, so it is just an exhortation
requesting the programmer to behave properly, rather like
the Ada exhortation to avoid the bad effects of aliasing.
Equally the restriction to one-to-one channel connections is
an unenforceable exhortation. Thus occam inherits from BCPL
not only simplicity but also something of its character as a
'high-level assembly code', a sharp tool with which you can
easily cut yourself. This is perhaps an inevitable
characteristic of any systems implementation language.

with or without Justice in This World, I would vote
occam the Language Most Likely to Succeed. I fear only that
it might be overtaken, as its ancestor BCPL was before it,
because it is word-based although so much computing practice
has to do with strings of bytes and byte-structures of
various sizes. Occam allows vectors of words or of bytes,
but makes no other concessions to data structuring: like
BCPL it recognises only the vector. C (25) superseded BCPL
for many reasons, one of which was certainly that C
accomodates the byte-addressing structure of modern machines
in a way that BCPL doesn't and C gives some superficial
recognition to data structuring. It would be a shame if
occam, like BCPL, is superseded by something as nasty as C
and for the same sort of reason.

4.3.4. Pascal-m

I shouldn't say too much about this language (4) because
it is partly my own invention. Another development of
Pascal, like Conic it has processes which are collections of
procedures. It has a module syntax which groups process and
channel declarations and which restricts the visibility of
channels and thus the initial interconnection pattern.

The language's main innovation is the mailbox: a form
of any-to-any channel connection. Mailboxes have
identifications (effectively addresses) which can be sent in
messages so that the initial interconnection pattern, set by
the way in which modules import and export mailboxes, can be
dynamically reconfigured. We succumbed to the temptation to
make processes dynamically invocable - a process can create
another almost as easily as it can call a procedure within
itself. Examples of programs in the language are given in
(31) •

Pascal-m was designed to make a certain kind of
programming easy, with rather less than half an eye kept on
the difficulties of implementation. So mailboxes are
any-to-any channels, guarded commands allow both receive and
send guards and mailbox identifications can be sent in
messages. These features together make it easy to describe
solutions to some problems, but impossible to give Pascal-m

56 Imperative languages

message-passing a simple implementation. Becase mailboxes
are any-to-any channels, there must be some queueing of
offers to communicate. Because guarded commands are
bidirectional offers once made can at any time be withdrawn
and an expensive protocol is required. Because mailbox
identifications can be sent in messages it is impossible to
determine the set of processes which can communicate over a
mailbox.

A pseudo-concurrent implementation has existed for
several years, but true concurrency on distributed hardware
has so far eluded us - in part because we wish to produce an
implementation which is both distributed and fair. We have
for some time known of one protocol which would permit a
distributed implementation and recently we have developed a
second; we are still determined to 'distribute the
language' .

Our intention was to provide a language for networks
which require an expanding population of processes and even
of process types. So in a network of office workstations we
envisaged that a novel application program could be compiled
and incorporated into a running system, as securely
type-checked as if it had been compiled at the same time as
everything else. Mailbox identifications which can be
passed in messages make this kind of extensibility
potentially possible. We didn't take enough account,
perhaps, of the problems of machine failure and network
failure.

I think, though, that I am falling over backwards not to
be seen to be favouring my own work. Together the group at
QMC has written a filing system in Pascal-m, a UNIX-like
operating system and several sample user-interface systems
providing a multi-window screen interface. The project
continues with industrial support from Texas Instruments.
The problem of programming Flexible Manufacturing Systems
seems to be an application area where problem descriptions
are complicated, message rates are fairly low and flexible
extension of running systems would be very useful. We think
the language has a useful future.

4.3.5. Path Pascal and PascalPlus

PascalPlus (23) was a very early concurrent language.
Its communication mechanism is the monitor and its obvious
implementation technique is shared-memory. Its current
guardian tells me it deserves little more than a footnote in
this review. Nevertheless it has had a true distributed
implementation at UMIST (32) and another is underway at
Sheffield (33). The UMIST implementation used a shared
memory and control processor on a Cambridge Ring - i.e. a
sort of geographically distributed version of the Martlet
multiprocessor (9).

Monitors are a means of interleaving assignment and
access to shared memory objects: control is by making
procedure executions mutually exclusive. Path Pascal (5)
uses a similar notion. Executions need not alwa~s be
exclusive but the amount of concurrency can be controlled.
So, for example, given definitions of procedures putand get

Imperative languages 57

entry procedure put(i:t);
begin b[inl:=i; in:=(in mod n)+l end;

entry procedure get(var j:t);
begin j:=b[outl; out:=(out mod n)+l end;

the path expression

n: (1:(put); 1:(get»

expresses the restriction that there can be up to n
concurrent executions of (put;get) but that within that
concurrency, executions of put are mutually exclusive as are
executions of get. This gives all the information required
to control insertions and deletions of an n-place buffer.
The procedures can be defined more simply than usual,
because the underlying mechanism counts to make sure the
buffer is never overfull or less than empty.

So far as I know the language doesn't yet have a
distributed implementation, though one is envisaged (6).
Clearly it would be possible to implement a Path Pascal
program so that each object was on a separate processor of a
network, or to implement server processors written in Path
Pascal within a heterogenous network. The path expressions
give some of the implementation advantages of occam, in that
the space requirements of an object can be worked out in
advance in many cases.

4.3.6. Programming in unhelpful languages

All of the languages dealt with so far have provided
some facilities to help with concurrent programming -
guarded commands and type-checking of messages, for example.
A good deal of distributed computing - in fact practically
all the non-experimental distributed computing in this
country is done in languages which give little or no help
to the programmer. For example: telephone exchanges, which
are typically collections of machines, each a
multiprocessor, are programmed in CORAL (1,2). The
Cambridge Ring installation at the University of Cambridge
is programmed in BCPL (14). The Newcastle Computing
Laboratory network is programmed in C (20) as is the network
at Strathclyde (17). Kent use both BCPL and C (33). Oxford
program in Modula-2 (15).

Everyone of these installations in effect uses the same
solution. A coroutine language provides a kind of
pseudo-concurrency on a single processor - Modula-2, BCPL
under TRIPOS, Post Office CORAL, C under UNIX (C gives no
help at all but UNIX(35) gives pseudo-concurrency). Messages
which are all of a single type - byte-sequences in every
example except in the telephone exchanges, which use a fixed
record type - are transmitted between machines. Typically on
each machine designated processes handle outgoing and
incoming messages: the use of pseudo-concurrency means that
the incoming-message process can be scheduled to operate

58 Imperative languages

whenever one arrives.
The York PULSE project (11), although I treated Ada as a

genuine concurrent language above, is really another example
of a programming system where a concurrent language is used
to give pseudo-concurrency on a single processor and
messages of fixed type are transmitted between Medium
processes (effectively message buffers) on different
machines.

UNIX doesn't lend itself well to message-passing, but
procedure call is the fundamental means of communication
with the operating system and hence with other processes in
a conventional single-processor implementation. Both at
Newcastle (20) and Strathclyde (17) there have been
implementations of Remote Procedure Call which allow UNIX
systems to be linked by a network - initially a Cambridge
Ring in each case. The Strathclyde implementation provides
interprocess communication across machine boundaries, with
port descriptors as an indirect process-addressing
mechanism.

It would be wrong to criticise these implementations
because they didn't use a language capable of describing the
'program' which is running on their entire system, or to
criticise the facilities they provide in the same way as
those that are provided in concurrent languages. The
problem they address is that of linking computers which are
themselves self-contained systems, which must carryon
running even though other parts of the system break and which
must be removable from the system for hardware maintenance
or software alteration. In effect the 'network' is a rather
flimsy alteration to the environment. So far no language
has gone very far towards a solution of this very real
problem of loose, intermittent coupling.

4.3.7. Other languages

There are a number of languages which are being
developed or are in use and which I can do little more than
name. In some cases I haven't reported because they aren't
used much; in others because they won't fit into my
classification. DTL (22,28) is reported on elsewhere in
this conference. Edison is under investigation at Sheffield
Polytechnic (16,33) in a sort of competition with
PascalPlus. Basix (18) was developed at the University of
Newcastle in an attempt to extend the way in which the UNIX
'shell' handles file-hierarchies to other hierarchies, in
particular hierarchically organised hardware and
hierarchical scopes in programs. Lisp (8) was experimented
with at the University of Bath on a multiprocessor. There
is a development of Basic (21) which aims to provide 'real
time' programming and could, say the authors, be extended to
distributed concurrent programming: the reference gives a
Basic version of the Conic pump-control program.

Imperative languages 59

4.4. CONCLUSION

This review is not intended to be depressing or to
condemn the current state of imperative language design in
distributed computing. Superficially there don't seem to be
many distributed programming languages in use and most of
the distributed computing which is done seems to be either
experimental or else done under UNIX. But in fact there are
grounds for optimism. We have at least one excellent
language design in occam, and a good deal of experience of
implementing and writing programs in several more. We
haven't reached our destination yet but the wagon is rolling
and all its wheels seem to be going round (our mule was the
DCS programme and since this is the final conference it
can't pull the analogy any farther). The next five years
won't be all downhill but I am sure that much of the hard
work of the last five will begin to payoff.

REFERENCES

1. Park I.D.C., 1981, Post Office Electrical Engineers
Journal, li, 81-86

2. 100me S.R., 1980, Post Office Electrical Engineers
Journal, 73, 47-54

3. INMOS Ltd, 1983, occam programming manual, Bristol, UK

4. Abramsky, S. and ~ornat, R., 1983, "Pascal-m, a
language for distributed computing", in Distributed
Computer Systems, ed. Y Paker, Academic Press, London,
UK

5. Campbell, R.H. and Kolstad, R.B., 1980, "Path Pascal
Users Manual", ACM SIGPLAN Notices Sept 1980, pp 15-25

6. Dowsing R.D. and Elliott R., 1984, "Implementation of
Object Oriented Languages on Distributed Computing
Systems", Proc of Conf. on Hardware to support
Distributed Systems, Bristol, 1984

7. Kramer J., Magee J., Sloman M. and Lister A., 1983,
lEE Proceedings part E, 130, 1-10

8. Marti, J. and Fitch, F., 1983, The Bath Concurrent
Lisp Machine, in Lecture Notes in Computer Science 162,
78-90, Springer-Verlag

9. Grimsdale R.L., Halsall F., Martin-Polo F. and Wong
S., 1982, lEE Proceedings Part E, 129, 63-69

10. "Preliminary Ada Reference Manual", ACM SIGPLAN
Notices June 1979

11. Wellings A.J., Keeffe D., Tomlinson G.M. and Wand
I.C., 1983, "Programming Distributed Systems in Ada",
Department of Computer Science report, University of
York .

60 Imperative languages

12. Wellings A.J., Keeffe D. and Tomlinson G.M., 1983, "A
problem with Ada and Resource Allocation", Department
of Computer Science report, University of York (also in
Ada Letters January 1984)

13. Barton M.H., Skan P.L. and Aspinall D., 1984, "CHILL
signals in a Distributed Environment", Proc. of Conf.
on Hardware to support Distributed Languages, Bristol,
UK

14. Needham R.M. and Herbert A.J., 1982, "The Cambridge
Distributed Operating System", Addison-Wesley, London

15. Wirth N., 1982, Programming in Modula-2, Springer,
Berlin

16. "An experimental Psychology Approach to Assessing the
Comprehensibility of Alternative Language Features for
Process Communication", 1984, Department of Computer
Studies Report, Sheffield City Polytechnic

17. Blair G.S., Mariani J.A. and Shepherd W.D., 1983,
Software Practice and Experience, ll, 45-58

18. Gouveia Lima I. et al., 1983, "Decentralised Control
Flowed BASed on unIX, SIGPLAN Notices June 1983,
192-201

19. Shrivastava S.K. and Panzieri F., 1982, IEE
Transactions on Computers, C-31, 692-697---

20. Panzieri, F. and Randell, B., 1983, "Interfacing Unix
to Data Communication Networks", Technical Report 190,
University of Newcastle Computing Laboratory,
Newcastle-upon-Tyne, UK

21. Bull G. and Lewis A., 1983, Software Practice and
Experience, ll, 1075-1092

22. Hughes J.W. and Powell M.S., 1983, Software Practice
and Experience, ~, 1099-1128

23. Bustard D.W. and Welsh J., 1979, Software Practice
and Experience, ~, 947-957

24. Whitby-Strevens C. and Richards M. "BCPL: the language
and its compiler", Cambridge University Press, UK

25. Ritchie DM et aI, 1978, Bell System TechTlical
Journal, 57, 1991-2019

7.6. Hoare C.A.R., 1978, Communications of AC~, 21,
666-677

27. Wirth N. and Jensen K., 1974, "Pascal: User manual and
Report", Springer-Verlag, Berlin

Imperative languages 61

28. Hughes J.W. and Powell M.S., 1984, "A strongly typed
distributed virtual memory", in SERC Distributed
Computer Systems, ed. D.A. Duce (see chapter 10)

29. Sloman M., Magee J. and Kramer J., 1984, "Building
Flexible Distributed Systems in Conic", in SERC
Distributed Computer Systems, ed. D.A. Duce (see
chapter 6)

30. Buckley G.N. and Si1berschatz A., 1983, ACM
Transactions on Programming Languages an~ystems,
5, 223-235

31. Bornat R., 1983, "Programming in Pascal-m", Computer
Systems Laboratory, Queen Mary College, London, UK

32. AI-Mendhry F.R.A., 1982, "A distributed Pascal-Plus
Implementation", Final year B.Sc project report,
Department of Computation, UMIST

33. SERC, 1983, The Coordinated programme of research in
Distributed Computing Systems, UK

34. Hoare C.A.R., 1974, Communications of ACM, lI,
549-557

35. Ritchie D.M. and Thompson K., 1978, Bell System
Technical Journal, 57, 1905-1929

Chapter 5

A strongly typed, distributed
virtual memory

J.W. Hughes and M. S. Powell

Programming is predominantly the task of implementing
data structures and the necessary operations required on
them by the application. Within a single program, the task
is well supported by the extensive data abstraction
facilities of modern high level languages, but they make no
such provision for data which is to outlive the execution of
a program or to be shared among program executions. Such
data is conventionally manipulated using a more primitive
language of the operating system, filing system or data
base. The work described here is an attempt to extend the
data abstraction facilities of a modern high level language
beyond the program boundary by strongl y typi ng all data,
both volati Ie and persistent, local and distributed, and
consequently unifying the language by which it is
manipulated.

5.1 INTRODUCTION

The concept of a filing system provided by a computer
operating system emerged very early in the evolution of
systems software, along with the concepts of FORTRANas a
high level programming language and the array as a data
structure. All three provided convenient ways for the
programmer to manipUlate respectively the backing store, the
instruction set and the memory whose hardware structures
they closely reflect.

In the intervening years considerable advances have
been made, particularly in the area of programming language
design, which have resulted in the facility to express
programs in problem-orientated rather than machine­
orientated terms. These advances have centred around the
concept of abstraction; program control structures have
abstracted away from the machine jump instruction (13, 20),
process and monitor structures have abstracted away from the
sequential processor (2, 6, 19) and the concept of user
defined types has abstracted away from the structure of
memory (7, 14, 15, 20). Thus i'; the context [)-f modern high
level 1anguages, f i 1es have become the Komoc:lo dragon of
programming, still reflecting more of the strL-lcture of the
medium in which they are implemented than the structure of
the information they store. Any long term st_uctured data

Distributed virtual memory 63

has to be mapped onto the imposed file structures.

The work described here has arisen from examination of
an existing information system for monitoring plant and men
in a large press shop (10). Although the initial
investigation was concerned with distributing this system,
it soon became evi dent that a tool for construct i ng and
manipulating the interrelated data structures needed would
allow the desi gners and programmers of such a system to
concentrate on the complexities inherent in the problem,
whereas much of the complexity of the existing system lay in
coping with the device dependent limitations of the filing
system. Attempts elsewhere to date to overcome this problem
have led to the emergence of data bases and database
manipulation languages (4) independently of the important
and significant advances in programming language design
which have occurred.

CIearl y there is no reason why the structure of the
information which so-called files contain should be any
different to the structure of the information manipulated by
the programs that access and generate those files. If the
conventional filing system is replaced by a structured data
store, a natural and desirable consequence is that there is
no need to design, implement and, more importantly, learn
special purpose database description and manipulation
languages. These are al ready provi ded conceptual Iy by the
type declaration and variable accessing facilities of most
general purpose programming languages. Furthermore, within
application programs, there is no longer a need for possibly
complex and costl y input and output routi nes which convert
between the external f i Ie representat i on and the internal
representation of the data types.

The replacement of a conventional filing system by a
language specific structured data store is in line with the
phi losophy that the ent i re computer system shoul d be
language orientated. The flexibility of the UCSD (21)
system is due largely to the fact that its operating system
is designed specifically to support the implementation of
Pascal programs and is itself written in Pascal. Similarly
the potential of the PERQderives from its underlying P­
machine (22). A logical extension of this philosophy
suggests that the data store (traditionally the filing
system) should likewise be language orientated, in order
both to simplify the programmers' task and to improve
software portability. This paper describes such a Pascal
ori entated structured data store, its i mplementati on and
use. However, the concepts involved are applicable to any
language employing user defined data structures. e.g. OBJ
(4). The next section identifies the facilities required
and the third describes the progress to date on their
implementation.

64 Distributed virtual memory

5.2 FACILITIES REQUIRED

The system is required to support non-volatile abstract
data structures in the spirit of the set theoretic types
described by Hoare in (6) and ideally is to be built into a
system orientated towards a modern high level language. By
analogy with a filing system, the facilities required fall
into two classes:-

i) Manipulation of the external data from within a
program,

i i) Management, at the operator level, by means of a
utility like a "filer'.

If the system is bootstrapped,
implemented using the former i.e. the
the programming language around which
based, and may use its facilities for
structured data.

the lat~er can be
utility is written in
the entire system is
manipulating external

5.2.1 Types supported

In fact the high level language chosen, around which to
build the system, was Pascal. The justifications for the
choice are numerous Pascal types closely approximate
Hoare's abstract data types and the philosophy of building a
machine and an operating system around a language has
already been successful I y put into practice for Pascal.
Combining and extending these ideas to provide a Pascal
based, structured. non-vol at i 1e data store is a Iogi cal
development.

The set of predefined types and type constructors
provided should be representative of abstract data types and
compatible with those already provided in Pascal for program
variables. The system should naturally support scalar
types, both standard and user defined and the usual array
and record constructors, including variants. The
requirement for dynamic objects and recursive data
structures was careful Iy consi dered and it was deci ded to
follow Pascal and support both of these facilities via a
pointer constructor. However, two specific recursive data
structures have been provi ded to reduce the number of
occasions on which the user will be reduced to using
pointers directly. (See later). The real type, set and
f i I e constructors are not consi dered fundamental as they can
be represented in terms of the other types. They have
therefore been omitted from the current requirements list.

This then was the initial set of types, chosen as
representati ve of abstract data structures in the Hoare
sense (7):- standard and user defined scalars, pointers,
records and arrays. Experience with using the system
revealed the usefulness of the UCSDPascal st •....ing and two
frequently used dynamic structures which, as described
below, are of particular use in defining and manipulating
objects representing types. These are a vari able length

Distributed virtual memory 65

sequence, implementedas a LIST and a MAP which represents a
sparse function between types, implemented as a list of
ordered pairs. These two constructors and strings have
therefore been incorporated into the user interface to the
data store at the operator level, although they were not
part of the initial requirements and from a program they are
still manipulated by the standard Pascal record and pointer
mechanisms. They can be regarded effectivelyas mere short­
hand notations in the user interface.

5.2.2 Manipulation from within a program

In traditional filing systems, the data representation
within a file is generally different from that used to
represent the same data within a program and is strongly
influenced by the structure of the storage medium, rather
than by the natural structure of the data itself. In these
cir-cumstances,considerable programming effor-tas well as
machine time can go into providing the necessary
transformations between representationswhenever transfer of
data between storage media occurs.

Ideally a structured data store shauld allow the same
data representations to be used i ndependently of the
structur-eof their storage medium, just as programs written
in a high level language are independent of the structure of
the machine on which they are executed. Thus the normal
data access mechanisms of the programming language should be
available on all data objects independently of their
location, as should assignment of values between structured
types. The only new concept necessary is the way in which a
program identifies an object external to it. This problem
has already been solved for external files, but the present
situation calls for stronger type checking between the
program's and the data store's type definitions to be
implemented. Providing a suitable virtual store can be
implemented, the language extensions needed are minimal. In
the existing system under discussion, the Pascal data
accessing, assignment and dynamic store allocation
mechanisms are implemented as a set of procedures (described
in the third section) but it would be equally feasible to
incorporate the virtual and external store concepts into a
compiler and virtual machine.

5.2.3 Management of the Structured Data Store

In strongly typed Ianguages, each data object has an
associated type which is used by the compiler or the run
time system to check the proper use of the data. In the
case of external data, which outlives the execution of a
program, it is necessary to maintain some representationof
its type in order to provide the same level of security of
proper use. Following this philosophy, the data store is
strongly typed and all operations on it embody type
checking. With each identifiable data object in the
structured data store therefore are associated :-

66 Distributed virtual memory

i) A type which describes its structure

ii) Its value, of that type which may be manipulated,
for example to create new values for existing or new data
objects.

The data store management utility, in manipulating
structured data objects, must therefore be capable of
performing type checking and consequently the necessary type
information must be stored as well as value information.
Furthermore, the store management utility should provide the
facility to create and update type information as well as
value information. Thus, just as most filing systems embody
the concept of a file directory which itself may be a file,
so the structured data store may contain data objects whose
values are type information. In those circumstances, the
same utility can be used for the management of type
information as is used for managing data values. In the one
case information about the structure of type information is
used to create or edit structured values representing type
information, in the other user created type information is
used for type checking during the creation or updating of
data values. The use of the utility in the two cases is
illustrated in figure 5.1. Its detailed use and precise
user interface are described more fully in the third
section.

5.2.4 Representations

In order for the user to make use of the type and value
editors to interact with the structured data store,
conventionallya textual interface is required, although any
human sensory representation could be used. In either case,
an alternative data representation to that used in the
memory is necessary and the data manipulation software must
be capable of performing the required transformations
between alternative representations. In order to do so
formatting information is associated with each type, which
defines the textual (or alternative) representation of
values of that type. Because types are defined
hierarchically, the representationof a composite type is a
function of the representations of its components and a
formatting used to represent the constructor with which it
is composed. The representations of standard types are
standard and are specified in the standard type information.
The representations of user defined types can be specified
by using the type builder when the type itself is defined,
or the representation can be changed by editing the
formatting information in the type data structure. Thus the
representation is type specific rather than 'persistent
variable' specific. Although the facility is capable of
being used for specifying general transformations of type
representations,in the current system it has been used only
for specifying two dimensional textual representations. The
standard types have their usual textual representation with
Th~ added facility, similar to Pascal output parameters, to

Construction

Operations

Construction

Operations

Distributed virtual memory 67

Structure Definition (S)

Type Definition (T: S)

-·-·-····-·-[:~~~-==~~~~~=:=L:~~=~~-:~=~~=··::~l-·----.._-_.,
Structure

. Editor

---=~==F===~~-----'
Data Object (V: T)

Fig.S.l

TYPE
EDITOR

VALUE
EDITOR

68 Distributed virtual memory

specify minimum field width and
justification within the field.

left, right or central
The 1ayout for array and

record structures is specified in terms of prefix, infix and
postfix strings which respectively precede, separate and
follow the textual representations of the components of the
structure.

5.2.5 Operations

The required facilities described above effectively
extend the scope of Pascal structured variables beyond the
scope of a Pascal program. More modern high level languages
have extended the data abstraction concept beyond user
defined types to incorporate the encapsulation of a data
type together with operations on that type. The concept has
been variously implemented as the class in Concurrent Pascal
(2), the envelope in Pascal-plus (19) and the package in Ada
(11). A Iogical further development of the permanent data
concept incorporates operations into type descriptions. The
concept of allowable operations upon data, or data
components, of a user defined type includes formatting
operations as a special case. As well as being used to
provide type transformation operations, such operations
could also be used to strengthen type checking by performing
data validation of a non-syntactic nature and to provide
higher level data base like query operations. Thus rather
than programs defining the data which they manipulate, the
data defines the operations by which it will be manipUlated;
each level in the hierarchy defining operations at the
appropriate level.

5.2.6 Distributed Data

Only one external store has been considered above,
however, the idea is readily extendible to identifiable
external stores. This leads to the possibility of a
physically or even geographically distributed data store
where the user may require explicit control over the
geographic location of data objects. Furthermore, the fact
that values in the structured data store persist between
program executions suggests that they may be shared between
programs or users. In these circumstances, rather than
being considered as classes, the data struc:turesshould
behave more like monitors, providing exclusion on operations
when appropriate. Previous work on nested monitor exclusion
in distributed systems (17) suggests that not only is global
exclusion a bottleneck, but local exclusion which makes no
distinction between read and write access is also too
strong. In order to be acceptably usable as a distributed
data base, a structured data store of monit or-like data
objects should provide exclusive writer and muJ tiple reader
access operations.

Distributed virtual memory 69

5.2.7 Requirements Summary

In this section, the concept of an external structured
data store based on a strongly typed high level language has
been developed. The facilities required on such a store are
problem rather than device orientated. These include the
normal data accessing facilities provided in most languages
for accessing program variables, together with utilities
analogous to filing operations which provide for the
definition and represention of types and their values.
Identification of multiple external stores leads to the
concept of a distributed virtual store containing monitor
like objects. The next sections describe progress to date
on the implementation of such a store.

5.3 THE VIRTUAL MEMORY

The structured data store is implemented on top of
virtual memory which may be distributed over a wide range of
different memory devices. Conceptually the virtual memory
implements a mapping between virtual addresses and the
elements of the memory Iwords). Its interface, therefore,
includes the following type definitions.

TYPEaddress - I •• ~

word - ..• ,
memory kind = ".;

The memory kind enumerates the various memories over which
the virtual memory is distributed. In an implementation
which makes use of the processors main memory. a disk memory
and a network link to other processors, each supporting the
same kinds of memory, me~ory kind could be defined as below.

TYPEmemory kind = (l ocal memory, local disk, remote memory!;

The address information required to access the virtual
memory in this environment might be defined as follows.

TYPEaddress = RECORD
CASE kind: le.ory kind OF

local me.ory : lIoca! : local address);
IDeal di sk Idi sk : di sk address);
remote lemDry : Irelote: remote address)

END;

local address = low address •• high address;
di sk address = RECORD

vel ume nale
block address
word offset

END;

relote address = RECORD
node identifier lin node •• lax node;
internal address: address

END;

volume identifier;
lin block •• sax block;
e•. lax offset

The address information for each particular memory

70 Distributed virtual memory

component can be chosen to suit the attributes of the device
which implements it. Where a memory component contains
further memory components, its address information may be
defined recursively. This will generally be the case where
a remote memory addressed via a network link is involved and
allows, for example, memory accessing through network
gateways.

The structure of a word can
implementation environment. e.g.
word etc.

be chosen to
1 bi t, 1 byte,

suit the
a 16 bit

The virtual memory interface must be able to support
the following operations on the above types.

PROCEDUREaliocate(VAR base: address; words: natural; where: lelory kindl;
PROCEDUREdispose (base: address; words: naturall;
PROCEDUREread()ocation: address; offset: natural; VARvalue: word);
PROCEDUREwrite(location: address; offset: natural; value: wordl;

Allocate and dispose support the i ni ti al creati on and
destruction of contiguous memory areas specified by their
base addresses, sizes and the kinds of memory in which they
reside. Read and write allow individual words to be accessed
from any such contiguous memory areas. The virtual memory
does not provide any operations to support the safe sharing
of data objects between more than one user (mutual
exclusion). Such operations are implemented at a higher
level where advantage can be taken of the strongly typed
nature of the structured data store (18).

Most of the internal structure of an address may remai n
hidden from users of the virtual memory except when the
exact placement of a memory area is important. e.g. Long
term data objects should be allocated on non-volatile memory
devices such as disks and remote communication is only
possible if both sender and receiver know where messages are
stored.

The internal implementation of the virtual memorymay
use pagi ng techni ques to provi de eff i ci ent access to words
irrespective of the diverse structures of the physical
memorydevices over which it may be distributed.

5.3.1 Data Structure Accessing Operations

A set of standard structure accessing operations are
build on top of the virtual memory interface. These include
operations for creating, copying, disposing and accessing
components of data structures of any of the supported types.

Distributed virtual memory 71

FUNCTION new structure Isort: type ref): address
PROCEDUREcopy structurelsource, sink: address; sort: type ref)
PROCEDUREdispose structurelold: address; sort: type ref)
FUNCTION scalar valuelscalar: address; sort: type ref): ordinal value
FUNCTION indedarray, index value: address; sort: type ref): address
FUNCTION fieldlrecord: address; field name: identifier; sort: type ref): address
FUNCTION dereferenceipointer: address; sort: type ref): address
FutlCTlON ni I pointer Ipointer: address; sort: type ref): Boolean;
FUNCTION string valuelstring: address; sort: type ref): string type
FUNCTION first listllist: address; sort: type ref): address
FUNCTION rest l ist Il istt address; sort: type ref): address
FUNCTION elpty listllist: address; sort: type ref): Boolean
FUNCTION fi rst lap Ilap: address; sort: type ref): address
FUNCTION rest laplmap: address; sort: type ref): address
FUNCTION elpty laplmap: address; sort: type ref): Boolean
FUNCTION index lap Imap, doaai n val ue: address; sort: type ref): address

A complementary set of operations support the
construction and interrogation of type, as opposed to value,
information. The examples below show the operations which
support the use of array type structures.

FUNCTION new arraylindex, elelent: type ref): type ref
FUNCTION index typelarray sort: type ref): type ref
FUNCTION elelent typelarray sort: type ref): type ref

Safe sharing of data objects between a number of users
<mutual exclusion) may be achieved through the use of the
acquire and release operations. In line with the above operations
these must also specify the types of the objects on which
they are to operate and the kind of exclusion which is
required. e.g. read exclusion or write exclusion.

The operations on values are very similar to those
provided in the instruction sets of high-level language
machines, whether implemented in software or hardware. The
primary difference lies in the fact that the operations of
this system always have a detailed knowledge of the
structure of the data objects on which they operate. This
information is generally discovered by a compiler from a
hi gh-l eve I I anguage source text and Ii mited amounts of it
are encoded into the instructions which implement operations
on the data objects it describes. However, the majority of
the information is discarded before the data objects are
ever created or used. Retaining all type information as an
integral part of the system allows far more flexible use to
be made of the val ues stored withi nit as the system knows
so much more about the attributes of each object. Work
reported in reference 16 indicates that the retention of
type information may also have beneficial effects on
efficiency.

In addition, where an operation re-fers to an address this
may in turn refer to an object anywhere in the distributed
virtual memory. For example copy structure can be used to move
information of any type from one memory in a network to

72 Distributed virtual memory

another elsewhere in the network, or from a disk memory to
the main memoryof a processor, as easily as the information
may be moved from one pI ace to another within the same
physical memory. This applies equally to information
described by dynamic data types implemented using pointers.
Copy structure wi11 automaticall y transform the addresses which
imp1ement poi nters in the source memory, into poi nters
suitable for use in the sink memoryand create the appropriate
values for them to refer to.

5.4 THE USER INTERFACE

Given the amount of type information which the
structure store has about the objects stored within it, it
is appropriate to allow the user access to the stored
information via an interface which supports operations which
are di rectI y reI ated to its structure. Nearl y all
conventional computer systems have interfaces which are
unnaturally contorted away from the structure of the objects
they manipulate due to a bias towards textual
representations of data types, values and operations. e.g.
Consider the amount of work performed by a compiler in
extracting the essence of a program from its source text.
If a program is represented directly as a data structure
strongl y reI ated to the abstract syntax of the language in
which it is 'written', all of conventional textual syntax
analysis and much of conventional semantic analysis becomes
unnecessary. In addition an executable representation of
the program, its code, could be generated in an efficient
manner from thi s data structure, or the structure could be
executed interpretively.

The user interface to the structured data store is
designed to allow direct manipulation of data objects in a
fashion which is not biassed towards textual representations
but still allows the user to view information in a textual
form. Many other non-textual formats are possible within
the same framework. From this point of view, the facili ties
provided are similar to those found in prograin development
environments which support structure editors such as Gandalf
(5) •

5.4.1 The Type Editor

Initially any object will have an undefined type and an
undefined value. The first stage in the creat :ion of a new
object is therefore to define its type. This- is done by
using the type editor. Once the type of a ne..., object has
been defined the value editor may be used tel give ita
defined value. Both the type editor and the value editor
are supported by a commonstructure editor whic~ facilitates
the stepwise creation and maintenance of arbitrary data
structures.

The type editor allows the construction of type values
of arbi trary complexi ty by usi ng the faci I i ties of the
structure editor to edit values from some prede=fined domain

Distributed virtual memory 73

of types. In the current implementation the type value
manipulated by the type editor is a mapping from type names
to references to individual type values. The first entry in
the mapping defines the type of the object to be created,
subsequent entries define the types from which the new type
is composed.

TYPEtypes

identifier

= MAPi denti Ii er TO type ref

= string[identifier sizel

type ref

type ki nd

type

= 'type

= (scalar, array, record, pointer, string, list, map)

= RECORD
naflE : identifier
forlat: fQr~at information
CASEkind: type bnd OF

scalar: (scalar kind: scalar type)
array: (array kind: array type)

END

An example wi11 be used to illustrate how values of
this type are manipulated by the type editor. The example
is drawn from the area of computer aided teaching systems
and involves the construction of a data object which is to
represent a lesson. A lesson is to consist of some number of
frames, each frame presenting a unit of information to the student.
Frames wi11 have distinguishing titles and contain references to
succeedi ng frames which represent the continuation of the lesson. An
example of the implementation of such a lesson is a 'Teach
Yoursel f • book where frames are implemented by pages and
continuations are implemented via page number references to
succeeding material.

A type which describes the above lesson structure may be
expressed textually, using the Pascal like type domain
supported by the type editor. as shown below.

TYPElesson = MAPIine TO frame ref

frame ref = 'frame

frame = RECORD
title: line
body : inforaation

END

line = string[line lengthl

i nformati on = RECORD
text LIST OF line
conti nuati on: lesson

HID

The data object must support operations which include
the ability to add new frames to a lesson, the ability to define
the information and continuations for such new frames and the

74 Distributed virtual memory

operations necessary to allow a student to 'browse' through
the framesin the order indicated by the continuationinformation.

The lessonstructure was def i ned tex tuall y above,
however, the type editor's interface is not biassed towards
textual representations of type values but rather towards
the manipulation of values from the domain of types which it
supports. This makes the task of descri bi ng a non-textual
interface textually rather difficult! An attempt will be
made to overcome this problem by referring to the sequence
of VDUscreen images which the edi tor would present to the
user during the course of the construction of the type lesson.
Figure 5.2 shows the sequence of VDUscreen images which are
referred to in the paragraphs below.

The initial undefined state of an object's type is
represented by an empty mapping. Figure 5.2a shows how the
type editor displays this initial state. The top line on
the screen always shows the type of the currently selected
component of the value being displayed. In addition the
currently selected component will be emphasised in some way,
in this case by underlining. In this example the currently
selected component is the entire typesmapping which is empty.
The editor adopts the convention that empty or undefined
values are indicated by displaying their type names in
pointed brackets.

The first step in defining the type of the object to be
created is therefore to insert into the mapping a reference
to the objects root type. In this case lesson. This is done
by i ssui ng the edi tors ' change' command. Commandsmay be
given to the editor in the current implementation via single
key strokes on a keyboard or by selecting command 'buttons'
on the screen via a graphics tablet or light pen (these
'buttons' are not shown in figure 5.2).

When the change command is issued the display will
change to that shown in figure 5.2b. The editor knows that
the currently selected component is an empty mapping and
therefore offers the possibility of inserting a new element
into it. Selection of the insert option caus~s the display
to change to that shown in figure 5.2c, as the editor
enquires about the value of the element to be inserted into
the map. In this case the element to be inserted is of a
complex type which is best defined by defining its
components individually. The user therefore e.,ters an empty
value and the display changes to that of figure 5.2d. At
this stage the display is indicating that the typesmapnow
contains one element which is an undefined typer-ef.

The next stage is to create a typefor the typeref to refer
to. This is done by first selecting the type ref to be the
currently selected component. This is achieved by
'pointing' at the typeref using a graphics tablet or light
pen, or by usi ng the arrow keys of a keyboar-«:l to positi on
the screens cursor over it. Whenone of the-se acti ons is

<types)

<types)

(5.2al

<types)

<types)

Nell value:

(S.2cl

<type ref)

<type ref>

(5.2el

Distributed virtual memory 75

<types)

<types)

llinsert or Qluit?

(5.2b)

<types)

<type ref>

(5.2d)

Fig.5.2 Type Editor screen layout

76 Distributed virtual memory

I (type)

I
(identifier)

(forlit)

Type kind is scalar
o
IeI'" Ii,!)

(5. 2f)

(identifier)

(identifier)

(forlit)

Type kind is scalar
o

(id list>

NeM value:

(5.2h)

(type kind)

lesson

(forlat)

Type kind is scalar

(id list)

(S.2j)

I (identifier)

(forlat>

(identifier)

Type kind is scalar
o
o

I (id list)

I
(5.2g)

(for.at)

(identifier)

lesson

II Type kind is scalar
9
9
(id list)

(S.2il

Fig.5.2 Continued•••

(type kind>

lesson

(forlat>

Type kind is lap

~APOF (type ref>

(5.2k)

(type ref>

lesson

(forlat>

Type kind is lap

~APOF (type ref>

NeNvalue: 'frale ref
Nat found. Shall I create it?

(5.21)

(type ref>

lesson

frat! ref

(5.20)

Distributed virtual memory 77

(type ref>

lesson

(forlat)

Type kind is lap

~APOF (type ref>

(5.211

(type ref>

lesson

(forut>

Type kind is lap

~APOF <frile ref)

(5.2n)

Fig.5.2 Continued •.•

78 Distributed virtual memory

performed the display will change as shown in figure 5_2e to
indicate that although the whole typesmap is still displayed,
that the first, and in this case only, element in it is the
currently selected component.

If the editors 'view' command is used at this stage, a
new typewi11 be created and the previ ousl y undef i ned typeref
will be made to point at it. In addition the display will
change to show the current value of the new typeinstead of
that of the typesmap. Fi gure 5.2f shows the new state of the
display. The entire typevalue is the currently selected
component and will be emphasised accordingly.

The new twehas a default initial value. The first line
<identifier>indicates that the name of the typeis currently an
empty string. This can be changed by selecting this string
and using the editors change command to give it the value
'lesson'. The edi tor knows that thi s component of a type is a
string and will accept a string of characters from the
keyboat-d in response to the ' New val ue: prompt. Fi gures
5.2g, 5.2h and 5.2i show the various stages in defining the
types namefield.

The next field in the t~eis used to dafine its visual
representat ion. It i ~ current 1y undef i ned and wi11 be 1eft
so for the purpose of this example. Figure 5.2j shows the
display after the user has selected the typeKindfield. The
defaul t value of this is scalarand mus·t be changed to napin
order to define the type lesson. The fields which follow the
typekindf i el dare currentl y those which are associ ated with
the scalarvariant of a type<minimum ordinal value, maximum
ordinal value and identifier list for enumerated types).
Figure 5.2k shows the display after the change commandhas
been used to change the typekindto ~ap. Notice how the
subsequent fields change to those associ ated with the map
vari ant of a type.

In figure 5.21 the, currently undefined, range of the
lessonmap has been selected prior to giving it a value. The
domain type is not displayed as it must always be the first
component of the range type and is therefore deduced from
the range of the map. For the purpose o-f this example the
range type of the lessonmap must be given a value which is a
reference to the type frame. Fi gure 5.2m shows how the change
command may be used to do thi s. In response to the
'New value:' prompt, the user types '-"frame re-f'. The ,-",
i ndi cates to the type edi tor that the new val ue is to be
searched for in 'appropriate' map type values in the
structure bei ng edi ted. An' appropri ate'" map is one with
the required range type, in this case typeref, and with a
domain type which is consi stent with the val Lle followi ng

in this case identifier. Maps in the structure being
edi ted are searched start i ng with any that form part of the
current 1y displayed value and then,. if necessary,
considering further maps by working back towards the root.

Distributed virtual memory 79

In the current example, the editor will report that it
cannot find a type ref which points to a type named fra~e ref after
searchi ng the onl y appropri ate map which is the types map at
the root of the structure being edited. It therefore asks
whether it should create a suitable type ref. Figure 5.2n
shows what happens if the user tell sit to do so. The
editor creates a type value wi-th its name field set to fraae ref and
adds a reference to it to the types map. Apart from the
formatting information the type lesson is now complete.

Figure 5.20 shows the display after the user uses the
editors 'return' command to return to the level in the
structure being edited which is the immediate parent of the
lesson type which has now been defined. This shows that the
types map now contai ns two entri es, one for lesson and one for
its sub-type frale ref. The user can now select the frame ref
entry and define it. This wi11 lead to further entries
being made in the types map which the user must define until
the required structure is complete. In this way the editor
supports the stepwise refinement of data types.

It is interesting to compare the number of key strokes
required to enter the lesson type using this interface with
the number required when using a conventional screen editor.
The sequence of commands described above require 39 key
strokes when using the editors keyboard interface only.
There are about 42 characters in the corresponding part of
the textual representation not counting redundant spaces or
newlines.

lesson = MAPline TOframe ref

frame ref = •.•
The number of key strokes is further reduced if the

editor's graphics tablet or light pen interface is used but
with the usual penalty of requiring the user to invest in a
third arm.

The system has further obvious advantages
of conventional textual representations in that
once completed, is ready for immediate use
compilation process. Type checking is
incrementally during its construction.

5.4.2 The Value Editor

Types created by usi ng the type edi tor are used to
descri be val ues to the val ue edi tor. The user interf ace to
the value editor is identical to that used by the type
editor because both utilities are built on top of a common
structure editor. Figure 5.3 illustrates two views of a
val ue of type lesson as seen through the val ue edi tor's
interface. Figures 5.3a to 5.3c show the teacher's view
during the i ni ti al stages of the constructi on o-f a new lesson.
Fi gures 5.3d to 5.3f show the student's vi ew duri ng actual
use of the teachi ng materi al constructed by the teacher.
All of the displayed information is controlled by the format

over the use
a data type,
without any
carried out

80 Distributed virtual memory

(lesson)

(I esson)

(5.3a)

(frile)

(Iine)

(text)

(lesson)

(5.3c)

(frale>

continuation •••

Which of the following is not
a Pascal identifier?

f Answer I. larkl
f Answer 2. larkone
f Answer 3. lark one

(5.3e)

(lesson)

f (frale ref)

(5.3b)

{frale>

Pascal ldenti fiers

A Pascal identifier starts
with a letter which is
followed by a sequence of
letters or digits.

t continuation •••

(5.3d)

(frille)

Answer 2. lark one

Wrong!
I ili a letter and arkone is a
sequence of Ietters.
Review the definition.

t Pascal Identifiers

Fig.5.3 Value Editor Icreen layout
(:5.311

Distributed virtual memory 81

information created as part of the type value of a lesson. i.e.
No further programming is required to implement this
application above and beyond the initial construction of the
type information.

In figure 5.3a the value editor has been called to edit
an empty lesson. The first step in creating a new lesson is
theref ore to insert a new frate ref into it. Figure 5. 3b shows
the display after this has been done. The editor's 'view'
commandis then used and a new frame is created for the frate
ref to refer to. The display changes to that shown in figure
5.3c and the user can go on to select and define the title,
text and continuation of the frale. As the lap type is used to define
lessons, the structure of frames may be expressed hi erarchicall y
such that Pascal like scope rul es appl y to frale titles.

Fi gure 5.3d shows a fralle as it might be seen by a
student making use of the teaching material contained in a
lesson on the subject of Pascal identifiers. The student is
tal d that he may move through the lesson by sel ecti ng any of
the starred entri es and usi ng the edi tor-' s ' vi ew' command.
The fraQe shown in figure 5.3d gives the student some
information and invites him to move on to the next frame.
Whenhe does so the display changes to that shown in figur-e
5.3e and the student's under-standing of the previ ous
infor-mation is tested. Each of the continuations may lead to a
new part of the lesson or- take the student back to r-eview
earl ier- information. If the student selects ' Answer 2' in
this case, the display changes to that shown in figur-e 5.3e,
his mistake is explained and he is directed back to review
the definition of a Pascal identifier.

Such lessons are onl y useful if they are kept on a non­
volatile memory such as a disk. All of the operations
described above can be performed without the lesson concerned
being moved from the disk on which it is stored. The
distributed nature of the data store would allow a lesson to
be read by a number of students si multaneousl y. It caul d.
of course, onl y be written by one teacher at a time. To
prevent unauthorised changes being made to a lesson, a teacher
might retain r-ead exclusion after he had finished creating
it, as exclusion is a non-volatile property of persistent
objects within the data store.

5.5 CONCLUSION

Programming is, predominantly, the task of implementing
data structures and the necessary operations required on
them by the application. This process is well supported by
most modern languages which include extensive facilities for
data abstraction provided that the data to be manipulated is
neither persistent nor distributed. Where either of these
properties is required the programmer -finds himself unable
to abstract away from the storage representations of the
abstract data structures he wishes to manipulate.

82 Distributed virtual memory

Because of this a very large class of conventional
programs spend more time translating data structures from
one memory representation to another than they do in
performing the operations required by the application. e.g.
A compiler generally spends more time performing lexical and
syntactic analysis than it does in generating executable
code. Both processes are necessary to translate from the
textual representation of a program into a form which more
closely describes the abstract structure of the program.
One of the main reasons for using a textual representation
for program data structures is that they are required to be
persistent and the disk memories in which they are generally
stored do not support abstract data structures directly.

Given an environment which supports persistent and
distributed abstract data structures directly, many
previously difficult programming problems become trivial.
e.g. A program may be represented by a data structure which
closely resembles the abstract syntax of the language in
which it is 'written'. Such a data structure may be created
by using the type editor to define its structure and visual
representation. Programs may then be constructed and
modified by using the value editor in much the same way as a
syntax directed editor. If the facilities of the data store
are extended to allow operations and consistency conditions
to be associated with data types in much the same way that
is possible with classes, then the value editor would also
be able to perform semantic checking and execution of
programs. This would be most useful if the operations and
conditions associated with objects were defined using the
same data structures used to represent programs.

A large program might be distributed between many
programmers who could all work on their component of it,
perhaps from separate workstations on a network, without the
program becoming fragmented. Thus well defined interfaces
between the components belonging to different programmers
could be maintained at all times and incrementally checked
during the construction of the program.

The structured data store described in this paper has
been implemented under the UCSD (version IV) operating
system and currentIy runs on a Sage IV computer. The user
interface supported is a superset of that used in the
examples in this paper and the underlying implementation
permits data structures to be distributed over the main
memory and disk memories connected to this machine. The
mutual exclusion facilities described have not yet been
implemented but work on this and the reIated problem of
garbage collection are well under way. In addition a
version of the system which allows data structures to be
distributed around a network of memories belong ing to four
LSI-11/23s connected together by a Cambridge rirag, has been
implemented.

Distributed virtual memory 83

The system is quite compact. An early version ran on a
64kb Apple II and was only moved on to the Sage so that
advantage could be taken of its large Winchester disk. The
implementation is entirely written in Pascal and little
attention has been paid to optimisation. However, the
performance of the system as seen through its interactive
interface is comparable with that of a good screen editor
even though the current paging of the virtual memory only
keeps one page at a time resident in the main memory.

Further work on the system wi11 include the extension
of the types provided to include class type objects so that
user defined operations and consistency conditions can be
made available. With these additions it should be possible
to use the interface to the structured data store as a total
rep1acement for conventional textual1y represented
programming languages and operating systems. Alternative
type domains, such as that of OBJ (4), will also be
investigated using the facilities of the current system as a
supporting tool. In addition the system will be used as a
system development environment in which its ability to
maintain parallel representations of system components in a
hierarchical fashion will be utilised. Examples of such
parallel components include requirements, specifications and
implementations.

REFERENCES

1. M.P.Atkinson et al.
"An Approach to Persistent Programming"
Comp.J. 26, 4, pp360-365 (November 1983)

2. P.Brinch Hansen
"The Programming Language Concurrent Pascal"
IEEE Trans. on Software Engineering, 1, 2,
pp199-207 (1975)

3. C.Date
"An Introduction to Data Base Systems"
Addison Wesley, (1981)

4. A.N.Habermann and D.Notkin
"Sandalf Software Development Environment"
Carnegie Mellon University, Computer Science Dept.
(May 1982)

5. J.Soguen
"Parameterised Programming"
Proc. Workshop on Reusability in Programming,
Ed. J.Perlis (1983)

6. C.A.R.Hoare
"Monitors: An Operating System Structuring Concept"
CACM, 17, pp549-557, (1974)

84 Distributed virtual memory

7. C.A.R.Hoare
"Data Structures"
in Notes on Structured Programming, Dahl et al., (1972)

8. C.A.R.Hoare
"Communicating Sequential Processes"
CACM, 21, 8, pp666-677, (1978)

9. J.W.Hughes and M.S.Powell
"Program Specification Using DTL"
in Program Specification, Lecture Notes in Computer
Science 134, Springer Verlag, (1981)

10.J.W.Hughes and M.S.Powell
"A Distributed Line-Monitoring System"
Cooperative Research Project, SERC/BL Systems Ltd.,
(1981-1983)

II.Ichbiah et al.
"Ada Reference Manual"
Castle House Publications, (1983)

12.M.A.Jackson
"Information Systems: Modelling, Sequencing and
Transformations"
IEEE Proc. Int. Conf on Software Engineering, (1978)

13.D.E.Knuth and R.W.Floyd
"Notes on Avoiding "GO TO" Statements"
Inf. Proc. Letters, 1, pp23-31 (1971)

14.B.Liskov
"Modular Program Construction Using Abstractions"
in Abstract Software Specifications, LNCS 86, Springer
VerIag, (1979)

15.D.Parnas
"Information Distribution Aspects of Design Methodology"
Inf. Proc. 71, 1, North Holland Pub. Co. (1972)

16.P.Schulthess and F.Vonaesch
"OPA - a New Architecture for Pascal-like Languages"
Compo Arch. News 10, 6, pp9-20 (December 1982)

17.K.B.C.Tan
"An Adaptable Pascal Plus Virtual Machine Architecture"
M.Sc Thesis, UMIST, (1982)

18.S.T.Tye
"A General Virtual Machine for the Implementation of
Concurrent High Level Languages"
M.Sc Thesis, U.M.I.S.T., (1984)

19.J.Welsh and D.W.Bustard

Distributed virtual memory 85

"Pascal Plus - Another Language for Modular Programming"
Software Practice and Experience, 9, (September 1980)

20.N.Wirth
"The Programming Language Pascal"
Acta Informatica, 1, pp 35 - 63, (1971)

21."UCSD Version IV User's Manual"
Softech Microsystems Inc. (1981)

22."Introduction to PERQ"
International Computers Ltd. (1982)

ACKNOWLEDGEMENTS

The work described was partially supported by SERC DCS
research grant no. GR/B35062 and Cooperative award no.
GR/B78861. in cooperation with BL Systems Ltd. The authors
would also like to thank Chris Tan and Tony Tye for their
suggestions and contributions to the work described.

Chapter 6

Building flexible distributed computing
systems in Conic
M.Sloman,J. Magee,J. Kramer

~ FLEXIBILITY IN DISTRIBUTED SYSTEMS

Large computer systems are expected to have a long
lifetime. However, they do not remain static during their
operational life, but evolve as human needs change, the
application environment changes and as new technology is
incorporated. In fact the introduction of the computer
system itself tends to act as a stimulus for change in the
application environment, and so the services provided by the
system must evolve.

In addition to evolutionary change, distributed systems
must cater for operational changes. Components may have to
be physically relocated in response to either personnel or
installation changes. After failures of parts of the system,
continued, possibly degraded, operation should be possible
by manual or automatic reorganisation. Distributed systems
should also cater for redimensioning: extension by addition
of existing components or removal of superfluous ones.

A system must exhibit the property of flexibility in
order to adapt to the above evolutionary and operational
changes. The Conic approach to building distributed systems
provides the capability for the system to evolve and change
to meet changing requirements and conditions. A Conic
distributed system (Kramer et al (1), Magee and Kramer (2»
can easily incorporate new functionality in response to
evolutionary changes and allows reorgani sation of existing
components in response to operational changes.

We now refine and classify the flexibility requirements
for distributed systems and then show how Conic meets these
requirements.

Functional Flexibility - is the ability to modify a system
to perform different or new functions. This can be
achieved by the replacement of existing components or
the addition of completely new ones. An important
aspect of a system's functional flex ibility is the ease
with which one can identify the implica tions of a
change ie. which other existing; modules will be
affected by the change.

Implementation Flexibility - allows for re-implementation

Distributed systems in Conic 87

without a change in function. This could be for
operational reasons, such as to improve performance,
reduce running or maintenance costs, or increase
reliability.

Topology Flexibility - the topology is the structure of the
components (hardware, software) of the system. There
are three aspects to be considered:

i) Physical topology flexibility allows hardware
components such as computers or transmission lines
to be positioned or easily changed to meet the
needs of the application. Typical changes would be
to move a user's workstation from one office to
another or to increase the number of workstations.
There will al ways be fundamental limitations on
the physical topology (eg.the maximumnumber of
stations on a serial bus or the maximumdistance
between two stations on the bus). However, one
should avoid making any artificial limitations
such as system dependence on a specific network
topology.

ii) Logical topology flexibility in a system allows
for any arbitrary communication patterns (between
the software components) which meet the
application requirements. The logical topology
should be independent of the physical topology.

Hi) Happing flexibility is needed for the mapping of
software components and data onto the physical
topology. Software components may be moved from
one processor to another to optimise performance
or to recover from failures.

TimeDomain Flexibility - is an indication of when a
system can be changed. A static sytem must be
completely shut down in order to change any component.
It may be necessary to wait for a time when it is
quiescent such as during a maintenance period. Dynamic
systems are flexible in that they allow functional,
implementation or topology changes to a running system
with no service interruption. In practice the
disruption caused by a component change is dependent on
whether it is being used by other components.

It has been widely recognised that in order to build
large software systems, it is necessary to decompose the
system into components which can be separately programmed,
compiled and tested. The system is then constructed as a
configuration of these software components. The separate
activities of component programming and system building
(configuration) have been referred to as "programming in the
small" and "programming in the large" respectively (DeRemer
and Kron (3)). In Conic this is reflected in separate
component programming and, configuration languages (1,2). In

88 Distributed systems in Conic

this paper we will show how configuration m~nagement can be
used to satisfy the above flexibility requirements.

In section 6.2 we explain how the Conic module
programming language provides the necessary modularity
characteristics for functional and implementation
flexibility. The message primitives are described and it is
shown that these meet the topology requirements because they
employ indirect naming and provide transparency between
local and remote communication. In section 6.3 we describe
the Conic configuration language and physical topology of
interconnected networks, which together meet the topology
flexibility requirements. The facilities for structuring
configurations to provide abstraction are also covered. In
section 6.4 we explain the use of an on-line configuration
manager to achieve dynamic configuration (time domain
flexibility) in a Conic system. Finally we describe the
current status of the Conic set of tools for building
distributed systems.

6.2 CONIC MODULE PROGRAMMING LANGUAGE

.Q....2_.J_ .I.a.§k Modu1es

Modularity is the key property for meeting the
flexibility requirements. The Conic programming language is
based on Pascal, which has been extended to support
modularity and message passing primitives.

The language allows the definition of a task module
type which is a self-contained, sequential task (process).
A task module type is written and compiled independently
from the particular configuration in which it will run ie.
it provides conCiguration independence in that all
references are to local objects and there is no direct
naming of other modules or communication entities. This
means there is no configuration information embedded in the
programming language and so no recompilation is needed for
configuration changes as is the case with other languages
such as CSP (Hoare (4» and ADA (5».

At configuration time, module instances are created
from these module types. Module instances exchange messages
and perform a particular function in the system such as
controlling a device or managing a resource. Multiple
instances of a module type can be created on the same or
different stations and a station can contain many different
modules. This meets the requirements for mapping
flexibility.

Conic modules have a well defined interface which
specifies all the information required to use the module in
a system. This is essential to provide implementation
abstraction. The interconnections and information exchanged
by modules is specified in terms of ports. An exitport
denotes the interface at which message transact ions can be
initiated and specifies a local name and message type in
place of the destination name and type. An entryport
denotes the interface at which message transact ions can be
received and specifies a local name and type in place of the

Distributed systems in Conic 89

source name and type. The binding of an exitport to an
entryport is part of the configuration specification and
cannot be performed within the task module programming
language. Simple parameters (eg. integers, reals, booleans)
may also be used at the interface to a task module type.
Parameter values may then be passed to a module instance
when it is created. This can be used tailor a module type
for a particular environment, for example to pass a device
address to a device driver.

Figure 6.2.1 is an example of a simple bounded buffer
task module.

TASK MODULE bound;
ENTRYPORT putchar:char REPLY signaltype;

getchar:signaltype REPLY char;
CONST maxsize = 132;
VAR inp,outp,contents:integer;

buf:ARRAY[l ..maxsize] OF char;
BEGIN

inp:=l; outp:=l; contents:=O;
LOOP

SELECT
WHEN (contents<maxsize)
RECEIVE buf[inp] FROM putchar
=> inp:=(inp MOD maxsize)+l;

contents:=contents+l;

{buffer not full}
REPLY signal

OR
WHEN (contents>O) {buffer not empty}
RECEIVE signal FROM getchar REPLY buf[outp]
=> outp:=(outp MOD maxsize)+l;

contents:=contents-l;
END

END
END.

Fig. 6.2.1 Bounded Buffer Task Module

There are two classes of ports which correspond to the
message transactions classes described in 6.2.2. Request­
reply Ports are bidirectional as they declare the types of
values to be used for both a request message and the
corresponding reply. Notify Ports are unidirectional ie.
they have no reply part. For convenience, it is possible to
define families (arrays) of identical ports. The following
are examples of port definitions:

Exitport getch : char reply signaltype;
alarm: boolean;
datalinks [1•.3] : message;

Entryport print: line reply status;
message : msgtype;
callsin [l.•n] : printrequest reply printertype;

Ports define all the information required to use a
module and so it is very simple to replace a module with a
new or different version with the same operational inter-

90 Distributed systems in Conic

face. This provides the implementation and functional
flexibility identified in section 6.1. The indirect naming
used by the communication primitives (refer to local port
names) provide complete configuration independence for a
task module.

6.2.2 Communication Primitives

As mentioned above, the communication primitives
provided by the module programming language must provide the
same syntax and semantics for local (within a station) and
remote (inter-station) communication. Differences in
performance between local and remote communication are
inevitable due to network delays. This Communication
Transparency allows modules to be allocated either to the
same or different stations, which can be particularly
useful during the development of embedded systems in that
modules can be fully tested together in a large computer
with support facilities and then later distributed into
target stations.

Communication primitives are provided to send a message
to an exitport or receive one from an entryport. The message
types must correspond to the port types. There are two
classes of message transactions:

6.2.2.1 Notify. A notify transaction provides
unidirectional, potentially multi-destination message
passing. The send operation is asynchronous and does not
block the sender, although the receiver may block waiting
for a message. There is a (dimensionable) fixed size queue
of messages associated with each entryport. Messages are
held in order of arrival at the entryport. When no more
buffers are available the oldest message in the queue is
overwritten. The Notify can be used for time critical tasks
such as within the communication system, with the queue size
corresponding to a flow-control window.

I
Ixp epl

send msg to xp » -----------»> receive msg from ep
I notify

--------_I
Fig. 2.2 The Notify Transaction

6.2.2.2 Reauest ~. This provides bidirectional
synchronous message passing. The sender is blocked until
the reply is received from the receiver. A fail clause
allows the sender to withdraw from the transaction on expiry
of a timeout or if the transaction fails. The receiver may
block waiting for a request. On receipt of a request, the
receiver may perform some processing and return a reply
message. In place of a normal reply, the receiver may either
forward the request to another receiver (thereby allowing
third party replies) or he may abort the transaction.

Distributed systems in Conic 91

I
•• I

I
•• I

1_____________________ 1

send req
wait
fail

end;

to xp
rep =>

=>

1 request 1
Ixp ---------> epl» » receive req from epj

<---------
reply reply rep to epj

Fig. 6.2.3 Request-Reply Transaction

6.2.2.3 Selective Receive - any of the receive, receive­
reply, receive-forward, or receive-abort primitives can be
combined in a select statement. This enables a task to wait
on messages from any number of potential entryports. An
optional guard can precede each receive to further define
conditions upon which messages should be received. A
timeout can be used to limit the time spent waiting in the
select statement.

1
1 select

ep l l
»

1
ep21
»
I
I

ep31
»
I

or

when G1
receive req1 from ep1 reply signal

when G2
receive req2 from ep2
=>

forward to xp1

receive msg3 from ep3 =>
xp1
»

or

or
when Gn timeout tval
=> {timeout action}

endj

Fig. 6.2.4 Selective Receive

~ Input/output

The Conic Kernel provides a simple single primitive to
support the implementation of device handlers as application
tasks. The waitio procedure suspends a task until an
interrupt occurs on the vector specified as a parameter ego
waitio(100£8). This is similar to the facilities provided
in Modula (Wirth (6». The kernel does not convert
interrupts into messages as in Ada (5) and SR (Andrews (7»,
because such conversion complicates the kernel and increases
response times to interrupts. If required, a simple task
can convert an interrupt into a message ego in order to
queue interrupts. Task device drivers execute at the highest
software scheduling priority level to ensure they are are
not pre-empted by other non-device handlers. When an
interrupt occurs the scheduler is not called but rather the

92 Distributed systems in Conic

hardware effectively schedules the relevant device driver
task via the interrupt vector. Different device drivers may
have different hardware priority levels, allowing nested
interrupts. Figure 6.2.4 provides an example of a simple
device driver which outputs characters to a Q-bus serial
interface.

TASK MODULE serial_output(status,vector:natural) <system>j
{ 'status' is the address of the status register

expressed as a 'natural' number.
The task executes at 'system' priority i.e. with
interrupts locked out.

}
ENTRYPORT output:char REPLY signaltype;

VAR xcsr:Anaturalj
xbuf:Acharj
ch:char;

BEGIN
REF(xcsr,status);
REF(xbuf,status+2)j
LOOP

{status register}
{data " }

RECEIVE ch FROM
xcsrA:=100#8j
xbufA:=chj
waitio(vector);
xcsrA:=Oj

{REF converts 'natural' to
{a pointer type

output REPLY signal;
{enable device}

{disable device}
END

END.

Fig. 6.2.4 Device Driver Task Module.

~ CONIC CONFIGURATION LANGUAGE

One of the key elements in the provision of flexibility
is the need to separate the programming of individual
software components (task module types) from the building of
a system from instances of modules. This has led to the
development of the Conic configuration language which can be
used to specify both the initial system and subsequent
changes as described below. The following sections describe
the essential properties which must be supported by a
configuration language.

~ Context Definition

The context definition identifies the set of module
types from which the system is constructed, and is provided
by a use construct ego

use bound, serial_output;

Modules communicate by typed n.essagee so it is
necessary for data type definitions to be shared between
modules. Having to redefine types wherever they are used,
would make type checking more difficult, more error prone

Distributed systems in Conic 93

and require redundant effort by the programmer. Conic
allows common datatypes and constants to be defined in
separate definitions units. These are imported to make them
accessible from both the programming and configuration
languages eg:

from commstypes use datatype, acktype, buffer_size;

~ Instantiation

The create construct declares the named instances of
module types to be created in the system. Instantiation
parameters can be used to pass information such as device or
interrupt vector addresses to device drivers. In order to
cut down proliferation of names we allow the type identifier
name to be overloaded and used as an instance name where
only one instance of a type exists in a (sub)system.

Create serial_output (177560#8,100#8);
datalink1,datalink2:CRdriver (retries);

Families (cf. arrays) of module instances can be
created by specifiying a 'range':

Create family k:[1 .•maxcalls]
call [k] : call_handler (k);

~ Interconnection

The link construct specifies the interconnection of
module instances by binding a module exitport to a module
entryport. Both type and operation compatibility are
checked so an exitport can only be linked to an entryport of
the same data and transaction type. Multiple exitports can
be linked to a single entryport which is particularly useful
for connecting clients to servers (eg. a file server). A
single notify exitport can be linked to multiple entryports
which provides multidestination message transactions.
Multidestination cannot be provided for request-reply ports
because the semantics of dealing with multiple replies to a
single request are unclear.

Link mod1.xp to mod2.ep;
manager.errorout to logger1.errorin, operator.reports;

Families of modules and/or families of ports can be
linked by defining range identifiers and associated ranges.
This is merely a shorthand to save on repetitive link
statements. The repetitions can be nested and are then
performed in an analogous way to nested for-loops in Pascal.

Link family k:[1 ••maxcalls]
call[k].in to manager.requests;

94 Distributed systems in Conic

~ Mapping QntQ Physical I2p~

The only constraint imposed by the configuration level
on the interconnection of module exit and entryports is that
they are compatible in terms of type and operation. The
logical interconnection is completely independent of the
physical configuration of the hardware components on which
the system is to be run. The same logical configuration can
be mapped onto a single computer, a closely coupled multi­
processor station or distributed stations connected via an
arbitrary network. It is thus important to separate the
specification of a logical configuration from its mapping
onto a physical configuraton. Currently this mapping is
performed by annotating a table produced by the configura­
tion compiler. This maps the module instance names to
physical stations.

The physical topology supported by a Conic system
consists of Local Area Networks (LANs) interconnected by
store-and-forward gateways (Sloman (8». A station can
communicate with any other station, if necessary via a
gateway. This provides the required physical topology
flexibility in that a variety of LANs can be used to suit a
particular application requirements ego Ethernet (9),
Cambridge Ring (10), or one of the emerging IEEE LANs (11).
The store-and-forward gateways provide the implementation
flexibility at the data-link layer, allowing the inter­
connection of LANs of different transmission rates. The
topology of interconnected subnets allows flexible
extensions either of stations within a subnet or of subnets
within an overall network.

~ Structuring Configuration Specifications

The modules in a distributed system often exhibit a
hierarchical relationship. For example a database subsystem
makes use of file servers, which may themselves consist of
directory servers, record access servers and disc drivers.
This structure can be represented by nesting software
components at the configuration level by means of group
modules. A group module type is a configuration specifica­
tion and indentifies a collection of module types, instances
of those types and their interconnection. The constituent
modules may be the primitive task modules containing a
single process, described in section 6.2, or group modules.
The group modules also have an interface defined in terms of
exit- and entryports, as well as formal parameters. This
structuring of the specification is essential for large
systems with many module instances, otherwise the name space
would become unmanageable and the configuration
specification unreadable.

As mentioned, group modules provide configuration
abstraction. The structure of a group module is defined by
the use, create, and link constructs described previously.
The interface to the module is also defined in terms of
exit- and entryports and so from the outside it is not
possible to distinguish between a task and a group module.

Distributed systems in Conic 95

The group interface ports are bound to the ports of
component module instances using link statements within the
group module specification. These links are exitport-to­
exitport or entryport-to-entryport ego

Link groupentry to modl.entrylj
modl.exitl to groupexitj

This linking is merely a name mapping and does not entail
any run-time overheads ie. there is no copying or queueing
of messages at interface ports to group modules. The
interface port name is global within the group specification
and must be unique, whereas ports on different module
instances can have the same name. The combined
"module_name.port_name" must be unique within its scope (the
group specification).

An example of a configuration description for a simple
system which echoes characters at a terminal and uses the
modules defined in the previous section is shown in Fig.
6.3.1. (Invert is a simple module which takes the front
character from the bounded buffer and makes it available at
its exitport outchar.)

GROUP MODULE bufferj
ENTRYPORT inchar
EXITPORT outchar

char REPLY signaltypej
char REPLY signaltypej

USE bound,invertj
CREATE boundj

invertj
LINK invert.getchar TO bound.getcharj

inchar TO bound.putcharj
invert.outchar TO outcharj

END.

GROUP MODULE echoj
CONST status = l77560~j

vector = 1OQ#.8 j
USE serial_input,serial_output,bufferj
CREATE Rx:serial_input(status,vector)j

Tx:serial_output(status+4,vector+4)j
B :bufferj

LINK Rx.input TO B:incharj
B:outchar TO Tx.outputj

END.

Fig 6.3.1 Configuration Description

.Rx____ B Ix.__
1 1 1 1
1 linput II 1 1 Iloutchar I

1 »---------»-» »-» »-»---------»
1 1 inchar 1 1__ 1 1__ 1 1 output 1 I
1 1 1 1 1 1

Fig 6.3.2 Configuration Diagram.

96 Distributed systems in Conic

A Segment Module is a restricted form of group module
in that the constituent module instances share an address
space and so must be in a single station. The components of
a segment module may share procedures and pass pointer
values in messages. However there is no global data within
a segment module. Any shared data must be encapsulated
within a task module and references explicitly passed by
messages. The only synchronisation primitives available for
control of access to shared objects in a segment module are
the message primitives. For example the Conic modules which
implement the various layers of the communication system
within a station pass pointers to message buffers in order
to reduce the overheads of copying messages between these
modules.

Also a group of tasks may be required to provide
parallelism within a particular function. The terminal
driver is an example of a set of closely related tasks which
are grouped to form a segment module (ie. input from a
terminal keyboard and output to its screen). This
capability for parallelism at the task level encourages
simpler cooperating sequential tasks rather than multi­
threaded ones. The concept of a segment module is similar
to that of a Guardian in Argus (Liskov (12», but our
segment modules do not automatically provide resiliency.

6.4 DYNAMIC CONFIGURATION

The configuration specifications described so far are
essentially static. A Unix-based host development environ­
ment is used to produce load images which are down-line
loaded into target distributed stations or put into ROM
memory for embedded systems. In a Conic distributed
system, where the operating and communication system is
iteslf implemented as Conic modules, this static
configuration is essential to provide the basic support for
dynamic configuration in each station.

Dynamic configuration is necessary to provide the time
domain flexibility mentioned in section 2. For many
applications, it is too costly or unsafe to shut down a
complete distributed system in order to change a component.
A Conic system allows arbitrary, unpredicted modification
and extensions to an existing system without rebuilding the
entire system (2). It should be possible to perform
incremental changes on the system without stopping the
unaffected parts of the system. Changes which can be
performed on a running system include:

Installation and removal of module types;
Creation and deletion of module instances;
Changes to the interconnections between modules.

These changes are performed by submi tting a change
specification to an on-line configuration manager which
validates the change and produces a new system specification
incorporating the changes. It also generates the necessary
commands to the operating system to perf'orm the changes.
Deleting a component would obviously affect other modules
using it but changing the interconnections can often be

Distributed systems in Conic 97

performed without affecting other modules.

~ Change Specifications

The change specification uses
constructs described in section 6.3,
the inverse functions, namely:

the configuration
but must also specify

unlink - disconnects a module exitport from an entryport.

delete - deletes the named module instances from the system.
This can be performed only after all its ports have
been unlinked.

remove - removes knowledge of the type from the configura­
tion specification, and is valid only after all
instances have been deleted.

For example, to remove the buffer from the example of Fig.
6.3.1 the change specification outlined in Fig. 6.4.1 would
be submitted to the configuration manager.

CHANGE echo;
UNLINK Rx.input FROM B.inchar;

B.outchar FROM Tx.output;
DELETE B;
REMOVE buffer;
LINK Rx.input TO Tx.output;

END.

Fig. 6.4.1 Change Specification

6.4.2 Configuration Manager

A change specification is submitted to a configuration
manager which validates the specification, translates it
into commands to the distributed operating system to execute
the reconfiguration operations and produces the new system
configuration specification. The configuration manager
requires information on the current state of the system (eg.
is a component type already in a station or will it have to
be downloaded?) and must also have access to information
necessary to perform validity checks. Some of this
information can be obtained by querying the system to check
its current state but type information is not maintained in
stations and so must be held in an online database. A
single change may result in a number of commands to the
system (eg. create component instance => query resources,
load type, instantiate).

The configuration manager currently being designed
consists of three parts: a database describing the current
system, specification translator and a command executor
(Fig. 6.4.2). The initial version of the configuration
manager will be centralised but later versions will be
decentralised.

98 Distributed systems in Conic

Change Specification
II

------_\/-------

II
IIAction List

-----_\/------
1 1 I

1---
issue commands 1 O.S.
update database 1=========>1______________ 1 commands I

1 -

1 I
ISPECIFICATION TRANSLATOR I ICONFIGURATION DATABASE 1

validates change 1<---------1 type definitions 1
saves change spec. 1--------->1 config. specs. 1
produces OS commands 1 I code + symbol tablesl

____ I ----->1 physical config. I
I I I
I
I

COMMAND EXECUTOR DISTRIBUTED CONIC
OPERATING SYSTEM

utilities
station executives

Fig. 6.4.2 Configuration Manager

6.4.2.1 Configutation Database. This holds the following
information:

Task module types - the code generated by the module
compiler, together with symbol tables for port names
etc. These will be held in an intermediate machine
independenb target language called EM (Tanenbaum (13»
and the final target code generated when the type is
loaded into a particular processor.

Type definitions - these are the definitions files of port
and message types.

Configuration specification - the updated current specifica­
tion of the system configuration together with a
history of all change specifications in time order.

Physical system configuration - information on the sUbnets
such as type, stations connected and current status.
Also descriptions of the physical stations, including
their resources such as memory and devices.

6.4.2.2 Specification Translator. This validates the change
specification with respect to availability of resources (eg.
memory or I/O devices) as well as type and operational
compatibility for interconnections. The specification is
translated into a sequence of simple commands to the
operating system which are passed to the command executor.
The translator uses the database to map the names in the
specification into system addresses ego a port address is
specified by "subnet_id. station_id .module_id.port_id".

The change specification effectively produces
system configuration but the change specification is
order to provide a history of changes. If required,
can be reversed which is particularly useful for

a new
kept in
changes
testing

Distributed systems in Conic 99

purposes. A module can be installed, tested and the system
restored to its original state by a single command.

6.4.2.3 Command Executor. This performs operations on the
distributed operating system by means of Conic communication
primitives. A change specification is translated into a
series of commands called an action list. The command
executor is responsible for issuing these commands and
updating the database. In order to keep the system and its
specification consistent, the system is returned to its
original configuration if any commands fail.

If an action list involves deleting and recreating a
module (possibly in another location), then any internal
state information will have been lost. It is possible to
use redundancy techniques to mask configuration changes in a
Conic system, as described elsewhere (Loques (14».

~ DISTRIBUTED OPERATING SYSTEM

The Conic distributed operating system supports the
dynamic configuration described above and also provides
intermodule communication. It conforms to a layered
structure where each layer provides services used by the
layer above (fig. 6.5.1). The distributed operating system
consists a set of utilities which are llQt replicated in
every station and an executive which is in every station.

CONFIGURATION MANAGEMENT (Conic)

UTILITIES
loader
debugger
file server
device handlers

(Conic)

LOCAL MANAGEMENT (Conic)
/\
I I
I I

II
II
I I
I I

II
II

STATION
EXECUTIVE

I I
I I

II
II
II
I I
I I

II
II
\I

module manager, link manager,
store access, error manager.

COMMUNICATION SYSTEM (Conic)
interstation message transfer,
routing, data link drivers.

KERNEL (Pascal)
multi-tasking
local communication
simple interrupt handling
run-time error handling

Fig. 6.5.1 Conic Distributed Operating System

100 Distributed systems in Conic

The main influences on the design of the Conic
distributed operating system (Magee (15» were that the
station executive should be small and efficient so that
dynamic configuration could be provided on small
microprocessor systems without backing store. This led to
the principle of providing minimal functionality in the
executive present in every station and rather implementing
as much as possible remotely by utility modules. The
executive should itself be configurable so that smaller ROM
stations could omit the dynamic configuration support.
This was accomplished by implementing most of the station
operating system components as a set of Conic modules which
can be configured using the static configuration facilities.
The flexibility of the Conic module structure has been
exploited in allowing distribution of the operating system
components.

~ Station Executive

The executive is the set of Conic modules which
together with the kernel manage the resources within a
station and implement the communication primitives described
earlier. The executive does not include device drivers
which is usually the case in most operating systems. These
are considered application utilities (see 6.5.2).
Since flexibility is regarded as more important than
performance the executive was mostly written as Conic
modules, with the kernel being implemented in Pascal.

Station kernel - It is implemented in Pascal and provides
multitasking and the primitives used by the executive's
local management modules for task execution control and port
linkage. It also provides the run-time support for the
language extensions to Pascal ie. inter-task message
communication within a station, timing primitives, and the
simple interrupt mechanism described in section 6.2.3.

Communication system - This consists of a set of modules to
support inter-station message passing. An exitport linked
to a remote entryport is actually linked to a local
communication module which formats a message by adding
station addresses etc. and sends the message over the
network to the remote station. At the remote station a
communication module receives the message, strips off
headers and then uses standard local Conic communication
primitives to deliver the message. The communication system
thus acts as a surrogate local source or destination for
remote communication. The basic communica tion system
provides a datagram service over a single subnet but
configuration options include routing over interconnected
subnets and a reliable virtual circuit service (8).

Local management - This is a set of four Conic modules:
lDodulelDanager deals with the loading of task types and
creating instances; the linkmanager handles requests to link
exitports of task instances within the station to either

Distributed systems in Conic 101

local or remote entryportsj storeaccess allows remote
reading or writing of blocks of memory and is used for both
down-line loading and remote debugj errormanager receives
run-time error messages detected by the kernel or issued by
a module reports them to a selected destination.

~ Utilities

The utilities provide the shared services traditionally
found in operating systems. These utilities are implemented
as normal Conic group modules and may themselves be
distributed, but they are not found in every station.

File Server - This consists of a group of modules which
perform the functions of file access (reading or writing
blocks of a file), directory lookup (translates symbolic
file names into file identifiers), management facilities
(creating, deleting and renaming files) and disc drivers
(reads or writes disc blocks).

Loader - This downline loads module type code into target
stations. It obtains the type code from the file server and
performs the final translation into the machine specific
target code. It also relocates code to absolute memory
addresses for processors with no memory management hardware.
The memory instance address is obtained from the station's
module manager.

The loader handles one code file at a time. However,
more than one instance of the loader module can exist in a
system and execute concurrently. The loader can of course be
located on a different station from the file server.

Debugger - allows a remote module to be tested by via its
message passing interface or by examining its memory space.
The debugger provides the capability to construct test
messages to send to a modules's entryports and to decode and
display messages received from exitports. It can also the
use store access manager of a (remote) station to read or
write to the test module's memory space. The debugger
operates on record structured objects, messages and
variables. It obtains information on record structures from
symbol table information stored on the file server.

It should be noted that neither the file server nor the
console device module need be in the same station as the
debugger module. Indeed, it is often useful to locate the
console in the station being examined and the debugger in a
remote station where more store is available.

Device handlers have been implemented for a number of
network interfaces, terminals, discs etc. Our experience
has been that these are comparatively simple to implement
and integrate into the system. For example moving from the
Omninet to Cambridge Ring required about two man weeks of
programming effort for the new driver and requires a change
of only a single line of a configuration specification.

102 Distributed systems in Conic

~ Configuration Operations

The operating system utilities together with the local
station executives, cooperate to implement the following
dynamic configuration operations:

Load (stationid, codefile, moduletypeid)
The loader obtains the code size from the code file and
sends a load request containing the moduletypeid to the
target station. The station's module manger allocates
memory space for code and returns the start address of
the code segment. The loader forms a load image and
sends load blocks to the station's storeaccess module.

Unload (stationid, moduletypeid)
The station's module manager deletes the moduletypeid
and deallocates the storage for the type code. It can
only be performed after all instances of the type have
been deleted.

Create (stationid, moduletypeid, moduleinstanceid,
parameterlist)

The station's module manager is given an identifier for
the module instance and instantiation parameter values.
The module manager assigns data segments, initialises
control blocks etc. The module type code must have
already been loaded into the station.

Delete (stationid, moduleinstanceid)
The module manager checks that the module ports are
unlinked and deletes the module instance from the
station.

Link (exitportid, entryportid)
The request to link an exitport to an entryport is sent
to the linkmanager in the same station as the exitport.
The entryportid is placed in the exitport's data
structure (no informatin about a link is held at the
entryport). A link to a remote entryport is actually
made to the local communication system.

Unlink (exitportid, entryportid)
The entryport address is removed from the exitport data
structure. If a request-reply transaction is in
progress it will fail.

Start (stationid, moduleinstanceid)
The module manager requests the kernel to make the task
module runnable.

Stop (stationid, moduleinstanceid)
The module manager in the target station requests the
kernel to stop the task module.

Query (stationid)
This request to the module manager queries the state of
the module instances in the station.

~ Performance

The approach adopted m i ni mases the complexity of the
station executive and instead moves all validation and the
more difficult operations into the configuration management
utilities. This has resulted in a ccnr f gurabLe , efficient

Distributed systems in Conic 103

operating system as indicated by the size and performance
statistics for the protoype (LSI 11/23) system (given
below). The figures are based on a station executive with a
full set of local management modules, an Omninet data-link
driver and 4 input message buffer modules, but no routing or
virtual circuit service.

Station Executive Size (in kilobytes)

Local management
Basic communications
Kernel

CODE
5
2.5
3.7

DATA
2.4
2.5
0.2

Total 11.2 5.1 K.bytes

Request Reply Performance (in

a byte request,
100 byte request,

a byte reply
100 byte reply

milliseconds)
LOCAL
1.5
2.2

REMOTE
19.2
21.5

Local Management Performance
Typical module creation
Module deletion
Link
Unlink

(in milliseconds)
time 5

50
1.8
2.1

The time to create a task module depends on the number
of ports and the length of the module initialisation code.
Module deletion takes much longer than creation since the
executive checks that no exitports within the station are
linked to the entryports of the module to be deleted.

~ CONCLUSIONS

.2.....2.....1 Experience .Q.f .!Ill.n.g ~

A prototype system based on a network of LSI 11 micro­
computers interconnected by an Omninet serial bus and
Cambrdige Ring has been in use at Imperial College for a
number of years. We now have about 4 years experience of
using earlier versions of the programming and configuration
languages for implementing operating system utilities,
device drivers, communication systems, and distributed
simulations. It has been used both by experienced systems
programmers and students for project work. The prototype
software is also being used by the National Coal Board for
implementing software for distributed underground monitoring
and control stations, and by researchers at Sussex
University for experimenting with adaptive control
strategies.

This experience has shown that Conic provides an
extremely simple yet very flexible approach to structuring a
problem as a set of communicating components. Even
comparatively naive student users have found Conic easy to

104 Distributed systems in Conic

use for building both distributed
concurrent systems.

and centralised

6,6.2 Current Status

Reports defining the Programming (16) and Configuration
(17) languages are available. A commercial product providing
the set of tools for building distributed Conic systems,
based on a Unix host environment and LSI 11/23 and 11/73
target microcomputers will be available by September 1984.
Motorola 68000 based targets will be supported by December
1984. The task module compiler is based on the Amsterdam
Compiler Kit (13) which has multiple back-ends and so
simplifies the porting of Conic to new targets. The
development tools allow static network configurations to be
built and a prototype on-line configuration manager is being
produced. The host system produces load images for stations
which are down-line loaded over a network or can be placed
in ROM.

Data-link drivers are available for the Cambridge Ring
and Omninet Serial Bus. A distributed routing algorithm
which caters for interconnected LANs and automatically
updates routing tables to adapt to configuration changes has
been implemented. There are a number of utilities such as
terminal drivers, simple file servers and interactive debug
tools •

.2..&..3 Fu tu r e lf2l:k

Fault Tolerant Conic. Some initial work has been done
on incorporating fault tolerence techniques into a Conic
distributed system (14). Both hot and cold standby
redundancy can be supported. The configuration facilities
are used to automatically switch to a cold standby module
after a failure is detected. These can be used for
applications which can accept the comparatively short time
it takes to link and start a module. No state information
is preserved. Applications which require completely
transparent failure recovery can include a hot-standby
module. The active module (performing the function)
transfers state information at defined points during its
operation to the passive 'hot-standby' module. In the case
of a failure we automatically switch to the passive module
and it assumes the active role. A new hot-standby passive
module can be created. The hot standby approach to fault
tolerance effectively masks module failures. This seems
appropriate for many real-time applications. An interesting
aspect is that the configuration manager can itself be made
fault tolerant using these techniques.

Additional work is needed to incorporate the support
for fault tolerance of transactions, such as the provision
of atomicity (12).

Distribution of configuration .anager. The prototype
configuration manager will be implemented within the host
development system and so will be centra lised. We intend to

Distributed systems in Conic 105

investigate alternative strategies for distributing the
configuration manager both to improve reliability and to
allow faster configuration changes.

Module Programming Languages. The Conic environment
currently supports a single module programming language
which simplifies some of the problems associated with
transformation of information representation. The port data
structures do not currently hold the type information needed
for such transformations. We intend to investigate the
problems associated with communication between both non­
homogeneous computers and different languages.

The configuration flexibility provided by Conic could
then be extended to building distributed systems consisting
of modules implemented in other procedural languages such as
Ada or even non-procedural languages such as Prolog. Conic
could then provide the modularity framework for building
distributed expert systems.

Module Behaviour. We are investigating the prOV1Slon of
specifications for the behaviour of individual task modules
which could then be used in composition rules to specify the
composite behavior of group modules. A sound, practical
approach would provide the basis for module and system
verification. It would allow analysis of a configuration
specification for properties such as deadlock and whether it
preserves specified constraints. Such specifications could
also be used to predict the effect of configuration changes
on the behaviour of a system.

ACKNOWLEDGEMENTS

We gratefully acknowledge the many useful discussions
with our colleagues Kevin Twidle and Naranker Dulay, the
support of the SERC under grant GR/C/31440 and the National
Coal Board. The views expressed are those of the authors and
not necessarily those of the NCB.

REFERENCES

1. J. Kramer, J. Magee, M. Sloman and A. Lister. CONIC:
an integrated approach to distributed computer control
systems. lEE ~ ~ ~_, 130:1, Jan. 1983, pp.1-10.

2. J. Magee and J. Kramer. Dynamic configuration for
distributed real-time systems. ~ Real-Time Systems
Symposium, Arlington, Virginia, Dec. 1983, IEEE
Computer Society, pp. 277-288.

3. F. DeRemer and H. Kron. Programming-in-the-Iarge versus
programming-in-the-small. ~_ ~ Qn Reliable
Software, 1975. pp. 114-121.

4. C.A.R. Hoare. Communicating sequential processes.
Comms. Q£ ~ ACM, 21:8, Aug. 1978, pp.666-677.

106 Distributed systems in Conic

5. USA Department of Defence. Reference Manual for the Ada
Programming Language. Proposed Standard Document, July
1980.

6. N. Wirth. Modula: a language for modular multi­
programming. Software Practice ~ Experience, 7, 1977,
pp. 3-35.

7. G.R. Andrews. The Distributed Programming Language SR -
Mechanisms, Design and Implementation. Software
Practice ~ Experience, 12, 1982, pp. 719-753.

8. M. Sloman, J. Kramer, J. Magee, K. Twidle. A flexible
communication system for distributed computer control.
~ 5th IFAC Workshop Qn Distributed Computer Control
Systems, May 1983, Pergamon Press.

9. XEROX Corporation. The ETHERNET: A local area network,
data link and physical layer specifications. Version
1.0, September 1980.

10. Cambridge Ring 82 Interface Specifications, SERC, Sep.
1982.

11. IEEE Project 802 Local Area Network Standards, IEEE
Computer Society, Dec. 1982.

12. B. Liskov and R Sheifler. Guardians and actions:
linguistic support for robust distributed programs. A&M
TOPLAS, 5:3, July 1983, pp. 381-404.

13. A. Tanenbaum, H. van Staveren, E. Keizer, J.
Stevenson. A practical tool kit Cor making portable
compilers. Comms. Qf ~ ACM. 26:9, Sep. 1983, pp. 654-
662.

14. O. Loques-Filho. A fault tolerant distributed computer
control system. Imperial College Ph.D. Thesis, Feb.
1984.

15. J. Magee. Provision of flexibility in distributed
systems. Imperial College Ph.D. Thesis, April 1984.

16. J. Kramer, J. Magee, M. Sloman, K. Twidle. The Conic
programming language: version 2.2. Imperial College
Research Report, March 1984.

17. N. Dulay, J. Kramer, J. Magee, M.
The Conic configuration language.
Research Report, March 1984.

Sloman, K. Twidle.
Imperial College

Chapter 7

The Cosy approach to distributed
computing systems

P. E. Lauer

7.1 CONCURRENT, DISTRIBUTED AND SYNCHRONIZED SYSTEMS

Throughout this chapter we will be concerned with systems
capable of concurrent behaviour. A system is concurrent if
it is composed of several (sequential) subsystems whose
respective behaviours may progress in parallel. A system is
sequential if its behaviour can progress by an occurrence of
only one event at a step, whereas the behaviour of a
concurrent system can progress by occurrences of several
events at a step. The notion of decomposition of a
concurrent system into several subsystems introduces a notion
of distribution in the sense that events must be assigned to
subsystems 1n some particular way.

A concurrent system is synchronized if subsystems share
events, and the interpretation of shared events is that the
behaviours of the subsystems concerned may only progress by a
coincident (simultaneous) occurrence of a shared event in all
of the subsystems sharing the event. This implies that for a
shared event to occur at some step, it must be capable of
occurring at that step in all the subsystems sharing the
event. It also implies ~at all behaviours of subsystems
sharing an event will agree on the number and order of
occurrences of that event.

Global behavioural properties of such systems include
periodicity, absence of various types of deadlock, absence of
starvation, mutual exclusion of sub-behaviors, etc. A system
is periodic if all its behaviours are included in the
multlples of some subset of behaviours called periods. The
problem of analysis of the behaviour of a system can be
greatly simplified if the system is periodic, since it can be
reduced to the problem of analysis of the periods. A system
is weakly deadlock-free, if and only if, for every behaviour
there is at least one event of the system which may occur at
the next step. A system is (strongly deadlock-free)
adequate, if and only if, for every behaviour of the system
and every event of the system there is a possible extension
of the behaviour after which the event may occur. Notice
that both types of absence of deadlock only say "may occur"
and not "will occur". If the system in question is
non-deterministic, then two events which may both occur at a

108 The Cosy approach

step, but whose occurrences exclude each other at that step,
will lead to an arbitrary choice of one of the events to
occur. At each recurrence of the step in the subsequent
behaviour of the system the same choice could be repeated,
leading to an infinite delay (starvation) of the event
occurrence not chosen.

We will present a formal model, the COSY
to support rigorously reasoned design,
analysis of such concurrent systems.

model, intended
development and

7.2 DECISIONS INFLUENCING THE DESIGN OF THE COSY MODEL

To arrive at the level of abstraction of this particular
model we made certain basic decisions:

1. We will concentrate on the concurrency, distribution and
synchronisation structure of such systems based on the
notion of primitive (uninterpreted) events. We will
explicitly represent true concurrency (not interleaving),
distribution and synchronisation throughout our model.

2. We will attempt to relate global behavioural (dynamic)
properties of a system to structural (static) properties
of its specification in some notation.

3. We will express the semantics of such specifications in
terms of the notion of behaviour (history, trace) rather
than in terms of more abstract notions such as the notion
of function or the notion of relation. We will express
the semantics of such specifications in terms of the
notion of period as far as possible. Successfull
termination of some task the system may be said to be
performing will be expressed not by the notion of
halting, but by the notion of having completed some
sub-period of a behaviour (which is analogous to having
reached some "homing" state in a state oriented model).

4. The notation should be based on the notion of inherently
periodic sequential subsystems and facilitate the
construction of concurrent systems which are periodic in
a more general sense.

5. The notation should allow maximum flexibility for
decomposing a system into components to achieve greater
concurrency of behaviour and/or differing distribution of
events to components.

6. The notation and its formal semantics should permit its
efficient implementation in a computer based environment
for the design, development and analysis of concurrent
systems. Although the verification of the correctness of
the environment is based on rigorous mathematical
reasoning, subsequent reasoning about systems developed
by means of the environment should not require great

The Cosy approach 109

mathematical sophistication, but should be couched in a
form comprehensible to non-mathematically specialized
users.

7.3 TOWARDS THE COSY MODEL

Since we had decided to concentrate on concurrency,
distribution and synchronisation structure and to express
this structure explicitly, there was only one existing body
of theory of concurrency which had been developped on the
basis of similar decisions, namely General (Petri) Net
Theory, see Brauer (1). This fact led us to adopt Net Theory
as a standard semantics for our approach.

Within Net Theory systems are often specified by means of
bi-chromatic directed graphs, called condition/event nets,
involving two types of nodes representing states and
transitions respectively, together with tokens whose movement
over the graph indicates the asynchronous flow of control
through the system. The notion of behaviour of such nets is
made precise in Net Theory by the notion of partially ordered
event occurrences and condition holdings, expressed as
ordinary directed graphs called causal nets or occurrence
nets. Thus we found in Net Theory much that suited our
purposes.

However, there existed no non-graphic notation in which to
express such condition/event nets and we felt that it is
important to have such a linguistic notation if one wanted to
support flexible and convenient transformation of one
specification into another. This led us to develop the COSY
notation as a linguistic alternative to condition/event nets.
Such nets can be thought of as a generalisation of the notion
of finite state automaton which naturally arises from the
consideration of the fact that the finite state automata are
closed with respect to composition in the sense of
identifications of states, but are not closed with respect to
composition in the sense of identification of transitions.
This means that two finite state automata composed by
identification of a state yield another finite state
automaton, whereas if they are composed by identification of
a transition the result is not a finite state automaton. On
the other hand, both types of composition when applied to
finite state automata considered as' a special case of
condition/event nets result in another condition/event net.

It is well known that the behaviour of a finite state
automaton can be expressed by the language specified by some
corresponding regular grammar, and hence it should be
possible to express the behaviour of a condition/event net by
the language specified by an appropriate generalization of
regular grammars. Furthermore, since the structure of
regular grammars corresponds well to the structure of their
behaviours, it was to be hoped that the structure of their

110 The Cosy approach

generalized counterparts would also correspond well to the
structure of their behaviours. Additionally, the use of
language theoretic and automata theoretic methods is very
prevalent throughout computer science in such areas as
programming language design, compiler design, hardware
design, network protocol design, etc. Hence, it was to be
hoped that our generalization of these two types of methods
would enjoy similar prevalence, and would not require any
greater mathematical sophistication than that required for
the application of more traditional language and automata
theory.

The above considerations led us to begin our work by
defining the semantics of the COSY notation by translation of
a COSY specification into an equivalent labelled
condition/event net and then utilizing the corresponding
labelled causal nets to express their corresponding
behaviours. However, we eventually abandoned this indirect
method of defining the meaning of COSY specifications as the
main semantics, in favour of a more direct method of defining
an equivalent semanics in a language theoretic framework.
This was due to a growing recognition of the fact that such a
language orientation was more directly suited to the sum
total of our decisions discussed above. We continued to use
the net semantics of COSY whenever appropriate, and the
equivalence of the two types of semantics allows transferral
of results from net theory to the language oriented model and
vice versa.

Finally, we rejected programming notations involving
facilities for expressing concurrency, communication and/or
synchronisation as a specification notation for two main
reasons. First, we wanted to express "what" the behaviours
of a system are, rather than "how" particular synchronisation
facilities enforce these behaviours. Second, conventional
programming language constructs themselves have
synchronisation properties which are less important when they
are used in sequential systems, but which assume great
importance when they are used in concurrent systems. On the
one hand such synchronisation properties encourage the
designer to express part of the structure of the system in
terms of the synchronisation primitives proper and express
another part of the structure of the system in terms of
properties of the more conventional programming language
constructs. This may be an advantage from the standpoint of
programming but may increase the difficulty of analysis of
behaviour, since it tends to make the analysis of the
synchronisation structure of a system dependent on the
semantics of all the language constructs, rather than just on
the semantics of the synchronisation primitives.
Furthermore, to analyze the behaviours spec i fied by a program
one needs to abstract from "how" the prog ram enforces the
behaviour to "what" the behaviour is, so one might as well
choose a specification notation sufficiently abstract to
express behaviour directly. In that case the notation can
also be used to determine, for example, whe ther two programs

The Cosy approach 111

implement the same system in the sense of enforcing the same
abstract behaviour.

7.4 THE COSY MODEL

COSY (fro~ COncurrent SYstem) is a formalism intended to
simplify the study of synchronic aspects of concurrent
systems where possible by abstracting away from all aspects
of systems except those which have to do with
synchronisation.

A basic COSY path program, or generalised path is a
collection of single paths enclosed in program and endprogram
parentheses. A single path is a regular expression enclosed
by path and end.

For instance:

PR = program
Pi: path a;b,c end
P2: path (d;f)*;S-end
endprogram

In every regular expression like the above, the semicolon
denotes sequence (concatenation), and comma denotes mutually
exclusive choice. The comma binds more strongly than
semicolon, so that the expression "a;b,c" means "first a,
then either b or c". An expression may be enclosed in
conventional parentheses with Kleene star appended, as for
instance "(d;f)*" which means that the enclosed expression
may be executed zero or more times. The expression appearing
between path and end is implicitly so enclosed, so a single
path describes---cyclic sequences of actions. The
synchronisation among paths is due to common events ("b" in
the above example). Every single path describes a sequential
subsystem. The formal description of the COSY syntax may be
found for instance in Lauer (2).

The semantics of generalised paths can be described by
means of vectors of strings, an approach initiated in Shields
(3) •

With every single path P=path body end, we associate its
set of events EV(P). In the case of example PR the events
are:

Ev (Pi)
Ev (P2)

{a,b,c}
{b,d,f}

which also
subsystems.

indicates how events are distributed into

For every regular expression E, let lEI denote the regular
language described by E. For every single path P=path body
end the language Ibodyl is called the set of cycles of P and
denoted by Cyc(P), i.e. Cyc(P)=lbodYI. For example PR we

112 The Cosy approach

obtain :

Cyc(PI)={a.b,a.c}
Cyc(P2)={{d.f}*.b}

and they represent the periods of the inherently periodic
sequential subsystems, namely the single paths.

From the set Cyc(P) we construct the set of firing
sequences of P, denoted by FS(P), as follows:

FS(P)=Pref(Cyc(P)*)=Cyc(P)*.Pref(Cyc(P»

where for every alphabet A and every language LcA*:

pref(L)={xl (1- yGA*) :x.yGL}.

The set FS(P) is the set of sequences of event occurrences
specified by the single path P. For example PR we obtain :

FS(Pl)={a.b,a.c}*.{e,a}
FS(P2)={{d.f}*.b}*.{e,d,{d.f}*}

Consider a generalised path P=program Pl•.•Pn endprogram
(or simply P=PI•••Pn),where pi's are single paths. To model
the non-sequential behaviour of P=PI•••Pn, partial orders of
occurrences of events will be constructed which are
represented by vectors of strings.

A vector (xl,.••,xn) is a possible behaviour of P=Pl.••Pn
if each xi for i=l,•••,n is a possible firing sequence of pi
and furthermore, if the xi's agree about the number and order
of occurrences of events they share. To formally define the
set of possible behaviours or histories of P, vectors of
strings are introduced together with a concatenation
operation on them.

Let us consider the set Ev(Pl)*x ••.xEv(Pn)*. If the
vectors (xl,•••,xn) and (yl,•••,yn) belong to the above set
their concatenation is defined as:

(xl,•••,xn).(yl,••.,yn)=(xl.yl, •••,xn.yn).

Let Ev(P)=Ev(Pl)U •••UEv(pn), and for i=l, •••,n let
hi:Ev(P)*-->Ev(pi)* be an erasing homomorphism given by:

l
a if aGEv(Pi)

(VaGEv(P»:hi(a)=
e otherwise

where "en denotes the empty string.

Let :Ev(P)*-->Ev(PI)*x •••xEv(Pn)* be the mapping defined
as follows:

The Cosy approach 113

(II xGEv(P)*):_!=(hl(x),•••,hn(x)).

The set Vev(p)={~laGEv(P)} is called the set of vector events
of P. For example PR the vector events are :

Vev(PR)={a,b,c,d,f}
=na-;ef,(b-;b),(c,e) ,(e,d) ,(e,f)}

or indicated by distribution into subsystems and "en
replaced by blank:

Vev(PR)= PI: a.b.c .••
P2: .b •• d.£.

Again the vector events indicate distribution of events to
subsystems, and the sharing of events ("handshake"
synchronisation) by sub-systems.

For i=l,•.•,n , let []i:Ev(PI)*x .••xEv(Pn)*-->Ev(Pi)* be
a projection defined as:

[(xl,•••,xi,•••,xn)]i=xi.

Note that: (lJ ~Gvev (P)*) (V. i=l,...,n): [_!]i=hi(x),

The set of all possible behaviours or histories of P, the
vector firing sequences of P, denoted by VFS(P), is defined
by:

VFS(P)=(FS(PI)x •••xFS(pn)) r'\Vev(p)*.

The set FS(PI)x •••xFS(Pn) in the definition of VFS(P)
guarantees that each string component xi of a history
x=(xl, •.•,xn)GVFS(P) is a firing sequence of the path pi, and
the set Vev(P)* guarantees that all these firing sequences
agree about the number and order of occurrences of events
they share.

The set VFS(P) can be treated as a formal description of
the--execution semanITcs:"execute as possible (Le. not
necessarily maximally concurrent)".

If we define generalised periods by :

per(p)={_!GVFS(P)-{~}IV.i{l,•••,n}:[_!]i6Cyc(Pi) v [_l!_]i=e}

then P is periodic if

VFS(P)=Pref(Per(P)*)=Per(P)*.Pref(Per(P))

For example PR which is periodic this gives:

and

114 The Cosy approach

and showing the distribution into subsystems in Per(PR) we
get:

PI: a.c a.b e.e.a.b
P2: e.e , e.b , d.f.e.b

Let ind ~ Ev(P) x Ev(P) be the following relation:

(¥ a,b~Ev(P»: (a,b)Sind:<==>(¥ Pi)a~Ev(Pi) or b~Ev(Pi).

The relation ind is called the independency relation.
that:

Note

(a,b)Qind<==>aib & ~.~=~.~ <==> (¥ i)[~]iie ==>[~]i=e.

The definition of ind implies that only independent events
may occur concurrently. However, Lndpanderrt events may not
always occur concurrently or may never occur concurrently at
all.

Before we give formal definitions of the notions of
sequential, concurrent and maximal concurrent reachability we
will reconsider the behaviour of example PR. At the
beginning events a and d may occur in one step or one after
the other in two steps. After their occurrence in one step
both c and f may occur in one step or separately. After the
occurrence of c and f in one step again a and d may occur in
one step, and so on. On the other hand, a behaviour could
start with an occurrence of a in one step, after which band
d may occur. Hence b may occur, a case that does not arise
when independent events always occur in one step.

This example shows that the semantics "execute as much as
possible in parallel" may not be equivalent to the semantics
"execute as possible". Let us analyse this problem formally.
First of all, we must formally define the semantics "execute
as much as possible in parallel".

Let P=Pl.••Pn be a generalised path, and let Ind(P) ~ l
be the following family of sets of operations:

AgInd(P) :<==> (¥ a,bQA) (a,b)Sind.

In other words elements of Ind(p) are sets of independent
events. If A={al, •••,ak}gInd(P), then al •••••ak=ail•••••aik
for any permutation il,•••,ik so we may write A~al~••••ak.

For every xQVFS(P), an event aSEv(P) is said to be enabled
at x if and only if:

(¥i=l, •.•,n) aSEv(Pi) ==> [_!]LaQFS(Pi).

For every xQVFS(P), a set of independent events AQInd(P) is
said to be-concurrently enabled at _! if and only if every aSA
is enabled at x. For every xQVFS(P), let enabled(x) denote
the family of all concurrently enabled sets of events at x.

The Cosy approach 115

A concurrently enabled set at x, A~enabled(x), is said to be
maximally concurrent if and only if it may not be extended,
I.e. Iff (V Bgenabled(~» A£B ==> A=B.

For every x~VFS(P), let maxenabled(x) denote the family of
all maximally concurrent sets enabTed at x. Of course
maxenabled(~) £ enabled(~).

Let -s>, -c>, -m> E. Vev (P)* x Vev(P)* be the following
relations:

~ -s> y :<==> t aElEv(P» {a}Elenabled(~) & y=~.~,

~ -c> y :<==> t AElenabled(~)) y=~.~,

~ -m> y :<==> t AElmaxenabled(~)) y=~.~.

The relations -s>, -c>, -m> are called respectively: the
sequential reachability in one step, the concurrent
reachabilty in one step --and~he -maKimaIIY concurrent
reachab111ty-rn one step.

The above fact states that VFS is fully characterisable by
the relation -c>. The computer based environment, BCS, to be
discussed in a later section is nothing but an implementation
of the relation -c>, (2) and Hamshere (4).

The relation
represents the
under the rules
~rarrepr:---

Let us define:VMFS(P) = {~I~ -m>* ~}.

-m> is that mathematical object which
maximally concurrent evolution, i.e. one step
of the semantics "execute as much as possible

The set VMFS(P) represents all histories that may be
reached by a maximally concurrent evolution of the system
(the vector maximal firing sequences), so it may be treated
as a formal description of the execution semantics:"execute
~ much as possible in pararIel".

For every X E. Vev(p)*, let pref(X)={~1 O·zevev(p)*) ~.Zex}.

We will say that P is completely charaterised by maximally
concurrent evolution-iY-and only if:

VFS(P) = Pref(VMFS(P».

The above e9ual ity is ~ formal expression of the fact thattoe semantIcs "execute as much as possIble inparaITel"ana
the semantics "execute as --possible" are equivalent. -rn
JanickI et al (5) we gIVe some sufficient condltlons for a
system to be completely characterized by maximal concurrent
evolution alone, which permit the time taken to simulate
behaviours of the sytem to be improved by a factor of eight.

116 The Cosy approach

The formal model of behaviour permits us to speak formally
of dynamic properties of systems specified by a generalised
path P=Pl.••Pn.

We say that P=Pl•.•Pn is deadlock free if and only if:

'1./ ~~VFS (P))(1- a~Ev (P)) .!.~gVFS(P),

that is every history.! may be continued.

We say that P=Pl•••Pn is adequate if and only if:

'1./ ~~VFS(P))('1./ agEv(P))(1- ygVev(p)*) .!.:t..~~VFS(P),

that is, if every history x of P may be continued eventually
enabling every event in-Po Adequacy is a property kin to
absence of partial system deadlock. More details c n be
found in (3), Shields (6) and Lauer et al (7).

7.5 FORMAL RESULTS ABOUT THE MODEL

A large number of formal results have been prov d bout
the COSY model in the past ten years. We bri f y discuss
three types of such results below.

7.5.1 Static Criteria for Adequacy and Periodicity

We have discovered a number of sub-class s of COSY
specifications which permit the deduction of th ir adequacy
from the structure of their description. ~or larger
sub-classes we have obtained results which permit the
compile-time calculation of bounds for the runtime r quired
to check adequacy dynamically. Details can be found in
(3),(6),(7) and Best (8).

7.5.2 Equivalence of COSY Specifications

On the basis of the relationship between partial orders
and vector firing sequences we have introduced a notion of
equivalence for COSY specifications with different numbers of
sequential components, and we have discovered two normal
forms for vectors of firing sequences, see Janicki (9).

7.5.3 Mathematical Results about vector Firing Sequences

Shields (6) and (10) are extensive presentations of the
mathematical properties of vector firing sequences, and in
particular the notions of periodicity, and various order
theoretic (e.g. existence of least upper bounds) properties
are subjected to a careful study.

The Cosy approach 117

7.6 TRANSFORMATIONAL DEVELOPMENT OF SPECIFICATIONS

By transformational development of a specification we mean
the development of a specification starting from some initial
specification by a sequence of syntactic transformations
which produce intermediate specifications, until some
specification is reached which is considered final for the
purposes for which it was required. In the COSY theory we
have developed two kinds of techniques for transformational
development which guarantee that semantics of some kind are
preserved in each step of the development process.

7.6.1 Constrained Expansion and Reduction Rules

In the first type of technique, substitution, expansion
and transformation rules are used to generate specifications
which are adequate by construction. It can be shown that all
specifications which have been generated in this way have a
special behaviour, they are all periodic. Reduction and
excision rules can be used to decrease the complexity of a
specification or to break it into several disjoint
specifications. Details can be found in (3),(10) and Hillen
(11)•

7.6.2 Decomposition of Sequential into Concurrent Systems

The second type of technique involves the decomposition of
sequential systems into semantically equivalent concurrent
systems. Given a sequential COSY specification one can
define abstract resources which the system is to use and
there exists an algorithm for decomposing the squential
specification into a maximally concurrent and functionally
equivalent one.

This is important because of the following theorem and
9thers proven in (9) and Janicki (12).

Theorem

Given sequential and concurrent specifications Sand R,
respectively:

If C and S are functionally equivalent then C is adequate.

This means that it is possible to verify the adequacy of COSY
specifications by first giving a sequential solution which is
adequate by· definition, transforming it into a concurrent
specification and using the above mentioned algorithm to
verify functional equivalence, which by the above theorem
guarantees the adequacy of the concurrent specification.

118 The Cosy approach

7.7 DEVELOPMENT OF A COMPUTER BASED ENVIRONMENT FOR COSY

We have implemented a computer based environment which
supports the systematic design, development and semantic
analysis of specifications written in the COSY notation.

7.7.1 The Basic COSY System : BCS

This system permits one to enter basic COSY specifications
via a context editor or a screen editor, to incrementally
debug and compile such specifications, and to simulate them
interactively or automatically. The system includes an
automatic logging system, a version management system, a
facility for producing reports during interactive use of the
system, flexible context switching between different
sUb-facilities of BCS and between BCS and the host operating
system without losing contexts switched from, and many other
facilities which support the general software development
process. Lauer (13) is a detailed user introduction to COSY
and BCS.

7.7.2 The COSY Dossier

The dossier concept was introduced to integrate the
facilities belonging to BCS, for organizing the information
obtained about systems by means of BCS, and for managing the
process of system development and analysis in general.
Details can be found in (2).

7.8 HIGH LEVEL COSY NOTATION

During the development of the COSY notation the need to
provide the system designer with a t~actable tool for design
became apparent. Path expressions do not do this very well
in themselves. Thus, one effort of our work has been towards
the development of higher level descriptive notations. Two
more notations were developed:

Macro notation To formulate COSY systems in a concise and
-----general way, generators have been introduced in the

notation which may represent a finite but possibly
indefinite number of repetitions of re~ularities of
structure in basic COSY programs, see Lauer et al (14)
and Cotronis (15).

System notation To express hierarchy, modularity, and levels
of abstractness of a design, the nota tion has been
equipped with a (SIMULA) class-like macro construct for
which we use the term "system" (14) and Torrigiani and
Lauer (16).

The semantics of programs in the macro and sr stem notations

The Cosy approach 119

can be given in terms of the semantics of equivalent basic
programs generated by expansion. A computer based
environment called CS is being implemented which extends the
BCS environment to include the high level notations, see
Lauer (17).

7.9 APPLICATIONS OF COSY

7.9.1 Operating System Problems

The COSY model has been applied in the analysis of most of
the standard synchronisation problems and solutions discussed
in the literature on operating systems. These solutions have
been verified within the COSY model and published in the
papers (2),(3), Lauer and Shields (18) and (19), and Lauer et
al (2~).

7.9.2 Network Protocols

COSY has also been used to specify and verify
protocols and has been found to nicely extend the
state machine based verification techniques prevalent
area. For details see Cotronis and Lauer (21).

network
finite

in this

7.9.3 Train Journeys

COSY has also been applied to study the behaviour of
systems other than computer systems. One such application is
in the specification of the behaviour of a highly concurrent
model train set. Details are in Shields (22), Janicki and
Lauer (23), Devillers (24) and Koutny (25).

7.1~ VLSI IMPLEMENTATION OF COSY

Recently we have developed a VLSI implementation
by implementing each sequential subsystem by a PLA,
concurrency by running the PLAs simultaneously, and
synchronisation by a decentralised "busy waiting"
connecting these PLAs, see Li and Lauer (26).

of COSY
achieving
enforcing
mechanism

7.11 RELATION OF COSY MODEL TO OTHER APPROACHES

The COSY model has been formally related to a number of
differing approaches to distributed systems. One group of
workers has tended to concentrate on the development of
mathematical models of such systems. Another group has
concentrated more on the development of programming notation
for such systems. We will discuss these two groups
separately below.

120 The Cosy approach

7.11.1 Other semanic models

7.11.1.1 Translation of COSY to Labeled petri Nets: We will
briefly explain the translation-from basic COSY--piograms to
labelled marked condition/event nets. The current net
semantics of basic COSY programs is obtained by translating
each component sequential path into a labelled state machine
represented as a net, i.e. representing transitions by boxes.
For example, the paths

PI: path a;b;a end P2: path a,c;d end

would individually give rise to

c!t ~ ~ .Ci1
Net of PI

:)0 tl) t2

Net of P2

Fig.7.1 Nets of individual paths

Once the nets corresponding to the individual paths have
been obtained, for example, two nets called Nl and N2, one
applies a composition rule denoted by "$" to the two nets,
written Nl$N2, constructed from Nl and N2 by the
identification of transitions with the same label.

We may now give the construction of Nl$N2 from nets Nl and
N2, and illustrate it with the two example paths above

1. The set of places of Nl$N2 is the set theoretic union of
the sets of places of Nl and N2, with inherited markings.

2. Suppose t is a transition in either Nl or N2 such that no
transition in the other net is labelled with the label of
t, then Nl$N2 contains a transition t, wi th the same
label as t, whose input and output places are the same as
those of t (recall 1).

3. Suppose tl and t2 are transitions 0 f Nl and N2,
respectively, with the sa .e label, then NlEDN2contains a
transition (tl,t2) with the same label as tl and t2 and
whose set of input (respectively output) places is the
union of the sets of input (respectively output) places

The Cosy approach 121

of tl and t2.

"en may be shown to be commutative and associative. If
P=Pl •••Pm and Ni is the marked labeled state machine
associated with pi, then the net associated with P is defined
to be Nle•••eNm.

The result of applying these rules to our example paths PI
and P2 is then :

Fig.7.2 Net of PleNet of P2

A number of results about the correspondence of COSY
sub-languages and sub-classes in the hierarchy of Petri Nets
classified with respect to structural (and related
behavioural) complexity, have been obtained. This formal
correspondence permits the transferral of results from one
model to the other. Details are in (7) and (8).

7.11.1.2
contains
Milner's
(27).

Calculus of Communicating Systems: Shields (10)
some lnitTal comparlsons of VFS semantics and
calculus for communicating systems CCS, see Milner

7.11.1.3 Structural Operational Semantics: Li and Lauer (28)
presents a semantlc for COSY notatlon in terms of the
sructural operational approach of Plotkin (29), and
demonstrates that this semantics is equivalent to the VFS
semantics for COSY. Previous definitions of concurrency in
the operational approach reduced concurrency to interleaving,
whereas our definition models true concurrency. The
operational approach has been used to define the semantics of
a number of programming languages including ADA, Edison, CSP
and CCS, see Li (30), and our result allows a straight
forward extension of these semantic definitions to model true
concurrency.

122 The Cosy approach

7.11.2 Programming Notations

The COSY model has been used to specify and study
behavioural semantics of a number of programing notations
involving synchronisation or communication primitives.

7.11.2.1 Communicating Sequential Processes Lauer (31)
relates the COSY model to Hoare's communlcating sequential
process notation and its corresponding trace semantics, see
Hoare (32).

7.11.2.2 Extended Semaphore Primitives: Shields and Lauer
(33) contains a formal semantics of Agerwalla's extended
semaphore primitives (34) and develops a concurrency
preserving translation from programs' involving these
primitives into the COSY notation.

7.11.2.3 Monitors: Cotronis and Lauer (35) shows how various
types of monitors can be formulated in the high level COSY
notation as system definitions. This allows one to treat
such monitors as high level primitives in COSY, and
illustrates the use of COSY as a software specification tool.

7.12 ACKNOWLEDGEMENTS

The work outlined here was financed by a number of grants
from the Science and Engineering Council of Great Britain.
Contributors to the work on the COSY model are indicated by
the appearance of their names in the references.

7.13 REFERENCES

1. Brauer, W. (Ed.), 1980, 'proceedings of the
Advanced Course on General Net Theory of Processes
and Systems' , Hamburg, 1979, Lecture Notes in
Computer Science ~, Springer Verlag.

2. Lauer, P.E., 1982,
Distribted Computing
109-147.

'Computer
Systems,

System Dossiers',
Academic Press Inc.,

3. Shields, M.W., 1979, 'Adequate Path Expressions',
Proceedings of the International Symposium on the
Semantics of Concurrent Computation,
Evians-les-Bains, Lecture Notes in Computer Science
2!, Springer Verlag, 249-265-.------

4. Hamshere, B.C., 1983, 'A computer based environment
for the design and analysis of coricu rrent systems :
SIMULA implementation of the C()SY notation',
Proceedings of the 11th Ann. ConL of the
Association of SIMULA Users, Paris.

The Cosy approach 123

5. Janicki, R., Lauer, P.E., Devillers, R., 1983,
'Maximally concurrent evolution of non-sequential
systems', Proceedings of the 4th European Workshop on
Applications and Theory of petri Nets, Toulouse,
188-202.

6. Shields, M.W., 1981, 'On the non-sequential
behaviour of a class of systems satisfying a
generalised free-choice property', Technical Report
CRS 92-81, Computer Science Department, University of
Edinburgh.

7. Lauer, P.E., Shields, M.W., Best, E., 1979, 'Formal
Theory of the Basic COSY Notation', Technical Report
143, Computing Laboratory, University of Newcastle
upon Tyne.

8. Best, E., 1982, 'Adequacy properties of Path
Programs', Theoretical Computer Science ~,
North-Holland Publishing Co., 149-171.

9. Janicki, R., 1982, 'Partial orders and vectors of
firing sequences' , Report ASM/99, Computing
Laboratory, University of Newcastle upon Tyne.

10. Shields, M.W., 1982, 'Non sequential behaviour 1',
Technical Report CRS 120-82, Computer Science
Department, University of Edinburgh.

11. Hillen, D., 1983, 'Adequacy-preserving substitution
and reduction rules', Report ASM/108, Computing
Laboratory, University of Newcastle upon Tyne.

12. Janicki, R., 1982, 'Transforming sequential systems
into concurrent systems', Report ASM/93, Computing
Laboratory, University of Newcastle upon Tyne.

13. Lauer, P.E., 1983, 'User's introduction to BCS : a
computer based environment for specifying, analyzing
and verifying concurrent systems', Report ASM/107,
Computing Laboratory, University of Newcastle upon
Tyne.

14. Lauer, P.E., Torrigiani, P.R., Shields, M.W., 1979,
'COSY A system specification language based on
paths and processes', Acta Informatica 12, Springer
Verlag, 109-158. -

15. Cotronis, J.Y., 1983, 'programming and Verification
of Asynchronous Systems', Ph.D Thesis, Computing
t.aborat.oryj University of Newcastle upon Tyne.

124 The Cosy approach

16. Torrigiani, P.R., Lauer, P.E., 1977, 'Towards a
macro notation for path expressions: examples of
resource managing', AICA 1977, Annual Conference, 3rd
Volume Software Methodologies, 349-371.

17. Lauer, P.E., 1982, 'Realization
formalism in a computer based
designing distributed systems',
Computing Laboratory, university of
Tyne.

of a high-level
environment for
Report ASM/104,
Newcastle upon

18. Lauer P.E., Shields, M.W., 1980, 'COSy An
Environment for Development and Analysis of
Concurrent and Distributed Systems', Proc. of
Symposium on Software Engineering Envi~ntS;
Lahnstein, June 1980, (Ed. H Hunke), North-Holland
Publishing Co;-I19-l56.

19. Lauer, P.E., Shields, M.W., 1981, 'Interpreted COSY
programs : Programming and Verification', Proceedings
2nd International Conference on Distributed computlng
SYStems, Paris, IEEE Computer-Society Press, (Ed. E
Gelenbe), 137-148.

20. Lauer, P.E., Shields, M.W., Cotronis, J.Y., 1981,
'Formal behavioural specification of concurrent
systems without globality assumptions', Int. Colloq.
on Formalization of Programming Concepts, Lecture
Notes in Computer Science 107, Springer Verlag,
IT5"=T50~

21. Cotronis, J.Y., Lauer, P.E., 1983, 'Two way channel
with disconnect', Proceedings of the SERC and STL
workshop on Analysis of Concurrent Systems, Lecture
Notes in Computer Science (to appear), SpringerverIag.-

22. Shields, M.W., 1979, 'COSy train journeys', Report
ASM/67, Computing Laboratory University of Newcastle
upon Tyne.

23. Janicki, R., Lauer, P.E., 1982, 'Toward a solution
of the Merlin-Randall problem of train journeys',
Report ASM/95, Computing Laboratory, University of
Newcastle upon Tyne.

24. Devillers, R., 1982, 'The train set strikes again',
Report ASM/105, Computing Laboratory, University of
Newcatsle upon Tyne.

25. Koutny, M., 1984, 'On the Merlin-Randall problem of
train journeys', 6th International Symposium on
programming, Lecture Notes in Computer Science (to
appear), Springer ver~ -

The Cosy approach 125

26. Li, W.L., Lauer, P.E., 1984, 'A VLSI implementation
for COSY', Report ASM/121, Computing Laboratory,
university of Newcastle upon Tyne.

27. Milner, R., 1980, 'A
systems', Lecture Notes
Springer Verlag.

calculus of
in Computer

communicating
Science ~,

28. Li, W.L., Lauer, P.E., 1984, 'Using the structural
operational approach to express true concurrency',
Report ASM/119, Computing Laboratory, University of
Newcastle upon Tyne.

29. Plotkin, G., 1981, 'A
operational semantics' ,
University, Denmark.

structural approach to
Lecture Notes, Aarhus

30. Li, W.L., 1983, 'An operational approach to
semantics and translation for concurrent programming
languages', Ph.D. Thesis, University of Edinburgh.

31. Lauer, P.E., 1981, 'Synchronisation of concurrent
processes without globality assumptions', New
Advances in Distributed Computer Systems, NATO
Advanced Study Institute Series C80, Reidel
Publishing Co., 341-365.

32. Hoare, C.A.R., 1980, 'Synchronisation of parallel
processes', Advanced TeChni?ueS for Microrocessor
Systems, (Ed. Hanna, F.K. , Peter-Pereg[lnus Ltd,
108-111.

33. Shields, M.W., Lauer, P.E., 1979, 'A formal
semantics for concurrent systems', Proc. 6th Int.
Colloq. for Automata, Languages and Programming,
Graz, July 1979, Lecture Notes in Computer Science
2!, Springer Verlag, 571-584-.----

34. Agerwala, T., 1977, 'Some
primitives', Acta Informatica
201-220.

extended semaphore
~, Springer Verlag,

35. Cotronis, J.Y., Lauer, P.E., 1979, 'On definitions
of various notions of monitors in the COSY notation',
Report ASM/58, Computing Laboratory, University of
Newcastle upon Tyne.

Chapter 8

Ease of use through proper specification
Roger Gimson and Carroll Morgan

8.1INTRODUCTION

In this chapter we describe a project whose aim is to construct a distributed
operatinl system which would -make the programminl and application of multiple
microprocessor networks as simple and natural as the prolrammine of sinlle microprocessor
workstations is today". In order to achieve this, we decided very early that it would be
necessary to use in the construction the most up-to-date techniques for software specification,
design, and development that were available to us. Our hope was that by doing this

we could use specifications to explore designs motivated purely by ease-of-userather
than by ease-ef-implementation (since specification allows abstraction from
implementation constraints),

we would have a precise notation in which such designs could be reliably
communicated to others, and which would assist the discovery and discussionof the
designs' implications,

it would be possible to present the specifications directly in the user manualsof our
operatinl system, thus increasinl their precision while decreasing their size, and

we could use the mathematical techniques of program refinement to produce
implementations which were hilhly likely to satisfy their specifications (and hence
would also be accurately describedby their user manuals).

It seemed especially important that those benefits should be realised in the
construction of a distributed operatinl system - because distributed operating systemsoffer
the rare opportunity for the user to control the system, rather than vice versa. The high
bandwidth of current local area networks allows eff ic ient modularity; for example, a
structure consistine of larlely autonomous services and clients is entirely feasible. In such a
system, the choice between (rival) services, and the manner in which they are used,would be
entirely up to the clients. This is the basis of the open systems approach: provided services
are well-specified, clients are free to make use of them in whatever manner is consistentwith
their specification.

8.2 ~ !:!!§! EXAMPLE

One of the most visible parts of any operatine system is ill file system. Eventoday,
the design of these range in quality from excellent to horrific - inour opinion. Othersmay
think instead that they range from horrific to excellent: that is, thefeatures one usercannot

Ease of use through proper specification 127

do without, another may abhor. It is through such features that an operating system
controls (even the thouahts of) its clients, and this is exactly what we hope to avoid.

A file ser vice in a distributed operatina system is there to be shared by as many
clients as possible. To achieve this, it must be unopinionated: it must have so few features
that there is nothing anyone could object to. It is only in the context of specification that
we can propose such a radical design; any less abstract context introduces efficiency
constraints. Some of these, of course, will have to be met eventually, but perhaps not all of
the ones that might conventionally be presumed necessary. We must not introduce such
constraints simply because we could not express ourselves without them: first we state what
we would like - then we compromise.

As an example, we propose the simplest file system design we could imagine. We
describe it as a partial function files from the set NAMEof file names to the set FILE of
all possible files; we say nothina about the structure of the sets NAMEand FILE themselves:

files: NAME~ FILE

The mathematical notation above introduces the variable files, and gives its type as
NAME~ FILE. The English text states that this variable is to describe the file system. Our
style of mathematical specification is an example of the Z specification technique, and we
will continue to use it below. It is not possible for us to fully explain Z itself in this paper,
but we hope its flavour will be evident; the bulk of the meaning will be conveyed by the
English. Sufrin (9) and Morgan (4,5) together give an introduction to Z. The final
section of this chapter provides a glossary of mathematical symbols.

We propose two operations only on the file system: StoreF i l e stores a (whole) file,
and Retr ieveF i l e (destructively) retrieves it.

StoreF i Ie

Let files be the state of the file system before the operation, and let files' be
the state afterwards. Let file? be the file to be stored, and let name! be some name, chosen
by the file system, which will refer to the newly stored file (we conventionally use names
ending in ? for inputs, and in ! for outputs). That is, given

files, files': NAME~ FILE
fi Ie? FILE
name! NAME

the effect of StoreF i Ie is to choose a new name, which is not currently in use

name! _ dom files

and to update the partial function so that after the operation, it maps the new name to the
newly-stored file

files' = files. [name! ~ file?]

(We notice as an immediate advantage of our abstraction that we have given the
implementor the freedom to store identical but differently named files in single or multiple
copies, as he chooses.)

Retr ieyeF i Ie

Let files be the state of the file system before the operation, and let files' be
the state afterwards. Let name? be the name of the file to be retrieved, and let file! be the

128 Ease of use through proper specification

file itself. That is, given

files. files': NAME~ FILE
name? NAME
fi Ie! FILE

the effeet of Retr ieveF i Ie is to return the named file to the client

file! = files (name?)

and to remove the name (and hence the file) from the partial function which represents the
file system

fi les' files / {name?}

The description above is of course infeasible with today's technology - which is a
pity. It would be too inefficient to have to retrieve a whole file just to read one small piece
of It, But how wonderful it would be if a file system could be so simple! We must take as
our consolation that at least we were able to describe it.

8.3nm ~ COMPROMISES

The best we can do with our simple file system is to use it as the basis for a
development of a more practical design - and the description above provides a context into
which the necessary compromises can be introduced. Here are some of them (in no particular
order):

Compromise

It must be possible to read the
file without deleting it.

The communication medium is
not entirely reliable a
breakdown 4uring retrieval could
destroy the file without
returning its contents.

Clients must be prevented from
destroying the files of others
(remember, a file can't be
updated).

Mistakes are inevitable - even
honest clients could accidentally
destroy another's file if not
prevented.

Files must be given a limited
lifetime, and clients must be
charged for their storage.

Any implementation of the file
system. however capacious, will
still be finite.

We introduce these compromises in a revised design (again using the notationof Z
largely without explanation). First, we name three new sets

CLIENT - the set of client identifications,

TIME - the set of instants (e.g. seconds from 1/1180 - but we neednot be
specific here),

Ease of use through proper specification 129

COST - the set of costs (e.g. pence).

A file is extended to include its owner, and its time of creation and (eventual)
expiry. DATAis a fourth new set which contains all the possiblevalues a client could store in
a file (its contents). We will collect these attributes in a schema FILE, and state at the
same time that in any file. the creation time must precede the expiry time:

FILE -,

owner CLIENT
created.
exp ires TIME
contents DATA

created ~ expires

The schema 55 below describes the state of the file storage system itself:

ss ~

I files: NAME..•• FILE

and the schema ASSdescribes the general aspects of any operation on it:

Ass ~

files. files': NAME..•• FILE
who CLIENT
when TIME

who is the identity of the client performing the operation, and when is the time at which it
is performed. We can abbreviate ASS (without changing its meaning) by building it from the
schema 55 instead of directly from the variable files:

storeF i Ie

Ass ~

55
55'
who CLIENT
when: TIME

The (revised) storeF i l e operation we will present as a schema including the
variables f i Ies, f i I es', who, and when (supplied by ASS), as well as the data to be stored
(contents?), the expiry time (expires?), the new name chosen by the service(name!), and
the charge made in advance (cost!):

130 Ease of use through proper specification

5toreFile ,

655
contents?: DATA
expires? TIME
name! NAME
cost! COST

3FILE'. owner'
created'
expires·
contents'

= who
= when

expires?
= contents?

name!
files'
cost!

_ dom fi les
files. [name! ~ FILE')
Tariff (FILE')

A new file FILE' is constructed which is owned by the client storing it, records its
creation time as the time it was stored, which will expire at the time the client specified
(then becoming inaccessible),and whose contents the client supplies.

A new name name! is chosen. not currently in use. and the file is stored under that
name. The charge made is some function Tar iff of the file (hence of its owner, creation
and expiry times, and contents). Here is a possible definition of Tar iff (which depends in
turn on some function 5 ize):

ReadFj Ie

Tariff = ~FILE. (expires - created) * 5ize(contents)

The ReadFi l e operation returns the expiry time and the contents of the file stored
under a given name. Its parameters are the name of the file to be returned (name?),when it
will expire (exp ires!), and its contents (contents!):

ReadFile --,

655
name? NAME
exp ires! TIME
contents!: DATA

55' = 55

3FILE. FILE = files (name?)
expires > when
expires! expires
contents! = contents

ReadFi Ie does not change the state of the service. The map files is appliedto the
name, to determine the file's value FILE, which must not have expired. Its expiry time and
contents are returned.

Ease of use through proper specification 131

DeleteFile

The DeIeteF i l e operation removes a file from the service. A rebate is offered as
an incentive to deletion before expiry. name? is the name of the file to be deleted, and
cost! is the (possibly negative) charge made for doing so (we assume negation ,,_- is
defined on COST):

DeIeteFiIe -,

1155
name?: NAME
cost!: COST

3FILE. FILE = files (name?)
eICpires > when
owner
fi Ies'
cost!

who
files \ {name?}
- Rebate (FILE, when)

The map files is applied to the name, to determine the file's value FILE, which
must not have expired. It must be owned by the deleting client. The file's name name? (and
hence the file itself) are removed from the partial function which represents the stored files,
and the cost is determined by a function Rebate of the file and its deletion time. Here is a
possible definition of Rebate:

Rebate = XFILE; when: TIME. (eICpires - when) * Size(contents)

Naturally, there are other compromises which could be made, in addition to or
instead of those above. In the next section. however, we discuss a compromise which we
suggest should not be made.

8.4 ~ COMPROMISE AVOIDED

One glaring inefficiency remains in our proposal: that we must transfer whole files
at once. Many clients will not have time or the resources (e.g. local memory) to do this.
But here we will not compromise by modifying our file storage service to cater for this
inefficiency _ rather we insist that the business of the file storage service will be storage
exclusively. Partial examination and updating will be the business of a file updating service.

To propose a service which treats the contents of files as having structure, we must
propose a structure. The proposal we make is the very simple view that the contents of files
is a sequence of pieces. (Sequencesare functions from the natural numbers INto their base
type, and begin at Index L) We do not say what a piece is, however.

DATA ~

I seq PIECE

The file updating service in fact has no state; all its work is donein the calculation
of its outputs from its inputs. Its two operations are ReadOata and UpdateData.

ReadData

132 Ease of use through proper specification

ReadData takes the contents of a file contents?, a starting position start?, and
a number of pieces to be read number?, and returns the data pieces! at that position
within contents? (lipieces! is the length of the sequencepieces!, and 1.. lipieces! is the
set {i: IN I 1 ~ i ~ lipieces! }.)

ReadData --,

contents?: DATA
start? •
number?
pieces!

IN
DATA

IIpieces! min (number? (llcontents? - start?))

Vi: 1.. lIpieces!. pieces!(i) = contents?(i + start?)

The length of the data returned is equal to the number of pieces requested, if
possible; otherwise. it is as large as the length of contents? will allow. The i-th piece of
pieces! returned is equal to the (i+start?)-th piece of contents?

UpdateData

UpdateData takes the contents of a file ccntent s", a position st ar t", and some
data pieces?, and returns an updated contents contents!.

UpdateData -,

contents?
contents!
start?
pieces?

DATA
IN
DATA

IIcontents!
start?

max (llcontents? (start? + IIpieces?))
~ IIcontents?

Vi: 1.. lIcontents!.
(i - start?) e l .. lIpieces? _ contents! (i) = pieces?(i - start?)
(i - start?) _ 1. . lipieces? _ contents! (i) = contents?(i)

The length of the new contents is equal to its original lengt.h,unless an extension
was necessary to accomodate the new data; however, the new data must begin within the
original contents or immediately at its end The i-th piece of contents! is equalto the
(i-start?)-th piece of pieces?, if this is defined; otherwise. it is equal to the i-th piece
of contents?

Our proposal is of course only one of the many possible (for example,see the
definition of these operations in Morgan and Sufrin (6». We could, of course, propose
several updating services, each providing its own set of facilities.]Moreover, theoriginal
operations which transferred whole files would still be available to those clients ableto use
them. (Seefigure 8.1).

Ease of use through proper specification 133

Pieces
Transferred

Fisurc 8J

Whole
Files
Transferred

Pieces
Transferred

134 Ease of use through proper specification

8.S MODULARITY :Y:m COMPOSmON Qf SERVICES

The structure we have presented above separates the issues of how files should be
stored from how they should be manipulated. As a result, we have offered the user an
unusual freedom of choice - he can read just one piece of a file, or he can treat a file as a
single object (with the corresponding conceptual simplification; Stoy and Strachey (8) for
example allow this in their operating system OS6).

Still, it's likely that a further compromise will be necessary:for large files, the time
taken to transfer the file between the two services (storage and updating) may not be
tolerable. We solve this not by changing our design, but by an engineering decision: for
applications that require it, we will provide the two services together in one box, and the
transfers will be internal to it. (See figure 8.2.) Its specification we construct by combining
the material already available.

storeF iIe, ReadFiIe, and DeIeteF iIe will be available as before. We introduce
two new operations, however - ReadstoredF i l e, and UpdatestoredF il e - whose
specifications will be formed by composing the specifications given above. (The schema
composition operator J, used for this, is defined in (04). Here, we will explain it informally.)

ReadstoredFjIe

Reading a stored file is performed by first reading the whole file with ReadFiIe,
and then reading the required portion of its contents using ReadData. In Z we write this

below:

ReadstoredFiIe ~ ReadFiIe J ReadData

If we were to expand this definition of ReadstoredF iIe, the result would be as

ReadstoredFile -,

ASS
name? NAME
start?,
number? IN
expires!: TIME
pieces! : DATA

55' = sS

3FILE. FILE files (name?)
expires > when
expires! expires

IIpieces! = min (number?, (llcontents - start?»
Vi: l .. lIpieces!. pieces!(i) = contentsCi + start?)

ReadStoredF ile takes a file name name?, a starting position start?, and a number
of pieces number?, and returns the expiry time of the file expires!, and the data pieces!
found at the position specified. (expires! is returned by ReadStoredFi Ie becauseReadFile
returns it; we could have dropped this extra output, but choose not to introduce the Z
notation for doing so.)

Ease of use through proper specification 135

·Whole
Files
Transferred"

< >

FIaure 8.2 Updating and ltorage ICrvicc

136 Ease of use through proper specification

UpdateStoredFjle

The complementary operation UpdateStoredF iLe is a more difficult composition,
since we must accumulate the costs of the component operations. and we must ensure the
updated file is (re-)stored under its original name. For the sake of honesty, we will give the
definition, but we will not expand it:

UpdateStoredFile Q

ReadFi l e ,
OeleteFile [dcost!/cost!l ,
UpdateOata ,
StoreFile [name?/name!. scost!/cost!l ,
(dcost? scost? cost!: COSTI cost! = dcost? + scost?)

UpdateStoredF i l e first reads the whole file, then deletes it, then updates it, and
then stores its new value under its original name. Finally, it presents as its overall cost the
sum of the two charges made by OeleteF iLe (which may well be negative) and StoreF iLe,

Machine assistance in the manipulation of expressionssuch as the above is the subject
of a separate research project within the Programming Research Group (the Software
Engineering Project).

What we have done is to compose two simple but infeasible operations to produce a
more complicated but feasible one (rather like the use of complex numbers in electrical
engineering, for example). Naturally, the implementor will not transfer whole files back and
forth within his black box on every read and update operation - but nevertheless the
updating and storage service provided by the box must behave as we have specified. Our
decomposition was chosen for economy of concept; the implementor's must be chosen for
economy of time and equipment, and the whole range of engineering'techniques are available
to him to do so (caches,update-in-place, etc.).

8.6EXPERIENCE§Q FAR

While we have followed the general principles above, we have in fact adapted to
constraints in different ways. Our storage service, which we have Implemented in prototype,
stores blocks of a fixed size (rather like the service described in Bickert (I». This
distinguishes our "universal" storage service from, say, the one implemented at Cambridge
(described in Needham (7». Organisation of blocks into files, the keeping of directories,etc.
is done by software in the clients' own machines (for example, using a -File Package"
(Gimson (2». This allows clients freedom in the choice of what file str-ucture they build, but
of course makes the sharing of files more difficult. If one package sholdd becomepopular, it
could be placed in a machine of its own, and so become a service.

It has not been possible to cover many aspects of our work in this presentation.For
example, the specification of the errors that may occur in use is an essential part of the fuU
specification of a service, and is included in service user manuals (for example seeMorgan
(3».

We can't claim to have made "the programming and application of multiple
microprocessor networks as simple and natural as the programming of single microprocessor
workstations" - not yet. So far, the pressure of simplicity in our mat.bematicaldescriptions
has kept our designs correspondingly simple. At present, they are perll2ps too muchso; but
by using "the most up-to-date techniques for software specification _- we have built basic
serviceswhich genuinely are simple. And that is where one must begin.

Ease of use through proper specification 137

8.7 FUTURE ~

The styles of specification, and of presentation of user manuals. has to some extent
been developed in parallel with the software to which they have been applied. These styles
are now more stable, and we intend to specify, design, and implement further services in the
same way.

Our goal is to produce a suite of designs from which implementations can be built
on a variety of machines. Each design will be documented, in our mathematical style, both
for the user and for the implementor. Thus we can say that our primary goal is to
construct a distributed system on paper.

For our paper construction to have any value, the designs proposed in it must be
widely applicable, and genuinely useful. We expect our machine-independent techniques of
description to take care of the first requirement, To ensure that the second is met, we must
construct prototype implementations of each of the designs, and we must gain experience of
their use.

8.8GLOSSARY Qf SYMBOLS

Q -is syntactically equivalent to"
IN The set of natural numbers (non-negative integers)
{s i9 I pr ed} The set of 5i9 such that pr ed

m•• n The set of natural numbers between m and n inclusive

m.•n Q {k: ~ I m ~ k ~ n}

A -++ B
[al-+bl
f(x)

The set of partial functions from A to B
The function {(a •b)} which takes a to b
The function f applied to x

dam The domain of a relation (or function)

for f: A-++B,

dam f Q {a: A I (3 b: B • b f(a))}

, Domain co-restriction

for f: A-++B;e.!; A,

f \ a Q {(a.b): f I a _ a}

• Functional overriding

for f. 9: A-++B,

f • 9 Q (f' dam 9) u 9

seq A The set of sequenceswhose elements are drawn from A

seq A Q {s: IN-++ A I (3n: IN. dom 5 = 1. .n)}

138 Ease of use through proper specification

115 The length of sequence5

dom 5 = 1..115

Inew/oldl Schema variable renaming
Schema forward composition

REFERENCES

1. Biekert, R.• and Janssen, B., 1983,"The implementation of a file system for the open
distributed operating system Amoeba", Informatica Rapport, Vrije Universitiet.
Amsterdam.

2. Gimson, R. B., 1983,·A File Package - User Manual", Distributed Computing Project
Working Paper. Programming ~ Group. Q!!2!:!l University

3. Morgan, C. C.. 1983, "A Block Storage Service - User Manual", Distributed
Computing Project Working Paper. Programming ~ Group. Q!!2!:!l University

4. ---, 1984,"Schemas in Z - a preliminary reference manual", Distributed Computing
Project Working Paper. Programming ~ Group. 2!f2!:!! University

S. ---, 1984, "Schemas in Z - an example", Distributed Computing Project Working
Paper. Programming ~ Group. ~ University

6. ---, and Sufrin, B.• 1984, ·Specification of the Unix File System", m!ill !l:!!!!. ~
1m&:.M!!:Ell!2!i

7. Needham, R.• and Herbert, A.• 1982."The Cambrid&e file service", in "The Cambridge
Distributed Computing System", Addison-Wesley. 41-63

8. Stoy, J. E., and Strachey, c., 1972, ·0S6 - An operating system for a small
computer", Comp. :!: ~ ~ 19S-203

9. Sufrin, B.. 1983, "Mathematics for system specification", ~ ~ 1983-1984.
Programming ~ Group. ~ University

Chapter 9

Probabilistic modelling of distributed
,,<?omputing systems

I. Mitrani

9.1. GENERAL :BACKGROUND

There are three main methods for evaluating the performance of a
complex computer system. These are (a) observing the system in opera­
~ion and taking measurements, (b) writing and running a simulation
program that mimics the behaviour of the system and (c) constructing and
solving a mathematical model that captures the essential featur~of the
system. The last of these methods is in many ways the most satisfying,
both intellectually and from the practical point of view. Its chief
advantage is that it provides deep insights into underlying trends and
functional relationships between system parameters and performance
characteristics. Also, mathematical modelling requires little or no
computing resources; hence, it is usually very cheap. On the other
hand, a mathematical model is, by its nature, only an approximation of
reality; moreover, it is often necessary to make further simplifying
assumptions in order to ensure numerical or analytical tractability.
The application of the modelling 'approach to the performance evaluation
of different types of distributed computing systems, and the accompany­
ing trade-offs between accuracy and cost, is the subject of this article.

Systems whose behaviour is influenced by random phenomena - and
computer systems certainly fall in that category due to the unpredicta­
bility of the demands placed upon them - are modelled by means of
stochastic processes. A stochastic process is a random function of
time whose value at any given moment is a possible system state. In
the cases that interest us, the system states are usually represented by
vectors of integers, and so the associated stochastic processes can be
thought of as random walks on multidimensional lattices. For example,
in a system conSisting of two computers connected by a communication
line, allowing jobs to be submitted and executed at either Site, the
system state at time t might be described by a pair of intergers,
[n1(t), n2(t)] , where n\(t) is the number of jolls waiting and/or

being executed at site i ~=1,2). The system could then be modelled by
a two-dimensional stochastic process S[n1(t), n2(t)] ; t~O}. The
state lattice and the possible one-st~p transit10ns for such a process
are illustrated in Fig. 9.1.

To specify a model completely, it is of course necessary to make
assumptions governing the probabilistic behavio~ of the associated
stochastic process. From the point of view of the analysis, it is
highly desirable (in most cases imperative) that the process possesses
the so called 'Markov' or 'memoryless' property: The states entered
after a given moment, t, may depend on the state at t, but not t itself
or on anything that happened before t. The Markov property is closely

140 Probabilistic modelling

related to the exponential distribution. The time that a Markov process
spends in any given state, on any visit to that state, is distributed
exponentially (with parameter which may depend on the state). In order
to ensure that this property holds, various random variables that a~~ect
the behaviour of the process - such as intervals between job arrivals,
job execution times, etc. - are assumed to be distributed exponentially.

Fig. 9.1. State transition lattice

We are interested mainly in the long-run, or equilibrium, or
steady-state behaviour of a system. For a Markov process whose state
vector, Set), takes values, s, in some denumerable set 1.'5", the steady­
state distribution is defined by the limits

provided that the latter exist for all states s in <r, are independent
of the initial state ~ and sum up to 1. When-it exists, the steady­
state distribution and hence other performance measures, cawa in
principle be determined by solving a system of linear equations (e.g.
see Gelenbe and Mitrani (6)

The quantities r(~,!!.'),!!.,!!.'€G",referred to as the 'Lnstantaneous
transition rates', are known; they are simple f'uncbLons o~ basic
model parameters such as job arrival rates, average execut:Lon times,
numbers of processors and terminals, etc. It is intuitiveLy appealing

Probabilistic modelling 141

to interpret r(~,~') as the average number of transitions that the
process makes from state ~ to state ~', per unit time that it spends in
state~. With that interpretation, equations (9.2) become almost
obvious: they simply state that the average number of transitions out of
state s per unit time is equal to the average number of transitions into
state i per unit time, for all~. For that reason, (9.2.) are known as
the 'steady-state balance equations'.

Thus the general approach to the analysis of models which are for­
mulated in terms of a Markov process involves writing a set of balance
equations and then finding the unique solution p(s), ~ whose ele­
ments sum up to 1. However, while the first of these steps is usually
quite easy, solving the equations can be very difficult indeed. In
particular, if the state space (and hence the number of equations) is
infinite, close-form solutions are available only in a few special
cases; some of these will be described later. Even when the state
space is finite, but large, deriving an exact solution is often too
expensive to be practical. It is important, therefore, to consider ways
of obtaining good approximate solutions.

One apprOximation technique that has proved very useful in the
context of distributed computer systems consists of expressing certain
essential quantities in terms of themselves. This is done by making
simplifying assumptions about the dependencies between system components
isolating subsystems which are easily solvable and feeding the solutions
for those subsystems back into the model. The problem is then reduced
to a 'fixed-point' equation of the type x = f(x), where x is either a
scalar or a vector and is related either directly or indirectly to the
performance of interest (de Souza e Silva et al (3), Mitrani, (14)).
Such an approximation can, of course, be applied even when the under­
lying stochastic process is not Markov.

The following section is devoted to models that can be solved
exactly. The applications include multi-processors systems (with and
without breakdowns) and networks where the interactions between jobs and
processors satisfy a particular set of assumptions.

Section 3 deals with cases where those assumptions are violated,
and where only approximate solutions are available. Distributed data
bases and local area communication networks fall in that category.
Before proceeding, however, it is worth mentioning here a fundamental
result which will be very useful later.

Consider an arbitrary system where jobs arrive, spend some time and
then depart. The internal composition of the system is unimportant but
it should be in the steady-state. Let A be the average number of jobs
entering (and leaving) the system per unit time, W be the average period
that jobs spend in it and L be the average number of jobs present in it
at a given moment. Then these three quantities satisfy the relation

L = AW (9.3)

regardless of the nature of any random variables that are involved, and
whether they are independent or not. This is known as 'Littleresult',
(13). It implies that, for a given throughput, the congestion and the
response time are essentially equivalent as measures of performance.

9.2. MODELS THAT CAN BE SOLVED EXACTLY

All systems examined in this section are modelled by Markov
processes. We shall claSSify them according to their dimensionality,
i.e. the number of elemen~s in the vector describing the system date.

142 Probabilistic modelling

9.2.1 Multiprocessor Systems with a Single Job TYpe

Suppose that all jobs submitted for execution at a computer
system are of the same type, i.e. they are statistically identical.
The computing resources consist of N identical processors, each of
which executes jobs, one at a time, to completion. When there are more
than N jobs in the system, N of them are being executed, while the rest
wait in a common queue. To ensure that the memoryless property holds,­
assume that the arrival instants form a Poisson stream (with rate ~ per
unit time) and that job execution times are exponentially distributed
(with mean 1/ to'). Then the system state at time t is completely descri­
bed by a Single integer, net), specifying the number of jobs that are
waiting and/or being served at that time. Moreover, {.n(t), t~O} is
a Markov process which attains steady-s,tateif the available processors
can cope with the work submitted, i.e. if (~/ r-) <.N.

This model is known in the queueing theory literature as the
M/M/N system (Markov arrivals, Markov service, N servers). If the
process is in state n, the only possible one-step transitions are to
state n+1 (if the next event is the arrival of a new job), or to state
n-1 (if the next event is a depar-tur-eand n ;>0). Markov processes with
a transition structure of this type are called 'one-dimensional Birth­
and-Death processes'. In our case, the average number of transitions
from state n to state n+1 per unit time that the process spends in state
n, i.e. the rate of birth in state n, is equal to ;>. for all n ~ 0:
Similarly, the rate of death in state n is equal to fAn = min(nr-, Nt"'),
since the departure rate is proportional to the number of busy process­
ors. The balance equations are easy to solve (see (6)),yielding the
steady-state distribution of the process and such performance measures
as the utilisation of the processors, average queue size and (using
Little's result), average response time. This analysis shows, for
example, that if the number of processors increases and their speed
decreases, so that the total processing capacity N~ remains constant,
the system performance deteriorates. Thus, other things being equal, a
single processor is best.

Now considerthe more interesting case where the processors are not
completely reliable. Each processor goes through alternating periods of
being operative and broken down, independently of the others. The
operative and inoperative periods are distributed exponentially, with
means 1/~ and 1/., respectively. Thus each processor is operational
for a proportion '1/(e + YJ) of the time and hence the effective number
of processors ava~lab1e is N 1/(~ + rz).

The system state at time t is described by a pair of integers
[net), met)] , where net) is the number of jobs present and met) is the
number of operative processors. There is still essentially a one­
dimensional process because m(t) takes only a finite number of values,
0, 1, ••• N. The condition for existence of steady-state is again that
the submitted load is less than the available processing]lower:
(';>./fJ'-) < N t)/(~ + y)) • However, the balance e~tions are more
complicated than in the previous case and their solution is ccnerdera­
bly more difficult (Mitrani and Avi-Itzhak (15), Neuts and Lucantoni
(17). Without going into details, the steady-state distribution of the
system state (n, m) is obtained indirectly by deterrnining-None­
variable generating functions. The derivativ~ of those generating
functions at point 1 yield the average number of jobS present and hence
the average response time.

It turns out that, in the presence of this type of -unreliability,
the optional number of processors is no longer always 1; :ingeneral, it

Probabilistic modelling 143

is greater than 1. Moreover, the closer the system is to saturation,
i.e. the closer the submitted load (}I./fA.) to the available processing
power (N']/(f + "J)] , the greater is the optimal number of processors.

The above model can be generalised in several directions.
Processors might be more likely to breakdown when they are busy than
when they are idle. There could be a finite number, R, of repairmen
(R<:N), so that a broken down processor may have to wait before its
repair can start. The distributions of operative and repair periods
may be other than exponential (this last generalisation is much more
expensive than the others).

A different problem in the area of multiprocessor systems concerns
the extent to which internal parallelism can be exploited in the execu­
tion of a job. One can construct a model of a job as a collection of
tasks, some of which can be executed in parallel on different process­
ors. The question then would be: given the structure of that collectkn,
how long does it take a certain number of processors to execute the jo"b?
Some results in that connection were obtained in Fayolle et al (5); we
shall not dwell on them here because both the model and the solution
techniques fall outside the present framework.

9.2.2 Two Job Types

A fundamentally different problem arises if the jobs arr~V1ng imo
our multiprocessor system may belong to two different types, with
(perhaps) different arrival rates and average exeuction times. The
computer mananager may wish to give unequal treatment to the two job
types and provide one of them with a better service than the other.
One way of doing this is to designate K of the N processors as 'type l'
and the other N-K as 'type 2'. Type i jobs can then be given pre­
emptive priority on type i processors (i=1,2). Thus the processing
capacity available to type 1 jobs is K When there at least N-K type 2
jobs in the system, but can rise (up to N) when that number drops
below N-K. The scheduling strategies defined in this manner vary from
'absolute priority for type 1 jobs' (when K=N), to 'absolute priority
for type 2 jobs' (when K=O).

Under exponential assumptions, this system is modelled by a two -
dimensional Birth-and-Death proces{[n1(t), n2(t)] , t~OJ , where n ,
(t) is the number of type i jobs present in the system at time t. ~
The condition for existence of steady-state is is (?-/ ~1)+("'i f2)
<N, where "'. and 1/f-l. are the arrival rate and the average
exeuction tiffie,respectively, for type i jobs (i=1,2).

The state transition structure of this process is easy to
describe: from state (n1, n2), the process moves to

state (n1+1, n2) with rate ?'-1

state (n1, n2+1) with rate "z.
state (n1-1, n2) with rate rfmin [n1' K+min(O, min(O,N-K-n2)1 '
for n1> 0

state (n1, n2-1) with rate r2min [n2' N-K+min(O, K-n1)],
for n2>0

The solution of the set of balance equations reduces to that of a
functional equation in two variables. The 'mixed. p:ri:>:rHy'scheduling
strategies (0 <:K<::N)are more difficult to deal with than the' absolute

144 Probabilistic modelling

priority' ones (K=O or K=N); in the former case, the functional equation
is further reduced to a boundary problem on a closed contour. In both
cases, the solutions were obtained quite recently (Fayolle et al (4),
Mitrani and.King (16)).

In the context of systems with multiple job types it is reasonable
to enquire to what extent an improved performance for one job type is
paid for by a deterioration in performance for another type. If perfor­
mance for type i is measured oy the average number of jobs of that type
in the system, L. (or equivalently, by the average time that they have
to wait), and iflservice is provided by a single processor, then the
answer to that question is supplied by a result known as 'Kleinrock's
conservation law (Kleinrock (12)). The latter states that any
decrease in the value of one or more of the L.'s, by means of a change
in the scheduling strategy, is compensated bylan increase in other L. 's,
in such a way that the linear combination 1

C = L (L./P-A..)i 1 \ 1.
(9.4)

remains constant (the sum is taken over all job types). Whether that
conservation law holds for multiprocessor systems is, at present, an
open problem. Some numerical experimentation with the above two job
types model seems to indicate that it holds, at least approximately.
For a given number of processors, N, the scheduling strategy was varied
by varying K from 0 to N and the linear combination (9.4) was evaluated
each time. Some differences were observed, but they were so slight
that they could have been explained by accumulations of round-off
errors, rather than by failure of the conservation law.

9.2.3. Network Models

When a system comprises several interconnected service stations
(which may De processors, I/O devices, etc.) offering different types
of service to jobs that may move from one station to another, the appro­
priate model to use is likely to be a queueing network. To define such
a model, one has to specify (a) the set of nodes and their characteris­
tiCS, and (D) the behaviour of the jobs. As usual, there is a fine
dividing line between the assumptions that lead to tractable models
and those that do not.

One of the first important results in the area of quelieingnet­
works was obtained by J.R. Jackson (9) more than twenty years ago; the
models to which that result applies are hence known as 'Jackson net­
works' (see also (6)). A Jackson network consists of N nodes numbered
1,2 ••• N, and a single job type. The execution times at node i are
exponentially distributed with mean 1/p... (that parameter may also
be assumed dependent on the number of jO-BSat node i). Jobs arrive
into the network in a Poisson stream at rate;>.per unit time. A newly
arrived job joins node i with probability CIa' (i=1,2, •••,N)_ After
c~m~leting execution at node i, jobs go t~ n6de j ~ t:t: proba.oility \j
(1,J=1,2,•••,N); they leave the network mth pr-obabd.Ld.by':ii<;>. The
matrix of probabilities %. is called the 'routing matrix: •

The state of the netw~rk at time t is described by the vector
[nt(t),n2(t), •••,~(t)J , where n.(t) is the number of jobS at node i,
It might seem, in view of the difficulty in analysing the-two­
dimensional processes of the previous sub-section,that this N-dimensicn:il.
Markov process would prove to be at least as hard to solve. ThiS,
however, is not so: Jackon networks turn out to have a surprisingly

Probabilistic modelling 145

simple solution.
Let Ai be the average number of jobs coming into node i per unit

time (from outside and from other nodes). If the network is in steady­
state, Ai is also the average number of jobs leaving node i per unit
time. These throughput rates must satisfy the following system of'Tlow
balance' equations.

N
A<1o.+£A.q ..,i= 1,2, ••• ,N

1. j=1 J Jl.
(9.5)

When the system (9.5) has a unique solution, the network is said to
be 'open'. Intuitively, this means that jobs do come in from the out­
side (A)O), and no job remains in the network forever. Jackson's result
states that, in an open network in the steady-state, the numbers of jobs
at the different nodes are independent Birth-and-Death processes. In
other words, the probability that the network is in state (n1,n2,•••,nN)
is equal to the product of the probabilities p~(ni)' of finding ni jobs
in a single node system ~th Roisson arrivals ~rate Ai) and exponential
execution times (mean 11~i) for i=1,2,•••,N:

p(n1,n2'···'~) = p1(n1)p2(n2)•••Pn(~) (9.6)
Thus, having determined the throughputs Ai from (5), node i is

trea.,:!;.edas a one-d.imensionalBirth-and-Death process with parameters Ai
and ~i, in isolation of the other nodes. The known solutions for these
one-dimensional processes are then multiplied together, to obtain the
joint distribution of the network state (9.6). Performance measures
such as average numbers of jobs or average sojourn times are easily cal­
culated. For a given node, these come from the one-dimensional solution
Pi(ni). For a group of nodes, or the whole network, the developments
are only slightly more complicated. Suppose, for example, that we are
interested in the average times, ~, that a job spends in the network
after leaving node i (i=1,2,•••,N); also, in the average total time spent
in the network, Qo. These quantities satisfy a system of linear
operations:

N.L. q.. (W.+Q.)
j=1 l.J J J

where W. is the average sojourn time at node j.
Jackson~s result is remarkable in several aspects. First, it is

counterintuitive: the nodes obviously influence each other, so the
queue sizes could be expected to be dependent. Second, individual nodes
behave as though they were subjected to a Poisson input of jobs, whereas
the total input stream into a node is not in general Poisson. Third, the
independence of the queue sizes is in marked contrast with the fact that
the sojourn times of a job at the nodes that it vi sits are, in general,
dependent. To illustrate this last phenomenon, consider the simplethree­
node network in Fig. 9.2:

146 Probabilistic modelling

Fig. 9.2. A three-node network
If a job goes from node 1 directly to node 3, its sojourn times at

the two nodes are independent of each other1 if, however, that job goes
via node 2, then its sojourn times at nodes 1 and 3 are dependent. What
causes that dependence is the possibility of the job being overtaken by
other jobs which were behind it at node 1. The distribution (as oppo od
to the average) of sojourn times along paths that allow overtaking iO,
except in some special cases, an open problem.

If no jobs arrive into a network from outside and no jobs leave it
(i.e. ~=O and QiO =0 for all i=1,2,•••,N), then that network is said to
be 'closed'. Closed networks can be used to model distributed sys·tmo
under heavy load, when there is a certain number of jobs circulating
among the service stations at all times.

The flow balance equations (9.5) are still satisfied in a clo d
network, but since they are now homegenous, they no longer determino
uniquely the node'throughputs ~i. Nevertheless, closed exponential
networks have a product-form solution similar to (9.6):

pen ,n2'•••'~) = Gp1(n1)p2(n2)···PN(~) (9.7)
where Pi(ni) is obatined by using any solution of ('i.5) and Gi is chosen
so that the right hand sides of (~.7), when summed over all network state
add up to 1. This result was established by Gordon and Newell (8) and
bears their names.

The number of possible states for a closed network with N nodes and
K jobs circulating amongst them, is equal to [(N+K-1)1]/(KI (N-1)!] •
Since that number grows rather quickly with Nand K, the compuation of
the 'normalising constant' G in (9.7) is a non-trivial task for networko
of realistic size. Fortunately, a number of efficient numberical
algorithms are available for that purpose. Having computed the cone+aa ,
other performance measures are easily obtained.

The queueing network model can be generalised. considerably without
losing the product form solution (see (6)). An important general­
isation is to assume that jobs may be of different types and may chango
type as they move from node to node. Thus the routing of jobs can
proceed according to probabilities ~r js that a job of type r leaving
node i will go to node j as a job of the s, The matrix of these
routing probabilities need not be irreducible; it is :possiblefor jobo
of different types to circulate among different groups of nodes. Also
the network may be open with respect to some job types and closed with
respect to others.

When jobs belong to different types, one may wish to use scheduling
strategies that treat them differently, e.g. discriminate in favour of

Probabilistic modelling 147

one or more job types and against others. It turns out that if this is
done, the product form of the solution is lost and the model becomes
intractable. The scheduling strategies that can be allowed, such as
First-In-First-Out, Last-In-First-Out or Processor-Sharing, treat all
jobs equally (at FIFO nodes, it is even necessary that all job types
have the same average execution times). There have been a number of
studies involving network models with priority scheduling strategies,
but they have always had to seek approximate solution methods.

A few words on the robustness of the network results are perhaps in
order. As a general rule, the more specific the required performance
measure, the more s.ensitive it is with regard to the assumptions of the
model. Thus quantities like node utilisations and throughputs in open
networks depend only on the average interarrival and execution times,
and not on their distributions. As far as average numbers of jobs or
sojourn times are concerned, the exponential assumptions often provide
very good approximations. The varian,eand higher moments of those
measures (at FIFO nodes) tend to be more affected by the shape of the
distributions.

9.3 MODELS THAT REQUIRE APPROXIMATIONS

In principle, any model can be solved exactly, or at least to any
degree of accuracy. For that, it suffices to make the state space
finite, if it is not so already, and then apply a numerical algorithm.
In practice, of course, such an approach is very likely to be pro­
hibitively expensive, which is what is meant when the model is said to
be 'intractable'. However, the fact that a model is intractable does
not necessarily preclude the possibility of obtaining perfectly
reasonable estimates of the desired performance measures with very little
effort. The unfeasible exact solution can often be replaced by an easily
computable approximate one.

The general idea in deriving approximate solutions is to reduce the
complexity of the model by examining certain parts of it in isolation and,
having solved the corresponding Simpler models, use the results to
evaluate the interaction between the parts. An approach that seems to
work well for distributed systems proceeds as follows: By analysing an
appropriately chosen (and easily solvable) SUbs-system, obtain certain
of its characteristics - call them X - as a function of certain para­
meters - call them Y - apprOXimately representing the effect of the rest
of the system on the sUb-system. This yeilds a relationship of the form
X = F(Y). Next, expreSSing the interaction parameters Y in terms of the
sub-system characteristics produces a 'complementary' relationship Y =
G(X), which again may be approximate. Those relations lead to a fixed­
point equation, X = H(X), which can be solved for X.

As an illustration of this idea, consider a closed cyclic network
(Fig. 9.3) with N nodes and K jobs circulating among them (there is no
product form solution if queueing at each node is FIFO and execution
times are not exponential). (see Fig. 9.3 Next P~e)

Let W. be the average sojourn time of a job at the i'th node, Li be
the averag~ number of jobs at the i'th node, and A be the throughput of
the network (i.e., the average number of jobs passing through any node
per unit time). Assuming that Li is also the average number of jobs at
node i that a job sees when it gets there, we can write an approximate
expression

(9.8)

148 Probabilistic modelling

Fig. 9.3 A closed cyclic queueing network

where si is the average execution time at node i. To obtain a comple­
mentary expression for the Li's in terms of the Wi's, note that the
average time for a job to make a complete cycle is (W1+W2+•••+WN), hence
the rate at which a given job passes through a node is the reciprocal of
that sum. Since there are K jobs altogether, the network throughput is
given by N

K/Z. W.
i=1 1.

Little's result now provides an expression for L.:
N 1.

L. = ~W. = KW./~ w., i = 1,2,•••,N
1. 1. 1.j=1 J

(9)

Finally, (9.8)and (9.9)yield a set of fixed point equations for the
W. 's:
1. N

W. = S. \1+ KW./_L w.1, i = 1,2, ••• ,N
1. 1.l 1.j=1 JJ

Arguments very similar to the above form the basis of a general
method for the analysis of closed queueing networks. This is known as
'Mean Value Analysis', or MVA (Reiser and Lavenberg (18), Bard (1)~ It
is possible to improve significantly the approximation involved in
writing (9.8) or even, under certain assumptions, to replace (9.8)with
an exact relation (in the latter case, the resulting equations are re­
cursive, rather than fixed-point).

The 'natural' way to solve equations of the form X = H(X), regard­
less of whether X is a scalar or a vector, is by iteration: start with an
initial value, XO' and at the n'th step compute X = H(X -1)' until the
sequence X converges. Unfortunately, it is possfble th~t the fixed-point
equation h~s a unique solution, and yet the itera tion sequence does'not
converge. When that happens, other solution methods have to be employed.

The models that are described in the following have this in common:
they are intractable as far as exact solutions are concerned, but lend
themselves quite easily to apprOximation by the fixed-point methods.

(10)

9.3.1 A Distributed Data Base Model
Consider a data base consisting of a large number, D, of items of

information, and suppose that it can be accessed in parallel by N
statistically identical users. At any moment in time, a user is either
passive (in 'think' state), or is executing a transaction; these two
states strictly alternate., During its execution, a transaction may re-

Probabilistic modelling 149

quire data items. These are acquired dynamically as requested and are
held until either the execution is sucessfully completed, or the trans­
action is aborted. An item cannot be held Simultaneously by more than
one transaction. If, at the time when a transaction requires an item,
the latter is not available, that transition goes into a wait state and
tries again later. In order to recover from deadlocks, a limit on the
number of such retries is imposed; when that limit is reached, the re­
questing transaction is aborted, it releases all items acquired so far
and has to restart its execution from the beginning.

In order to describe the state of the system, one has to specify
what each user is doing (passive, running, waiting for an item, etc.) and
what is the location of each item. It is clear that, even under Markovian
assumptions, the problem is intractable for any but a few small values
of N and D. To obtain an approximate solution, consider a single user
in isol ation and assume that the influence of all other users on him is
stationary. That influence is manifested by two parameters whose values
are as yet unknown: F and F1.F is the probability that when atransaction
from our user makes a request for a new item, the latter is unavailable;
F1 is the probability that a repeated attempt to get the item will fail
again. Now it does not matter which items the transaction is holding,
only how many; the process modelling the user is essentially one-dimen­
sional and easily solvable.

The analysis of a single user yields expressions for various
characteristics in terms of F and Fi• Three quantities are of particular
interest: the average response time for a transaction, W(the time be­
tween starting and successfully completing it); the average number of
i+ems held by the user, m; the average number of items successfully ac­
quired by the user per unit time, X. These three quantites are thus ob­
tained in the form (see Chesnais, et al (2))

W = W(F,F1) ~9.11)
m = m(F,F1) 9.12)
" = ,,(F,F1) 9.13)

Next, going back to the N-user model, the probabilities F and F1
are related to the quantities already found. For instance assuming uni­
formity of requests over the data base, it can be argued that, since the
average number of items held by all other users is (N-1)m and the aver­
age number of items not held by the given user is D-m, the probability
of failing to acquire a new item is

F = [(N-1)m]/(D-m) (9.14)

A slightly more complicated, but equally straightfonlard argument leads
to an expression for F1 of the form

F1 = F1(x,m) (9.15)

Substituting (9.12) and (9.13) into (9.14) and (9.15) yields two fixed­
point equations from which F and F1, and hence the other performance
measures, can be determined.

For this particular system it was possible to demonstrate the
existence of a solution for the fixed-point equations but not, except in
some special cases, the uniqueness. However, in the examples solved
numerically, the solution was always unique and provided a good approxi­
mation.

9.3.2 Local Area Networks
The three most widely known local area network architectures -

Ethernet, Cambridge Ring and Token Ring - present the analyst with radi-

150 Probabilistic modelling

cally different modelling problems. In Ethernet, a station can listen
to the transmission medium and, if it detects a transmission in progress,
back off and try again later. A collision may occur if two or more
stations start transmitting within a period less than the network propa­
gation delay, D; the contending parties then back off and tr,yagain later.
This behaviour makes the Ethernet somewhat akin to the Qistributed data
base of the previous sub-section, and suggests a similar approach to its
analysis. A single station is considered in isolation, assuming that the
influence of all other stations can be represented by fixed parameters.
In the present case these are the probability that an attempted trans­
mission will result in a collision, F, the probabilitiy that a new
attempt to transmit will find the medium busy, F1, and the probability
that a repeated attempt to transmit will find the medium busy, F2.

The analysis of the single station yields various performance
measures such as average response time, message traffic rate, etc. - in
terms of F,F1 and F2• Returning to the full N-station mode network,
these latter parame~ers are expressed in terms of performance measures
already found (for example"F is the probability that at least one of the
other N-1 stations starts to transmit within an interval D each way of
the instant When the given station starts its transmission; hence F=2D(N
-1)g, where g is the rate of traffic offered by one station). This leads
to the fixed-point equations

F = cp(F,F1,F2)
F1= 'I'(F,F1,F2)
F2= X(F,F1,F2)

As before, existence of a feasible solution can be demonstrated, but not,
in general, uniqueness (Gelenbe and Mirtrani (7)).

The Cambridge Ring employs a centralised control that enforces fair
sharing of the medium by a number of parallel transmissions. At the hard­
ware protocol level, the system can be modelled by a single-server queue
with a Processor-Shared scheduling strategy and stat~ependant service
rate (King and Mitrani (10)). That rate is a rather complex function of
the number of slots circulating in the ring and the number of tran~
missions in progress, but once it has been derived (either analytically
or empirically), performance measures are easily obtairleQ, At the level
of the Basic Block protocol, there is the additional complication that
the mediilmcan be shared only by transmissions to different deatfnattona
the ones to the same destination are queued. The flow of messages under
the Basic Block protocol is illustrated in Fig. 9.4.

Fig. 9.4 Cambridge Ring under the Basic Block Pr-otoc01

Probabilistic modelling 151

The system can be modelled by a closed queueing network with N+1
nodes, numbered 0,1,•••,N, and N jobs, numbered 1,2,•••,N, circulating
among them. If job i is at node 0, station i is the 'think' state; if
it is at node j(j=1,•••,N,) then station i has submitted a message
addressed to station j; that message is either waiting or is being trans­
mitted. The network parameters are the average think times, the average
transmission times at nodes 1,2,•••,N and the matrix of probabilities
that job i, upon leaving node, 0, will go to node j.

The network has a feature which prevents it from having a product­
form solution: the rate at which several messages are transmitted in
parallel on their number, and also on the number of messages awaiting
transmission. More precisely, if there are k non-empty queues and a
total of m jobs waiting for service, then the k jobs that are receiving
service do so at rate ~(k,m), where ~ is a given function.

Good approximate solution can be obtained by replacing the state­
dependent service rate with a constant one, C, choosing the latter so as
to be consistent with the average performance of the system. For a given
C, the closed network is solved to yield the average number of non-empty
queues, k(C), and the average number of waiting jobs, m(C). The value
of C is then chosen so as to satisfy the fixed-point equation

C = cp[k(C),m(CD
The closed network with that value of C is used to calculate the perfor­
mance measures of interest.

Our last example is the Token Ring local area network. This archi­
tecture allows a station to monopolise the entire capacity of the com­
munication medium for the duration of a transmission. The availability
of the ring is Signalled by a token: the transmitting station holdsthe
token, and releases it upon completion. The free token travels along the
ring in a fixed direction; the first waiting station in its path will
intercept it, regardless of how long it and the others have been waiting.

This system can also be modelled by a closed queueing network with
Nt1 nodes and N jobs. The flow of jobs is similar to the one in Fig.~.3
but with the following important differences. A job in queue i indicates
that station i wishes to transmit (rather than that there is a trans­
mission addressed to station i). Thus, job i goes from node ° (think
state) to node i, remains there until completed, then back to node 0,
etc. There is a single circulating server (the token) which serves one
job at a time to completion, moving from queue i to queue (i mod N)+1.

Suppose that the performance measure of interest is, as before, the
vector of average response times (W1,W2,•••WN), where Wi is the average
interval between job i leaving node ° and returning to it. The charac­
teristics of the different stations, i.e. the average think times, ti,
and execution times, si, are given (i=1,2,•••,N). Let p..be the prob­
ability that, when job i joins queue i, the server is bu§Yat queue j
(ifj=1,2,•••,N). Let also R. be the expected remaining service time for
the job at queue j and Dji bg the average time it takes the server to
reach queue i after leaving queue j. Then the average response time for
station i can be written as

N
W. = 2:p..(R.+D ..)+s., i=1,2, •••,N (9.16)
J. j=1 J.J J JJ. J.

A fixed-point approximation is obtained by making simplifying assumptions
which allow "Fij,R. and Dji to be expressed in terms of Wi and the known
parameters (King e~ al (11), Mitrani (14)). For example, the argument
aimed at Pij proceeds as.follows: Station j goes through 'think-transmi~

152 Probabilistic modelling

cycles whose average length is t .+W.• During each such cycle, it spends,
on the average, time s. actuallyJtransmitting. Therefore, the proportion
of time that the serve~ spends at node j is equal to s.j (t .+W.). Hence,
assuming that the instant of arrival of job i at node f cat!b~ treated as
a random observation point (this is an approximation), p.. can be set to
the proportion of time that the server spends at node j,2~ven that it
is not at node i:

PJ.'J'= (s./(t.+W.)J/(1-[s./(t.+W.)'"J J J J. J. J. .I.

This, and similar arguments for R. and DJ.i,turn(~.16)into a set of
fixed-point equations of the formJ

from which the average response times can be determined.

9.4 CONCLUSION

It is clear that, in the area of distributed computing, as in many
other areas, a performance evaluation exercise has much to gain from the
application of probabilistic modelling methods. The models discussed in
this article can be, and have been, used successfully in performance
studies of real-life systems. When the complexity of the target system
is such as to preclude an exact analysis of the model, we have seen that
reasonable approximations can still be obtained quite easily. Indeed,
the computational cost of solving fixed-point equations is so small that
even if the only benefit derived is to reduce the number of parameter
points at which the system is simulated, the savings can be considerable.
Nor is the application of the modelling methods limited to the type of
models described here. More complex systems can often be decomposed
into hierarchical levels which can then be treated separately, either
exactly or approximately.

REFERENCES

(1) Bard, Y, 1981, "A Simple Approach to System Modelling", Performance
Evaluation, 1, 225-248.

(2) Chesnais, A., Gelenbe, E. and Mitrani, I., 1983 "On the Modelling
of Parallel Access to Shared Data", CACM, 26, 3, 196-202.

(3) de Souza e Silva, E., Lavenberg, S.S. and Muntz, R.R., 1983, "A
Perspective on Iterative Methods for the Approxim~e Analysis of
Closed Queueing Networks", Procs., Int. Workshop on Appl, Maths.
and Perf. Models, Pisa.

(4) Fayoll,e , G., King, P.J.B. and Mitrani, I., 1982, "The Solution of
Certain Two-Dimensional Markov Processes", Adv. Appl. Prob,, 14,
295-308.

(5) Fayolle, G., King, P.J.B. and Mitrani, I., 1983, "On the Execution
of Programs by Many Processors", Procs., 9th Int. Conf. on Model
and Perf. Eval., Maryland.

(6) Gelenbe, E. and Mitrani, I., 1980, "Analysis and Synthesis of
Computer Systems", Academic Press, London.

(7) Gelenbe, E. and Mitrani, I., 1982, "Control Policies in CSMA
Local Area Networks", Procs., Sigmetrics Conf. on Model and Perf.
Eval., Seattle.

Probabilistic modelling 153

(8) Gordon, W.L. and Newell, G.F., 1967, "Closed Queueing Systems
with Ex:ponential Servers", Opns. Res., 15, 2, 254-265.

(9) Jackson, J.R., 1963, "Jabshop-like Queueing Systems", Research
Rep. 81, Manag. Sci. Project, UCLA.

(10) King, P.J.B. and Mitrani, I., 1982, "Modelling the Cambridge
Ring", Procs., Sigmetrics Conf. on Model. and Perf. Eva'l, , Seattle.

(11) King, P.J.B., Mitrani, I. and Plateau, B., 1983, "Modelling a
Token Ring Network", Research Rep. 12, ISEM,Univ. Paris-Sud.

(12) Kleinrock, L., 1975, "Queueing Systems", Vols. 1 & 2, Wiley, New
York.

(13) Little, J.D.C., 1961, "A Pruuf of the Queueing Formula L = ,,"W",
Opns. Res., 9, 3, 383-387.

(14) Mitrani, I., 1983, "Fixed-Point Approximations for Distributed
Systems", Procs., Int. Workshopon Appl. Maths and Perf. Models,
Pisa.

(15) Mitrani, I. and Avi-Itzhak, 1968, "AMany-Server Queuewith Service
Interruptions", Opns. Res., 3, 628-638.

(16) Mitrani, I. and King, P.J .B., 1981 "Multiprocessor Systems with
Premptive Priorities", Performance Evaluation, 1, 118-125.

(17) Neuts, M.F. and Lucarrtoni , D.M., 1979, "A Markovian Queuewith N
Servers Subject to Breakdowns and Repairs", Manag. Sci. 25,
849-861.

(18) Reiser, M. and Lavenberg, S.S., 1980, "MeanValue Analysis of
Closed Multichain Queueing Networks", JACM,27, 313-322.

Chapter 10

Developing concurrent systems
with DTL

J.W. Hughes and M. S. Powell

Despite the fact that inter-est in par-allel languages
has ar-isen primar-ily due to the availability of par-allel
hardwar-e, the r-eal motivation for- parallel languages should
comefrom the pr-ogrammer's needs. High level languages have
developed preci sel y because they provi de concepts reI evant
to the programmer- independent of machine ar-chitectur-es.
This paper- uses simple examples to show how concur-rency
ar-ises natur-ally dur-ing the design of pr-ograms when a
language which suppor-ts the stepwise decomposition of
complex operations into concur-r-ent pr-ocesses is used. The
examples also illustrate the use of the DTL language
developed at UMISTas par-t of an investigation into the use
of concLlr-r-encyas a str-ucturing concept in pr-ogramdesign.

10.1 INTRODUCTION

The concept of abstr-action in program specification and
design or-iginated in Wirth's Stepwise Refinement Method (14)
and Dijkstr-a's Structured Pr-ogr-amming(3). The distinction
between pr-ocedur-al abstractions for- encapsulating the
detai I s of al gor-ithms, and data abstr-acti ons, to abstract
from storage repr-esentation was developed by Liskov (12) and
Par-nas (13). Pr-ogr-amsdesigned using these methods have an
or-ganised hi erarchi cal str-uctur-e, and are consequentI y
easier to understand and reason about than unstr-uctur-ed
pr-ograms.

These methods allow the specification of a solution to
a probI em onI y as a sequenti al al gor i thm. They lac k any
concepts for- expressing concurr-ency, and force the designer
to specify oper-ations as sequential when they have no
natural or-der dependency. Thus, they introduce constraints
into the design which are not inher-ent in the pr-oblem being
solved and for-ce arbitrar-y decisions which need never be
made. At the other end of the spectrum, specifications
usi ng functi onal I anguages abstract away from operational
algorithms and leave the language implementation to resolve
all sequencing as well as it can. At the same time, between
the sequenti al-oper-ati onal and the funct i <mal approaches,
the concept of process abstraction has emerged in the work
of Hoare (4), Kahn and McQueen(10) and .Jackson (9). By
meansof process abstr-acti on a system can be dE!'scribed as a

Concurrent systems with DTL 155

network of toncurrent processes each of which proceeds
sequentially and communicates with its neighbours in the
network. This is an operational approach which does not
impose any unnecessary sequencing, yet models typical
problem domains well and also allows a functional view to be
taken. Such a description is readily understood if:

(i) the structure of the network can be understood;

(ii) each sequential process is simple.

All previous work has shown that a system is more
readiIy understood if it can be decomposed hierarchically
into simpler independent components. Design methods using
process abstraction, therefore, must allow hierarchical
decomposition of both the network and the sequential
processes within it.

Distributed Translation Language
developed at UMIST for the design of
concept of process abstraction.

<DTU is
systems

a notation
using the

10.2 PROCESS ABSTRACTION

The first stage of the design process is to identify
subprocesses which are required for the solution of the
problem. Unless the solution consists of completely
disjoint subsystems, it will usually be necessary for the
subprocesses to communicate in order for them to co-operate
on the solution of the problem. In most cases the
subprocesses identified do not necessarily have to proceed
one after the other sequentially, but may proceed
concurrently, synchronised by the demands and needs of the
subprocesses with which they communicate.

Concurrent situations arise primarily from two sources,
one is that in which concurrency is specified in the problem
(e.g. controlling a set of more than one lifts) the other
arises in the decomposition itself and results in the
description of some function as the composition of simpler
functions. Network diagrams such as those shown in figure
10.1 give a visual description of the structure of a
decomposition. The boxes represent processes and the arcs
their intercommunication. The decomposition proceeds by
further refining the description of each process by
repeating the procedure outlined above. At each stage the
nature of the data communicated on the arcs which are
introduced by the decomposition is specified. These are
sequential streams of different kinds of data items and may
be described by grammars.

EventualIy the refinement reaches a Ievel where the
process required to input the specified data streams and
produce the required output streams is naturally sequential.
DTL is therefore designed to allow specification of:-

The hierarchical structure of networks of
communicatingprocesses.

156 Concurrent systems with DTL

i i) The structure of the streams by which they
communicate.

iii) The sequential processes which at the bottom level
of the hierarchy translate streams of data.

10.3 CONCURRENT TRANSLATIONS

The connection together of sequential translations (11)
via their data streams to form concurrent networks allows:

i) natural concurrency,
to be expressed (e.g.
applications);

ii) functions which would require an extremely complex
sequential translation to be simplified.

in the function to be computed,
operating systems, realtime

One way to specify a network of sequential translations
would be to give each stream in the network a unique name
and to list the translations using those stream names as
actual inputs and outputs. This is comparable to the way in
which access rights are named when Concurrent Pascal
processes are initialised. For example, if the single
output of a translation Tl is to be used as the single input
of a translation T2 we could write 'Tl(:s). T2(s:)'. This
is unsatisfactory for more complex networks since:

i) it gives no visual indication of the structure of
the network

ii) it requires that all streams and translations are
global to the entire program

iii) it allows arbitrary connections, conceptually
similar to the lack of structure which can result from the
unrestricted use of goto's in sequential programs.

Rather we wish to decompose a
into a network of simpler components.
considered to be either:

system hierarchically
Thus any component is

i) Inherently sequential and may be described as shown
in section 10.5.

ii) A pipeline of n simpler translations.

i 51 : 52 sn-I: 0
------): t 1 :------) t2 :---) ••. --- >: tn ------)

t l Ii ls l l » t2(slis2))} ••.•.. » tn(sn-ll:o)

Concurrent systems with 0 TL 157

iii) A disjoint parallel composition of n simpler
translations.

il: : 01
------ }: t 1 :------)

i2 02
------ }: t2 :------ >

in: on
------): tn : ------)

[tl(il:011, t2(i2:o21, •••••• , tn(in:onl 1

iv) A cyclic composition of ii) or iii).

loop
,,
'---)l :----~

i ------):t :------) 0

CYCLEt(i,looplloop,ol END

A concurrent DTL translation is
network expression, formed
(corresponding to the three
translations as operands.

The expressions described so far lead to finite cyclic
networks of translations. However, it is possible to use
the translation being defined in its defining expression,

using
forms of

thus specified by a
three operators

construction) with

recursively.

10.4 EXAMPLE SORTING

An illustration of hierarchical process refinement is
the problem of sorting a sequence of data into descending
order. Suppose the input is a stream of integers terminated
by an end marker. The sorting process can be refined into
two processes, first one which finds the maximumvalue and
separates it from the rest; then one which sorts the rest
and outputs the maximumfollowed by the sorted remainder.
This last process can be refined into two processes, one to
sort the rest and the other to append the resul t to the
maximum. These two refinements are shown in figure 10.1.

158 Concurrent systems with DTL

integer streal sorted integer streal
---------------} sort -----------------------}

rest
integer streal :-f[iiir: ------}: -sorT: sorted integer streal

---------------}: laX: :append: -----------------------}
1------): :
lax

rest: : sorted rest
.---)1 sort l---.

integer stream :-Hiiii-:-' '-}:: sorted integer stream
---------------): lIaM: I I : append: -----------------------}

:------):I :-------}:
lax '---' first

Fig.10.1

The network in figure 10.1 consists of a three stage
pipeline as shown in figure 10.2 with the corresponding DTL
network expression.

, ... , ,
.---): sort l---.

:-flnd-:-' 1_):
------): lax :: :: append: ------)

: ------ >: I :-------}: :

TRANSLATIONsort (in: out) =

fi ndllax(i n: lax, rest)

»
[sort trsst Isortedrest}, Hlax Hirst) 1

»
append(first, sortedrest: out)

END

Fig.10.2

The transl ati on lis the i denti ty transl.:3'ti on. It is
analogous to the empty statement in a Pasc:al-like language

Concurrent systems with DTL 159

in that it allows any networ-k to be expr-essed in a well
str-uctur-edfashion.

The next stage in the r-efinement
specifi cation of find.ax and append. These ar-e
expr-essed as simple sequential tr-anslations.

requir-es the
most natur-ally

10.5 SEQUENTIAL TRANSLATIONS

A sequential tr-anslation tr-anslates its input str-eams
into its output str-eams. As mentioned ear-lier-,the str-eams
ar-esequences of data items which may be of differ-ent kinds.
A stream is defined in ter-msof the kinds of data item which
it may communicate (its alphabet), and the per-missible
sequences in which those items may occur, Any data item
kind may have associated attr-ibutes. e.g. an integer type
item may have an attr-ibute r-epr-esentingits value. The
str-uctur-eof the sequence can be descr-ibedby a gr-ammar-.

The structur-e of the sequential pr-ocess which consumes
the inputs and gener-ates the outputs natur-ally r-eflects the
str-uctur-eof its str-eams. Thus a sequential translation is
derived fr-om the gr-ammar-sof its input and output str-eams
using much the same pr-inciples as the Jackson progr-amdesign
method (9) or- r-ecur-sivedescent compiler-s (1). A DTL
sequential tr-anslation therefor-e specifies its str-eam
alphabets and a set of pr-oduction rules in extended BNF
defining the tr-anslation gr-ammar-. Nonter-minals in the
pr-oductions enfor-cea hier-ar-chicalstr-uctur-e.

In the pr-evious sor-t example the final pr-ocess in the
pipeline is a simple sequential tr-anslation. It has two
input str-eams, the fir-st communicates the maximum value, or
an end marker- if the input sequence contains no integers,
the other-the sorted remainder of the integers or nothing at
all. The output stream from append is to communicate a
(possibly empty) sequence of integers in descending order
followed by an end marker. These str-eam str-uctur-escan be
descr-ibedby grammars as follows:-

(first>::= inttn) : endstream
<rest) :: = I (i nt tx)) endstream : (empty)
(out) ::= I(intlyJ) endstrsaa

The append function is clearly achievable by for-ming the
stream out from first with rest appended to it, which can be
thought of as requir-ing

(out> = (first) (rest)

to be invariantly true for all executions of the translation
append. This pr-operty can be used to der-ive the append
tr-anslation. By considering the gr-ammar for first, two cases
have to be considered:-

i) <first> = endstream

It is intended that in this case the r~t stream will be
empty and the out stream wiII be the same as the first stream,

160 Concurrent systems with DTL

this is described by the following production

first. endstream[out.endstreasl

ii) <first> = int(n)

In this case the int should be the first symbol in out
and the rest of out shoul d consi st of the rest stream. thi s is
described by

first.intlnl [out.intlnll
II rest.intli) [out.intlill
rest.endstreal[out.endstreall

The append translation consists
alternatives and is therefore given
translation in figure 10.3.

TRANSLATION appendlfirst, rest : out)
first, rest, out= intln: integer),endstream
(append}::=first. inttx) [out.inttxl1

II rest.intlx) [out.intix)l)
rest.endstream[out.endstreaml

of just
by the

these two
sequential

fi rst.endstrea.[out.endstreaml
END

Fig.10.3

Data items and producti ons may have attri butes. Thi s
facility is used in the definition of +indeaxshown in figure
10.4.

TRANSLATION find.axlin : lax, rest)
in, rest, ~ax= intln: integer),endstreal
<finduK}::=in.int Ilaxvalue)<bodyl~axvaluel)

in.endstreaa[max.intlmaxvaluell[rest.endstreaml

in.endstreal[Iax.endstreallj
<bodylaaxvalue:integerl)::=

II in.int(x: x (=maxvalue)[rest.intlx)]

in.intlx: x } laxvalue)[rest.intlmaxvalue)]
{.axvalue:=x}

END
Fig.10.4

The first item accepted by find.ax is either an integer
or an end marker if the input sequence is empty. In the
I atter case, the end marker is output on the stream call ed
lax and the translation is complete. Otherwise the value of
the attribute of the first integer is assigned to the
vari abl e saxvalue; The rest of the integers on the stream
called in are then processed by' the production named body
until an end marker is encountered. An integer is then
transmitted on the stream called .ax with an attribute value
corresponding to the value of the vari able IaXvalue. This is
followed by transmitting an end marker on the stream called

Concurrent systems with DTL 161

rest and the translation is again complete.

The production body processes the remainder of the (zero
or more) integers from the stream call ed in. All those with
attribute values less than or equal to the current value of
Maxvalue are transmi tted on the stream call ed rest. Whenever an
integer is accepted with an attribute value greater than the
current val ue of maxvalue, saxvalua is transmi tted on rest and then
redefined to have the value of the last integer accepted on
in. The initial and final values of maxvalue are communicated
to and from the root production via the attribute of body.

Sequential translations thus have a hierarchical
structure supported by production names. The form of
production definitions supports the conventional control
structures of sequence, selection and iteration. The
notation also enforces a correspondence between input and
output data structures and control structures as advocated
by Jackson (9). Furthermore the concurrent facilities in
DTL. in allowing natural concurrency to be retained in a
program description, tend to lead to sequential translations
which are small and simple to understand. Many simple
sequential translations like append in the above example could
be provided as standard components by an implementation of
the language.

10.6 EXAMPLE LOGIC NETWORKS

In this section the use of DTL as a hardware
description language will be considered. Hardware
description languages allow logic networks to be described
and simulated from a description of how a set of primitive
components are connected together to form a complete
hardware system. The pri miti ve components are general I y
logic gates. e.g. NANDgates, NORgates etc. These may be
connected together in a modular f ash i on and a hardware
description language should allow this modularity to be
expressed. e.g. TwoNANDgates may be connected together to
form a flip-flop and it should be possible to describe a 16-
bit register made from 16 flip-flops without having to
describe the internal structure of each one.

In order to use DTLas a hardware description language
the nature of the signals which are communicated between logic
gates must be defined and then a set of primitive gates can
be designed. One of the advantages of using a general
purpose language for hardware description in this way, is
that the primitive elements can be described in as much
detail as is required for any particular application.
Hardware description languages in general, supply a fixed
set of primitives which may not be changed by the ordinary
user.

Hardware engineers often abstract away from the
concurrent nature of logic networks and consider logic gates
to be represented by pure Boolean functions. In this style an
AND gate would be represented by a functi on with the

162 Concurrent systems with DTL

following type.

and: Boolean x Boolean -} Boolean

However for the purposes of continuous simulation it is
important to regard a logic network as set of communicating
processes connected together by streams of Boolean values. In
this style an ANDgate must be represented by a function
with the following type.

and: Booleanf K Booleant -) Booleant

A description of this kind may enable the
synchronisation of events in a logic network to be reasoned
about but sti 11 abstracts away from many of the factors
which complicate logic design and lead to 'bugs' in hardware
systems. e. g. Gate del ays and edge speeds. If a hardware
description language is to be useful it must enable such
factors to be represented so that they can either be
reasoned about during the design process and the behaviour
of a complete system can then be proved to meet its
specification, or the language description can be used as
the basis for accurate simulation and attempts can be made
to establ i sh the correct behavi our of a system by testi ng
before the real hardware is built.

The diagram below shows an example of the kind of signal
which might be communicated between two gates in a logic
network. It illustrates some of the factors which a
hardware description language should take into account.

thigh

I \ I
I tup \ tdoNn I---' \ -------------'

tloN

In this diagram thigh and tlow represent the time periods
which the signal spends in the high and low states and tup and
tdo~n represent the transi tion times between the high and the
low states during which its state is undefined. This
representation abstracts away from the absolute values of
voltage, current, pressure or magnetic -flux denSity etc,
which may be used to implement the high or low signal levels.
In practice this is a reasonable thing to do due to the
nature of the hardware support provided for these concepts
by physical logic gates. If such signals are to be modelled by
DTLstreams, their alphabet may be described as shown below.

signal alphabet = up(tile: natural), down(tile: natural), high(tile: naturall, IOM(tile: natural!

Many cI asses of signal can be modelled usi ng thi s
alphabet in terms of the transitions they contain and the
stable states in between. Some examples are shown below.

Concurrent systems with DTL 163

(square Have(period: natural l) ::= 10H(period) up(edge tile) high(period) dOlln(edge ti.e)

<pulse(length: natural) ::= up(edge tile) high(Jength) dOHn(edge tile)

(pulses (i nterval, length: natural) > :: = IOH(interval) (pulse (Jength» <pulses (i nterval, length)

(glitch) ::= up(edge time DIV 2) dONn(edge time DIV 2)

(noise> ::= low(randol period) (glitch> (noise)

It may be that the environment in which a particular
hardware system is to be implemented is so well behaved that
glitches and noise do not occur sufficiently frequently to cause
probl ems. It may al so be the case that the edge tiles i nvol ved
are short compared to the stable high and low states of the
signals and that it is the synchroni sation of transi tions
between states which is of interest rather than the absolute
time periods which they spend in high or low states. If
(fortuitously for the complexity of the examples which
follow) all these things are the case. the alphabet required
to describe all possible signals can be reduced to that shown
below.

simple signal alphabet = up, dONn

In such a wonderfully simple universe of signals. there
are onl y three cl asses of signal. There are elpty signals which
contain no transitions and carry no information. There are
signals which start life by making a transition from a low
state to a high state and there after go dOHn, up, down, etc and
there are signals which start life by making a transition from
a high state to a low state and there after go up, down, up, etc.

(signal> ::= (e'pty) : (ION) : (high)
(ION) ::= up «high>: (empty»)
(high) ::= dONn ((low> : (elpty»)

If we require some timing information .about such signals
we can compare them with a speci al clock signal whi ch is known to
make transitions at regular intervals. The specification of
such a clock si qnal is outside the scope of this paper as it may
require some non-digital components in its implementation!

signal

clock
00
00
00
00

00
00

! :
00
00
00
00

00
00
00
o 0

00
00

: f

o 0o 0
o 0o 0

00
00
00
00

: :
00
00

12p. la. 2al 3a. 4a. 5all 7a.

DTLtranslations may be constructed which process such
signals and produce new signals as thei r outputs. A pri miti ve
logic gate such as a NOTgate can be described as shown
below.

164 Concurrent systems with DTL

TRANSLATION noUin: outl
in , out= up,down
(not) ::= (empty>: (low): (high)
(low> ::= in.upout.down(high) {enpty)1
<high>::= in.downout.up(<]ow>: (elpty>1

END

The above translation may be constructed systematically
by using a Jackson-like technique and has the advantage of
making it easy to establish that inputs in the form of signals
are accepted, that the output is al ways a signaland that it
represents the 'not> of the input. In an environment where
the input is always guaranteed to be a signal, simple program
transformation techniques can be used to derive the less
complex translation which follows.

TRANSLATION notun : outl
in , out= up,down
<not> ::= (elpty>: in.upout.down(not): in.dosnout.up(not)

END

More complex gates may be described in a similar
fashion by sequential DTL translations. These may then be
connected together into still more complex structures by
using the DTL network composition operators. The example
below shows how a NANDgate may be constructed from a NOT
gate and an ANDgate.

TRANSLATION nand(in!,in2: out)= andtin l , in2: Ii » noUI : outl

As is well known two NAND gates may be connected
together to make a primitive memory element in the form of a
reset/set flip-flop. The same is of course true of the NAND
gates described above.

TRANSLATION flipflop(in!,in2: outt,out21=
CYCLE
[nandtinl, out2: out11, nand(in2,out! out211

END
END

For simulation purposes it would generally be more
efficient to use a single sequential translation to describe
the same function, however there is an obvious advantage to
being able to describe such a component in as much detail as
is required. Many hardware description languages are forced
to provide such components as standard parts of the language
because they cannot be constructed from the pri mi ti ves of
the language.

The last example in this section shows how an n-bit
register may be constructed from n fli p-flops by using an
array of translations. DTL supports arrays of translations
and arrays of streams.

Concurrent systems with DTL 165

TRANSLATIONregister(inHl •• nl, inZ[I..nl : outHl..nl, out2[1 •• nlJ
flipflop[i:I..nl(inHil, in2[il : out1[il, out2[ilJ

END

The network expression in the example above can be
regarded as a shorthand for

[flipflop(1)(inHll, in2[ll outHll, outZ[llJ,

f Iipf loplnl ti nl lnl, in2[nl eutltnl, QutZ[nlJ
1

The use of DTLas a hardware description language has
been illustrated in the preceeding examples by developing
descriptions for commonhardware components in a bottom-up
fashion. For hardware systems of any complexity the normal
process of desi gn would proceed top-down usi ng the
structuring methods provided by the language to support
stepwise refinement. The leaves of a refinement tree which
describes this process would represent the kind of primitive
hardware components described above.

The set of such components can be defined in advance
for a specific implementation environment. It might, for
example, comprise a subset of the 74 series TTLgates. This
si tuati on is very si mi1ar to the use of top-down stepwi se
refinement in the production of software, where the leaves
of refinement trees represent high-level language statements
or, perhaps if a low level language is used, individual
machine instructions.

In all of the preceeding examples, the signals
communicated between gates have had a very simple form and
onl y record the transi ti ons between 1ogi c states. Where
more information must be represented because, for example,
edge speeds are important in the implementation environment,
the structure of signals may be augmented with such information
and the primitive gate translations updated accordingly.
The edge speed of an output transition may be determined by
the edge speed of the input transi tion which caused it.
Edge triggered flip-flops may be described which will only
respond to sui tabl y fast edges. By augmenting the
i nf ormat ion which def i nes a signal, all of the necessary
imperfections of physical hardware devices may be modelled.

10.7 IMPLEMENTATIONOF DTL PROGRAMS

The design of DTL has been motivated by the
programmer>s requirements for expressing algorithmic
solutions to problems. The language may be implemented on a
variety of machine architectures. On a single processor,
multiplexing between the individual translations can be
achieved using a coroutine mechanism. On multiprocessor
archi tectures, the indi vidual transl ati ons would be
distributed amongst the available processors on either a

166 Concurrent systems with DTL

one-to-one basis or by again employing a coroutine mechanism
to multiplex a number of translations on each processor. In
this case, streams may be implemented either in a shared
store on closely coupled architectures or by direct
processor to processor communication on loosely coupled
systems. A detailed description of a virtual machine
architecture for supporting DTL programs is given in (7) The
above implementation possibilities are all special cases of
the virtual machine architecture described.

10.8 SUMMARY

DTL has been designed by analysing the programmer's
requirements and is based on a data driven approach to
program design. An overview only has been given here. A
full language description is given in (6). The resulting
language allows programs to be expressed as structured
networks of translations which communicate data on fully
synchronised streams. The network structure allows natural
concurrency in the problem to be maintained in the solution,
without the introduction of any unnatural sequencing.
Reasoning about the behaviour of DTL programs is facilitated
by the hierarchical structure, the absence of shared data
and the full synchronisation.

The language has been used for a variety of
applications, only two of which have been illustrated here.
It has proved suitable for describing conventionally
concurrent systems such as a spooler, less obviously
concurrent algorithms such as sorting, and less obviously
algorithmic objects such as logic networks.

The language may be readily implemented on a variety of
computer architectures. In the case of multiprocessor
architectures, design in DTL results in programs which,
because they maintain all the concurrency inherent in the
problem, execute with enhanced performance. For example,if
sufficient processors are available, the sort program
described in this paper will run in linear time. Thus the
most efficient program from the execution viewpoint is also
the most efficient from the design viewpoint because it
reflects the natural structure of the problem. There is
therefore no need to distort the natural solution in order
to optimise it.

REFERENCES

1. Aho A & Ullman J
"The Theory of Parsing, Translation and Compiling:
Volume 1, Parsing"
Prentice Hall, (1972)

2. Coleman D, Hughes J W & Powell M S
"A Method for the Syntax Directed Design of
Multiprograms"
IEEE Transactions on Software Engineering, SE-7, No.2,
pp 189 - 196, (1981>

Concurrent systems with OTL 167

3. Dijkstra E W
"Notes on Structured Programming"
APIC Studies on Data Processing, No.8, Academic Press,
pp 1-81, New York, (1972)

4. Hoare CAR
"Communicating Sequential Processes"
CACM, Vol 21, No.8, pp 666-677 (August 1978)

5. Hughes J W & Powell M S
"Program Specification Using DTL"
Workshop on Program Specification, Aarhus, (1981)

6. Hughes J W & Powell M S
"DTL: A Language for the Design and Implementation of
Concurrent Programs as Structured Networks"
Software - Practice and Experience, Vol. 13, No. 12,
pp 1099-1112 (1983)

7. Hughes J.W. and Powell M.S.
"The Implementation of DTL"
Software - Practice and Experience, Vol. 13, No. 12,
pp 1113-1128 (1983)

8. Hughes J W "A Formalisation and Explication of the
Michael Jackson Method of Program Design"
Software - Practice and Experience, Vol.9, No.3,
pp 191-202, (1979)

9. Jackson M A
"Information Systems: Modelling, Sequencing and
Transformations" IEEE Proc. International Conference on
Software Engineering, (1978)

10. Kahn G & McQueen D B
"Coroutines and Networks of Parallel Processes"
IFIP Conference on Information Processing, (1977)

11. Lewis P M & Stearns R E
"Syntax Directed Transductions"
JACM, Vol.15, No.3, pp 465-488(July 1968)

12. Liskov B
"Modular Program Construction Using Abstractions"
Lecture Notes in Computer Science, No. 86,
Springer Verlag, pp 354-389 (1980)

13. Parnas D L
"Information Distribution Aspects of Design Methodology"
Information Processing 71, Vol.l, North Holland
Publishing Co., pp 339-344 (1972)

14. Wirth N
"Program Development by Stepwise Refinement"
Communications of the ACM, Vol. 14, No.1 (April 1971).

168 Concurrent systems with DTL

ACKNOWLEDGEMENTS

The work described was partially supported by SERC DCS
research grants no. GR/A74678 and GR/B35062. The authors
would also like to thank Chris Tan for his suggestions and
contributions to the work described.

Chapter 11

Parallel algorithm design
D. J. Evans

11.1 INTRODUCTION

A description of the work on distributed and parallel processing
systems involving parallel algorithms design undertaken in the Depart­
ment of Computer Studies, Loughborough University of Technology, is
given.

The work is based on production minicomputers connected by a shared
memory to achieve certain levels of distributed and parallel processing.
By the use of the manufacturer's software and a number of software
modifications a parallel system can be set up and be made operational in
a matter of months not years. This strategy has resulted in the 2
operational Loughborough M.I.M.D. systems:

1. Dual lnterdata 70 system, 1976-79;
2. 4 Texas 990/10 NEPTUNE system, 1979-1984.

These parallel systems have provided a service in the Department and to
other SERC users for the past 5 years in which research into parallel
algorithms have been extensively undertaken.

Parallelism arises at many different levels within a complex
problem which if exposed can be efficiently exploited. By incorporating
software tools in the system to measure the performance we are able to
restructure our algorithms or component parts of them into parallel form
to run more efficiently.

In particular, we have studied the various standard techniques of
achieving parallelism, i.e. vectorization, problem partitioning and
divide and conquer strategies as well as exploiting the use of implicit
parallelism in various numerical and non-numerical algorithms. In
addition, new parallel algorithms have been introduced.

The principles we have learnt from this study have also been
extended to algorithms on other parallel systems, i.e. DAP and CRAY.

11.2 NUMERICAL PARALLEL ALGORITHMS

The main aims of the work have been as follows:
1. To discover and design alternative solution methods which offer

parallelism in one form or another.
2. To study the suitability of each parallel scheme for implementation

on different parallel computer systems.
3. To obtain the performance analysis of the implemented procedures.

The primary feature that distinguishes parallel algorithms and systems
from the more usual uniprocessor situation is that parallelism entails
~he use of facilities or resources not present in sequential solutions,

170 Parallel algorithm design

multiple processors
data communication
synchronisation to determine the state of related
processors (a special type of communication).

The introduction of these factors into the computation can make
significant changes in the algorithm design.

i.e. namely:
i)

ii)
iii)

11.2.1 Algorithm Structure

Algorithms can contain parallelism at different levels which may:
1. be apparent in the high level problem specification
2. arise from the method of solution
3. arise in the details of the solution.

As an example consider Numerical Quadrature: its specification is
the sum of several independent function evaluations. Methods of
solution are often based on successively splitting the domain of
integration into smaller domains to each of which the quadrature
speCification is applied independently. Finally, the detailed
examination of the integrand can also reveal independent computations
as well as forms of implicit parallelism.

Generally for the design of effective parallel algorithms one has
to match the resources demanded by an algorithm and the resources
available on a given parallel architecture. This involves:

a) The ability to express the solution methods for the problem in
hand in terms of independent (parallel)processes. The nature
of the operations required by each or all of the processes has
to be'matched with the processing capabilities of the process­
ing elements within a given system. On the other hand, the
number of available processes and the allocation cost of
processes to processors should be a determining factor on how
far a solution method can be expressed in terms of parallel
processes.

b) The evaluation of the communication/computational bandwidth
required by the algorithm and that offered by the various
parallel computer systems to determine (and minimise if
possible) the overhead cost associated with the required
communication.

To illustrate the above points consider the following problem of
evaluating the eigenvalue 1..1of a symmetric tridiagonal matrix A
(bi,ci,bi+l),i=1,2,•••,n, bl=bn+l=O, i.e.,

cl b2 1
b2 C2 b3 0, , ,

A , , ,,, , ,, , ,
0 , , 'b, , n

'b 'c
n n

The solution algorithm involves the repeated evaluation of the
recurrence relation,

(2.1)

Parallel algorithm design 171

for different values of AI. The number of negative qis, i=1,2,...,n of

the above sequences will indicate the number of eigenvalues below the
sample point AI. Repeated application of this procedure will separate
the eigenvalue spectrum into small sub-intervalsof size E (pre-defined)
which contain lor more eigenvalues, A. In the following section we
shall briefly discuss the possibilities for solving this problem on
alternative parallel systems.

1l.2.2 Parallel Methods for the Tridiagonal Eigenvalue Problem

The standard procedure to solve the above problem on sequential
computers involves halving the interval containing all the eigenvalues
and successively choosing one of the two sub-intervals containing eigen­
values. This is in turn bisected into two further sub-intervals and the
process is continued until the eigenvalues are separated to a predefined
accuracy. The method of para~~e~ bisection (Barlow and Evans, [1]) uses
the principle on all the previously determined non-empty sub-intervals.
A major disadvantage with this scheme is that the number of parallel
processes available at the initial stages of the algorithm is limited to
1 at the 1st iteration, 2 in the 2nd iteration, 4 in the 3rd iteration
and so on. Therefore, the potential speed up obtainable from this
parallel version is dependent upon the number of non-empty intervals
available at each stage and is bounded by N, the maximum number of
eigenvalues.

However, in the multisection procedure, each subinterval is divided
into m (insteadof 2 as in the bisection procedure) subintervals for
each of which the Sturm sequence is evaluated in parallel on each of the
availabl~ processors simultaneously. This procedure can be extended
further into a method called para~~e~ mu~tisection (Barlow et aL [2]) in
which the above two methods are combined to obtain greater efficiency.
In this method given p processors and m domains then one allocates ~=p/m
processors per domain. The speed-up of the resultant method lies
between m and m log2(~+1).

In all of the above methods the recurrence relation is evaluated
sequentially and parallelism is generated through the simultaneous
evaluation of several sequences for different sample points. However,
additional parallelism through the reformulation of the Sturm sequence
itself can be achieved as the fol~owing two algorithms will show.

The method of recursive doub~ingJ (Lambiotte, [3]), for example,
re-defines the Sturm sequence as:

1, PI = cl - Al ~

(ci - Al)Pi-l - biPi-2 ' i=2,3,... (2.2)

which can be expressed in the form,

where,

rTIs 1 rp~ ,i=2,3, •.•,n

~=l jJ ~oJ

lc -A _b2jj 1 j

1 0

(2.3)

S.
J

(2.4)

It can be easily seen that the sequences Pi and qi' i=1,2,••.,n are
related through the formula,

172 Parallel algorithm design

q. =~ (2.5)

The parallelism in the above procedure is obtained by evaluating the
iTT S. , i=2,3 r ••• .n in the following

j=l]
(2*2) matrix multiplication terms

manner,

processor

1 Sl

2 S2 * Sl

3 S3 * S2 * Sl

4 S4 * S3 * SlS2

5 S5 * S4 * S2S3 * Sl (2.6)
6 S6 * S5 * S3S4 * SlS2

7 S7 * S6 * S4SS * SlS2S3

8 S8 * S7 * S5S6 * SlS2S3S4
9

It can be seen from (2.3) that all the terms are built up of products of
the S. matrices. The system can be solved in log2(n) sequential stages,
each]stage consisting of between n/2 and n parallel processes each of
which is a multiplication of (2*2) matrices. Thus, stage 1 forms all
products (Sj,Sj_l) for j=2,3, ...,n, stage 2 combines all the results to

give the products (S.•S. l)'(S. 2'S. 3) for j=4,S, ...,nand so on.
]]-]-]-

Thus, the parallel evaluation of the Sturm sequence can be
completed in a time

Tr = (12n/p)log2(n) + 3n/p

using p processors and taking into account the cost of counting the sign
changes in the Pi sequence.

Finally, we look at an alternative procedure which reformulates the
process of the evaluation of the recurrence relation in order to generate
further parallelism.

The Bl.ock Tr-ianqul.ar method due to Chen et aI, [41 was originally
designed for the solution of banded unit lower triangular systems of
equations with bandwidth m+l where m and the number of available
processors p are assumed to be smaller than the size of the system n.

It is well known that any linear recurrence relation can be
expressed as a banded unit lower triangular system which can then be
decoupled into a number of parallel processes using 1092 (n) <p<n
processors. In particular, the Sturm sequence (2.2) can be rewritten as
a unit lower triangular system of equations L.!2.=.!_with the coefficient
matrix L of bandwidth 3, with elements t .. such that

~,]

t ..
~,] j -(c.-AI)'

2 ~

~i

i=j+l (2.7)

1 , i=j

, i=j+2
, Otherwise

Parallel algorithm design 173

The parallel solution envisaged by Chen et aL [4] for the solution
of such linear systems is based on partitioning the coefficient matrix L
and the r.h.s. vector f into k blocks. The system is solved in three
steps:
i) Premultiplicationby a block diagonal matrix made up of the

corresponding inverses of the matrices L., i=1,2,...,k of the
original matrix L produces the following~linear system:

I PI fls
Gl I P2 f2s 0G2 I (2.8)

s.••..• .•..
0• I.•. .•.

I I
Gk_l I Pk fks

where

[: M.l
G.

H:J
' with H. of order mXma, ~

[::1 [uland Pi f.

•
with z. and v. of

.i, r, ~
the size mXm

ii) the solution of a recursive relation defined as,

Zl = vI' zi+l+Hizi = vi+l ' i=1,2,...,k-l. (2.9)

which is achieved using recursive doubling in log2P steps of
matrix (mXm) multiplication followed by one matrix vector operation.

iii) the independent modification of (k-l) vectors Yi as,

Yl = ul' Yi = ui-Mi_lzi_l ' i=2,3,..•,k.

which can be solved for the yis in parallel.

The method requires a time (includingthe sign change count) of

(2.10)

TB = lSn/p + 12 log2(P) . (2.11)

Since the linear recurrences are of length n/p after decoupling, the
build up of rounding errors in its evaluation is likely to be less than
in the recursive doubling method. Also the possibility of over- or under­
flow occurs in the elements of p. for large n.

Note that both the recursiv~ doubling procedure and the block tri­
angular method can be extended to operate on a multiple of sample points
by a combination with the parallel multisection method. The theoretical
analyses which follow takes account of this possibility in order to
obtain greater efficiency.

In the above we have illustrated how parallelism can be generated
through designing alternative procedures for solving a given system. In
the following we describe the criterion which determines which one of the
described solution is optimum on a given system.

11.2.3 Analysis of the Alternative Solution Methods

To be effective, a parallel solution must not only be accurate and
fast relative to the same a.LqozLt.hmrun on a uniprocessor but it must aLso

174 Parallel algorithm design

be efficient relative to the best sequential algorithm for that problem.
Therefore, there is little use if the sequential starting point is
inefficient or the cost of reformulation of a sequential procedure into a
parallel version is too high. For example, the cost of evaluation of the
Sturm sequence sequentially is 3n floating point operations (flops) where
n is the size of the system. The recursive doubling procedure for
evaluating the same sequence costs 12n flops. Therefore, it can be seen
that the introduction of parallelism within the evaluation of the
recurrence relation has produced a procedure which is immediately more
expensive by a factor of 4. Thus, since the maximum speed up of the
recursive doubling procedure is only log2P the actual speed up compared
with the sequential bisection is log2P/4 if the processors on the
parallel system have equal computing power to that of the sequential
system.

To compare the performance of the above alternative solution methods
we analyse their individual computing times for evaluating a single
eigenvalue as follows:

sequential bisection

parallel bisection (N)p)

parallel multisection

recursive doubling

block triangular method

When trying to locate large numbers of eigenvalues (N)p) the
parallel bisection method is the best solution. However, for a single
eigenvalue then considering the above computational costs it can be seen
that after some judicious reasoning the following conclusions for the
best method can be made, i.e.,

T = 3n

Tb 3n/p

T 3n/log2 (p+l)m
T (12n/p)log2(n)+3n/pr

TB l5n/p + l2log2(P)

Tr < Tm if P/log2P > 4log2(n)

Thus, for n=1024, for example, the recursive doubling strategy is
better than multisection if the number of processors is greater than 512
which signifies that it is suitable for the DAP but not for the CRAY or
NEPTUNE.

Furthermore, TB<Tm if l5n/p+12log2P<3n/lo92 (p+l)which indicates that

p has to be greater than 28 signifying the suitability of the block tri­
angular method for the CRAY and the DAP but not for NEPTUNE.

Finally, Tm<TB if log2(p+l»n/4 log2n with p~n. For n=1024, this

means that multisection is better than the block triangular method if
p>32,000,000 which indicates that it is unsuitable for use on the CRAY,
DAP and the NEPTUNE system.

Another important criteria in designing effective parallel
algorithms is the stability of the proposed solution methods. Unstable
solutions are of little interest to the user and current sequential
algorithms have had their stability properties thoroughly analysed.
Therefore, any parallel solution that deviates from the calculation of a
sequential solution must be thoroughly analysed for stability.

It can be easily seen that the computations involved in the parallel
bisection and multisection algorithms follow that of the sequential
bisection method. However, in the recursive doubling and block triangular
methods the computation involves matrix multiplications instead of
scalar operations as in the previous procedures. There still remains
further work to be done, to verify the stability characteristics of these
procedures. For example, in the recursive doubling procedure to produce

Parallel algorithm design 175

results of identical accuracy to that obtained by the standard bisection
method all the elements involved in the matrix operations have to be
stored in double precision. This in turn will affect the performance of
the algorithm on systems such as DAP where the performance of the system
as a whole degrades as the word.length increases (e.g.on the DAP, the
timing for the multiplication of two numbers stored as R*4 is 274
~seconds whereas for R*8 it is 1066 ~seconds.

11.2.4 Results

Combined multisection and bisection has been successfully
implemented on 2 different types of parallel architectures. These are
the ICL-DAP, an array processor and the CRAY-1S vector processor. The
recursive doubling method has also been implemented on two systems,
whilst the block method is currently being implemented (Barlow et al [6).

The implementations are fully described by Barlow et al, (2). The
results are summarised in Tables 2.1 and 2.2.

TABLE 2.1 ICL DAP and CRAY-l timings for locating all the eigenvalues
using combined multi-section and bisection

ICL-DAP CRAY-l
SIZE Time Speedup* Time Speedup***

(secs.) (sees.)

64 0.24 4 0.028 3.8
256 1.15 12 0.27 5.5

1024 6.66 27 3.14 6.2
4096 65.15 >46** 49.26 6.8

*speed-up calculated with respect to ICL 2980 (the DAP host)
**

ICL 2980 version ran out of time
***compared to CRAY sequential solution

TABLE 2.2 ICL-DAP and CRAY-l timings for locating a small number of
eigenvalues of a matrix of size 1024

ICL-DAP CRAY-l

No.of Multi- Recursive Multi- Recursive

Eigen- section Doubling section Doubling

values & bi- & bi-
section section

1 2.85 secs 1.1 sees 0.034 secs 0.145 secs
4 2.85 2.29 0.0485 0.312

16 2.85 6.8 0.0929 1.128

N.B. the coefficient matrix for the above table is the tridiagonalmatrix
A defined as

if li-jl=o

if li-jl=l, i ,j =1,2r ••• ,n

otherwise

176 Parallel algorithm design

11.3 NON-NUMERICAL PARALLEL ALGORITHMS

This section describes a sorting problem that combines the neigh­
bour sort and the 2-way merge algorithms. This problem has been
implemented on the NEPTUNE MIMD system.

11.3.1 Introduction

One way of solving this problem in parallel is to implement it as
two relevant components consisting of the sorting and the merging
algorithms. Initially, the file of N items is partitioned into M sub­
sets of (N/M) items each. These subsets are partially sorted by the
neighbour sort algorithm which was first introduced by Haberman (6).
This algorithm is of o (Nlog2N). The sorted subsets are then merged
using the parallel 2-way merge algorithm to yield the final sorted file.

11.3.2 The Neighbour Sort Algorithm

The neighbour sort when first introduced was implemented on a SIMD
computer when N items are distributed onto N processors in such a way
that there is only one item in each of the processor's memory. When
this algorithm is implemented on the NEPTUNE MIMD system, the file of N
items is partitioned into M subsets of size (N/M) each. Each subset is
sorted independently of the other subsets using the natural 2-way merge
a.lgorithm(Knuth (7). In other words, each item is compared with its
immediate neighbouring element. In the next stage of the algorithm,
each subset of 2 items is compared with its immediate neighbouring sub­
set to form a subset of 4 items and so on until the subset is sorted.

11.3.3 The Parallel 2-Way Merge Algorithm

The basic principles of the 2-way merge algorithm are given by
Knuth [7]. The parallel implementation of this algorithm is performed on
the M sorted subsets of the previous section. By supposing that N is
divisible by M where M is a power of 2, this algorithm can be completed
in 10g2M steps where the parallelism is introduced within each step and
not amongst the steps as it is shown in Figure 3.1.

Subset/step: 1 2 3 4 5 6 7 8

1

2

3

TTTTTTTT
I I I I

I I
Fig. 3.1

11.3.4 The Complexity of the Algorithms

The Neighbour sort algorithm requires the following complexity.
Since the sort is performed by the natural 2-way algorithrDwhose average
number of comparisons is given by (2M-I),where M is the subset size
(Knuth [7]), therefore, each subset is sorted in log (N/M) steps. Thus,
in the first step where! (N/M) sequential merges are performed (see
Fig. 3.1), each two neighbouring subsets of size one item requireat
least one comparison. Hence, in this step t (N/M) total c=mparisons are

Parallel algorithm design 177

required. In the second step, 1/4(N/M) merges are required to sort the
subsets of size 2 elements each which are the results of the first step.
Thus, on average, 3/4(N/M) comparisons are required. This proceeds
until the final step where only one merge is completed to merge two

subsets of size 21og(N/M)-1 each.
comparisons for this step are

Hence, the total number of

(2 x 21og(N/M)-1 -1) = 21og(N/M) - 1.

The sum of the comparisons of the log(N/M) steps gives the total
complexity of one subset of size (N/M). Hence, the complexity of the M
subsets is given by

log(.!!)-1
2 M

N
log(M")

N[l 1 + 1 _ 1 1 1-"2 4+···+ - N
21og(:M)

+ ••• +

N
N(log(:M)-l)+ M comparisons. (3.1)

The M subsets can be sorted in parallel where M parallel paths are
generated with the condition that M~P, where P is the number of
processors. In this case, at most rM/pl parallel paths are performed by
each processor where each path requires the same complexity described
above. Therefore, the total complexity of this algorithm in the
parallel implementation is

N N M
Cps ~ p(log(:M)-1) + p + 1 comparisons.

As the speed-up, S ,ratio is important in most of the parallel
implementations,therefg~e,

C
S ~ ~ O(P)
ps c

ps

(3.2)

This means that the speed-up of this algorithm is always linear (i.e.
of O(P» and does not depend on M.

The complexity of the 2-way merge algorithm that merges the M sub­
sets in log M steps is measured as follows:

In the first step, M/2 paths are generated where each path merges
two neighbouring subsets of size N/M each. This results in(M/~(2N/M-1)
comparisons. Similarly, in the second step, each two subsetsof size
(2N/M) are merged in which case M/4 paths are required, and this yields

(M/4)(4N/M-1)comparisons. The algorithm proceeds until the final step
in which only M/2logM=1 path is generated to merge two subsetsof size
2logM_l 21ogM-l

This gives -T-(2 .N_l) comparisons as the
M 2 ogM M

complexity of this step.
By summing up the complexities of all the steps we obtainthe

total complexity in one processor tlM. Thus,

t = NlogM - ~ .2(1 - _1_) NlogM M+L (3.3)
1M 2 210gM

In the parallel implementation, if M~P, then each processorhas to

178 Parallel algorithm design

car~y out one or more paths in the first few steps. Precisely, when
M>.21.p,for i=1,2,..•, all the co-operating processors are potentially
activated so that no loss in the algorithm's efficiency is achieved. In
other words, when the step number i such that i~log(M/P), for i=1,2,...,
all the processors are potentially used. After these log(M/P)steps,
the number of processors is halved in each step until the final step
where only one processor is active while (P-l) processors remain idle.
The number of steps between 10g(M/P) and the final step are log(P),
where 10g(M/P)+10gP=10gM steps represent the total number of steps to
merge the M subsets.

NOW, by proceeding as in the sequential case with the addition of
the above-mentioned properties, the total complexity of the 2-way merge
algorithm when run in parallel becomes:

t =PM
[Ml 2N
12Pl (""M -1) +

M
log(p)

(2 .N -1)
M

rMl 4N r M ~
1
-'-4 pi (-M -1)+...+ I (/ .210g M P).P

M

~

M 1(2109(p)+1.N
+ / I 1)+...+

210g(M P)+1.P/2 M

210gM N(M . -1) . (3.4)_p_1
210gP

Equation (3.4) can be simplified with the use of the rules of the

M 1

geometric series. Thus,
N M 2N M

tpM ~plog(p) +p (P-l) -p+ 1 +
M

log(p)

tlMt becomes of
PM

(3.5)

Hence, the merge speed-up, SpM' which equals

O(PlogM)
M •

log (p) +2P-2)

If we sum the results of equations (3.1) and (3.3) and equations
(3.2) and (3.5), we obtain respectively, the total sequential and
parallel complexities of the neighbour sort with the 2-way merge
algorithm. Thus,

N
N(log(M)-l) + M + N 10gM - M+l

N(logN-l) + 1 (3.6)
and,

Tp = ~(log(~)-l)P M
N Ns p(log (p)-1)

+ ~l + ~109(~) + 2: (P-l) - ~1+109(:)

2N M
+ p(P-l)+10g(p)+2 • (3.7)

Then, the total speed-up, Spt' can be obtained.
N(logN-l)+1

Thu ,

N N 2N M
p(log(p)-l)+ p(P-l)+log(p)+2

(3.8)

number of processors P
experimental and theor
presented respectiv ly in T

o are
d ta size N is

After simplification Spt becom P:t m quation

1024.

TABLE 3.1: The experimental results of the algorithm

Parallel algorithm design 179

No. of No. of Sorting Merging Total
Processors Paths Speed-up Speed-up Speed-up

(Pl (M)

4 4 3.65 1.28 2.57
8 3.57 1.60 2.53

16 3.57 1.85 2.55
32 3.54 2.10 2.53
64 3.40 2.22 2.51

The efficiency of the algorithm which is measured as E
calculated theoretically as shown in Table 3.2. p

TABLE 3.2 The theoretical results of the algorithm

Efficiency
(Epl

No. of
Processors

No. of Total
Paths Speed-up

4 1.82
8 1.82

32 1.82
64 1.82

8 2.41
32 2.41
64 2.41

8 2.77
32 2.77
64 2.77

2

3

4

0.91

0.80

0.69

We notice that the theoretical and experimental total speed-up are
approximately equivalent. The efficiency decreases as the number of
processors increases and this is due to the reduction in the usage of
the processors in each step of the 2-way merge algorithm.

A performance analysis of this method is predicted together with
its performance measurements when run on the NEPTUNE system (Yousif [8]l.
Thus, we measure the static and dynamic losses of the parallel paths
control and the shared data. However, in order to measure the static
losses of the parallel paths control, we have to know the number of
accesses made by the program to a path per the total number of
operations performed in the path. Similarly, with the static loss of
the shared data. On the other hand, the dynamic losses of the
parallel paths control are obtained directly from the results of the
NEPTUNE system and we include here the results of 4 processors when run
in par 11 1. These measurements are the cost of the waiting cycles the
proc ssors h v spent because no parallel path is available to be
carri d ou by that processor. These calculations are listed in Table
3.3

180 Parallel algorithm design

The parallel path access rate in the 2-way merge algorithm is
measured as follows:

Since the number of comparisons is changed in each step of the
algorithm, an average of the complexities is taken to represent the
total complexity per path. Hence, as the algorithm requires M steps,
then the average complexity per path is given by (2N/M -l)logM. This
means that there is one access to a path per (2N/M -l)logM.

The losses values in Table 3.3 are obtained by using the results of
Table 3.4 that includes the timing results of the parallel path accesses
on the NEPTUNE system.

If we compare the static parallel path losses obtained from the
NEPTUNE system with that of our prediction, we notice that they are in
good agreement.

TABLE 3.3. The performance measurements of the 2-way merge aLqorLt.hm

No. of Shared data Parallel path Parallel path loss

Paths (M) access rate loss access rate loss static contention

4 2:1 flop 0.2% 2N 0.11% 0.06% 2.6%1:«M" -1)

10gM
flops

8
16
32
64

0.14% 0.11%
0.22% 0.19%
0.36% 0.38%
0.61% 0.64%

2.26%
2%
1.79%
1.58%

However, the contention in Table 3.3 cannot be predicted and can
only be obtained from the results of the 4 processors'performance.
Also, we notice from Table 3.3 that the parallel path losses increase
as the number of paths increases but the contention increases with the
increase of the number of paths.

TABLE 3.4. The resources time on the NEPTUNE system

Resource Time in microseconds

Floating point operation (flop)
Integer
Local memory access
Shared memory access
Mutual exclusion mechanism
Mutual exclusion blocked
Parallel path mechanism
Parallel path blocked

-700
=200
-0.6
-0.7(average)
-400
-200
-800

Parallel algorithm design 181

11.4 CONVERSION OF IMPLICIT METHODS TO EXPLICIT FORM

Another technique of achieving parallelism in a numerical algorithm
is by the use of explicit methods.

However these methods are the oldest methods and suffer from poor
stability and convergence characteristics that require unacceptable
computer solution times.

The newer implicit methods are better but often we are not able to
exploit to the full the implicit parallelism in the solution algorithm.

Hence we must find new explicit methods with improved stability and
convergence characteristics.

Consider the simple heat-conduction problem, (Fig.4.1),

au
at

(4.1)

with initial conditions, u(x,O} f(x) , O:;:x:;:l,

and boundary conditions, u(O,t) go(t} t O<t:;:T,

u(l,t) gl (t), O<t:;:T.

t

° i

Fig. 4.1

The simplest explicit method uses a forward difference operator
imation to au/at and a central difference operator approximation
The formula,

u]_',]'+l= ru. I .+(1-2r}u .. + ru. I . + O(At+Ax2)]_- ,]]_,]]_+ ,]

appr~x­
to a u

--2 .
ax
(5.2)

lit
is well known (Fig.4.2) but is unstable for values of r = --z > t.

lIx
Hence, the algorithm is ideal for parallel application since every point
on the grid can be evaluated at the same time. The method requires long
solution times due to the small time step of integration.

j+l

j

i-I i i+l

Fig. 4.2

182 Parallel algorithm design

An implicit method uses a backward difference operator approx~mation
to au/at and a central difference operator approximation to a2U/dX. The
equation,

-ru. 1 . 1+(1+2r)u.. l-ru. 1 . 1 : u .. , (5.3)~- ,J+ ~,J+ ~+ ,J+ ~,J

is also well known and is stable for all values of r (Fig. 4.3). Howeve~
the algorithm requires the solution of a system of 3 term finite
difference equations at every time step in which we are not able to
exploit the parallelism to the full.

j+l

j

i-l i i+l

Fig. 4.3

In order to facilitate the solution of these implicit equations,
asymmetric techniques due to Saul'yev [9) have been used, i.e. the
computational molecule Fig. 4.4 representing the equation,

2 tit
-rui_l,j+l+(l+r)ui,j+l= (l-r)ui,j+rui+l,j + O(tlt+tlx+ tlx)' (5.4)

is explicit if solved from left + right and the computational molecule
Fig. 4.5 representing the equation,

ru +(l+r)u = (l-r)u. . + ru + 0(lIt+lIx2_ lit)
- i+l,j+l i,j+l ~,J i-l,j r::,x (4.5)

is explicit if solved from right + left.

j+l j +1

j Q-0
i-l L i+li-l i i+l

Fig. 4.4 Fig. 4.5

These two schemes are often referred to as semi-explicit fo::rmulae.

Parallel algorithm design 183

11.4.1 A New Group Explicit Method

If we now couple the use of the asymmetric equations (4.4) and (4.5)
at 2 adjacent points, i.e.,

j+l

i-I i i+l i+2

Fig. 4.6

then they result in a (2X2) set of implicit difference equations.
For the group of two points, i.e. {illx,(j+!)lIt}and {(i+l)lIx,(j+!)l\t}

in which equations (4.5) and (4.4) are used simultaneously to calculate
the values of u at these points respectively. Therefore, at point
{illx,(j+!)lIt}the solution is approximated by

-rui+l,j+l + (l+r)ui,j+l = rUi_l,j + (l-r)ui,j (4.4a)

whilst at point {(i+l)lIx,(j+t)lIt},the solution is approximated by,

-ru + (l+r)ui+l,j+l = (1-r)ui+1,j + ru (4.5a)
i,j+l i+2,j

If we now rewrite equations (4.4) and (4.5) in matrix form,

[l+r -rl lu. '+1 l
[l:r

ol lu. . 1 Iru. 1 .1., ll' J J =
l-rJ

II ,J J + l l- 'JJ
rUi+2,j

(4.6)-r ui+l,j+l ui+1,j

in which the (2X2) matrix of coefficients can easily be inverted so that
the equation can be written in explicit form as,

[
Ui,j+l 1
Ui+l,j+l

whereIA~1+2r.

1

IAI [
l+r • j[l-r
r l+r 0

o J [u. •• [ru. 1 'j}_ l,J + l- ,J (4.7)

1 r ui+1,j rUi+2,j

This simplifies to,

~

u .. 1 1 1 ~r(l+r)u. 1 .+(1_r2)u.. +r(l-r)u. 1 .+r2u.2 .1l,J+ l- ,J l,J x+ ,J x+ ,JI •(4.8)

u. 1 . 1 = ~ r2u. 1 .+r(l-r)u.. +(1-r2)u. 1 .+r(l+r)u.2 .Ja+ ,J+ l- ,J l,J 1.+ ,J L't- ,J

For any ungrouped (single) points near the right and left boundaries
equations (4.4) and (4.5) can be used respectively, i.e. for the right
boundary,

1
um-l,J'+l -(1) (ru . 1 + ru 2 . + (l-r)u 1 .) r+r m,J+ m- ,J m- ,J

(4.9)

and for the left boundary,.

184 Parallel algorithm design

1u =---
l,j+l (l+r) (ruo . 1 + rU2 . + (l-r)u .)

,J+ ,J 1,J
(4.10)

Finally, equation (4.6) can be easily converted to explicit form
resulting in the computational molecule (Fig.4.7).

j+l

i-l i i+l
Fig. 4.7

i+2

representing the equation,

122
u;,J'+l = (1+2r) [r(l+r)u. 1 .+(l-r)u .. +r(l+r)u. 1 .+r u, 2 .1
~ .Lt- .] ~,J ~+ ,J ~+ ,J

(4.11)
and the molecule,

j

i-l i i+l
Fig. 4.8

L-t2

representing,

ui+l,j+l
1 2 2

(1+2r) [r Ui_l,j+r(l-r)ui,j+ (l-r)u .i+l, j +

r(l+r)u. 2 .1 , (4.12)
~+ ,J

which when used in the alternating group explicit (AGE) method results in
a stable explicit algorithm which is ideal for parallel application
(Evans & Abdullah, [101).

Preliminary results indicate that the new alternat. ing group explicit
(AGE)algorithm (4.11) and (4.12) not only possesses sta.per Lexr stability
characteristics over the standard explicit method but n..<lS improved speed­
up and efficiency characteristics when programmed for t..lle g .:i..venproblem
(5.1) and run on the Neptune parallel MIMDsystem. The extension of this
method to time dependent multidimensional problems is 'T iven in Evans [Ill.

Parallel algorithm design 185

11.5 NEW PARALLEL ALGORITHMS

Most algorithms that are found in our textbooks are based on a
sequential way of thinking. This is undoubtedly due to the historical
way of mathematical problem solving in our education and to date, the
utilisation of serial computers. However, with the increasing avail­
ability of parallel computers, the 'discovery'or development of new
parallel algorithms for many standard or new problems is bound to occur
when parallel thoughtprocesses become more established.

Consider the factorisation of the matrix A in the form A=LU which
forms the central theme in many linear algebra applications. The
computation of the elements of Land U reduces to non-linear recurrence
relations which can only be solved sequentially. However, Evans [12]
analyses a different decomposition of the (nXn) matrix A, namely the
Quadrant Interlocking factorisation (Q.I.F.), i.e.,

w Zn n
(5.1)

where

Wn and Zn

This decomposition leads in a natural manner to algorithms where the
coefficients of the Wand Z 'butterfly'matrices are obtained as (2X2)
systems of linear equations which can be solved in parallel.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the support of the S.E.R.C.
through its D.C.S. research programme and to his colleagues R.H. Barlow,
J. Shanehchi, Nadia Y. Yousif and M. Bekakos.

REFERENCES

1. Barlow, R.H. and Evans, D.J., 1978, 'A Parallel Organisationof the
Bisection Algorithm', Comp.J., .?1_, 267-269.

2. Barlow, R.H., Evans D.J., and Shanehchi J., 1983, 'ParallelMulti­
section Applied to the Eigenvalue Problem', Comp.J., 26,6-9.

3. Lambiotte, J.J., 1975, 'The Solution of Linear Systems of Equations
on a Vector Computer', Ph.D. Thesis, Univ. of Virginia.

4. Chen, S.C., Kuck, D.J. and Sameh, A.H., 1978, 'PracticalParallel
Band Triangular System Solvers', T.O.M.S., _!, 270-277.

5. Barlow, R.H., Evans, D.J. and Shanehchi, J., 1983, 'Comparisonof
Parallelism Between a Block and Multisection Method forEigenvalues',
Compo Stud. Rep. 174, L.U.T.

6. Haberman, A.N., 1973, 'ParallelNeighbour Sort', Comput. Science
Dept. Rep. Carnegie Mellon Univ.

186 Parallel algorithm design

7. Knuth, D.E., 1973, 'The Art of Computer Programming: Vol. 3, Sorting
and Searching', Addison ·WesleyPub.Co.

8. Yousif, N.Y., 1983, 'ParallelAlgorithms for AsynchronousMulti­
processors', Ph.D. Thesis, L.U.T.

9. Saul'yev, V.K., 1964, 'Integrationof Equations of Parabolic Type by
the Method of Nets', Macmillan, New York.

10. Evans, D.J., and Abdullah, A.R.B., 1983, 'A New Explicit Method for
the Diffusion Equation', pp.330-347, in Numerical Methods in Thermal
Problems III, edit. Lewis, R.W. et aI, Pineridge Press.

11. Evans, D.J., 1984, 'New Parallel Algorithms for Partial Differential
Equations', pp.3-56, in Parallel Computing 83, edit. Feilmeier, M.,
Joubert, G.R., and Schendel, U., Elsevier Pub.

12. Evans, D.J., 1983, 'New Parallel Algorithms in Linear Algebra', pp.
61-69, in Calcul vectoriel et Parall~le, edit. Bossavit, A.,
Bulletin de la Direction des Studies et Recherches. Electricite de
France.

Chapter 12

Design study for active memory arrays
J. K. lliffe

12.1 DESIGN AIMS

The work described here is intended to offer an
attractive range of options in the design of high-performance,
high-integrity machines. It is meant to be general-purpose,
but the most promising application areas are in support of
portable operating systems and languages, high precision
software engineering, and problems that can be expressed
effectively in SIMD terms.

At first sight the connection with Distributed Systems
is tenuous. On closer inspection it will be seen that
distribution of function in a generalised sense is proposed
only as a last resort, though sufficient control is retained
to facilitate such a development. If the object of computer
engineering is to take data from the users' files, to trans­
form them, and then to return them for later use or display,
movement from file to arithmetic unit and back again is the
primary goal and memory bandwidth remains the primary limita­
tion on performance. Having sufficient bandwidth to shuffle
the data from side to side in search of processing power is
a freak situation encouraged by the introduction of low-cost,
low-performance cpu's into the designer's toolkit.

Leaving aside the practical need to handle geographically
dispersed files, and assuming that the problem data is in
the same box, more or less, as the processor, the problem
arises of how to deal with it effectively. If "the problem"
is in fact a workload of separate jobs the option of routing
them to separate computers is available and is taken on many
commercial systems. As the amount of interaction within the
workstream increases a solution based on simple partitioning
becomes unattractive, and the designer looks to the program
memory as the principal weapon in attempting to configure
the system to match the workload. Increasing theoretical
bandwidth is relatively easy: the aim is to minimise demand.
Once that is done the option of increasing throughput by
parallelism is still available. The converse approach,
hoping that massive parallelism will overcome inefficiencies
of the underlying engines or their interconnections, appeals
mainly to semiconductor manufacturers.

188 Active memory arrays

The traditional roles of random access memory are:
(a) to extend the function set of the process0r by means of
stored program; (b) to retain control, structural, and
numeric data pertinent to a set of partially executed tasks;
(c) to provide the buffer space necessitated by attachment of
asynchronous external devices.

In modern systems the development of these roles exerts
conflicting demands on memory subsystem design. For exampl~
(c) is eminently suited to distributed, modular design with
"message" interconnection, (a) is better suited to shared
memory, and (b) hovers between the two extremes. Faced with
such variability, the appropriate design strategy is to
evolve an engineering model in which all three roles are
recognised. Ideally, commitment to one or other ~ode of
operation should be dynamic; at worst it should be deferred
until the system is configured.

It has to be admitted that in practice the problem is
more often reconfigured to fit the system than vice versa,
as illustrated by "array processing" and "reduction" engines.
Yet it is frequently overlooked that even in apparently .
highly specialised machines a substantial part of the work­
load still requires conventional processing capability: the
ICL DAP is backed up by a scalar controller and the ICL 2980
mainframe, the Manchester dataflow computer is supported by
a VAX 11/780, and so on. The question arises as to whether
one can capture the essential elements of the "novel"
architectures within the framework of conventional design.
If so, an attractive range of options can be developed by
varying the emphasis on one type of function or another
without changing the architectural specification.

In the case of array processing that objective has been
achieved by the Active Memory Array concept to be described
here. The user sees a machine with built-in parallel
function in the style of the DAP. The engineer can vary the
extent to which hardware is committed to support it.
Examples will be given of the type of measurement that can
be made to guide such decisions.

The Fifth Generation architects, however, have
apparently rejected the idea of grafting logic programming
onto von Neumann architecture. It is difficult to come to
grips with specific requirements because in this field there
is as yet no causal chain leading from social dsmand to the
"solutions" which are being offered - one that can compara­
tively easily be supplied, for example, in p assLng from
energy-saving aerofoil design to CRAY 1. It woul,d be mis­
leading to read too much into current efforts in dataflow or
applicative architecture, or even into single-ass ignment
languages and first-order predicate calculus. Tb.e "Klips"
rate seems an even more dubious parameter than ML ps, at least
until substantial applications have passed the sa...mplingstage.
However , it might be suggested that the computatL onal models
that have come into vogue in recent years can be underpinned
by quite mundane functions, namely the ability to: (a) scan
lists rapidly, evaluating elementary logical and arithmetic
functions of their elements; (b) create and destr-oy lists

Active memory arrays 189

freely without incurring heavy penalties in accessing their
elements or in collecting garbage; and (c) localise calcula­
tions to the extent that they can safely be executed in
parallel. If that is anywhere near the mark it is surely
unnecessary to throwaway the von Neumann baby with the
bathwater.

The Active Memory Array (AMA) is allied to an
engineering model referred to in Iliffe (1) as the Pointer­
Number Machine. In the PN machine program structure is
recognised at hardware level to an extent that appears to
satisfy (a) - (c): not merely in microprogram but at logic
gate level. That is to say, (a) and (b) are supported by
the parallel function of the memory, and (c) by strict
control of task environments. The result can be visualised
(Fig 1) as a main memory with an N-word data path, to
which a number of vector registers are interfaced. These
registers serve as instruction and data buffers for the
(scalar) PN processor; they and the processor can be
replicated to achieve higher performance until the memory
bus reaches saturation. In addition, the vector registers
can be presented in parallel to a planar arithmetic-logic
and routing network. Placing the parallel component as a
shared resource reflects a preliminary feeling for its
importance. The relation of this model to others is outlined
in Section 12.2.

It was intended «1), Chapter 13), that part of the
vector registers would act as look-ahead cache memory, but
the design complexity, and uncertainty as to performance
benefit, have delayed progress towards that goal. In the
present model the "vector register" is simply the set of
working registers addressed in the user's program. This has
some interesting consequences in program design which are
explained in Section 12.3. The main parameters affecting
performance are Ic, the PN machine instruction cycle time;
Mc, the memory cycle time; K, the proportion of PN
instructions making reference to memory or to the planar ALU;
and N, the width in words of the memory data path. In
Section 12.4 it will be shown how they affect overall
performance.

12.2 RELATED WORK

The novelty of the PN Machine lies in a synthesis of
several established techniques which seem at first sight to
be in conflict: for example "high integrity" is often
associated with performance or cost penalty, and "array
processing" with inflexible control or data structures. It
will be shown in the next Section how harmony is restored.
The underlying techniques are discussed at length in (1),
and summarised briefly here.

190 Active memory arrays

EXTERNAL

MEMORY
1-0

N-WORD

MEMORY

Fig.12.1 Active MemoryArray with a single
PNMachine.

12.2.1 High integrity design

The aims of high integrity design are to improve system
reliability and to reduce software development and mainten­
ance costs. The basic mechanism invoked is a stored element
distinct from instructions and data which serves as a
pathway to a precisely limited region of program space.
This is the "Pointer" component of the PNmachine. An array
of pointers, possibly mixed with numeric values, delimits
the program space that can be accessed by a task at any
instant. In the PNmachine pointers include capabilities,
i.e. identifiers of abstract objects, and physical addresses
of data sequences.

Any access control mechanism has to satisf y certain
constraints to be acceptable, namely, it must be (a) fool­
proof, (b) cheap and fast, (c) flexible, and (d) easy to use.
Taking all these constraints into account, a tagged memory
and register structure comes closest to meet ing requirements.
The interpretation of (b) has always been relative to current
technology. The earliest machines of this type were
constructed using microcoding techniques and com~ared
favourably with their contemporaries. In a sense, however,
they were fortunate in having such a large umbreLla under
which to shelter. The introduction of writ able control
memories in the early 1970' s started a line of research
(now seen in the RISe philosophy, Patterson and Sequin (2»

Active memory arrays 191

which shifted interest from high level architecture to
microsystems. Here the range of options qualifying as cheap
and fast is very much reduced.

It will be recalled that access control incurs two
sorts of "overhead": that of ensuring that program space is
only accessed via the list of current environmental pointers,
and that of managing change in the list itself. Indirect
addressing of memory via segment tables or resource lists
is impractical, which is the reason for placing physical
addresses in pointers and mapping the access list into
program registers. The points at which the access list
changes - typically on procedure calls or at the interface
between major software subsystems - require a wholesale
adjustment of register contents to reflect the change of
environment. In the PN machine this is accomplished very
economically with the help of the N-word data path of the
memory array.

12.2.2 Microcoding

Achieving controlled memory access within the micro­
machine cycle proved to be difficult, but finally removed
the major obstacle to the provision of flexible micro­
systems. The advantages of using l~nguage-oriented
instruction sets have been demonstrated with varying degrees
of conviction. Apart from that there is a growing body of
system and application software which is easily transported
across machines which can offer an efficient means of
imitating a common target lunguage. Experience of such
systems seems to suggest that the most effective design
strategy is to provide the choice of targetting onto micro­
code, to DEL code, to a fixed instruction set, or to a
mixture of all three. Regarding the PN machine instructions
as a form of vertical microcode, the above objective has
been achieved in the present design. The instruction buffer
(Fig.12.1) acts as a microinstruction cache: it will be
shown later how it is exploited in the design of inter­
pretive code.

12.2.3 Parallel arithmetic

The principle of the ICL Distributed Array Processor
and similar machines has been to avoid the memory bottle­
neck by placing arithmetic circuits in, or adjacent to,
memory itself. The distinctive feature of the DAP is its
substitution for a memory module in the mainframe processor
in order to serve as a "passive" memory and to escape the
overhead of loading and unloading an "attached" device. The
functions of the DAP controller enable it to execute
parallel algorithms independently of the main cpu but to
act as a "slave" to a task in the mainframe: it is not
possible, for example, to call a (scalar) Fortran sub­
routine from within a (parallel) DAP-Fortran subroutine.
Although the DAP has been more successful than most array
processors in presenting a usable interface to programmers

192 Active memory arrays

the rigidity of control and storage structures has been a
severe limitation on its applicability.

In AHA design the need for a host is dispensed with
completely. The PN machine acts as a controller and carries
out all operating system functions including command stream
interpretation and compilation. Parallel operations can be
freely mixed with scalar, and parallel tasks can be freely
scheduled in the interactive workload. In system programming
the rigid restriction to an N-word memory plane cannot be
avoided, but in application programming generalised array
dimensions are supported.

It remains to be seen what level of parallel function
can be economically justified, and how practical it is to
share parallelism between PN machines. A possible com­
promise might be to provide non-shared routing and elementary
logic, and a shared array of N floating point devices. The
present design study is intended to shed some light on such
issues.

12.3 PN SYSTEM

The PN machine is designed to support at hardware level
the ideas of (a) abstraction, (b) memory management,
(c) array manipulation, and (d) interpretation of language­
oriented target codes as an alternative to compilation. It
follows that a unique combination of features has to find
expression in the defining language, while keeping close to
convention in other respects. The system language is called
"P". By using P in practical applications it is possible
to derive quantitive measures of the support required from
system functions and hardware, and to make realistic
performance estimates.

The following subsections dwell on unusual features of
P. For definiteness the description is centred on an
implementation using 16-bit words, 32-bit long words, and
36-bit registers. The encoding of Preserves 8 registers
Ior system use, leaving 8 for the application code. A
memory plane contains N long words, N registers, or 2N
instructions, where typically N=8. The memory depth is
64K planes. Only a single PN machine and single AMA are
considered. Input and output devices are addressed as
"external memory" of the system: they may be viewed either
as individual status or data words, or as more substantial
stores such as TV frame or disk buffers. In that way one of
the major functions of the memory is detached from program
space and associated with the appropriate I-D devices.

12.3.1 Abstraction

Tag coding distinguishes numbers from pointers, and
further subdivides the latter into capabilitLes, addresses,
and control pointers. Interpretation of tags is by hardware
to ensure integrity of data. Interpretation of capabilities
is by program. A user can request a capabilLty :for a new
class of objects, receiving a capability-farming-capability
(CFC) in return; a capability for a particul~r o1Jject within

Active memory arrays 193

a class is formed by presenting the CFC together with object
identification to the system. Misuse is prevented by
restricting the circulation of CFC's, which is the responsi­
bility of the users. Forgery is prevented by restricting the
use of the tagsetting instruction, which is a privilege of
the system.

Capabilities can persist from system start-up until
switch-off. La ng-term storage in files is not supported.
Deletion of objects, including entire classes, is assisted
by system functions but generally requires cooperation of
the capability class manager to permit early deletion of
the representation.

As noted earlier, a set of tagged elements, which might
include capabilities, serves to define the execution
environment of a task. Certain capabilities are reserved
for system use to represent files, storage segments, abstract
data types (the CFC's mentioned above), error conditions,
etc. A second set of tagged elements known as the base
represents the authorisation environment. A task is
executed with reference to a base. A control module is
authorised to access only certain named elements of the base,
which are declared in the source text. Association of these
names with base elements is dynamic, enabling binding to be
deferred until execution. It is this mechanism which ensures
safe expansion of the execution environment in moving from
one control module to another: a program simply requests
access to the base element by name, and places the address
that is returned in the execution environment. The
associative search is carried out by parallel functions.

A stack is associated with each task, organised as a
sequence of memory planes. Under program control any subset
of the eight user registers or eight system registers can be
pushed into memory or, conversely, popped in one memory
cycle. A function is provided to "clear" selected registers
to the Null value in parallel. A procedure call effectively
seals the stack and prevents the called program from
unwinding it to get at protected data. In that way the user
is given prtcise control over which elements of the execution
environment are passed back and forth between procedures. It
can thus be seen that the user benefits from the presence of
the AMA even though not explicitly making use of parallel
function.

12.3.2 Memory management

Addresses are distinguished by tag as referring to word,
plane, or mixed (tagged) sequences. The maximum length of
any type of sequence is 4096 elements. The tag further
assigns read-write or read-only permission.

Sequences of appropriate tag and length are supplied on
demand by the system store manager. A sequence is assigned
to a task, is unshared, and is recovered by the system when
no addresses refer to it, unless it is abstracted, i.e.
assigned to the class of objects consisting of storage
segments. As with other abstract objects a capability is
then created and may be used as the means of controlling

194 Active memory arrays

shared access to the segment it identifies. Typically, the
segment capability is placed in the base at position p and
access is requested by authorised users:

x = Access(p,m)
seeks access to segment p, mode m, (update, read-only, etc),
and places the result (an address or failure code) in x. On
completion,

Release(p)
relinquishes use by the current task. Any dangling refer­
ences (such as x) are annulled by scanning the tagged space
of the current task: it is possible to control the propaga­
tion of addresses across task boundaries.

One of the more difficult problems caused by using
physical addresses in pointers is that of detachment,
i.e. of moving the sequence of elements to which a pointer
refers out of memory, perhaps to secondary storage. The
action of scanning tagged space replacing addresses by
suitable markers is not materially helped by parallel
operation. It is, however, a good candidate for "microcoding"
and that is how it is programmed on the PN machine. It
remains to be seen how much machine time it absorbs.

12.3.3 Array manipulation

The data values of parallel arithmetic can conveniently
be represented by plane sequences. They can be created
dynamically with the help of the system store manager. In
vertical mode k planes represent 32N numbers of k-bit
precision. In horizontal mode the same k planes would
represent a vector of kN single-precision (32 bit) numbers.

There are three types of array function in the system
language, of which the first two are strongly dependent on
array geometry: (a) broadcast operations involving trans­
mission of scalar values to or from store planes; (b) planar
routing, which is essentially a two-dimensional shift
function; and (c) element-by-element arithmetic and logic.
As all higher level functions are built out of these element­
ary steps it is important to be able to string them together
easily, which is achieved in P with the full power of
protection, abstraction and other system facilities.

In moving away from geometric limitations it is not
difficult to generalise the instruction set and even to
arrange that algorithms written and tested on the "real"
array should run on interpreted "virtual" arrays. Such an
approach is likely to lead to quite significant performance
loss, as can be seen by examining the data movement involved
in copying one array to another via a (virtual) planar ALU.

The method favoured in the PN system is to develop a
library of functions to replace (a) and (b), vvhich can be
optimally coded for the real array in the system language.
Work on the DAP by Flanders (3) and others gives a strong
indication of the type of function that is required.

Active memory arrays 195

12.3.4 Instruction sequencing

Use of the planar instruction buffer alleviates one of
the main drawbacks of RISe design, namely the difficulty of
presenting instructions at the rate required by the ALU.
Fig.12.2 illustrates the effect of varying N on the demand
for I-plane fetches. It is known, of course,that for

100

I-pZane
fetches
per 100
instru­
ctions

75

50

25.

OL___~ ~ .- ~ __-.~ __
1 2 4 8 16
Memory bus width N words

Fig.12.2 I-plane 'miss' rate.

sufficiently large N very high hit rates can be achieved,
but here again the logical complexity of large cache
memories adds to the difficulty of matching the micromachine
instruction rate. A proportion of misses can be covered by
conventional pre-fetch techniques; the unavoidable ones are
out-of-plane branches, but the margin they leave for improve­
ment is small.

The I-plane structure encourages a view of sequencing in
terms of "superinstructions" of 2N words. Immediate benefit
is gained by allowing P programmers to align code on plane
boundaries in order to guarantee uninterrupted execution of
short loops. It is also possible to "execute" plane without
changing the program counter. For example, interrupts are
dealt with not by a vectored branch but by loading the super­
instruction of the highest priority interrupt into the
I-plane. In effect, the function set of the machine is
extended without suffering the overhead of procedure call
and return.

A possible application, which has yet to be demonstrated,
is in writing interpretive code using multiway branches to
I-planes. It will result in a strange hybrid, using the host
sequencer and using "soft" function interpretation only when
necessary. It does appear, however, to avoid the most costly
burden of interpreters, which is payment of sequencing and
decoding overhead for even the most trivial operation.

196 Active memory arrays

12.4 PERFORMANCE

The AUA-PN-machine combination has been simulated for
some years, first on a PDP-ll host but currently on a stand­
alone MC68000 system. In order to accommodate substantial
applications work is in hand on a hardware-assisted version
centred on the AM29116 micromachine (Fig.12.3). This is
referred to as "::nicroPN". It does not contain the planar
registers or ALU, so all parallel functions are serialised,
which represents a performance loss of about 3N:l memory
cycles on planar operations, and s:l on stack operations,
where s is the average number of registers stacked at a time.
Program registers are stored partly in the AM29116 and partly
in external static RAM. Long operands have to be folded into
the 16-bit ALU of the micromachine. Nevertheless, microPN
will execute machine functions at about 2.5 Mips compared
with 30 Kips on the Mc68000.

I IN'fERRUPT

IEP~OM I SEQUENCER ~,--- --l TARGET
INSTR.,

INITIAL I
LOAD I 16 16 16

I

IMICI PC] I
I ADDRESS 32{Io I III PROCESSOR DATA
I

, AM29116 ~J :1CONTROL MEMORY I
I
I " - -"j

18
I IREGISTERS I I INTERNALI I EXTERNAL

I MICROINSTRUCTION I I I I MEMORY MEMORYI I, , , I I,, I , I , ,
I I L __ J ,

I, ,
I , ...J I I• , -1 I

1 1

CONTROL SIGNALS

Fig.12.3 MicroPN machine schematic diagram

Crude performance characteristics can be inIerred from
the data paths of the machine. The most important feature
of the design is its ability to switch from one mode of
use to another with minimal overhead, for example in moving
from serial to parallel operation, from nat i ve code to DEL
instructions, from sequential to deductive mode of control,
from one protection domain to another, or simply from one
task to another. Any of these changes can be completed in a
half-dozen microinstructions, where it is nat unknown for
one to take several hundred. Such gross di :ffere:nces are
difficult to observe in practice because designe::rscan see
them a mile off and attempt to steer round them, e.g. by
inventing distributed systems.

Active memory arrays 197

Measurements of activity are made by the interpreter. These
are incomplete, but show interesting variations in moving
from one mode of use to another. Table 12.1 gives results
obtained from three different programs: the first is a simple
edit-compile-execute session; the second involves data input,
permutation, parallel arithmetic, and output; and the third
models an intensive parallel algorithm which smooths an image
by averaging over sets of four near-neighbour points.
I-plane fetches are assumed to be non-overlapped. Stack
operations are assumed to be serialised and would be reduced
by the factor "s" mentioned above in parallel implementation.

TABLE 1. Measurement of PN machine activity

Problem

PN Machine Operations Edit/compile/go Array Grid

Instructions obeyed 100 100 100
I-plane fetch (N=8) 19.4 14.8 10.4
Non-memory instructions 64.3 74.9 62.8
Memory operations: 35.7 25.1 37.2

Scalar Read-Write: 11.9 3.7 1.2
GOTO 3.8 1.9 0.3
Stack (serial) 20.0 12.2 3.2
PE operation .01 7.3 32.5

PE routing distance: 0 4.1 20.2
Total memory activity (K) 55.1 39.9 47.6

GOTO indicates a change of control module, which involves
reference to a segment table in memory. PE routing distance
is the total shift of the planar accumulator, North, South,
East and West.

Performance estimates are normalised with respect to
machine clock cycles. In microPN non-memory instructions
require Ic=2.5, and memory references give Mc=4 (the machine
clock is 100nsec). In current PN design Ic=1.5 and Mc=5 or 3,
depending on the speed of memory element used (the machine
cycle is assumed to be 60 nsec). Table 12.2 shows the result
of evaluating

c = Ic * (no of non-memory instructions)

+ Mc * K
+ PE routing distance

which assumes that planar shifts take one machine cycle per
step.

198 Active memory arrays

TABLE 2. Estimation of PN machine performance

Total machine cycles(6) per 100 instructions

(N=8) Edit/compile/go Array Grid

Ic=2.5, lIIc=4 381 351 368

Ic=1.5, Mc=5 371 316 352

Ic=1.5, Mc=3 262 236 257

Ic=2.5, Mc=4, serial 382 1227 4433

The last row of Table 12.2 shows the result (in microPN) of
dispensing with the parallel ALU and planar registers.
Current work is aimed at improving the accuracy of the
simulation relative to possible implementations and widening
the range of workloads to which the system can be applied.

12.5 ACKNOWLEDGEMENTS

The work described here has been partially supported by
the Science and Engineering Research Council under
Grant GR/C/32126. The author would like to acknowledge the
contribution of Mr. P. Griffiths to the design of microPN.

12.6 REFERENCES

1. Iliffe, J.K., 1982, 'Advanced Computer Design',
Prentice-Hall International, London.

2. Patterson, D.A., and Sequin, C.H., 1982, 'A VLSI RISC',
Electronics Research Laboratory Memorandum No. UCB/ERL
M82/10, University of California, Berkeley.

3. Flanders, P.M., 1982, 'A Unified Approach to a Class of
Data Movements on an Array Processor', IEEE Transactions
on Computers, Vol.C-31,No.9,809-819.

Chapter 13

Hardware and software for parallel
update of raster graphics images

I. Page

13.1 IHTRODUCTIOI
The user interfaces of complex information processing systems such as

those for computer-aided design, computer-based training and automated
office systems are rightly receiving an increasing amount of attention
from computer sCientists. However, many of the new techniques being
employed in user interfaces, such as dynamic windows, pop-up menus,
dragging and animation require a large amount of computational power to
support them properly. In the type of highly interactive information
systems mentioned above, this computational power is often provided by a
powerful, single-user, graphics-based workstation which also has to run
the application programs. Also, the software structures needed to run
such a user interface will often become extremely complex in an attempt
to cater for the entirely reasonable desire of the user to apply any
operation that he knows about, in any context that he happens to be in.

Considerable simplifications in the construction of such powerful user
interfaces can be obtained by using a display ~ as an interface
between the applications programs and the screen image. The display list
is a high-level data structure stored in the address space of the host
computer which represents the screen image in terms of windows, groups
of windows, strings of text, bitmap pictures etc. The separate (often
concurrent) applications programs can then interact with the data
structure very easily. Moving a window, for example, becomes a simple
matter of changing the x & y co-ordinates of the window in the display
list and changing the z-order of the windows might only involve re­
ordering a window list.

This approach considerably simplifies the task of constructingcomplex
interactive systems but it also increases still further the amount of
proceSSing power needed to support the screen image. We would now need
to continuously refresh the screen image from the data structure at a
rate of up tc 25 times per second and this clearly needs special-purpose
hardware support.

A short investigation showed that virtually all of the computation
time is spent in a software procedure often known as 'RasterOp'(Newman
(1». This operates on rectangular sub-areas of bitmaps and can move
and combine such bitmaps under various Boolean operations. Despite the
fact that it is conceptually very simple, RasterOp is an extra­
ordinarily powerful procedure and can even perform many operationswhich
are not intuitively obvious (such as rotating bitmap picturesand doing
fast scalar arithmeticI. Guibas (5), Goldberg (7». We decided to

200 Parallel update of Raster graphic images

support this procedure and also the display list interpretation with
special purpose hardware. The hardware system that has resulted from
this we fondly know as 'DisArray' (short for Display ~raJ).

DisArray uses a two-dimensional interconnected array of very simple
computational elements each one paired with its own local memory. The
DisArray hardware has the ability to manipulate two-dimensionalareas of
a bitmap (up to 16 x 16 bits square) in a single memory/processor cycle.
DisArray can use this ability to form new screen images in a very short
time by rapidly assembling the components of the picture (individual
characters, line segments, half-tone shaded areas, whole windows etc.)
into a screen-sized bitmap which can then be displayed on a conventional
C.R.T. monitor.

This approach has the advantages of high speed since the memory and
computational elements are very closely coupled, and of high throughput
because of the high degree of parallelism and the two-dimensional
interconnections within the array.

13.2 A QUICK INTRODUCTION TO RASTEROP

As noted above RasterOp operates on rectangular arrays of Pixels
(Picture Elements). An over-simplified Pascal version of the RasterOp
algorithm is shown below. This version ignores the problems caused by
having overlapping source and destination rectangles and assumes that
pixels are only ever Black or 'White (false or true). The data type
'raster' is not defined, but is essentially a two-dimensional array of
Boolean variables corresponding to a picture. The rasters are only
manipulated through the access functions 'GetPixel' and 'SetPixel' which
are not defined here but have the obvious meanings. The 'operation'
parameter has the following effect on the destination rectangle :

Black Dest .- all black
White Dest .- all white
Copy Dest .- same as source rectangle
Invert Dest .- logical inverse of source rectangle
ROr Dest .- logical OR of source and destination rectangles
RXor Dest .- logical EXOR of source and destination rectangles

procedure RasterOp (operation : integer;
var Dest : raster; xd, yd, width, height
var Source: raster; xs, ys : integer);

const White = false; Black = true;
var x, y : integer;
begin

for y:=1 to height do
for x:=1 to width do

case operation of
Black SetPixel

i ntegerj

'White
Copy
Invert

SetPixel
SetPixel
SetPixel

(Dest,
(Dest,
(Dest,
(Dest,

x, y, Black);
x, y, White);
x, y, GetPixel (S.()urce, x, Y»j
x, y, Not GetPixe 1(Source, x, Y»;

Parallel update of Raster graphic images 201

ROr SetPixel (Dest, x, y,
GetPixel (Source, x, y) Or GetPixel (Dest, x, y»j

RXOR SetPixel (Dest, x, y,
GetPixel (Source, x, y) <> GetPixel (Dest, x, y»j

end
endj

This would be a hopelessly inefficient implementationof RasterOp, but
it does effectively show the nature of the algorithm and more
sophisticated versions of it still retain these same essential features.
Also, this version has only some of the 'operations'that a real
implementation might offer. Further details of the algorithm can be
.Gund in Newman (1).

13.3 DISPLAY LIST APPROACH

The display list is an abstraction of the image to be presented on the
screen to the user. It acts as an interface between the application
programs and the refresh process which has to construct a screen image.
The design of the display list is therefore a crucial issue, since it is
at the heart of all the display operations and these need to be
performed quickly. Also its structure needs to be appropriate both for
the different applications programs and for the display manager. This
always means that trade-offs have to be made since the requirements of
applications programs and the refresh process are significantly
different from each other.

A simple example of a display list in Which the major structural
elements correspond to 'windows' (or 'pages' or 'piecesof paper') on
the screen is shown in Fig. 13.1. The whole structure is a list of
window descriptors which each store the attributes and the contents of
one window. The order of the windows in the display list is the same as
the z-ordering of the windows when shOwn on the screen. Thus the screen
image can be generated using the painter's algorithm (ie. back-to-front
fill) by traversing the list from beginning to end, filling in the
contributions to the screen from each window in turn. Fig. 13.2 shows
the screen image which corresponds to the display list in Fig. 13.1.

In this Simple example, the windows contain only text and so the data
structure for each window includes a list of text strings which comprise
the text to be put in the window. An application program operating on
one of the windows can now be given a pointer to 'its' window descriptor
and can move it on the screen by changing the x, y offset values in the
descriptor. It can similarly change the background colour of the window
or its size or the fount of the text by altering the descriptor
appropriately. The text in the window can be scrolled by simply cycling
the pOinters in the array of text string pOinters.

The display processor needs to continuously scan this displaylist and
generate a screen image from it. It can be appreciated that this process
involves little more than scanning the display list in order,performing
'lome Simple clipping o,perations(to window and screen boundaries)and

202 Parallel update of Raster graphic images

_____,
Next Window NIL

Length Length

Width Width

X Position X Position

Y Position Y Position

I /

G .J Text For 1'I--- ,[the Top-Most!
<,

7J

NIL
<,---1 Window.-]

____, .J Text For !---- ,[The Bottom-Most!
<,

7J

NIL
<,

~ Window.!

Fig. 13.1 A staple DisplaJ List

,-------1 Text For
Text For The Top-Most
The Bottom_MLW-,-in_d_o_w _j

Window I

Screen Boundary

Fig. 13.2 Screen Appearance or F:1&. 13.1

Parallel update of Raster graphic images 203

then performing the RasterOp operation on whole windows (to clear them
to their backgound colour) and then to use RasterOp again for each of
the characters in the text strings to copy the bitmap images of the
characters from a fount table into the window area. Thus we need a
relatively fast machine to traverse the display list and a super-fast
machine to implement the RasterOp commands generated from the display
list interpretation.

As a historical note, around 1917 at QMC we built a hardware system
known as the QMC Text Terminal which used exactly this style of display
list and generared~completely new frames per second using a purpose­
designed bit-slice processor (Page (8». It produced a fully-animated,
~ display of a desk-top with 'pieces of paper' but was restricted
to showing only textual and block graphics information. A large part of
the motivation for the DisArray project stemmed from the success of the
Text Terminal experiment and our desire to have a system which would
perform similarly with multi-founted text and more complex graphical
images.

13.- DISAJlUI. RASTBIIOPAID LIlli DUVnG

13.4.1 RasterOp

Despite its simplicity, RasterOp is an extraordinarily powerful
primitive and, when it is well-supported in the hardware in such
machines as the Alto (Thacker (2» and the Perq (Three Rivers (3», it
gives those machines a very good interactive graphics capability.
However, we wish to improve significantly on that performance by
employing parallelism in the hardware. We would also like to find a
form of parallelism which can offer even greater throughput by simply
increasing the amount of parallelism in the hardware.

In its simplest form on a conventional machine, the inner loop of
RasterOp would take a word-aligned word from store (part of the source)
and move it to a bit-aligned word in store (part of the destination).
This bit-aligned word will usually fall across the boundary of two store
words and thus require two read/modify/write cycles to update it. This
effect slows down the algorithm but it can be ameliorated by pipelining
the data over a number of such inner loop cycles.

To improve their graphics speed, machines such as the Perq have a
micro-programmed RasterOp. Also, they make special arrangements to
increase memory bandwidth (by employing wide data highways), and have a
barrel shifter to do the alignment to bit boundaries. This is probably
about the limit of support that a conventional processor can offer to
RasterOp, but there are (alwaysI) good reasons for wanting to increase
its speed still further. It should also be noted that such a
conventional machine would always be very much better at doing short,
fat RasterOps than tall, thin ones. Such an implementation will perform
most poorly (in terms of pixels/second updated) when drawinga pixel­
wide vertical line. In this case only one bit is being usefully updated

204 Parallel update of Raster graphic images

on each memory cycle. Paradoxically, in this particularcase, this
bandwidth degradation only gets worse as the machine data paths are made
wider in an attempt to improve the general throughputof RasterOp.

In fact, in the graphics world, there is no reason why RasterOp
rectangles should be of any particular shape and the theoretically most
efficient shape for the basic word is thus a square, which is equally
optimised for both worst cases of the tall, thin and the short, fat
rectangle.

DisArray uses such a square word, known as a plane, to support
RasterOp. The analagous inner loop of a DisArray RasterOp, takes a
(plane-aligned)plane from memory and moves it to a bit-aligned plane,
which will usually fall across four actual memory planes. A series of
diagrams (Fig. 13.3) shows a sequence of DisArray operations to perform
a single step of the inner loop of a RasterOp operation.

13.~.2 Line Drawing

A first sight it might appear that the DisArray style of processor
offers little to a line drawing algorithm, such as the ubiquitous DDA
(Newman (1». However, such is the power of RasterOp that it can be used
to great effect in a DDA style algorithm which plots more than one point
at a time.

The basic idea is to pre-compute a set of short line 'strokes' at
various angles and to keep these in a table. Whenever an arbitrary line
is to be drawn, it can be formed by choosing the apprpriate stroke(s)
from the table and using RasterOp to place them appropriately in the
image. In our software, the strokes are pre-computed into DisArray
planes and a procedure identical to the inner loop of RasterOp places
these strokes into the image being constructed. Thus 16 pOints along a
straight line can be plotted in parallel in exactly the same time as a
RasterOp cycle. Further details on this approach can be found in Gupta
(9).

13.5 A SIMPLE ElAMPLE

In the example shown in Fig. 13.3, the letter 'A' is to be copiedfrom
its current position in a fount-table to a position within the portion
of DisArray memory which is (currently) being refreshed olltOthe screen.
The user would thus see the word 'DISARRAY' being cQlmpletedon the
screen (Fig. 13.3a). DisArray has a 16 x 16 register, known as the Q­
Register. Fig. 13.3b shows the contents of the Q-Register after a
single memory cycle which loads the letter 'A' from UlE appropriate
source plane. During this same cycle, the Rowand Column Gasks shown in
fig 1b are ANDed bit-wise in each processor to obtain a 16 x 16 bit
mask. This mask defines the limit of validity of the sourceregion
within this source plane. A Single 'read' operation willI"Ead the source
plane from memory, AND it with the 16 x 16 mask and then storethe
result in the Q-register.

Row
input
Uask

PI~ne 0,127

Parallel update of Raster graphic images 205

Plane 1~,127

~CDEFG
Source

Destination

DISA~

L....\-J~_p_'ane_y.,y_ __L___ J
Plane 0,0 Plane 127,0

The whole DisArray address space regarded as
a single bitrncp. The word 'DISARRAY' is being
completed using a particular bitmap-defined fount.

Column Input Uask
1111111111110000

The Q-Register after
loading from store
under the mask shown.

Fig. 13.3b

Fig. 13.3a

0000000011111111

The a-Register ofter
circulat10n in the
east-lllelt d1rect10n.

Fig. 13.3c

'The Q-reglster after
clrculotlon In the north­

south direction: shown with
e quadrant mOlk.

Fig. 13.3d

Fig. 13.3 : Steps within a DisArray RasterOp

206 Parallel update of Raster graphic images

Fig. 13.3e The four destinationplanes
after a read/ORwith Q-Reg/write
cycle (under the quadrant mask)
to planem.

Ff.g, 13.jf The four destinationplanes
after three more similar cycles

with appropriatelyaltered addresses
and inverted row/column input lines.

Fig. 13.3 Steps within a DisArray RasterOp (cont.inued)

Parallel update of Raster graphic images 207

Using the nearest-neighbourconnections between the processors, the
Q-Register is shifted by appropriate amounts, first in the east-west
direction (Fig. 13.3c) and then in the north-south direction (Fig.
13.3d). Fig. 13.3d also shows the state of the Rowand Column masks
which will be needed for the subsequent operations.These operations are
on the four separate 'quadrants'of the letter 'A' which lie in the four
corners of the Q-Register. Notice that the logical AND of these two
masks selects the bottom left-hand corner of the 'A' (now in the top
right-hand corner of the Q-Register). The other quadrants are selected
by appropriatelyinverting the rowand/or column masks.

Fig. 13.3e shows the state of the four destination planes after a
single read/modify/write cycle involving the lower left of these four
planes. The shifting performed above has resulted in the bottom left­
hand corner of the 'A' being correctly aligned with the top right-hand
corner of the destination plane where it eventually needs to go. A
single DisArray cycle reads the previous state of the destination plane
and writes it back unchanged, except in the area designated by the
quadrant mask, where the contents of the destination plane are replaced
by the logical OR (in this case) of the corresponding part of the Q­
Register (the source) and the previous contents of the destination
plane.

Fig. 13.3f shows the state of the destination planes after a further
three read/moQify/write steps and the desired operation has been
completed. We call this sequence of steps a 'RasterOp Cycle'. With
slight variations to cater for edge effects, this RasterOp cycle can be
repeated many times to deal with source rectangles which consist of many
planes and the example presented is indeed representativeof the inner
loop of a generalised RasterOp.

13.6 THE ARRAI PROCESSOR

13.6.1 Overview

The DisArray hardware has an array of 1b x 16 Processing Elements,
which are each simple 1-bit processors, each having a 16Kx 1-bit local
store. The array as a whole therefore deals with 256-bit square words,
known as planes. All Processing Elements execute the same instruction
simultaneouslyon their local data, making it an S.I.M.D. (Single
Instruction stream, Multiple Data stream) machine. The Processing
Elements each have connections to their four nearest neighbours in the
array so that planes can be shifted bodily in the four orthogonal
directions, one bit position at a time. The edge connections are
toroidal so that the shifting is in fact circular in the two dimensions.
The architecture is similar to the I.C.L. Distributed Array Processor
(Reddaway (4», which partly inspired this project.

The Array Control Unit turns a set of RasterOp parameters into an
appropriate sequence of array operations to implementa particular
'call' of RasterOp. An outline diagram of" the array system
configuration is given in (Fig. 13.4), but with a much reduced size of

208 Parallel update of Raster graphic images

Column Input L1nal

North-South ~~ConnactJons»> / -. _
(Wrop-Around)

A 4)(4 DisArray
Column Output linas

(Open Collector) Fig. 13.4a

Host
Processor

Bus

Instructions

Host r Arrey Row & Col data.- 16)(16
Processor IE---i Controller ArrayCol. Out Data

Vie
~Pt

Topped Video 116
Inter Shift Register
Req est

Host
Memory H Video Video 'D(Dloplay Lrot) ~ Controllerl_Video Display

n D

ig. 13.lib T .V, Iv{onitor
Parameters

F

Fis. 13.11 Arcb1.tectural Overview of' DisJrra:3J'

Parallel update of Raster graphic images 209

array for reasons of clarity. The Array Control Unit is also
responsible for autonomously interpreting the display list and turning
it into the implied sequence of RasterOp procedure calls.

A host processor runs the application programs which create and
manipulate the display list. Currently, the system is in fact running
in a stand-alone mode without a properly integrated host processor. We
hope to build a DMA link to an Orion (a 32-bit micro-programmable engine
running Unix) in the near future.

13.6.2 The Processing Elements

A block diagram of a single Processing Element is shown in Fig. 13.5.
The processing is done by the ALU, which is in fact an 8:1 multiplexor.
This, in effect generates an arbitrary function of the Q-Register output
and the memory output. However, one of two such arbitrary functions is
selected on the basis of the logical AND of a row-derived and a column­
derived input line. Together, these are normally used to select an
arbitrary sub-rectangle of the array based on one or other of the
corners of the array. Such sub-rectangles are known as quadrants.

Column Input
Video In

Nei9~bDU'

Select

Fig. 13.5

18k-bIt

Ilynamic RMI

IMeoOut'-bit VIdeo

Shin Regilt••

N

.71--::-
1---'--- s Outputs

I-bit
Q-Regilter

>-,O:!:pe::cn::..--,C:::o=lle:::c~tor=.:..___ ~ Column Output
Buff••

ADisArray Processing Elaent

210 Parallel update of Raster graphic images

Two 16-bit strings, each consisting of a single group of consecutive
D's and a single group of consecutive l's, applied to the row and column
input lines are sufficient to define a single quadrant (ie. that area
where both Row & Column inputs are 1). The other three similarly-aligned
quadrants can be selected by inverting the bits in either one or both of
these bit strings.

This arrangement allows some arbitrary function to be performed in the
region of the selected quadrant. Often, however, the rest of the
processors outside of the quadrant will have to perform some simple
(non-useful)operation such as copying whilst this is going on.

There is a single l-bit register (the Q-register) which holds the
result of computations and is also the holding register for array
shifting operations. The design has optimised the nearest neighbour
shifting by putting only the Q-register and a 4:1 neighbour selection
multiplexor into the shift data path. We hope to enhance the system at
some future date with one or more additional Q registers.

The local store is a 16 Kbit dynamic RAM whose control inputs
(including the address lines) are·derived from the Array Control Unit
and whose data input is fed from the·output of the ALU. A 16-bit output
bus from the array is generated from 16 sets of 16 open-collector
outputs in each column of the array being wired together. By selecting
only one row of the array, using the row and column input lines, a
single 16-bit word can be output from the memory to this bus. This is
used to map the DisArray memory into the host processor's address space.
Similarly, 16-bit data from the host can be written into array memory by
putting the data on the column input lines and selecting just one row
using the row input lines.

As a bonus, the open-colle..tor- bus can be used to support some simple
host-accessible content-addressing of memory. For example, arranging
16-bit words column-wise in store and broadcasting a 16-pattern along
the row input lines the host can look for a match in anyone of the lb
columns simultaneously, the corresponding column output line saying
whether a match was found.

The control signals for the Processing ElemTnts are
Array Control Unit and are copied identically to each
set of control signals thus makes up a single array
instruction consists of :

provided by the
proceesscr-, This

instruction. This

1. The memory (plane) address to be used.
2. Memory control signals (RAS, CAS etc).
2. The two Boolean functions for the ALU.
3. The nearest neighbour selection.
4. Q-Register latch signal.
5. Multiplexor enable signals.
6. Miscellaneous edge control signals.

In fact, the memory address to each processor is in fact ~ystematically
altered under both the address-staggering and the quadr==nt-addressing
schemes outlined later.

Parallel update of Raster graphic images 211

13.6.3 The Basic Array Cycle

The most general type of array instruction is
read/modify/write operation on a single plane in
instruction performs the following function:

one involving a
memory. Such an

a) Reads the contents of a 256-bit plane from memory.

b) Examines the state of the row and column input lines. These
usually contain masking information and the logical AND of these
inputs is generated to select an quadrant.

c) Applies an arbitrary Boolean operation between the contents of the
plane and the Q-register in the region of the selected quadrant
and applies another arbitrary Boolean operation outside that
quadrant.

d) The result of the computation cycle c) is optionally written back
to the same location selected in a), and/or latched into the
register and/or sent to the· column output lines. This
read/modify/writecycle is terminated early whenever possible.

13.6.4 The Array Control Unit

The Control Unit has the task of generating the instruction stream
which controls the array. This instruction stream is generated either
from interpreting the display file or by directly executing RasterOp
procedure calls from a process running in the host processor (usually a
screen manager process). Since the control unit is micro-coded, both of
these models of operation and many others are possible, simply by re­
loading the micro-code store.

The control unit consists of an AMD29116 16-bit datapath chip, a
2910-based sequencer and a 4k x 32-bit writable micro-code store. It
can execute independentlyof the array processor but is the sole means
of initiating an array processor cycle. It has DMA access to the memory
of the host processor and this is used to give the controller read-only
access to the display list. All of the array processor registerscan be
directly written by the controller in order to set up array instructions
and edge data. Additionally, there is a 4k x 16 local cache store which
can hold working variables and copies of parts of the display list
needed during interpretation.

13.6.5 The Refresh Controller

The refresh controller autonomously takes a bitmap from store by
stealing array memory cycles. This produces 256-bits of data which is
then broadside-loadedinto a spirally-arranged video shift register
which runs through the whole array. This data is then asynchronously
clocked out directly to the monitor at video speed.

212 Parallel update of Raster graphic images

There is will always be a fundamental mismatch between the
requirements of RasterOp and those of video refresh; the former needs to
operate on square words and the latter needs to operate on very long
thin words (scan lines). DisArray has an address staggering scheme
which overcomes this mismatch without any need to resort to buffering of
the video output data.

DisArray currently supports a 512x512 pixel bitmap display with 4 bits
per pixel. A colour map RAM selects the 16 pixel colours from a pallette
of 4096 colours. This video output format is relatively arbitrary and
can be easily changed. There is currently over 4 times this video
bandwidth available if necessary, to support either higher-resolution
displays or more colours.

13.7 ADDRESS STAGGERIIG SCHEME

To achieve direct video refresh from the array without the
output buffering needs some re-organisation of storage.
considering scan line 0, all of the bits contributing to this
in row 0 of the array.

use of
Clearly,

line are

To get 16 consecutive .16-bitsegments of scan line 0 out of the array
simultaneously (which is what the t.v. monitor requires), these segments
must necessarily then be in different rows of the array. This can be
accomodated at no extra software or hardware cost by arranging that
horizontally consecutive planes are stored such that they are circularly
shifted respectively southwards by one row. Now, it is only necessary to
arrange that each row of processors gets the appropriate refresh address
on any video refresh cycle. These addresses1can be simply formed from a
single video refresh plane address by adding the row number in the
array to the refresh address, but not allowing the carry to propagate
past the bottom four bits. This is equivalent to fetching a plane of
data out of array ·memory angled at 45 degrees rather than the usual
horizontal alignment.

The only other remaining problem is that the 'origin' of the 256-bit
scan-line segment that gets loaded into the video shift register is also
shifted. However, this is easily overcome, since the shift register is
spiral and all we need to do is to arrange for 16 tapping-points on the
shift register at the end of each row and to select one of these tapping
pOints with a multiplexor to get the correct video bit stream.

In fact, with the memory mapping arrangement in DisArray the appropriate
address to be sent to each row of processors is :

(RefreshAddress- RowNumber - 1) mod 16
This is easily provided from a 4-bit alu slice on the low-order 4 bits of
the memory address bus on each row of processors.

Parallel update of Raster graphic images 213

13.8 QUADRART ADDRESSIHG SCHEME

As discussed above, the inner loop of RasterOp entails adjusting a
plane to bit boundaries in both directions and then performing a
read/modify/writecycle on each of the four quadrants involved. On each
of these cycles the array is not perfoming useful work in the other
three quadrants. The four memory cycles can be compressed into a single
cycle if the processors in the four quadrants could each receive a
different address.

There are a number of possible ways to achieve this, three of which
are outlined here :

1. Broadcast all four addresses in turn along the common memory
address lines and use strobes generated on a per-quadrant or per­
processor basis to cycle the memory chips. This is a simple
extension of the method of time-multiplexingof the address lines
already in use because of the nature of dynamic ram addressing.

2. Build memory Chips1 with some intelligence in the address paths.
What is needed is the ability to store a small number of addresses
on the memory chip and to optionally combine one of these with the
incoming address in a simple adder with outside control of the
carry-in signal. In this way, with a current memory address m, and
a stored address s, the chip could access the following locations
under the control of two extra control signals :

m, m+1, m+s, m+s+1

This is precisely the pattern of addresses required by RasterOp.

3. Partition the memory address into two parts; an x-plane-address
and a y-plane-address. This institutionalises what the software
often does anyway, which is to regard the array memory storage as
a Single, large two-dimensional bitmap.

This means that it is possible to generate the two x-parts of
the addresses and broadcast the appropriate one of them down each
of 16 sets of column-wise address busses. If the same is done with
the y-parts broadcast row-wise, then the address required by each
processor is then formed by concatenation of the x-partand y-part
that passes through that processor. This scheme has the
considerable benefit of requiring no extra hardware in each
processor.

In fact, none of these quadrant addressing schemes have yet been
implemented in the hardware. We may however implement the third method
in the not-too-distant future although we would really prefer option 2
if we could get access to the technology required to produce the
necessary 'smart' memory chips. We have already successfully designed

In fact, if we had the capability of building a reasonable size of memory
chip, then we would put somewhat more intelligence thanthis into the
address lines and also put a processing element onto the same chip. This
results in a smart memory chip with many other useful applications.

214 Parallel update of Raster graphic images

and fabricated out first chip1 but the fabrication facilities ~Je have
available are not nearly good enough for us to create a useful size of
intelligent RAM.

13.9 DISARRAY PERFORMANCE

The array can shift the Q-Register in any of the four orthogonal
directions at 30MHz, glvlng a total bit shifting capability of over 7
Gbits/second. This operation is the basic mechanism for aligning a
source plane with the (four) destination planes and it is the two­
dimensional analogue of the use of a barrel shifter in the data paths of
a one-dimensional RasterOp processor.

The array has a rather leisurely 600ns read/modify/writememory cycle
time. This is ~lower than it need be because of the low speed of the
dynamic rams chips that we used. This gives the array a basic
computational rate (Memory ._ Memory Op Register) of just over 400
Mbits/second (plane-aligned).This could easily be tripled using current
memory chips to 1.2 Gbits/second.

Timing tests on the prototype have not yet been carried out as we have
only just finished the first encoding of the basic microcode software.
However, we expect a to achieve speeds something like the following:

Current With With With
Hardware Quadrant 200nS Both

Addressing Store

Character-sized
RasterOps/sec 200k 300k 300k 500k

Large scale RasterOp
> 10 kbits.

Rate in Mbits/sec 80 160 200 260

These figures ignore the video refresh overhead, which is variable3
depending on the screen size.

A 32-bit in, 16-bit out barrel shifter with two-level pipeline input
registers for aiding RasterOp on conventional 16-bit micros.

2 The ram chips were purchased over four years ago, before a rather long
break in the project when no manpower was available for construction.

3 For example, with a 1024x768 picture the overhead
cycles/sec.

is about 200k memory

Parallel update of Raster graphic images 215

13.10 DISARRAI2

13.10.1 The Next Generation

It is our intention to build a second generation DisArray machine with
certain advanced features. This will take the form of a fifth generation
workstation in which a microprogrammed Powerful Personar--Eomputer is
completely integrated with a DisArray processor. DisArray2 is currently
an outline design for such a system, based on newly-available, very
powerful LSI components, which could improve on the performance of the
current DisArray by a factor of about 5 and also provide (at peak) about
300 Mips of vector processing on 16-bit quantities. We will introduce
tEe reader to this design in a number of stages.

13.10.2 Surface Shifting

One of the areas in which DisArray can be speeded up is by speeding up
the serial shifting that is required to align planes to bit-boundaries.
In a conventional machine the solution would be to replace the serial
shifter with a barrel shifter.

Happily, a similar solution is possible in the two-dimensional case.
We simply replace all of the horizontal neighbour connections in a
single row of the array with a barrel shifter. This then gives us a
fully-connected arrangement where any processor has a direct connection
to ~ other processor in the same row. we repeat this for every row in
the array using a total of 16, 16-bit barrel shifters. We also repeat
the pattern along the 16 columns of the array g1v1ng each processor
immediate access to any other processor in the same column. In fact,
there may be no need to have access to the intermediate result between a
horizontal shift and a vertical shift. In this case, at each processor
location the processor can send data to the appropriate input port of a
horizontal barrel shifter. The corresponding output port of that
horizontal barrel shifter is directly connected to the appropriate input
port of a vertical barrel shifter, whose corresponding output is then
fed back to the same processor.

This composite shifter, comprising 32, 16-bit barrel shifters, is a
two-dimensional analogue of the one dimensional barrel shifter. I have
dubbed this novel structure a surface shifter. A diagram of an example
4x4 surface shifter appears in Fig. 13.6. This is implementedusing 8
4-bit barrel shifters connected together in a pipeline type of
arrangement with an array of 4x4 Processing Elements.

This arrangement can obviously speed up the shifting1 but at some
cost. In fact one of the nice features of the simple nearest neighbour­
connected array is that it can be extended indefinitely. The surface

However, using currently available components this speed-up is not quite
as good as one might at first suppose since serial shifting can be made
quite fast (DisArray currently runs at 30 MHz) •

216 Parallel update of Raster graphic images

shifter can probably only reasonably be implemented with at least each
barrel shifter being totally implemented on one chip. This means that
the maximum size of the array would be limited by the number of pins on
a package. Currently, we do not have access to the production
facilities that would be needed if we made a 32-bit barrel­
shifter/processor chip.

Another advantage emerges if it is possible to set a separate shift
constant for each row and column shifter simultaneously. Consider the
case in which the row number of each row is used as the shift amount for
a circular shift in that row. Considering only the horizontal component
of the shift, what we have achieved is a skewed shift of the data, with
wrap-around. Row 0 is unchanged, Row ,-rs-c1rculatedby , bit etc. 1
have called this a skew-circular surface shift. In this case it is a
horizontally-based shift, but it obviously has a vertically-based
counterpart. By applying the following sequence of shifts to a plane:

t , Horizontal skew-circular surface shift.
2. Vertical skew-circular surface shift.
3. Horizontal skew-circular surface shift.

the effect is to completely rotate the contents of the plane by 90
degrees in only ~ machine--cycles(Guibas (5), Goldberg (7)).

Fig. 13.6 : A _x_ SUrtace Sbitter

Parallel update of Raster graphic images 217

13.10.3 Processor Element Implementation

Having decided to use the surface shifter concept one needs to
implement both the barrel shifters and the Processing Elements.
Fortuitously, there are two newly-availablefast LSI chips which combine
a 16-bit ALU with a number of registers and a barrel shifter; these
being the AMD 29116 and the TMS 3020. These chips are reasonably good
for this application since each one bit section of the ALU/Register/Data
Path can function as a one-bit ProcessingElement as well as providing
the parallel shifting capability. Thus we get 16 of our 1-bit
processors and a row (or column) barrel shifter on one chip. Without
access to the appropriate VLSI fabrication facilitiesneeded for a 32 x
32 DisArray2, we could use one of these two components for a 16 x 16
version.

The AMD 29116 is a lOOns component, and using this has the added
benefit that the 16-bit ALU can also carry out 16-bit arithmetic in
lOOnS. This means that with 32 of these processors in the 16-vertical,
16-horizontal arrangement, the array can achieve all that the DisArray
currently can, together with faster shifting and having a capability of
over 300 MIPs arithmetic processing performance on arrays of 16-bit
quantities.

There are a number of important graphics algorithms which would have a
greatly improved performance on this type of hardware. Some of these
are :

1. Line drawing with a DDA algorithm. The 16 horizontal (or
vertical) 16-bit processors can work together to plot up to 16
pOints simultaneouslyfrom an arbitrary line across a 16 x 16
plane.

2. 16 of the processors can co-operate in polygon filling
applications.

3. Co-ordinate transformationof
achieved in parallel with
data.

multiple data pOints can be
well-thought out arrangementsof

4. If a bit-reversal path could be included in each of the
processors (which entails designing the processor chip from
start), it is possible to mirror bitmaps and transpose
matrices. Amongst other cases, this can be used to rapidly
calculate transitive closure relationships which are very
useful in advanced window-based interactive systems (Cook
(6)} •

13.10.4Other DisArray2 Features

In addition to the above, DisArray2 has a number of other features
which can only be mentioned briefly here :

1. The Address staggering scheme of DisArray for video refresh.

218 Parallel update of Raster graphic images

2. A second similarly-arrangedvideo shift registerfor the real-time
input of video data.

3. The quadrant addressing scheme to speed up operations on
neighbouring planes.

4. There will be two fast RAMs at each intersection point in the
array, one being associated with the horizontal processor and one
with the vertical processor. With this arrangement and a sUitable
mapping of array storage onto the address space of the host
processor, it will be possible to fully utilise the processing
capability of both sets of processors for well-organisedvector
arithmetic; for co-ordinate transformations, say. This would
ensure that the 300 MIPs rating would not be degraded by both sets
of processors competing for the same memory (in the cases where
memory allocation could be so organised).

13.11 COICLUSIOIS

One solution to the problem of increasing the speed of the RasterOp
graphics primitive has been presented, which uses a regular two­
dimensional array of simple processor/memorypairs. A working version
of this architecture has been built and performs its task well.

Further work may increase the speed still further in a later version
of the hardware. Hopefully, this later version will be in the form of a
powerful personal computer fully integrated with a more general-purpose
array processor than the current one. This combination would providea
very useful amount of computing power for the execution of graphics and
other applications.

This hardware was only designed to solve just one of the problems of
high-performance graphics; namely that of executing RasterOp at high
speed. However, it has come to be appreciated that this hardware
architecture, suitable enhanced, will also be capable of performinga
very significant amount of the number-crunching required for a more
general-purpose graphics environment. We have strong hopes that the
archicture will be of some benefit in the parallel execution of
functional languages. Also, because of its great regularity, the
architecture is eminently suitable for VLSI implemel'ltation.The
possibility of an 'intelligent'RAM chip for this and other applications
is very attractive.

A large part of the construction and de-bugging of the prototype has
been undertaken by Mr. Jayesh Khatri, who also desi,E;nedthearray
control unit. The micro-code implementationof RasterOp all<lline drawing
by pre-computed strokes was done by Mr. MohaJllDled~ jab who also
implemented a micro-assembler system for the array contre>1 unit. The
author gratefully acknowledges the work of both o~ the above research
assistants and also the support of the United lC.:ingdolIaScience and
Engineering Research Council and International Coaputer-s Ltd. in this
work.

Parallel update of Raster graphic images 219

13.12 BEFEJlEllCBS

1. Newman and Sproull, 1979, 'Principles of lnteractive Computer
Graphics', 2nd Edition, McGraw-Hill.

2. Thacker C.P. et al., 1979, 'Alto: A Personal Computer', Xerox
Palo Alto Research Center Report.

3. Three Rivers Computer Corporation, 'Perq Software Reference
Manual', 720 Gross St., Pittsburgh, PA.

~. Reddaway S.F., 1973, 'DAP - A Distributed Array Processor', 1st.
annual Symposium on Computer Architecture, Gainesville, Florida.

5. L. Guibas, J. Stolfi, 'A Language for BitMap Manipulation', ACM
Transactions on Graphics, ~, ~.

6. Cook S., 'Playing Cards', Software Practice and Experience, 11,
10~3-1053.

7. Goldberg and Robson, 1983. 'Smalltalk-80, The Language and its
Implementation', Addison-Wesley.

8. Page I. and Walsby A., 1978, 'The Q.M.C. Text Terminal',
Electronic Displays '78, Conference Proceedings, London.

9. Gupta S., 1981, 'Architectures and Algorithms for Parallel
Updates of Raster Scan Displays', Carnegie-Mellon University
Report CMU-CS-82-111.

Chapter 14

Directions in functional
programming research

s. L. Peyton-Jones

In 1968, Dijkstra's famous letter [Dijks68] proposed the
view that the loto statement was a harmful feature of
programming languages. In due course, this gave rise to a
new class of structured programming languages, which lacked
the goto statement, but which in compensation provided a set
of control structures.

In 1977, Backus's Turing award lecture [Back78] proposed the
view that the assignment statement was a harmful feature of
programming languages. This view (which has early or Lg tns j
see for example [Land66]) has gi ven ri se to the class of
functional programming languages, which lack the notion of
assignment (and hence Side-effects), but which in
compensation support functions as first class citizens (that
is, functions may be passed as arguments to functions,
returned as results, stored in data structures and so on).

There are two prinCipal reasons for supposing the absence of
the assignment statement to be a good thing:

(i) The absence of side effects leads to clean and simple
semantics, which makes programs easier to write, and
easier to reason about than wi th conventional
languages.

(Lt) Distinct sUb-expressions of a program can safely be
evaluated concurrently, since the absence of side
effects ensures that the sub- expre esst ons are
genuinely independent. This opens up possibilities
for the exploitation of paral1el har dware •

In addition, and perhaps somewhat surpris ingly, two other
important concepts have been developed alnoest entirely
within the functional programming research <lommunity. These
are polymorphic typing and lazy evaluation.

Functional languages are members of the c Ia es of declarative
languages, that is, languages in which programs have a
declarative reading which asserts pr'o :pert! es of the

Functional programming research 221

functions defined by the program, as well as an algorithmic
reading which describes how the functions are to be
computed. Another common term for functional languages is
applicative languages.

A short introduction to functional programming is given by
Turner in [Turn82], while Burge gives a fuller treatment
[Burge75]. For the sake of definiteness, examples given in
this paper will be written in the language KRC [Hamm84].
Function application is denoted by juxtaposition, thus (f
x).

This paper briefly reviews the present state of affairs in
the field of functional programming, and outlines some of
the major challenges which are now being addressed by
current research. An attempt at a comprehensive survey
would be too long or too superficial, so the content of the
paper reflects the author's interests and prejudices. The
rest of the paper is in four main sections, covering
languages, program transformation, evaluation order, and
implementations.

Some material beyond the scope of this paper is
alluded to: in particular, Scott's theory of
[Scott81] [Scott82], and the lambda calculus
[Baren81].

briefly
domains

[Hend80]

14.2 LANGUAGES

The work that has been done by a number of independent teams
on functional programming language design seems to have
produced a considerable convergence of opinion, which we
will briefly review.

The language ML, originally designed as part of the
Edinburgh LCF project [Gord79], is now being significantly
redesigned to take account of the experience gained with ML
and other functional programming languages [Miln83]j the new
language will be called Standard ML.

Hope, designed by Burstall, MacQueen and Sannella [Burst81]
at Edinburgh, is the language which Darlington's team at
Imperial College are using for ALICE (see section 14.5). It
is a large language (for instance, it supports user-defined
operators which may be prefix, infix or distfix).

Turner has designed a series of languages, Sasl
KRC [Turn82] [Hamm84], and now Miranda (which
construction).

[Turn76],
is under

Lispkit, designed by Henderson [Hend80], is a functional
language which shares the syntax and simplicity of Lisp, and
is explicitly designed for easy portability.

222 Functional programming research

14.2.1 Polymorphic Typing

Strong typing has been widely accepted in converitional
programming practice as a technique which catches a large
class of programming errors at the compilation stage.
Unfortunately, strong typing sometimes leads to tiresome
bureaucracy, and this problem becomes particularly serious
in a functional programming style. Consider, for example, a
function designed to compute the length of a linked list.
The function will work equally well on a list of integers
and on a list of characters, but a conventional strong
typing system will force the programmer to write separate
functions for these two data types.

The ability to write such generic functions is so important
to functional programming that early functional programming
languages were typeless. Fortunately, however, based on the
work of Hindley [Hind169], Milner developed the concept of
pol~orphic typing [Miln78] [Damas82], which generalises the
notion of type to allow types such as list of *. meaning "a
list of objects of any type". Now the length function has a
well behaved type:

(list *) -> integer

Likewise, a function which reverses a list has type:

(list *) -> (list *)

Polymorphic typing thus gives us the best of both worlds -
we can have complete type checking of fully generic
programs. Milner also shows that the type of an expression
can be deduced from the source program by the compiler,
rather than explicitly declared by the programmer. This is
the approach taken in ML, the first language to include
polymorphic typing.

Hope also includes a polymorphic typing system, but it also
allows overloading of operators, and this turns out to
require the programmer to declare her types explicitly.

Miranda deduces its types like ML, but allows the programmer
optionally to declare her types; if she does so, the
compiler will check them.

An even more general polymorphic type system is exemplified
in the language Ponder [Fairb82]. Another approach is given
by Welch and Ellis, in [Welch83].

14.2.2 Syntax

The (concrete) syntax of programming languages is important
to their comprehensibility, and there is increasing
acceptance of two new syntactic constructs introduced by
some functional languages: pattern match1.ng .and Zermelo-

Functional programming research 223

Frankel set notation.

14.2.2.1 Pattern matching. Consider the function

rac n = if (n=O) then 1 else n * fac (n-l) fi

We could rewrite it in a more comprehensible way thus:

fac 0
fac n n * fac (n-l)

and this method of defining functions by cases, depending on
the structure or value of their argument(s) is called
pattern matching. Notice that the order of the equations in
this example is important - on the whole this seems to be
undesirable, and in Hope, for instance, the order is
unimportant. Here is an example in which the cases depend
on the structure of the argument:

double [J = [J
double (x:l) = 2*x : double I

where ":" is the infix "cons" operator, and "[J" denotes the
empty list. It can be seen that (as a bonus) pattern
matching also allows implicit selection of components of
structures, eliminating the need for selector functions
(like car and cdr).

Pattern matching is now present in almost all functional
languages - for example, Standard ML includes it while the
original ML did not to the same extent.

14.2.2.2 Set notation. Consider this program,
computes the infinite list of prime numbers:

which

primes = sieve [2••J
sieve (p:x) = p : sieve { n I n<-x; n%p > 0 }

where [2•.J denotes the infinite list of integers beginning
with 2, "<_" means "drawn from", and "'.'"is the remainder
operator. Thus, the expression in curly brackets should be
read "the list of all n, drawn from (the list) x, such that
the remainder when n is divided by p is greater than zero".

This curly-bracket notation for describing a list, inspired
by Zermelo-Frankel set notation, was first introduced in a
functional language by Burstall and Darlington in NPL
[Burst77J, and taken up by KRC, Hope and Miranda. It is a
declarative construct, and fits very gracefully into a
functional context. There seems to be no doubt that it
makes functional programs significantly shorter, although
its acceptance is not yet as widespread as pattern matching.

224 Functional programming research

14.2.3 Modules and Abstract Data Types

One substantial obstacle to the
functionally programmed systems has
system structuring tools, such as
facilities and abstract data types.

production
been the
separate

of large
absence of
compilation

Functional languages are uniquely suited to supporting such
facilIties, since their support for higher order functions
renders such modularity much easier. For example, an
arithmetic package could take a prime number as argument and
return a tuple of functions which were arithmetic operators
modulo the prime.

Current functional languages have rather crude structuring
facilities (Hope is perhaps the most advanced), but
interesting proposals have been made by MacQueen [MacQ83]
and Turner (in his language Miranda). Both of these
proposals make some attempt to treat an environment (ie a
binding of names to values) as a quasi-first-class object.

14.2.4 Functional and Logic Programming

The pure logic languages (of which Prolog [Clock81] is an
impure variant) are also free from side effects and hence
declarative [Kowa179]. However, the relationship between
functional and logic languages is still extremely unclear.

Logic languages are based on the extremely powerful
unification operation [Robin71] (a sort of two-way pattern
match, by contrast with the one-way pattern matching of
functional languages), which, among other things supports
backtracking and, in principle, allows programs to be run
backwards as well as forwards. However, logic languages are
only first order. and it seems that most logic programs do
not use the full power of the language (for example, few
non-trivial logic programs are actually run backwards).

Darlington has proposed a method of extending functional
languages to include unification [Dar183], by extending the
relative set abstraction described in Section 111.2.2.2 to
absolute set abstraction. Then, instead of writing

{ x I x<-Lj P x }

meaning "the set of x drawn from L such that (p x)", we
might write

{x p x

meaning "the set of x such that (p x)", as one could in
mathematics. As an example, consider

split s = {[51, s2] I append [sl, s2] = s)

where append is defined by

Functional programming research 225

{A} append [[], k2] = k2
{B} append [(x:kl), k2J = x : append [kl, k2]

Now suppose s = [1,2] (so s = 1:[2]). We have

split s = { [sl, s2] append[sl, s2] = 1:[2] }

and now we must perform a unification with the definition of
append, to get (as one possibility, by unifying with {B})

split s = { [1:kl, k2] I append [kl, k2] = [2] }

Taking it one step further, unifying with {A}

split s = { [[1], [2]] I }
which is one valid result. The others will be generated
from choosing different equations with which to unify.

Darlington shows that the technique will work for higher
order functions as well, but there is a limit here, since
unification is known to be undecidable at 2nd order and
above [Huet73] [Huet75] [Goldf81] [Fages83]. This work is
at an early stage but appears to have considerable
potential.

14.2.5 Debugging

It is unclear whether debugging functional programs is
harder or easier than debugg ing conventional programs. It
seems clear that existing debugging techniques (like putting
print statements in the suspected functions, or examining
dumps) are inappropriate due to the absence of side effects,
and the peculiar evaluation order caused by lazy evaluation.

On the other hand, the absence of side effects makes it
easier to fully test functions in isolation, since no
unexpected side effects can change the value returned by a
function. Little work has been done on this problem, but
Peyton Jones [Peyt83] reports on the experience of debugging
a medium sized system.

14.3 PROGRAM TRANSFORMATION

One of the most significant claims of the functional
language community is that functional programs are easier to
reason about than imperative programs, due to the absence of
side effects. There are various sorts of reasoning we might
wish to perform, for example:

(i) Transforming a comprehensible
specification into an efficient
[Dar181].

though inefficient
but obscure program

226 Functional programming research

(ii) Designing efficient data representations [Dar180].

(iii) Proving properties of programs [Turn83].

This is an expanding field, and a rich source of references
may be found in [Parts83]. We will confine ourselves here
to a single example to give the flavour of the subject,
taken from [Dar181 J. Assume that the following functions
are defined:

{lg.l}
{lg.2 }

{ap.l }
{ap.2}

length [] = 0
length (x:s) = 1 + length s

append [J s2 = s2
append (x:sl) s2 = x : append sl s2

and that we want to define a function to append two lists
together and find the length of the resulting list (we use
curly brackets on the left to identify equations). We can
write it thus:

{lo2} lengthof2 sl s2 = length (append sl s2)

but while this definition is adequate and clear, it is
somewhat inefficient, and we will derive a more efficient
version. Instantiating {lo2} with sl=[] gives

lengthof2 [] s2
= length (append [] s2)

{lo2.1} = length s2
instantiating by {lo2}
unfolding by {ap.l}

Now instantiating {lo2} with sl=(x:sl) gives

lengthof2 (x:s) s2
= length (append (x:sl) s2)
= length (x : append sl s2)
= 1 + length (append sl s2)

{lo2.2} 1 + lengthof2 sl s2

instantiating by {lo2}
unfolding by {ap.2}
unfolding by {lg.2}
folding by -{lo2}

Finally, we see that {lo2.1} and {lo2.2} constitute a
complete new definition of iengthof2, which is "more
efficient" than the first version.

14.3.1 Correctness

The correctness of these manipulations clearly depends
absolutely on being able to freely replace left hand sides
of definitions by their right hand sides, and vice versa
(these manipulations are conventionally called unfolding and
folding respectively). This is valid in a functional
language, and totally inval id in a conven ti onal imperat i ve
one (such as Ada or Pascal) since the meaning of a program
fragment depends on its context. The conte xt independence
of functional programs, whereby the value of" an expression
depends only on the values of its sub-expressions, and not
on the history of the computation, is called referential

Functional programming research 227

transparency.

In fact, folding preserves only partial correctness, as can
easily be seen if we fold the right hand side of the
equation

f x = •••• body

with itself, to get

f x = f x

whose evaluation does not terminate. Kott [Kott75] gives
conditions for total correctness in the first order case
(briefly, total correc.tness is preserved If more unfolds
than folds are performed).

1_.3.2 Transtor.ation Systeas

The proof is completely formal, and amenable to machine
checking. However, it is not clear what "more efficient"
means, so machine generation of proofs is problematic.

While in the example above the sequence of transformations
applied is fairly simple, larger examples become
considerably more complex, and there is no doubt that, even
with machine assistance, it would become impossible to
conduct large proofs one step at a time. There are two
basic strategies for addressing this problem, which Partsch
and Steinbruggen [Parts83] call the generative set approach
and the catalog approach.

The generative set approach uses a basic set of elementary
transformations (fold, unfold, instantiate and so on),
together with some kind of meta language in which to express
patterns of transformation, so that the proof can be
conducted at a higher level of abstraction (cf [Gord79],
where ML is used as A proof meta language, but in a
different proof system). The proof then becomes a program
in the meta language. Darlington is using Hope itself as a
meta language for conducting proofs about Hope programs
[DarI81].

The catalog approach works by proving, in advance, a
sufficiently large set of powerful theorems about the
(higher order) functions involved in the program. These
theorems are, in effect, "high level transformations" and
therefore much more tractable than the elementary
transformations of the generative approach. The catalog
approach works well when there is a vel"y restricted set of
higher order functions, such as in the language FP, where it
leads to an "algebra of programs", as described by Backus
[Back78]; further references are [Wad181] [Islam81]
[Kieb81].

228 Functional programming research

14.3.3 Specification Languages

There is no reason to restrict the language we are
manipulating to be computationally feasible. For instance,

sqrt x = y such that y is a real number and y*y = x

is a perfectly reasonable specification for a square root
function, and the process of program development can then be
regarded as a (formal) transformation from the specification
to a more efficient implementation. The specification
language is then just an enriched version of the
implementation language.

14.4 EVALUATION ORDER

A number of researchers are working on topics related to the
order of evaluation of a functional program. This question
raises both semantic and pragmatic issues, which we examine
below.

14.4.1 Semantic Issues

14.4.1.1 Normal order reduction.
which functional programs (which
executed (or evaluated) is known
for example, the expression

The standard method by
are just expressions) are
as reduction. Consider,

(5 + 4) * (9 - 3)

There is more than one way of computing the value of this
expression:

(5+4)*(9-3) => 9*(9-3) => 9*6 => 54 or
(5+4)*(9-3) => (5+4)*6 => 9*6 => 54

Each step in this process is a reduction, and a
subexpression which we can reduce (like (5+4) or (9-3)) is
called a reducible expression. or redex. A functional
program imposes a partial order on the sequence of
reductions to be performed (in contrast to imperative
programs, which impose a total order on the statements to be
executed), and so there may be many possible reduction
orders, all of which will yield the same result (if they
terminate).

It turns out that in a functional program, while all
reduction orders yield the same result, they may not all
involve the same amount of work; indeed, some of them may
fail to terminate. Fortunately, Church and Rosser showed
that one particular reduction order, called normal order was
guaranteed to terminate if any order does so. The proof of
this termination property, together with the property that
all reduction orders give the same result (if they
terminate), is the celebrated Church-Rosser theorem; proofs

Functional programming research 229

of which vary from a few pages to several hundred (the
shortest are [Welch75] and [Ross82]). The termination and
correctness of other reduction orders is considered by
Downey and Sethi [Down76].

14.4.1.2 Lazy evaluation. One of the most exciting
developments in the functional programming area has been
lazy evaluation [Hend76], which turns out to be a direct
consequence of normal order reduction. Lazy evaluation
allows us to describe and manipulate infinite data
structures (without infinite cost). Such infinite data
structures are a surprisingly useful programming technique,
allowing a clean separation of data structure definition and
use.

One important application of lazy evaluation is that it
provides a very graceful way of integrating input and output
(which seem rather Side-effect laden) into a functional
context. We may simply regard the keyboard input (for
instance) as a potentially infinite list of characters (or
stream), and likewise regard the result of the program
(which is printed on the screen) as a stream. This approach
is taken in Sasl, KRC, Miranda and Lispkit.

An example of another application of infinite data
structures is arbitrary precision arithmetiC, where the
precision of the answer produced can be arbitrarily
increased in a demand driven manner. One method of doing
this is described by Peyton Jones [Peyt83a].

It has also been suggested by Bird [Bird84] that lazy
evaluation can be used to give more efficient programs than
could otherwise be written, even when operating on finite
data.

14.4.1.3 Nondeterminism. There seems to be growing
agreement that some nondeterminism is necessary in a
functional language that is to be used for systems
programming, due to the nondeterminism inherent in input
devices [Hend82].

When, for example, a program needs to respond to two input
terminals, it needs to be able to process the "first" input
which arrives. The easiest way of conceptualising this is
to use a non-deterministic merge function, which interleaves
the two input streams. For example, suppose we have an
single-user airline reservation system, which is a function
from a stream of input transactions to a stream of
responses, thus:

230 Functional programming research

keyboard ---->~-------> screen

screen = ARS keyboard

Now suppose that we want to make it a two-user system. The
problem lies in the arbitrary time sequencing of the users'
inputs. Using a nondeterministic merge primitive, we could
proceed thus:

-M-
kbd1 -->1 TaS 1--> e Ef 1-->1

Untas 1--> scr1
r- --> --

kbd2 -->1 TaS 2 1--> g -->1 Untas 2 1--> scr2
e

We first tag the two input streams, then merge them, feed
them through the ARS function (now modified to carry through
the tag to the output), and finally use the tag to steer the
output to the appropriate screen. The code might look like
this:

[scr1, scr2] = TwoUserARS [kbd1, kbd2]

TwoUserARS [kbd1, kbd2]
= Split (ARS (Merge (Tag 1 kbd1) (Tag 2 kbd2»)

Split ARSOutput
= [Untag 1 ARSOutput, Untag 2 ARSOutput]

Tag t stream = { [t,x] I x (- stream)
Untag t stream = { x 1 [x,tx] (- stream; tx = t }

Such a merge primitive should, ideally, have the following
properties:

(i) The result of (merge x y) should be some interleaving
of the streams x and y; that is, the result of (merge
x y) contains only elements from x and y, with the
relative order of each preserved.

(ii) The merge should be 1avoiding; that is

merge x 1= x
and

merge 1y y

where we use the symbol 1, pronounced "bottom", to
denote the undefined value or non-termination.

(iii) The merge should be fair; that is, all the elements
of both x and y will (eventually) ap pear in the
result. We note that a real user might. want a
stronger definition of fairness, since the definition

Functional programming research 231

given would allow one input to be ignored for an
arbitrarily long time, but this is a rather slippery
concept to define formally [Park82J.

Other workers in this area have used 1avoiding ambo first
introduced by McCarthy [McCar63J, where (amb a b) is
nondeterministically either a or b. Using amb it is
possible to write a 1avoiding, but not provably fair, merge
(it is also, of course, possible to implement amb using
merge) •

Abramsky and Sykes [Abram82J describe an implementation with
amb as the nondeterministic primitive, though it now
directly supports a fair merge. Henderson and Jones
[Jones83J describe a another implementation also based on
ambo

The implementations of merge and amb both involve setting
off two parallel processes to evaluate the two branches, and
accepting as result the first to terminate. In both cases,
however, there is a problem to do with terminating the
process that is not chosen; we cannot forcibly terminate it,
since other processes may by now be waiting for it. Neither
implementation cited above attempts to garbage collect the
processes thus generated, but when merging lists the effect
of the uncollected processes is benign.

Nondeterminism significantly (but ineluctably) complicates
the semantics of functional programs. Abramsky [Abram83J
and Broy [Broy82J are working on the semantics of
nondeterministic functional programs, using an approach
based on powerdomains.

An alternative approach to the problem of nondeterminism is
to make the time dependencies explicit by incorporating
extra information in the data, and then write the program
explicitly to use this information to resolve the scheduling
choices. Variants of this approach include hiatons
[Park82J, timestamps [Broy83J, and oracles.

14.4.1.4 Parallel conditionals. Consider the expression

if 1then 3 else 3

If we attempt to evaluate this expression on a sequential
machine, we will first evaluate the condition, which in this
case does not terminate, so our evaluation of the expression
will not terminate. However, it has a perfectly well
defined value, vLz 3. A slightly more complicated example
is

if 1then [3,4J else [3,5J

Here we can give some properties of' the value of the
expression (it is a list of two elements, whose first
element is 3), but not others (we cannot tell whether the

232 Functional programming research

second element of the list is 4 or 5). These examples
suggests that our programming language would be more
expressive if conditionals obeyed the following rules:

if True then x else y = x
if False then x else y = y
if 1then x else y = GLB(x, y)

where GLB(x, y) is the most defined object consistent with
both x and y (or, in the Scott terminology, the greatest
lower bound of x and y). This sort of conditional is called
a parallel conditional [Fried78].

This rather complicated idea can be related to a simpler
primitive, the parallel OR, which obeys the rules:

(for any x,
including 1)

OR True x = True
OR x True = True
OR False False = False

This primi ti ve is not quite powerful enough, and 1t turns
out that a parallel OR which operates on a countable (not
just finite) set of disjuncts is sufficient to implement the
parallel conditional. In fact, Plotkin shows that the
addition of such a countable parallel OR to a language
(called PCF), consisting of the typed lambda calculus
together with arithmetic, makes the language powerful enough
to express all the computable functions in its Scott domain
[Plotk77]; a rather satisfying result. Scott proved a
similar completeness result about his language LAMBDA,which
includes the untyped lambda calculus [Scott76].

14.4.2 Pragmatic Issues

14.4.2.1 Graph reduction. While normal order reduction has
good termination properties, it is rather expensive if
implemented straightforwardly on acyclic parse trees,
because it implements call by name semantics. Call by name
involves, in effect, textual substitution of arguments in a
function body. This is good because the evaluation of
arguments is delayed until they are needed to produce the
result of the function, but it is inefficient because it may
involve repeated evaluation of the arguments.

Fortunately, normal order reduction has been rendered
practical by a technique developed by Wadsworth [Wadsw71]
known as normal graph reduction, which Lmplen-ent.a call by
need semantics. Call by need is the same as call by name,
except that it guarantees that no argument is e "Valuated more
than once; thus arguments are evaluated only when needed,
and then at most once. This effect is achie.,.-ed by m.aking
all uses of an argument in a function body share a single
pointer to the argument (hence the tree becomes a graph).

Turner [Turn79] descr i bes a transformat ion l:>y which all
var iables are removed from the program. at the cost of

Functional programming research 233

introducing some extra constant functions, called
combinators [Curry58]. The (graph) reduction of the
resulting expression is particularly simple, since it
proceeds by smaller steps than Wadsworth's technique.

Implementations of these techniques are described in section
14.5.

14.4.2.2 Optimal reduction orders. Normal order always
selects the leftmost outermost redex for the next reduction
step. It has been known for some while that normal order
reduction is not always optimal, in the sense of getting to
the answer in fewest reduction steps, even if implemented by
normal graph reduction [Wadsw71]. In fact, for the case of
reduction by textual substitution, it is known that the
optimal reduction order cannot be chosen by any computable
strategy [Baren81]. No comparable result is known for graph
reduction.

In the case of combinator reduction, however, normal order
reduction is known to be optimal. This result, among many
others on graph reduction, is shown in Staples' series of
papers [StapI80] [StapI80a] [StapI80b]. A more accessible
treatment of this work is given by Kennaway [Kenn84].

Sleep and Kennaway [Kenn84a] have suggested another
reduction order, called innermost spine reduction, which
enjoys the following properties:

(i) It terminates if normal order does.
(ii) It never takes more reduction steps than normal

order.

Informally, this technique selects the innermost redex on
the longest leftmost path from the root of the expression
(the left spine). We may illustrate the difference between
this and normal order by an example. Suppose

f = }.w.(wA (w B»
g = }.x.«}.y.(xy» C)

Now consider evaluating (f g). Normal order would produce:

f g => g A (g B) (one shared copy of g)
=> (}.y.(Ay» C (g B)
=> A C (g B)
=> A C «Ay.(B y» C)
=> A C (B C)

while innermost spine order produces:

f g => g A (g B) (one shared copy of g)
=> h A (h B) (where h = Ax.(x C))
=> A C (h B)
=> A C (B C)

taking one fewer reduction to do so. The reason for this

234 Functional programming research

saving is that innermost spine order reduces the redex
inside the function g first of all, before applying g (which
invol ves taking a copy of the body of g, thus duplicating
any internal redexes, which will now have to be reduced in
two separate places, as indeed happens in the normal order
case) .

It seems that, in practice, normal order reduction is "very
nearly" optimal, and can only be improved on in carefully
chosen examples. The practical impact of optimal reduction
orders is therefore fairly limited. Levy is also working in
this area [Levy80].

14.4.2.3 Space complexity. A more serious objection to
normal order reduction has been raised by Hughes [Hugh84],
which he illustrates with the following example.

Suppose we define

AverageLineLength L = (Length L) I
(Length (SelectCRs L))

where SelectCRs returns a list of all the carriage return
characters in its argument. Nowsuppose that L is the list
of characters in a large file. If we wrote in Pascal, we
could wri te a program which uses bounded space to compute
the average line length, simply by maintaining a count of
the number of characters so far, and the number of lines so
far.

Unfortunately, a conventional functional language
implementation will first evaluate one argument of the
di vision operator and then evaluate the other. This means
that the entire file will reside in memory at once, and the
space usage is unbounded. It is clear that we would like to
evaluate the arguments in parallel and in a synchronised
fashion (notice that the first does not imply the second).

In the particular example given, it is possible to write a
more efficient version without resorting to parallelism, but
it is rather more obscure. More seriously, tnough , Hughes
shows that there are simple and commonprograms which cannot
run in bounded space on any sequential evaluator. This is
not merely a theoretical problem; for example, one of the
tools written for the Lispki t system is a screen editor, and
it slowly uses up all the memory of the system as time goes
on, until none remains and the system crashes.

Another example of the ser-iousness of thi s problem is the
space complexity of a straightforward cocling of the
quicksort algorithm. It turns out that th Ls ha s an average
space complexity of O(n) but a worst case spao e complexity
of 0(n**2) (the imperative algorithm has a epao e complexity
of O(n)).

Hughes therefore suggests that even on a sing.J.e processor

Functional programming research 235

implementation, some form of parallelism is essential if
functional programs are to run efficiently. His proposed
solut ion is to introduce two new language constructs, par
and synch. The notation

f (par x)

is semantically equivalent to

f x

but evaluates x in parallel with applying f to x. The value
of the expression

synch e
Is

cons e e

except that e will not be evaluated until BOTHthe head AND
the tail of (synch e) are required. If, for example, the
head is required before the tail, then the (parallel)
process trying to evaluate the head will be suspended until
another process tries to evaluate the tail, at which point
both processes continue in parallel again. In the example
gi ven above, two parallel processes to compute (Length L)
and (Length (SelectCRs L» may be resynchronised together
whenever they consume a new element of L.

The way in which these constructs can be used to alleviate
the space usage problem is too complex to describe here, but
suffice it to say that the technique does not alter the
program's structure. Even so, putting in the pal" and synch
constructs in the right place is a subtle business, and if
done incorrectly can cause the program to work less
efficiently or even fail to terminate.

14.4.2.4 Strictness and parallelism. Functional languages
are promoted as a natural vehicle for programming parallel
machines, so it is legitimate to ask where such parallelism
comes from.

It turns out that it all
argument (s) of a function in
with the function itself).
notation)

comes from evaluating the
parallel (with each other and

For instance (in Hughes'

f (par x) (par y)

will evaluate x and y in parallel, while simultaneously
applying f to them. When, then, can we evaluate the
argument of function in parallel? It can certainly never
render our program incorrect (since it can have no side
effects), which is reassuring, but it may not be a good way
to use the machine's resources.

One approach is to drop the problem in the programmer's lap,

236 Functional programming research

and insist that she annotate her program (as in the above
example) to indicate where parallelism is desired. However,
we might prefer to find some automatic technique for
discovering when it is safe to evaluate an argument in
parallel. In this context, it is "safe" to evaluate an
argument to a function in parallel if we know that the
function will need the value of its argument, and hence must
eventually evaluate it. For instance, consider the function

f x y = if (expensive y) then x+1 else x+2

where "expensive" is some expensi ve function returning a
boolean. We know that x t s value will be needed, and we
could evaluate it in parallel. This kind of analysis is
sometimes called strictness analysis (a function is strict
if it always evaluates its argument).

Mycroft's thesis [Mycr81] describes a method for performing
this strictness analysis. His method works by executing the
program in a much reduced data domain (abstract
interpretation). There is a classic example of the
technique in the "rule of signs":

(+) * (+) = (+)
(-) * (-) = (+)
(+) * (-) (-)(-) * (+) (-)

Here we can discover something about the * operator by
executing it in a data domain reduced to (+) (the posi ti ve
numbers) and (-) (the negative numbers). Mycroft suggests
reducing the data domain to "undefined" and "de~ined". Then
if, by executing the program in this reduced domain, we find
that

f "undefined" = "defined"

then f does not evaluate its argument, so we must not
evaluate the argument in parallel (because it may not
terminate). If, on the other hand

f "undefined" = "undefined"

then f does evaluate its argument. In this case, it is safe
to evaluate the argument in parallel. Mat ters are in fact
more complicated than this, but only slight ly, and Mycroft I s
work comes complete with a sound theoret ical basis.
However, his work only applies to flat domaills and first
order functions.

Other workers in this area are
[Meira84] and Mishra [Mishr84].
to extend the work to non-flat
functions.

Johnsson [Johns81], Meira
The latter two are trying
domains a.nd higher order

Functional programming research 237

14.4.2.5 Strictness and sequential machines. One major
source of inefficiency in many lazy sequential evaluators is
the mechanism for postponing the evaluation of function
arguments until their value is needed (often a.closure must
be built). However, if the function is known to be strict,
its argument can be evaluated at call time, just as is the
case with conventional call-by-value implementations of
imperative languages. The technology for doing this (stacks
in particular) is well understood and very efficient.

This was the original motivation for Mycroft's work, and is
used in the G-machine compiler [Johns83], and the compiler
of Hudak and Kranz [Hudak84] (see section 14.5).

14.5 IMPLEMENTATIONS

14.5.1 Reduction Machine Models

A considerable amount of work has been done in search of
efficient methods for actually performing reductions on the
program once the evaluation order has been determined. From
a semantic point of View, performing a reduction involves
replacing a function application by a copy of the function
body with the function argument substituted for the bound
variable. This may be implemented in one of two ways:

(i) By actually copying the function body at the time of
application, replacing occurrences of the bound
variable with (pointers to) the argument. This is
called graph reduction

(11) By a delayed substl tution method, whereby the bound
variable is associated with the argument in an
environment, and when occurrences of a bound variable
are subsequently encountered, they are dynamically
looked up in the environment to determine the value
associated with the variable.

A complete description of the various current
implementations would take another paper, so we will give
brief references to the main sources.

14.5.1.1 Graph reduction .achines. The original
description of a practical normal graph reduction technique
is given by Wadsworth [Wadsw71]. Hughes [Hugh82].
describes a method, whlch he calls supercollbinators, in
which all free (ie unbound) variables of functions are made
into explicit parameters. This. together with some other
important optimisations, strictly limits the amount of
copying that has to be done on any function application, but
the method is basically similar to Wadsworth's. Variant of
this technique are employed in the G-.achine, an extremely
fast Vax implementation of ML [Johns83], and in the compiler
of Hudak and Kranz [Hudak84a].

238 Functional programming research

Turner [Turn79] [Turn79a] describes a combinator reduction
model, which forms the basis of his implementations of Sasl
and Miranda. A combinator reducer has also been implemented
in (microcoded) hardware [Clark80] [Stoye83] [Stoye84].

A multiprocessor machine called ALICEbased on copying graph
reduction is under construction at Imperial College
[Dar181a]. This machine is intended to exploit the
parallelism implicit in functional languages, and briefly
alluded to earlier.

A totally different approach is taken by Mago [Mago79]
[Mag080] whose machine is based on reduction by textual
substitution, relying on massive parallelism to overcome the
inefficiency caused by the copying involved (see section
14.4.2.1).

These and other implementations are reviewed by Treleaven in
[Tre182] [Tre182a] [Tre183], which include comprehensive
bi bliographies.

14.5.1.2 Delayed substitution. The best-known
implementations of an almost functional language via delayed
substitution are, of course, those of Lisp (see, for
example, [Sussm82]).

The other classic description of a delayed substitution
model implemented via compilation (rather than
interpretation) is the SECDmachine, first described by
Landin [Land63], and taken up by Henderson in his
implementation of Lispkit [Hend80].

1~.5.2 MemorySystem and Garbage Collection

In common with Lisp, all functional programming systems
require a garbage collected heap, and there is well proven
technology for managing such a heap (see [Cohen81] for a
survey). However, two new factors are becoming important:

(i) Multiprocessor systellls. One of the advantages of
functional languages stated in the introduction was
the possibility of parallel multiprocessor
implementations. This has important implications for
storage management.

(i i) As Mult ics showed, it is poss i ble to ill.corporate a
computer's filing system as part of its virtual
memory space. In a funct ional conte x t this would be
particularly convenient, but would en tai1 supporting
a very large heap which was persistent from day to
day. Such a large heap, of which 01'11y a small
fraction will be in active use, needs careful
management.

There are several well known
storage management for a heap.

techniques for providing
Amongthese are mark-scan,

Functional programming research 239

copying (Baker's algorithm [Baker78] in particular), and
reference counting garbage collectors.

The mark-scan and copying algorithms have the following
characteristics:

(i) They require the system to be stopped while garbage
collection takes place. This causes problems for

(a) Critical real ti.e systems. for which such a
pause may be unacceptable.

(b) Parallel multiprocessor systems. for which the
global synchronisation of garbage collection
may be difficult.

We would prefer a garbage collector which was
distributed in time, and distributed in space (among
the parallel processors). Baker's algorithm can, in
fact, be distributed in time to some extent, but it
is still impossible to guarantee that all storage
requests can be satisfied immediately.

(1i) They take ti.e proportional to the total amount of
accessible data to perform a collection. This might
be very large, particularly if/the heap persisted for
longer than a single program run.

(iii) They can reclaim circular structures.

(iv) They have very small storage requirements.

The reference counting technique has different set of
characteristics:

(i) It is distributed
store as soon as it
lead to a smaller
systems.

in space and
becomes free.
working set

time. and reclaims
This also tends to
in virtual memory

(ii) It is not capable of reclaiming circular data
structures.

(iii) It has significant extra storage requirements.

(iv) It visits only objects currently being processed. not
all accessible objects.

(v) It is .ore awkward to use. since the reference counts
need to be explicitly updated.

The key idea is simple and elegant. We regard the
accessible data in the heap as a directed sraph. and to
divide this graph into its strongly connected components.

240 Functional programming research

In this context we recall that

- A graph is strongly connected if, for any two nodes A
and B, there is a path from A to B, and vice versa.

- A strongly connected component of a graph is a maximal
strongly connected subgraph.

Now, it is clear that

(i) If one node of a strongly connected component is
accessible, then all its nodes are (and vice versa).

(ii) If we coalesce all the nodes in each strongly
connected component, then the resulting derived graph
is acyclic.

But now, since the derived graph is acyclic, it is amenable
to conventional reference counting garbage collection; and
when a node of the derived graph becomes unreferenced, then
all the nodes of the corresponding strongly connected
component have become unreferenced.

Hughes therefore suggests adding a reference count field to
each node, which either contains the shared reference count
for the strongly connected component of which the node is
part, or is used to point at the node which does hold the
shared reference count. He gives algorithms for
incrementally maintaining the information of which
components are strongly connected, and shows that they are
rather cheap. except where a strongly connected component is
split into two.

It appears that this technique can successfully alleviate
the "circular data structure problem", and thus allow
exploitation of the other desirable characteristics of
reference counting, but no implementations yet exist.
Brownbridge [Brown84] describes a different reference
counting technique, also capable of recovering circular
structures.

14.5.2.2 Exploiting cell lifetimes. Another approach
recently suggested by Hewitt and Lieberman [Lieb83] is based
on the observation that

The longer a cell has lived,
the longer it is likely to live.

Consider, for example, a heap which includes C3 filing
system. Many files will be unused for long periods, while
data structures that are currently being processed """illhave
relatively short lifetimes. A conventional copying
collector will copy the entire filing system each time it
runs - a very wasteful activity, since it is unLikely to
recover any space from the inactive majority of ttlae:filing
system.

Hewitt and Lieberman therefore suggest dividing the address

Functional programming research 241

apace into regions of increasing age. Most pointers point
backwards in time (that is, if they cross region boundaries,
they will mostly point from younger regions to older ones).
Where pointers point from an older region into a younger one
(only update operations can cause this), they are
constrained to go via an entry table associated with the
younger region.

Now the youngest region can be garbage collected
independently, using Baker's algorithm, so long as ve
preserve all cells referenced from its entry table. In
general, any region can be garbage collected without
touching any older information. So all we have to do is to
garbage collect young regions (where garbage collection will
be fruitful), more often than older ones (where it will be
less fruitful, but eventually necessary).

At the time of writing of their paper, Hewitt and Lieberman
did not appear to have implemented their proposal.

14.5.2.3 Avoiding garbage collection. Another approach to
garbage collection is to try to avoid it altogether. Wadler
[WadI84] suggests a technique for compiling a certain class
of functional program into a finite state machine with a
fixed number of registers and no heap. This, in effect,
performs memory allocation in advance (rather as a
conventional Pascal program has no problem with memory
allocation). He calls his compiler the listless
transformer.

The functional programs to which this technique is
applicable are, not surprisingly, those which can be
evaluated using bounded internal storage. This includes,
for example, functions which find the length of a list, add
up a list, appending or merging two lists, dividing a list
into two lists of odd and even elements. It excludes,
however, functions which sort a list, append a list to
itself, or which work on tree-shaped data.

Clearly the applicability of the method is limited, but
where appropriate it is extremely effective, since the
finite state machine can be made very fast.

Wadler has a working implementation of his listless
transformer, written in KRC.

14.6 ACKNOWLEDGEMENTS

A number of people have provided ideas and feedback which
have significantly improved this paper, including Samson
Abramsky, Sue Astley, John Darlington, John Hughes, David
Park, David Turner, Ronan Sleep, Phi I Wadler, and John
Washbrook.

242 Functional programming research

[Abram82J

[Abram83J

[Back78J

[Baker78J

[Baren81 J

[Bird84J

[Brown84J

[Broy82J

[Broy83J

[Burge75 J

[Burst77J

[Burst81J

References

Abramsky S, "SECD-M- a virtual machine for
applicati ve multiprogramming", Computer
Systems Lab, Queen Mary College, Nov 1982.

Abramsky S, "On semantic foundations for
applicative multiprogramming", Computer
systems lab, Queen Mary College, 1983.

Backus J, "Can programming be liberated from
the von Neumann style?", CACM21(8), pp613-
641, Aug 1978.

Baker H, "List processing in real time on a
serial computer", CACM 21(4), pp280-294,
April 1978.

Barendregt HP, "The lambda calculus, its
syntax and semantics", North Holland, 1981.

Bird RS, "Using circular programs to
eliminate multiple traversals of data",
Programming research group, Oxford, 1984.

Brownbridge D, "Recursive structures in
computer systems", PhD thesis. Un!versi ty of
Newcastle on Tyne, 1984.

Broy M, "A fixpoint approach to appl1eative
multi programming", in Theoretical
foundations of programming methodology, ed
Broy and Schmidt, DReidel, 1982.

Broy M, "Applicati ve real-time programming",
Proc 9th IFIP, Information Processing 1983,
North Holland, pp259-264, 1983.

Burge WH, "Recursi ve programming
techniques", Addison Wesley, 1 975.

Burstall, RM, "Design considerations f'or a
functional programming language", Proe
Infotech State of the Al'"t Confer enca ,
Copenhagen, 1977.

Burstall RM, MacQueen DB, Sannella DT, "Hope
an experimental applicati ve language".

Edinburgh report CSR-62-80, 1981.

[Clark80]

[Clock81]

[Cohen81]

[Curry58]

[Damas82]

[Dar180]

[Dar 181]

[Dar181 a]

[Dar183]

[Dijks68]

[Down76]

[Fages83]

[Fairb82]

Functional programming research L'I-3

Clarke TJW, Gladstone PJS,
Norman AC, "SKIM the S K
machine", Proc ACM Lisp
St anford, 1980.

Maclean CD,
I reduction
Conference,

Clocksin and Mellish CS, "Programming in
Prolog", Springer Verlag, 1981.

Cohen J, "Garbage collection of linked data
structures", ACMComputing Surveys 13(3),
pp341-367, Sept 1981.

Curry HBand Feys H, "Combinatory Logic, Vol
1", North Holland, 1958.

Damas L and Milner R, "Principal type
schemes for funct ional programs", Proc ACM
Symposium on Principal of Programming
Languages, pp207-212, 1982.

Darlington J, "The design of efficient data
representations", Imperial College, 1980.

Darlirigton J, "The structured description of
algorithm derivation", in Algorithmic
Languages, ed de Bakker and von Vliet, North
Holland, 1981.

Darlington J and Reeve M, "Alice a
multiprocessor reduction machine for the
parallel evaluation of applicati ve
languages", Proc ACM Conference on
Functional Programming Languages and
Computer Architecture, New Hampshire, pp65-
75, Oct 1981.

Darlington J, "Unifying logic and functional
languages", Imperial College, 1983.

Dijkstra EW, "The GOTOstatement considered
harmful", CACM11(3), pp147-148, March 1968.

Downey PJ and Sethi R, "Correct computation
rules for recursive languages", SIAMJournal
of Computing 5(3), pp378-401, Sept 1976.

Fages F and Huet GP, "Complete sets of
unifiers and matches in equational
theories", Proc 8th Colloquium on Trees in
Algebra and Programming, Springer Verlag
LNCS159, pp205-220, 1983.

Fairbairn J, "PONDER,and its type system",
Cambridge Computer Lab Techni cal Report 31,
1982.

[Fried78]

244 Functional programming research

[Goldf81]

[Gord79]

[Hamm84]

[Hend76]

[Hend80]

Friedman DP and Wise DS, "A note on
conditional expressions", CACM 21(11),
pp931-933, Nov 1978.

Goldfarb W, "The undecidablility of the
second order unification problem",
Theoretical Computer Science 13, pp225-230,
1981 .

Gordon MJC, Milner AJ, Wadsworth CP,
"Edinburgh LCF", Springer Verlag LNCS 78,
1979.

Hammond K, "The KRC manuaL'", CSA/1 6/1 984,
DSAG-3, University of East Anglia, May 1984.

Henderson P, Morris J, "A lazy evaluator",
Proc ACM Symposium on the Principles of
Programming Languages, 1976.

Henderson P, "Funct ional
Prentice Hall, 1980.

programming" ,

[Hend82] Henderson P, "Purely functional operating
systems", in Functional Programming and its
Applications, ed Darlington, Henderson and
Turner, CUP, pp177-192, 1982.

[Hind169] Hindley R, "The principal type scheme of an
object in combinatory logic", Trans American
Mathematical Society 146, pp29-60, 1969.

[Hudak84] Hudak P and Kranz 0, "A combinator based
compiler for a functional language", 11th
Symposi um on Principles of Programming
Languages, pp122-132, Jan 1984.

[Hudak84a] Hudak P and Kranz 0, "A combinator based
compiler for a functional language",
Eleven th Symposi um on PI"i nc i pIes of
Programming Languages, pp122-132, Jan 1984.

[Huet73] Huet GP, "The undecidability of unification
in third order logic", Information and
Control 22, pp257-267, 1973.

[Huet75] Huet GP, "Unification in the typed lambda
calcul us" , Proc Symposi um on the lambda
calculus and computer science theory,
Springer Verlag LNCS37, pp192-212, 1975.

[Hugh82] Hughes RJM, "Graph reduction with
supercombinators", PRG-28, Programming
research group, Oxford, June 1982.

[Hugh82a]

[Hugh84]

[Islam81]

[Johns81]

[Johns83]

[Jones83]

[Kenn84]

[Kenn84a]

[Kieb81]

[Kott75]

[KowaI79]

[Land63]

Functional programming research 245

Hughes RJM, "Reference counting with
circular structures in virtual memory
applicati ve systems", Programming research
group, Oxford, 1982.

Hughes RJM, "Parallel functional programs
use less space", Programming research group,
Oxford, 1984.

Islam N, Myers TJ, Broome P, "A simple
optimiser for FP-like languages", Proc ACM
Conference on Functional Programming
Languages and Computer Architecture, New
Hampshire, pp33-40, Oct 1981.

Johnsson T, "Detecting when call by value
can be used instead of call by need", LPM
Memo 14, Chalmers Inst, Sweden, Oct 1981.

Johnsson T, "The G-machine", Proc Workshop
on Declarative Programming, University
College London, Apr 1983.

Jones S, "Abstract machine support for
purely functional operating systems", PRG-
34, Programming research group, Oxford, Aug
1983.

Kennaway JR, "An outline of some results of
Staples on optimal reduction orders in
replacement systems", University of East
Anglia, Mar 1984.

Kennaway R, "Private communication", , April
1984.

Kieburtz RB, Shultis J, "Transformations of
FP program schemes", Proc ACM Conference on
Functional Programming Languages and
Computer Architecture, New Hampshire, pp41-
48, Oct 1981.

Kott L, "About a transformation system - a
theoretical study", Proc 3rd Symposium on
Programming, PariS, 1975.

Kowalski R, "Logic for problem solving",
North Holland, 1979.

Landin PJ,
expressions",
320, 1963.

"The mechanical evaluation of
Computer Journal 6(4), pP308-

[Land66]

246 Functional programming research

[Levy80]

[Lieb83]

[MacQ83]

[Mago79]

[Mag080]

[McCar63]

[Meira84]

[Miln78]

[Miln83]

[Mishr84]

[Mycr81]

[Park82]

Landin PJ, "The next 700 programming
languages", CACM9(3), pp157-166, Mar 1966.

Levy JJ, "Optimal reductions in the lambda
calculus", in Essays on combinatorr logic,
lambda calculus and formalism, ed Hindley
and Seldin, Academic Press, pp159-192, 1980.

Lieberman Hand Hewitt C, "A real time
garbage collector based on the lifetimes of
objects", CACM26(6), pp419-429, June 1983.

MacQueen D, "Modules for SML", Polymorphism
1(3), Dee 1983.

Mago GA, "A network of microprocessors to
execute reduction languages", Two parts,
International Journal of Computer and
Information Sciences 8(5) pp349-385; 8(6)
pp435-471, 1979.

Mago GA, "A cellular computer architecture
for functional programming", IEEE Computer
Society COMPCON,pp179-187, 1980.

McCarthy J, "A basis for a mathematical
theory of computation", in Computer
Programming and Formal Systems, ed Braffort
and Hirschberg, North Holland, pp33-70,
1963.

Meira S, "Optimlsed combinatoric code for
applicati ve language implementation", Proc
6th Internat ional Symposium on pro gramming,
1984.

Milner R, "A theory of type polymorphism in
programming", Journal of Computer and System
Sciences 17(3), PP348-375, Dec 1978.

Milner R, "A proposal for Standard ML",
Polymorphism 1(3), Dec 1983.

Mishra P and Keller RM, "Static inr erence of
properties of applicati ve programs", 11th
ACMSymposium on Principles of' Programming
Languages, pp235-244, Jan 1984.

Mycroft A, "Abstract interpreta tlon and
optimising transformations for applicati ve
programs", Edinburgh CST-15-81, 19S 1.

Park D, "The fairness prol>lem and
nondeterminism in computing ne t.vcr- ks", Proc
4th Advanced Course on Theoret leaL Computer
Science, Mathematisch Centrum, 1982:.

[Parts83]

[Peyt83]

[Peyt83a]

[Plotk77]

[Robin71]

[Ross82]

[Scott76]

[Scott81]

[Scott82]

[Stapl80]

[StapI80a]

Functional programming research 247

Partsch Hand Steinbruggen R, "Program
transformation systems", ACM Computing
Surveys 15(3), pp199-236, Sept 1983.

Peyton Jones SL, "Yacc in Sasl", Indra note
1533. University College London, Dec 1983.

Peyton Jones SL, "Arbitrary preclslon
arithmetic using continued fractions", Indra
Note 1530, University College London, Dec
1983.

Plotkin G, "LCF considered as a programming
language", Theoretical Computer SCience 5,
pp223-255, 1977.

Robinson JA, "The unification computation",
in Machine Intelligence 6, Edinburgh
University Press, pp63-72, 1971.

Rosser JB, "Highlights of the history of the
lambda calculus", Proc ACM Symposium on Lisp
and Functional Programming, Pittsburgh,
pp216-225, Aug 1982.

Scott D, "Data types as lattices", SIAM
Journal of Computing 5, pp522-587, 1976.

Scott D, "Lectures on a mathematical theory
of computation", PRG-19, Programming
research group, Oxford, May 1981.

Scott D, "Domains for denotational
semantics", 9th Colloquium on Automata,
Languages and Programming, Springer Verlag
LNCS 140, pp577-613, July 1982.

Staples J, "Computation
expressions", Theoretical
10, pp171-185, 1980.

on graph-like
Computer Science

Staples J, "Optimal evaluat ions
like expressions", Theoretical
Science 10, pp297-316, 1980.

of graph­
Computer

[StapI80b] Staples J, "Speeding up subtree replacement
systems", Theoretical Computer SCience 11,
pP39-47, 1980.

[Stoye83] Stoye WR, "The SKIM microprogrammer's
guide", Cambridge Computer Lab Technical
Report 40, Sept 1983.

248 Functional programming research

[Stoye84]

[Sussm82]

[TreI82]

[TreI82a]

[TreI83]

[Turn76]

[Turn79]

[Turn79a]

[Turn82]

[Turn83]

[WadI81]

Stoye WR, Clarke TJW, Norman AC, "Some
pract ical methods for rapid combinator
reduction", Proc ACMSymposium on Lisp and
Functional Programming, Austin, Aug 1984.

Sussman GJ, "Programming and implementing
Lisp", in Functional Programming and its
Applications, ed Darlington, Henderson and
Turner, CUP, pp29-72, 1982.

Treleaven P, "Computer architecture for
functional programming", in Functional
Programming and its Applications, ed
Darlington, Henderson and Turner, CUP,
pp281-306, 1982.

D, Hopkins R, "Data
driven computer

Surveys 14(1),

Treleaven P, Brownbridge
driven and demand
architecture", Computing
pp93-143, Mar 1982.

Treleaven P,
architectures
Architecture,
1983.

"Decentralised
for VLSI",

Prentice Hall,

computer
in VLSI
PP348-380,

Turner DA, "The Sas1 manua1", St Andrews,
Dec 1976.

Turner DA, "A new implementation technique
for applicative languages", Software
Practice and Experience 9, pP31-49, 1979.

Turner DA, "Another algorithm for bracket
abstraction", Journal of Symbolic Logic,
44(2), pp267-270, June 1979.

Turner DA,
programming
Programming
Darlington,
28, 1982.

"Recursion equat ions as a
language", in Funct ional
and its Applications, ed

Henderson and Turner, CUP, pp1-

Turner DA, "Functional programming and
proofs of program correctness", in Tools and
Notions for Program Construction, Neel (ed),
CUP, 1983.

Wadler P, "Applicative style pr ogr-ammmg ,
program transformation, and list o per-at or-s" ,
Proc ACM Conference on Funct ional
Programming Languages and Computer
Archi tecture, New Hampshire, pp2 5-32, Oct
1981.

[Wadl84]

[Wadsw71]

[Welch75]

[Welch83]

Functional programming research 249

Wadler P, "Listlessness is better than
laziness", Proc ACMSymposium on Lisp and
Functional Programming, Austin, 1984.

Wadsworth CP, "Semantics and pragmatics of
the lambda calculus", D Phil dissertation,
Oxford, 1971.

Welch P, "Some notes on the Martin-Lof
of the Church-Rosser theorem,
rediscovered by Park", Computer
University of Kent, Oct 1975.

proof
as

Lab,

Welch PH and Ellis MP, "Strong typing and
functional programming", Computer Lab, Univ
of Kent, 1983.

Chapter 15

The Zero Assignment Parallel Processor
(ZAPP) project

M. R. Sleep and J. R. Kennaway

15.1 INTRODUCTION

The original aim of the z~pp project was to demonstrate
that it is possible to "huy speed" for a significant class
of problems by hooking together a large number of computing
elements. For a suitable class of problems, we wanted to
show that doubling the number of elements would roughly
halve the run-time. ~t the same time, we wanted to maintain
programmability so as not to further aggravate the software
crisis.

'fhe z~pp goal transcends any particular technology such
as VLSI because it asks "how can we exploit parallel hookups
of the most advanced computing element offered by a
particular technology". Today, we have single chip
computers (e.g. the INMOS transputer). Soon we will have
the abiLi, ty to use WSI (,"laferScale Integration) to create
much more powerful computing devices. In due course we can
expect even more powerful computing elements based on new
technologies to emerge. The basic z~pp question oE how to
buy speed from parallelism will always be relevant.

To sharpen this difficult question, we made the
deliberate decision to restrict our attention to "divide and
conquer" algorithms. We dealt with the question of
programmability by adopting a functional (zero assignment)
language. In a functional language, the evaluation of
sub-expressions has no side effects so that parallel
execution cannot produce a wrong answer, alt=hough an
injudicious choice of ordering of subexpressions for
execution can lead to undesirable consequer1ces
e.g. nontermination or unnecessary saturation 01: system
queues.

We cannot hope to "buy speed" for all proble:ms. For
example, to evaluate x" (2An) we cannot img-.::ove on
sequentially squaring x, n times. ~t the other extreme,
certain algorithms can be "systolicised", and special
purpose chips will then yield very high perf orjcnanc e, as
described by Kung (1). We seek a basis for a mo:regeneral
purpose parallel architecture which makes economi-c use of

ZAPP project 251

the available
programmer to
architecture.
symbiosis.

computational resources without requiring the
delve too deeply into the physical

This requires a good language-architecture

Chapters 7 and 8 of Kennaway and Sleep (2) give one
overview of the increasingly active search for such a
symbiosis. Here we present in condensed form some early
results of the ZAPP approach. Further details are available
in Burton and Huntbach (3).

15.2 ARCHITECTURE RESULTS

15.2.1 The Reduction Model of computation

ZAPP is based on a simple reduction model of
computation. A computational task is g~ven by an expression
E and a set of rewrite rules R (also called reduction
rules). The rules are app1~ed to replace subexpressions of
E by other expressions. When E has reached a form to which
no rewrite rule is applicable, this form is the result of
the computation and is called a normal form. ~rithmetic
provides a simple example. The ar~thmetlc operators are
defined by a collection of rules such as 1+1-->2, 2*3-->6,
etc. Given an expression

(3*4)+(5*6)

we can apply the rules

3*4 --> 12
5*6 --> 30

to produce the intermediate (but equivalent) form

12+30

which may be reduced to 42 by the rule

12+30 --> 42

42 cannot be further reduced and is the result of the
computation. Notice that the two multiplication reductions
we applied to the initial expression could have been applied
in any order or in parallel without affecting the result.
This property, that the final result is independent of the
order in which reductions are performed, is called the
Church-Rosser property (Barendregt (4». Rewrite systems
possessing this property are particularly amenable to
implementation on a parallel machine. When an opportunity
to apply a rule appears it can be taken advantage of
immediately - the final result is independent of the order
of execution. The usual von-Neumann programming languages
do not have this property. It takes a considerable effort
to extract parallelism from an arbitrary FORTRAN program.

252 ZAPP project

The classical example of a Church-Rosser rewrite system
is the lambda calculus (4), which forms the core of all
functional languages. With the addition of basic constants
and operators, and syntactic sugaring, we obtain from it
languages such as ISWIM (Landin (5», ML (Gordon et al (6»,
SASL (Turner (7», HOPE (Burstall et al (8», LISPKIT
(Henderson et al(9)1, etc. (For our Durposes we ignore the
support of assignment in ML and ISWIM.)

Using such languages involves writing equations which
have a dual interpretation. On the one hand, each equation
has a purely declarative reading - the two sides of the
equation are asserted to be equivalent. On the other, each
equation may be used by the architecture as a rewrite rule
to simplify an expression. This is the procedural reading,
and the (usually unwritten) meta-rule adopted by most
architectures is to use equations only from left to right.

Kowalski (10) and others have developed such a dual
reading for languages based on logic formalisms. The
essential difference between logic and functional
(lambda-calculus based) languages is (for architects) the
fact that supporting logic requires a backtracking mechanism
whereas supporting function languages does not. To keep
things as simple as possible, early ~APP work restricted
attention to functional languages.

15.2.2 Process Trees

Divide and conquer algorithms are particularly amenable
to parallel execution. A divide and conqquer algorithm
splits a problem into a number of subproblems, applies
itself recursively to these subtasks, and them combines the
results. As an example we give a divide and conquer
algorithm for factorial:

DEF fac n = dfac 1 n
WHERE dfac 10 hi

IF lo=hi
THEN 10
ELSE (dfac 10 midi * (dfac mid+l hi)

WHERE mid = (Lo+h i) DIV 2
PI

(dfac 10 hi) gives the product of the numbers in the range
lo••hi, and in the case where lo<hi is defined by splitting
the range into two equal subranges, applying dfac to each,
and multiplying the results.

Assuming an arbitrary element of our parallel
architecture has a basic knowledge of the ari~betic and
logical operators we could send (fac 4) together with the
above definition of fac to some element and request its
evaluation. The processing element receiving thi> task will
first use the definition of fac to reduce the expr asion to:

ZAPP project 253

dfac 1 4 WHERE dfac..•

It can now use the definition of dfac specified in the
WHERE-clause to prdduce the intermediate form:

(dfac 1 mid) * (dfac (mid+l) 4)
WHERE mid = (1+4) DIV 2)

WHERE dfac 10 hi = •••

This expression is at top level a multiplication.
Multiplication is a strict operator that is, both its
arguments must be fully evaluated before the multiplication
can be performed. We therefore have the two subtasks

?l «dfac 1 mid) WHERE mid = (1+4) DIV 2)
WHERE dfac 10 hi = ...

?2 «dfac (mid+l) 4) WHERJ<;mid = (1+4) DIV 2)
WHERE dfac 10 hi = •••

and a top-level task which can be represented as an object
with two nholesn waiting for the results of ?l and ?2:

?l * ?2

In principle, we could ship the two subtasks to neighbouring
processing elements and await the results. When both are
available, the top-level task will have the form 2 * 12
which can be reduced to the normal form 24. In this simple
example, we have deliberately emphasised the need to
communicate closures (pairs of the form
(expression,definitions» rather than simple expressions in
a distributed architecture. It would obviously pay us to
evaluate mid = (1+4) DIV 2 = 2 before splitting the
top-level task. If we did this, the two subtasks would be

?l dfac 1 2 \'lHERE:dfac 10 hi = •••
?2 dfac (2+1) 4 WHERE dfac 10 hi = ...

We can achieve something close to this effect by copying
references to shared subexpressions when we split a task.
ThiS works well for mid, but not so well for dfac itself:
we would like every computing element to have its own copy
of dfac to avoid a bottleneck. In a distributed
implementation it will sometimes pay to make full copies
rather than share.

Whatever the detailed pragmatics, the evaluation of
expressions can be viewed as generating a ~rocess tree which
has as its root node the closure of the original expression,
and as leaf nodes the primitive subexpressions which cannot
be reduced. A process tree for fac 4 is illustrated in
Fig.15.l. Clearly there are many ways for a physical
architecture to traverse this process tree. A purely
sequential solution would grow a stack of tasks depth-first.
A highly concurrent architecture might adopt a breadth-first
approach. The depth-first extreme is good because it limits

254 ZAPP project

fac 4
I

dfac 1 4
I

----=-----*~
dfac 1 2 dfac 3 4

I I

dfac~*~ 2 2 dfac~*~c

I I I I
123 4

4 4

Figure 15.1 Process tree for fac 4

space requirements,
breadth-first approach
of computing elements
huge space demands.

but loses paralle1ism. The
looks good when an unbounded number
are available, but makes potentially

ZAPP architectures represent a compromise between the
two extremes. Each 7.APP element adopts the conservative
aporoach of using a sequential depth-first exploration of
the process tree. This builds a stack of tasks on an
individual ZAPP element. Parallelism is exploited by
connecting a number of ZAPP elements together, and allowing
underworked elements to "steal" tasks from the stacks of
overworked physical neighbours. Each stolen task may
generate subtasks which can themselves be stolen in turn.
The effect is that work spreads over the network in a
breadth-first way, while each processor executes its tasks
depth-first.

15.2.3 ZAPP Architectures

ZAPP is not yet a physical architecture. At present,
it exists only as simulations of an abstract se t of rules
which allow a single complex task to diffuse across any
connected set of 7.APP elements in a manner whic 11 can make
effective use of the available physical resources.

There are two sets of rules for an architect~Ie to fall
into the ZAPP class:

A. Interconnection. Any connected graph can be
connect ZAPP elements, ranging from a simple r
r-n-cube (Burton and Sleep (11». As suggested
(12) a given technology will dictate an
interconnection scheme.

used to
ing to the
by Hillis

a, ppr-opr ia te

ZAPP project 255

B. Behaviour of a ZAPP node.
(1) Each node of a ZAPP must be capable of simulating the
parallel execution of a process tree using a depth-first
priority rule.
(ii) Each node of a ZAPP must be capable of exchanging
loading information at regular intervals with physical
neighbours.
(iii) When underloaded, each element must be able to
"steal" a task from any overloaded physical neighbour.
(iv) A task may be stolen at most once. This ensures that
parent-child communication in the logical process tree
involves at most one interconnection in the physical
architecture. Somewhat surprisingly, this apparently severe
constraint still allows an exponential growth in the number
of active tasks in the system.
(v) A task can only be stolen if it is deeper in the
process tree than any task on the receiving processor.

15.2.4 A General Model of Divide and Conquer Algorithms

We have illustrated earlier how a divide and conquer
version of factorial can produce potentially large process
trees. More generally, we can define a combinator which
captures the essence of the divide and conquer pr1nc1ple:

DEF D C (primitive,divide,combine,solve) = f
WHERE f x IF primitive x

THEN solve x
ELSE combine (map f (divide x))
FI

map is the function which takes a function and a list and
applies the function to every element of the list. 0 C is a
higher-order function which can be specialised by givIng it
suitable definitions of primitive, divide, combine, and
solve. primitive x returns TRUE if x is a pr1mitive
probIem, solve x solves a primitive problem, divide x splits
a non-primitive problem i~to a list of subproblems, combine
x combines a list of sub-results.

We can use D C to define factorial:

DEF fac n dfac (l,n)
WHERE dfac D C P s d c

WHERE p (lo,hI) (Lo=hi)
s (10,10) 10
d (lo,hi) «lo,mid) ,(mid+l,hi))

~'lHEREmid = (Lo+h i) DIV 2
a*bc (a,b) =

Our definition of the 0 C combinator does not restrict
us to dividing a complex problem into just two simpler
subproblems: the degree of splitting could be three or more
because divide returns a list of subproblems and combine
processes a llst of results.

256 ZAPP project

Examining the definition of the D C combinator, we can
see that exploitation of parallelism-depends critically on
the way in which the subexpression

combine (map f (divide x»

is evaluated. To create the potential for parallel
evaluation, we want the divide function to create a list of
subproblems, and the map functIon to race along this list
creating appropriate sub-tasks. On the other hand, if the
lists are very large we would like the architecture to
govern their growth so as to match available resources.

For the D C definition of fac, there is no great
problem even with a normal order reducer if we use demand
forking across strict operators. A demand for the value of
combine would force (map f (divide x» to create a list of
two obJects, and the strict operator * would force parallel
evaluation of both arguments.

However, more interesting examples of D C applications
such as sorting do not succumb to this trTck. ~here is a
fundamental problem in adopting a declarative programming
language (which leaves great freedom for the architecture to
exploit parallelism) and then expecting it to express the
fine details of control.

This deep problem was recognised early in the Z~PP
project, and led to two lines of work. One approach
(evidenced by the development of the LNET and DyNe
formalisms presented briefly below) attemots to integrate
process notions with the lambda calculus. 'rhe alternative
approach developed annotations for the lambda calculus which
are capable of expressing the necessary control. The
annotation approach is described by Burton (13). ~he LNET
work was introduced by Kennaway and Sleep (14).

For the purpose of early ZAPP experiments, which were
oriented towards divide and conquer algotithms, we
effectively built into our simulator a specialised version
of the D C combinator. This mapped, in a single reduction
step, a complex problem into a set (not list) of subtasks
which could be reduced in parallel.

15.2.5 Using a ZAPP

Notionally, a ZAPP user defines his program as a
function based on the D C combinator, and provides the
necessary data. The basic- steos in applying a ZAP? to
perform the computation are

(a) Pre-broadcast the program to all ZAPP elements.
(b) Inject the initial problem (specified bv the data) into
some selected element of ZAPP.
(c) Extract and report the final result from the selected
ZAPP element.

ZAPP project 257

Alternative methods of using a ZAPP are also envisaged:
for example, multi-user operation involving several distinct
I/O elements appears feasible. This would in principle
allow the "busy" phase of one ~~PP job to overlao the
start-up and wind-down phases of other ZAPP jobs. -

15.2.6 General Behaviour of a Single-user ZAPP

In the single-user mode outlined
operation by loading each element
relevant divide and conquer function.
is then injected into a distinguished

above, a ?:APP
with a copy
The initial

ZI\PPele:!'~nt.

starts
of the
problem

This element starts executing the process defined by
the initial problem. In doing so, it constructs a stack of
tasks very much in the manner of a sequential machine. But
whereas a conventional machine would record only the minimal
amount of information on the stack, a Z~PP element records -
for each "divide" steo - full details of all tasks which can
be executed concurrently.

The immediate neighbours of the initially active
element very soon become aware of the fact that they are
idle whilst there is work to be done. These idle neighbours
will steal tasks from the stack of the initially active
element, and each neighbour will in turn build up its own
stack of tasks.

Each task offloaded from one ZAPP element onto another
cannot be moved again. If the task moved is orimitive it
can be executed and the result returned to its logical
parent in the process tree. Because of the single steal
rule, this must be on an immediate physical neighbour. If
on the other "','j the task offloadec1 is not primitive, it
must be decomposable into a set of new tasks, which ~re
offloadahle. IE we assume that every active task creates
two sons, and that one is immediately dealt with by the
processing element concerned while the other is stolen by a
neighbour, then the number of active tasks will initially
grow exponentially with time, filling the ZAPP network.

Thus the apparently highly restrictive rule (iv) for
offloading and the depth-first rule for individual
processing elements in fact allow enormous freedom for a
huge orocess tree to diffuse rapidly. Having ensured that
work can diffuse quickly over the network, we must now
ensure that the machine does not become overloaded with
suspended tasks waiting for the results of other tasks. The
basic governing mechanism in a ZAPP is a heuristic for
deciding when to steal a task from a neighbour. At one
extreme, no offloading at all would result in the entire
process tree being handled by one ZAPP element, in the
manner of a sequential processor. At the other extreme,
offloading at every opportunity could rapidly saturate the
individual memories of each element. In oractice, the
simple expedient of governing growth by restricting the

258 ZAPP project

number of stolen tasks on each element to a small constant
appears effective.

In the next section, we describe some early ZAPP
simulation results. Broadly, in all these experiments we
observed the following phases in running a problem on a
ZAPP.

A. The infection phase. Initially, just one ZAPP element is
actlve. ~he number of active element then rises rapidly (at
a rate which is initially exponential if the interconnection
topology is rich enough).

B. The busy phase. Roughly, the infection phase splits a
large problem lnto O(P) subproblems, and distributes these
to the P ZAPP elements. Ideally, the O(P) subproblems would
be of similar size, and - for really large problems - allow
a very long busy phase requiring no communication between
ZAP? elements. In practice, the split cannot be perfectly
balanced, but this is remedied dynamically by the basic ZAPP
diffusion mechanism. During the busy phase, every ZAPP
element is engaged in productive work.

C. The combination phase. In the ideal case, ? subresults
are produced slmultaneously and rapidly combine via the
logical process tree to produce the final result at the
initially active element. In practice, the combination
phase may be long: it accounts for the major loss of
processor utilisation for small problems.

The major result from early ZAPP simulations is that
given a large enough process tree with respect to a given
ZAPP, the busy phase overwhelms the infection and
combination phases, yielding processor utilisations
approaching 100%.

15.2.7 Experiments

15.2.7.1 Basic results. A very
~l~n~e~f~f~l~c~l~e~n~t~!')~~m~e~a~n~s~o~f~computinq

simple (but very

is to use the rule

DEF f k IF k=l THEN 1
ELSE (f (k-l) + 1 + (f (k+L)

This can be defined using the D C combinator:

DEF f o C(p,s,d,c)
wHERE P k k=l

s 1 = 1
d k = « k-l) ,(k- 1))
c (x,y) = l+x+y

ZAPP project 259

It grows a nicely balanced process tree in which each
subtask is specified by a single integer. The combining
operation is simple addition, so quite large process trees
can be run without hitting overflow problems.

Clearly a given k grows a process tree involving O(2Ak)
elements, so that incrementing k doubles the total work.
Fig.15.2 shows a graph of processor utilisation (PU) against
k for a 24-element ZAPP which adopted the r-n-cube scheme
for interconnection. It can be seen that as the p'robl.em
size increases, PU rises to approach 100%.

50%

100%

PU

0%

Figure 15.2. (a) Processor utilisation
(b) Memory requirements

The figure also shows the system-wide memory
requirements against problem size. After an initially rapid
rise, the growth is essentially linear in the depth of the
process tree.

The PU figures confirm that as we increase the problem
size, the busy phase of a ZAPP run increasingly dominates
the infection and combination phases. aecause each ZAPP
element adopts a depth-first exploration of the process
tree, its memory requirements will be related to tree depth
just as with a conventional sequential machine. The memory
figures suggest that linear growth with tree depth still
holds when we introduce parallelism by allowing elements to
offload tasks to neighbours under ZAPP rules.

The figures for memory requirements are the "high tide
marks" of total memory used by all processing elements. We
have also studied the maximum memory required by anyone
processor, and have found that this also g.rowslinearly with
tree depth. We can see that this is ensured by rule (v) of

260 ZAPP project

section 2.3 allowing a processor having suspended tasks but
no active tasks to steal from its neighbours only active
tasks which are deeper in the process tree than any of its
own tasks.

These experiments assumed perfectly balanced process
trees. For unbalanced trees, the relevant datum determining
memory requirements is the maximum depth of the tree. A
perfectly belanced tree with N nodes has O(logN) depth. A
random tree has depth, on average, O(jN). A totally
unbalanced tree has depth O(N). This implies that it is
important to design one's algorithms so as to generate
reasonably balanced trees.

15.2.7.2 Further experiments. We simulated a variety of
physlcal networks wlth up to 2000 elements and various
interconnection topologies. The basic ZAPP results
(approaching 100% PU for large problems, linear memory
requirements for balanced process trees) were confirmed.

Although our early experiments concentrated on the
r-n-cube topology (11) we also ran ex?eriments on other
topologies. The more advanced topologies such as the
r-n-cube and the cube-connected cycles (Preparata (15»
produced better results, but the basic ZAPP results emerged
even from simple grids. We concluded that the main effect
of more advanced topologies was to shorten the infection and
combination phases. For large problems these phases are a
minor part, and even a ring could yield good PU.

Following (12) and others we conjecture that the choice
of topology should be an engineering compromise between
ideal high connectivity and the economic limits of state of
the art technology.

The next advance in technology will be wafer scale
integration (WSI). For economic reasons, it should be
possible to use wafers which have a proportion of
inoperative processing elements. We ran some studies of a
ZAPP in which a randomly selected proportion of elements
were considered inoperable. So long as the remaining
elements formed a connected graph the basic ZAPP results
continued to hold.

15.3 THEORETICAL RESULTS

15.3.1 Rewrite Systems

A powerful method for implementing functional languages
(and other languages, for that matter) is by the use of
rewrite rules. A rewrite rule has a lef t hand side and a
right hand side and states that any expression having the
form of the left hand side may be replaced by the right hand
side. An expression is "evaluated" by applying the rewrite
rules as often as possible, eventuaL ly arrivi ng at an
expression to which no rule applies. Such an expression is

ZAPP project 261

called a normal form and is the "value" of the original
expression.

The classical example of a language defined by rewrite
rules is the lambda calculus, with the rule of beta
reduction: (AX.E)F --> E[F/x]. This rule states that an
application of a lambda abstraction to any other expression
can be replaced by the result of substituting that
expression for every occurrence of the bound variable of the
abstraction within its body. (I'Veignore, for simpLicity,
technicalities concerning free and bound variables and alpha
conversion.) Another example is SASL (7), which is a
functional language in which the programmer writes his own
rewrite rules.

In the description above of beta reduction, we spoke as
if the expression being reduced was represented as a string,
or perhaps a parse tree. For practical implementation,
however, string rewriting has a maJor disadvantage. A
rewrite rule may demand that some part of the expression it
is applied to be copied many times. Beta reduction of
(AX.E)F, for example, will make a new copy of F for every
free occurrence of x in E. This not only takes up space,
but if F itself contains redexes, then each of its new
copies will need to be evaluated separately.

This problem can be avoided if we interpret the rewrite
rules as applying, not to strings or parse-trees, but to
graphs. Where a tree may have multiple occurrences of a
subexpression, a graph can have just a single copy of that
subexpression and many references to it.

15.3.2 Graph Rewriting on ZAPP

Graph rewriting systems should be naturally suited to
execution on a ZAPP machine. Each node of the graph is
represented as a process, and each edge of the graph
corresponds to a possible line of communication between
processes. The network of processes is wrapped around the
physical network of processors, and the behaviours of the
processes are designed so that the action of the entire
network mimics the application of the rewrite rules.

15.3.2.1 Fine grained beta reduction. A direct
implementation of beta reduction for lambda expressions
would have the problem that a single beta reduction can
involve an arbitrarily large oart of the whole graph, which
may be spread over a large part of the physical network.
Exclusive access to the whole of a beta redex while it is
being reduced would severely limit the parallelism
available. Beta reduction is too coarse a unit of
computation. The rewrite systems best suited for highly
parallel execution are those whose redexes are small no
more than a few nodes. We have developed such a
"fine-grained" rewrite system for lambda calculus which is
equivalent to beta reduction, in the sense that for any

262 ZAPP project

lambda expression which has a normal form with respect to
beta reduction, fine-grained reduction will produce the same
normal form, and vice versa.

15.3.2.2 Combinators and directors. Combinators provide
another graohlcal lmplementatlon for functional languages
(Turner (16,17». Any lambda-expression can be translated
into a combinator graph, which can then be evaluated by
applying simple rewrite rules to small portions of the
graph. However, there is a performance problem with the
translation into combinators. We have shown (18) that in
the worst case a lambda expression of size n may turn into a
combinator graph of size 0(n2). The problem lies with
expressions whose parse-trees are highly unbalanced, having
a height proportional to the number of their leaves, and
with deeply nested lambda-abstractions.

One remedy for this is to preprocess lambda expressions
so as to turn them into equivalent, but less unbalanced,
expressions. Suppose we have a highly unbalanced expression
E. We select some node of E about halfway from the root of
E to its deepest leaf. Let F be the subexpression whose
root is this node. We invent a net..••variable name x, and
replace E by the expression (AX.E[x/F])F, where E[x/F]
denotes the result of substituting x for F in E. This
replaces a tall, thin tree by a shorter, fatter one. For
the transformation to be valid, F must not contain any free
variable which is bound by any lambda-node on the path from
the root of E to the root of F. The transformation is then
recursively applied to both E [x/F] and F. Burton (19) shows
that for a restricted class of lambda expressions, a
suitable node can always be found, and the whole
transformation can be performed in linear time. The
resulting expression can then be translated into combinators
in linear time with only linear expansion. This method is
not applicable to all lambda-expressions, however.
Expressions must, roughly speaking, not contain functions
with global variables. Although every lambda expression can
be transformed into an equivalent one with this property (by
supplying each function with its global variables as extra
parameters), t~,)t transformation may introduce a quadratic
expansion in the worst case.

A second method of overcoming the quadratic complexity
uses a simplification of combinators, wh ich we call
directors. Firstly, we regard the combinators introduced by
the translation as being attached as annotatio~s to the
interior nodes of the parse-tree, rather than as ordinary
constants appearing at the leaves. It then becomes clear
that the purpose of each combinator is to direct an incoming
argument to one or other, both, or neither of the two
descendants of the apply node it is attacheC3 to. We
therefore replace the S and S~ combinatoYs, bot=hof which
direct an argument both ways, by the symbol A. Similarly,
we replace B and B~ by \ (send right), and C and C# by /
(send left). K is re1?lacedby #, and I is retaiLned_ The

ZAPP project 263

symbols A, \, I, and # are called directors. ~ranslation
into directors is still quadratic in the worst case, as they
are just a simplification of combinators. Ho,••ever, by
attaching them to the interior nodes of the tree it becomes
clearer what is happening in the worst cases. An example is
the expression Aabcdefg.gfedcba, shown as a graph in
Fig.15.3(a) •

Aa.Ab.Ac.Ad.Ae.Af.Ag. @
I \

@ a
I \
@ b
I \

@ c
I \

@ d
I \

@ e
I \

g f

\/IIIII@
I \

\/IIII@ I
I \

\/III@ I
I \

\/II@ I
I \

\/I@ I
I \

\/@ I
I \
I I

\1/6@
I \

\1/5@ I
I \

\1/4@ I
I \

\l/3@ I
I \

\1/2@ I
I \

\l/l@ I
I \
I t

(a) (b) (c)

Figure 15.3

To save space we have only drawn the body of the function as
a graph. Its translation is given in Fig.15.3(b), which
vividly demonstrates the quadratic complexity. We also see
that the director strings in such an example consist mainly
of repetitions of single directors. It would be more
efficient to encode such repetitions as a sinqle director
and a count, as in Fig.15.3(c). This only costs a small
amount in the cases where the strings of repetitions are
short, and we have proved (20) that translation into
counting director strings requires near-linear space.
Dijkstra (21) has independently arrived at a system very
similar to directors, and Noshita (22) has also rediscovered
the counting optimisation.

15.3.3 A Language for Expressing Parallel Graph Reduction
Algorithms

For a parallel language to be suitable for implementing
graph reduction algorithms as envisaged above, it must be
able to express dynamically reconfigurable networks of
parallel processes. Existing parallel languages, such as
Ada (23), CCS (Milner (24», CSP (Hoare (25», Occam (Inmos
(26», etc. can only handle static networks, or at the most,
networks in which a single process can split into a set of
parallel components. Although it is possible to simulate
the redirection of communication lines which we need in CCS,
it is technically awkward.

264 ZAPP project

We are therefore obliged to develop a language for the
purpose. A secondary goal of our design is to give the
language as functional a style as possible. A node of a
graph expression should be modelled by a process which may
receive a request for the value of the expression, and reply
with that value, possibly having engaged in other
communications in order to compute it. The communication
primitive of the language is therefore a two-part exchange
of messages in which one process sends a message to another
and receives a reply.

Our first design was called LNET.
features are the following.

Its principal

1. A process in LNET consists of two components: a
name, by which it is addressed by other processes, and a
script, which specifies its behaviour.

2. The two partners to a communication adopt
asymmetric roles, called active and passive. The syntactic
representations of active and passive communications are
e?n!t and t?!e. Here e ranges over expressions, n over
process names, and t over templates. A template is used for
pattern matching, and is simply an expreSSlon in which
certain occurrences of variables are marked as being binding
occurrences. When one process attempts the active
communication e!n?t it is suspended until the process named
n attempts a passive communication t~?!e~ in which t~
matches e. When this haopens, e is evaluated, the bound
variables of t~ are bound to the corresponding components of
the value of e, and than e~ is evaluated and matched to t in
the same way. After the communication is completed, the
processes go their separate ways. The points to notice
about this form of communication are:

(a) Pattern matching is built into LNET communication.

(b) The active partner is committed to completing the
communication. If the passive partner never accepts the
active offer, then the active partner will be dea~locked for
ever.

(c) The active partner directs its offer at a
particular process: the passive partner is willing to
accept any active offer that matches its template.

(d) The exchange of messages appears to both partners
as an indivisible action, although it may be implemented as
two separate message-passings.

(e) Scripts can be sent as messages from one process
to another.

3. A behaviour p can consist of an alternative choice
between two or more behaviours. If each of the components
begins with a passive communication, then the choice will

ZAPP project 265

depend on which of the templates of those communications is
first matched by an active offer. If, on the other hand,
one or more of the components begins with an active
communication, then that components may be chosen
unilaterally. The difference is between a choice which may
be controlled from outside a process and one that cannot be.

4. A process may create processes running in parallel
with it.

5. Processes may be parameterised.

6. A process may execute the primitive action wait,
which has the effect that the process is suspended untll
some other process makes it an active offer. This is a
rather ad hoc addition to the language which we later
managed to remove.

7. A process may be an indirection orocess which
merely relays active offers to some other process. This is
another ad hoc feature which was later removed.

LNET is able to express combinator graoh reduction and
director string reduction. It has been given a formal
axiomatic semantics (14). However, LNET is overcomplicated.
In particular, wait and indirection processes are -somewhat
arbitrary creatIOnS. In modelling qra~h reduction, the
purpose of wait is to allow some control over which parts of
the graph are allowed to be reduced, and in what order. The
maximallv ~arallel algorithm which evaluates everything in
sight is not necessarily the best. Even a machine with a
high degree of actual parallelism may be flooded by this
algorithm with computations whose results will never he used
(for example, because they are on the unselected arm of a
conditional). Indirection processes play much the same role
as indirection nodes in conventional graph reducers
(e.g. Wadsworth (27».

We have developed a successor to LNET which removes
these flaws. DyNe (Dynamic Networks) differs from LNF.T
principally in allowing the-- passive partner in a
communication to engage in other com9utation and in other
communications between accepting an active offer and making
its reply.

In DyNe, as in LNET, a process consists of a name and a
script. A script can be a sequential composition of
scripts, an alternative composition, a parallel composition,
a basic action, or a basic constant. An action is either a
passive communication, an active communication, or the
creation of a set of parallel processes. Variables can also
be defined by declarations. The formal syntax is, in
outline, as follows.

S ::= S S
S + S

(sequential oompos it i.on)
(alternative composition)

266 ZAPP project

5 I ••• I 5
A
B

(parallel composition/tupling)
(action)
(built-in script)

A : := GET T DO S REPLY 5
5 -> 5 ? T
CREATE 1:5 I •.. I

(passive communication)
(active communication)

1:5 ENDCREATE
(process creation)

There is no separate category of expressions. Rasic
constants and the built-in operations on them are themselves
scripts, the built-in scripts ranged over by B above. This
class includes integers, booleans, tokens (a countable set
on which there is only an equality operator), and some
standard repertoire of arithmetic and logical operators.
Considered as behaviours, the basic constants all specify
the empty behaviour of a terminated process. These scripts
are the final result of executing a script. The built-in
operators, on the other hand, appear to the processes using
them like scripts, which repeatedly accept an active offer
of a tuple of values appropriate to the operator and reply
with the result of applying the operator to the values.
There are also declarations of the conventional sort which
bind identifiers to scripts.

T ranges over templates. A template is either a basic
constant, a tuple of templates, or of the form I:t. I is an
identifier and t is a type. Types are formed from the set
INT, BOOL, TOKEN, NAME by tupling, union, and difference.
The matching operation between templates and expressions
should be sufficiently obvious to need no further
explanation.

Process names do not appear in the syntax. When a
process executes the action CREATE 11:51 I I Ik:Sk
ENDCREATE, which creates k new processes, k new process
names are generated and bound to the identifiers Il ••Ik.
Process names can be sent as messages, compared for
equality, and used for pattern-matching.

We have an axiomatic semantics for DyNe and are
currently working on a denotational semantics. This will
involve a qeneralisation of the techniques of Kennaway (28)
to handle the unique feature of DyNe that scripts can
themselves be sent as messages.

15.4 CONCLUSIONS

The simulation results show that a simple set of local
rules allows a large process tree to diffuse across a richly
connected set of processing elements. We have shown that
depth-first priority schemes potentially allow exponential
growth of the initial problem over the networ k. We also
showed how the depth-first scheme controls memory demands.
It is interesting to note that Watson (29) independently
found that breadth-first schemes can lead to unacceptable

ZAPP project 267

memory overheads, and remedied the problem by converting a
hardware queue in the Manchester dataflow machine into a
stack (which naturally imposes a depth-first ordering).

Early ZAPP results confirmed our intuition that it is
possible to "buy speed" from a simple diffusion mechanism.
Although we initially considered only simple divide and
conquer algorithms, later ZAPP work (3) confirmed early
results for more interesting examples using a programmable
version of the simulator.

Our theory work identified many important problems. We
characterised the space problem for Turner combinators as
quadratic (18), and offered two solutions (19,20). We
developed fine-grain (combinator-like) schemes for
evaluating functional languages. We also developed a rangi
of safe reduction orders, which naturally includes the usua
normal order. Perhaps most importantly, we recognised the
deep problem of naturally integrating control information
into functional languages, and proposed two distinct
approaches.

15.5 ACKNOWLEDGEMENTS

Warren Burton designed and programmed the first ZAPP
simulator (called DREAM) which we used to obtain the basic
results. M.M.Huntbach ran many of the later ex?eriments and
considerably extended DREAM by making it programmable. We
take great pleasure in acknowledging their contributions to
ZAPP.

The work on ZAPP was supported by the SERC Distributed
Computing Systems programme under grants GR/B/2Q22l,
GR/B/62297, and GR/C/35402. Particular thanks are due to
DCS coordinators Hopgood, Witty, and Duce for encouraging us
and also for arranging many fruitful workshops.

REFERENCES

1. Kung, H.T., 1979, "Let~s design algorithms for VLSI" ,
Report CMU-CS-79-l5l, Carnegie-Mellon University.

2. Kennaway, J.R. and Sleep, M.R., 1983, "Novel
architectures for declarative languages", Software and
Microsystems, ~, 59-70.

3. Burton, F.W. and Huntbach, M.M., 1984, "Virtual tree
machines", IEEE Trans. on Computers, C-33, 278-280.

4. Barendregt, H., 1980, "The lambda calculus",
North-Holland.

5. Landin, P., 1966, "The next 700 programming languages" ,
Comm.ACM, 2, 157-166.

6. Gordon, M.J., Milner, R., and Wads~orth, C.P., 1979,

268 ZAPP project

"Edinburgh LCF", Lecture Notes in Computer Science,
vo1.78. Springer-verlag.

7. Turner, D., "S~SL language manual", University of
St.Andrews.

8. Burstall, R., MacQueen, D.B., and Sannella, D.T., 1980,
"HOPE: An experimental applicative language", Report
CSR-62-80, Department of Computer Science, University
of Edinburgh.

9. Henderson, P., Jones, G.A., and Jones, S.B., 1983, "The
Lispkit Manual", Oxford University Computing Laboratory
Programming Research Group Report PRG-32.

10. Kowalski, R., 1979, "Algorithm = Logic + Control",
Comm.ACM, ~, 424-436.

11. Rurton, F.W. and Sleep, M.R., 1981, "Executing
functional programs on a virtual tree of processors",
Proc. ACM Conf. on LISP and Functional Programming,
portsmouth, New Hampshire.

12. Hillis, W.D., 1981, "The connection machine", AI Memo
No.646, MIT Artificial Intelligence Laboratory.

13. Rurton, F.W., 1984, "Annotations to control parallelism
and reduction order in the distributed evaluation of
functional programs", ACM Trans. on programming
Languages and Systems, ~, 159-174.

14. Kennaway, J.R. and Sleep, M.R., 1983, "LNET: syntax
and semantics of a parallel language", University of
East Anglia.

15. preparata, F.P. and Vuillemin, J., 1979, "The cube
connected cycles: a versatile network for parallel
computation", Proc. 20th IEEE Conf. on Foundations of
Computer Science.

16. Turner, D., 1979, "A new implementation technique for
applicative languages", Software: practice and
Experience, ~, 31-49.

17. Turner, D., 1979, "Another algorithm for bracket
abstraction", J. Symbolic Logic, ii, 267-270.

18. Kennaway, J .R., 1982, "The complexity of a translation
of lambda calculus to combinators", Report CS/82/023/E,
University of East Anglia.

19. Burton, F.W., 1982, "A linear space translation of
functional programs to Turner combinators" ,
Inf.Proc.Letters, 14, 201-204.

20. Kennaway, J .R. and Sleep, M.R., 1983, ··Collnting

ZAPP project 269

director strings", Report DSAG-l, University of East
Anglia.

21. Dijkstra, E.W., 1980, "A mild variant of combinatory
logic", Report EWD735.

22. Noshita, K., 1984, "Translation of Turner combinators
in O(nlogn) space", University of
Electro-communications, Tokyo.

23. American National Standards Institute, Inc.
ANSI/MIL-STD-J.8l5A-1983, 1983, "The Programming
Language Ada Reference Manual" Lecture Notes in
Computer Science, vol.155, springer-verlag.

24. Milner, R., 1980, "A Calculus of Communicating
Systems", Lecture Notes in-Computer Science, vol.92,
Springer-Verlag.

25. Hoare, C.A.R., 1978, "Communicating Sequential
processes", Comm.ACM, l!, 666-677.

26. Inmos, Ltd. 1984, "occam Programming Manual",
Prentice-Hall.

27. Wadsworth, C., 1967, "Semantics and pragmatics of the
lambda calculus", D.Phil. thesis, Oxford.

28. Kennaway,.J .R., 1981, "Formal semantics of parallelism
and nondeterminism", D.Phil. thesis, University of
Oxford.

29. Watson, I. P,rivate communication.

Chapter 16

The Manchester dataflow project
J. R. Gurd, I. Watson, C. Kirkham

16.1 INTRODUCTION

Simple block diagrams of novel computer architectures
can belie complex implementation issues which need resolving
before the intended system function is realised. This fact
of engineering life has been entertainingly documented for a
well-known series of supercomputer by Lincoln (1). He notes
that nontechnical matters can influence the implementation
of systems just as profoundly as technical issues. The
paper below describes some of the technical problems
encountered by the Manchester Dataflow Research Group during
implementation of their prototype dataflow computer, and
outlines how each difficulty was resolved, or bypassed, in
the course of the project. As far as possible only those
issues which are peculiar to the dataflow approach are
addressed, but seasoned system implementers will recognise
that many of the themes are quite general. Software and
evaluation matters are covered, as well as details of
engineering construction.

16.1.1 Brief History of the Manchester Project

Work on dataflow computation at Manchester was
initiated in late 1975 and early 1976 by Gurd, Treleaven and
Watson. Preliminary dataflow machine architectures were
designed on paper and compared by gedanken-experiment, as
described by Gurd and Treleaven (2) and in Treleaven's Ph.D.
Thesis (3). After this, work continued on the development
of a general purpose 'labelled-token' dataflow model of
computation and a machine for its execution, as described by
Gurd et al (4). A related project studied a more
specialised dataflow architecture for real-time control of a
robot arm, as described by Egan (5).

The general purpose architecture was developed via
extensive simulation experiments using a Pascal program to
interpret the evolving ordercode. Construction of a
prototype version of the machine commenced in late 1978
under SERC/DCSfunding. As described in section 16.2.1, the
machine structure was altered slightly during the
construction period. The prototype harCi."Ware comprised a
36kbyte instruction store, a 240kbyte data store, and six
microcoded function units. It executed its fir st program, a
doubly-recursive algorithm for the Fa.ctorial function

Manchester dataflow project 271

written in the experimental high-level programming language
Mad, on the 6th October 1981. The first truly parallel
program execution took place on 9th November 1981.

The prototype system was designed and constructed by a
team of just three engineers in three years. It contained
some 4000 MSI integrated circuits and was front-ended by an
LSIll/03 microprocessor. Since the prototype became
operational, work has progressed on five main fronts.

Firstly the hardware configuration has been expanded to
include 288kbytes of instruction store, l5Mbytes of data
store and 20 microcoded function units. This has increased
the number of integrated circuits in the system to nearly
10000. The front-end processor has been upgraded to a
VAXll/780.

Secondly a hierarchy of standard dataflow programming
language interfaces have been designed and implemented. The
levels of the hierarchy roughly correspond to the levels of
conventional language systems. At the lowest level there
are dissembler and assembler programs which convert binary
machine commands to and from a textual format with one line
of text per machine word. Above this there are template
(macro-level) assemblers which translate the intermediate
target languages used by the high-level compilers. Software
simulators for the dataflow hardware have also been written,
providing various degrees of accuracy in predicting the
hardware behaviour.

Thirdly a number of benchmark programs have been
developed, written in a variety of parallel programming
languages. Small versions of these programs have been used
as the basis for a preliminary performance evaluation of the
single-ring hardware system. Results for such programs (up
to 4k instructions and 10ktokens of data) show that the
internal parallelism of the ring hardware (about 30-fold)
can be exploited effectively by programs with a comparable
degree of parallelism. Work is now in progress to expand
the scope of the evaluation by executing larger programs
which perform more realistic computations. Programs with
32k instructions and using up to 100ktokens are currently
being tested.

Fourthly a small-scale hardware simulator of a muLti­
ring dataflow system has been constructed to evaluate
multiprocessor task distribution strategies. Each processor
in the simulator comprises a 256kbyte COde/data store plus
two 68000 microprocessors which simulate the modules of the
large-scale ring. Each processor uses 200 MSI integrated
circuits, in addition to the 68000s. One of these
processors is roughly one thousandth as powerful as a full­
size ring. The current simulator configuration comprises
four processors connected together by a 4x4 switch module
and containing nearly 900 integrated circuits. A sixteen
processor version containing 3500 integrated circuits is
nearing completion.

Finally, theoretical work has been in progress to
establish a semantic framework for describing dataflow
program transformations which might be used for code
improvement during compilation of highly-parallel programs.

272 Manchester dataflow project

16.1.2 Tagged-Token Dataflow Computation.

The model of computation implemented by the Manchester
hardware is known more generally as tagged-token dataflow.
It was discovered independently by Arvind et al (6), and
owes much in concept to the pioneering work of Dennis (7).

Dataflow programs are directed graphs in which the
nodes represent instructions (which can be regarded as pure
operators) and the arcs represent inter-instruction data
paths. It is important to realise that the arcs do not
behave as first-in-first-out queues. Data is transmitted
along the arcs in tagged packets known as tokens. Tokens in
the Manchester machine carry three independent tag- fields
known as the activation name, the iteration level and the
index. These are used to separate independent activations
of, respectively, functions, loops-in-time and loops-in­
space, as described by Gurd and Watson (8). Tags are used
in loops to simulate first-in-first-out queues on arcs.
Such queues are inappropriate for recursive functions which
need tags to generate a parallel environment analogous to
the 'stack' environment used in sequential computers.

The sample program (Fig.16.1) shows the Manchester
machine-code for an iterative loop which computes the area
under the curve y=x2 between x=O and x=l using a trapezoidal
approximation with constant x intervals of 0.02 units. Note
the use of tag-manipulating instructions (increment
iteration level, zero iteration level) to ensure correct
queueing of the loop termination control tokens at the
inputs to the branch instructions. Note also the use of
explici t duplicate instructions which replicate data
required at two or more subsequent instructions. The
Manchester system imposes a maximum fan-out from each
instruction of two, so chains of duplicates must be used for
larger fan-out. In some circumstances it is possible for a
subsequent duplicate to be incorporated into the preceeding
instruction (as shown in Fig.16.1). Two is also the maximum
possible number of inputs to an instruction, due to the way
in which tokens travelling to the same in stance of an
instruction are matched together. Manchester instructions
are thus monadic or dyadic only. Certain monadic
instructions are formed by dyadic operators with one fixed
(literal) input (as shown in Fig.16.1).

Another important point is the use of branch
instructions which act as 'switches' in the arcs of program
graphs. These are used to implement conditiona.ls, loops and
recursion. Each branch is controlled by a Boolean control
input which is shown entering the instruct ion from the
right-hand side. If the value of the token on this input is
false, then the other incoming token (on the top input) is
sent down the left-hand output (labelled F in Fig .16.1) ,
otherwise the control is true, and the other Lnput token is
sent down the right-hand output (labelled T). Note that
branch instructions can be used as 'gates' which pass a
val ue or destroy it, according to the Boole an =ontrol value,
simply by leaving one of the output arc s urausea (as shownin
Fig.16.1).

Manchester dataflow project 273

I
I
V

int=O.O

initial values
I
I
V

y=O.O

I
I
V

x=0.02
I I I
I I I
0<-----------1----------1------------------------------+
I 0<---------1----------------------------+
I I 0<-------------------------+
I I I
I I I

I I V
I I 1.0 (DUP)
fir I

I I I

I V V I
I (CGR) I
I I I
I I I

I V I :

I (DUP) +---1------+
I I I I
I I r 1

+-----1--+ I I
V I V I V I

(BRA)<---+ (BRA)<---+ (BRA)<---+
F T FI IT FI IT

V
(DUP) 0.02
I I
I I
V V V

(DUP) (ADD)
I
I

V V V
+----+ (MUL) (IlL)

I I I
I I I

V V V +----------------->+
0.01 (ADD) (IlL)

I
I
V V

-------------+ (MUL)

I
I
+----------------------->+

I
I
V V
(ADD)

v
(ZJ L)

I
I
V

I
I
V
L)

I
I
I
I
I
I
I
I
I
I
I

I I
I I

----------------------------------->+

k Y

text)

I IIt

r II t
V 111

Fig.16.] S mpl f ow progr m gr ph

274 Manchester dataflow project

16.2 ENGINEERING CONSTRUCTION

By far the largest effort in the early part of the
project was expended on hardware engineering tasks.
Foremost of these was to freeze the overall system design so
that individual engineers could proceed to design their
modules independently. It was also imperative to define the
interfaces between modules so that no mismatches in design
could occur. These proved to be difficult decisions to
make, but ones which had great ramifications for the later
progress of the project. Equally important, though rather
less exciting, was the choice of physical environment
components such as boards, cabinets, cables and power
supplies. These choices also affected the eventual
provision of computer-aided design tools for board
production.

Undoubtedly the most important individual module design
was that of the token-matching module. This required an
associative style of memory which was too expensive to
implement directly and so had to be simulated using hashing
techniques. The module has been rebuilt several times
during the project, and experiments to discover the optimum
hashing function are still in progress. More recently it
has become apparent that large programs will require
extensions to the originally envisaged architectural
structure. It is planned to implement a specialised data
structure store module, and this will affect the way the
mUlti-ring switch module will operate.

I
I
I
I
I
I
I
I
I
I

+--------------+

0------------------------------------0
I
I
V

+---- ---------------+
i Token Queue i
+- --- ---- -----------+

I
I

I/O Switch i
I

I I

+--------------+

V
+---- ---------------+
i Node Store i
+- --- ---- -----------+

I
I
V

+- --- ---------------+
i Y-IatchingUnit i
+- --- ---------------+

V
+-------------------+
i Pr:-ocessingUnit i
+-------------------+

I I
I I
0------------------------------------0

Fig .16.2 Initial proposed dataflow system structure

Manchester dataflow project 275

16.2.1 System Architecture

It was quickly decided that the system would be ring­
structured and would contain four major modules, known as
the Token Queue, the Node Store, the Matching Unit and the
Processing Unit, all connected to a host system via a 2x2
Switch Unit. At first it was decided that the modules should
be linked together in the order given above (Fig .16.2).
Functional descriptions of the major modules were defined,
nd a software simulator for the system was written.

Subsequent use of the simulator, particularly for
implementation of the Lapse language by Glauert (9),
generated additional requirements for the instruction- set
nd other module functions. It also elicited certain

important program characteristics, such as the frequency of
occurrence of monadic and dyadic instructions, which
determines the rate of production of matched token-pairs
from the Matching Unit.

Further hardware design studies determined the clock
characteristics for the system and the inter-module
interface (see section 16.2.3). This work also revealed
that an unnecessarily high bandwidth was required of the
Node Store. By rearranging the order of the Node Store and
Matching Unit (Fig.16.3), the required store access time was
increased from 200 to 300 nanoseconds (due to the expected
rate of token-matches). The differences between this
structure and the original proposal can be seen by examining
the 1st and 3rd versions of the report by Gurd et al (4).

I
I
I
I
I
I
I
I
I
I

+--------------+

0------------------------------------0
I
I
V

+-------------------+
I Token Queue I
+-------------------+

I
I
I I/O Switch
I
I I

+--------------+

I
I
V

+-------------------+I Matching Unit I
+-------------------+

I
I
V

+-------------------+I Node Store I
+-------------------+

I
I
V

+-------------------+
I Processing Unit I
+-------------------+

0------------------------------------0
Fig .16.3 Eventual dataflow system structure

276 Manchester dataflow project

The most important ramification of this reorganisation
of the system was the necessity to specify a matching
function on each data token entering the Matching Unit. The
matching function determines whether the instruction to be
executed is monadic or dyadic. Tokens to the former can
bypass the matching process, whereas tokens to the latter
must match up with their partner. More exotic matching
functions were also introduced to cope with some of the
programmingpractices discussed below.

16.2.2 Physical Construction

Priorities in defining the physical construction of an
electronic system are always difficult to ascribe. Most of
the required decisions are madearbitrarily, but they have a
cumulative effect which often overshadows the seemingly more
germane decisions governing the abstract system
architecture. In our case the dominant design decision was
to use printed circuit boards (PCBs) with a fixed size of
14.5 x 12 inches (triple-Eurocards) using three 64- or
96-way connectors per board, and installing the boards in a
standard 19-inch housing. We expected to be able to fit
between 100 and 200 MSIintegrated circuits onto each board.
Initial design studies indicated that each module would
occupy one 19-inch 9U rack, and that a complete ring could
be housed in a 7-foot high cabinet. Subsequent
implementation decisions have been coloured by the need to
conform to this physical organisation.

At the end, the prototype system comprised 15 different
PCBdesigns, with between 50 and 250 integrated ciruits on
each board. The most densely populated boards prOV¥d
significantly difficult to layout by hand, and caused us to
develop automated design tools for subsequent constructior.
work (see section 16.2.4).

16.2.3 The Inter-Module Interface

In designing the interface between moduLes, attention
was paid to the physical size of each modu1.eand the scheme
for distributing clock signals around the syest.em, It was
clear that a multi-ring system could not be driven
synchronously (with a single, commonclock) because of the
large distances which would separate the componeent. rings.
It was further decided that clock signals cou1.d not be
transmitted reliably between racks (modules) and so the
decision was taken to implement each module with its own
internal clock and to define an asynohz-on oue protocol for
transmitting data from one module to a.nother _ Module
designers were to be left relatively free to choose an
appropriate internal clock speed.

The circuit used to implement t=.be asynchronous
interface has been published by Gurd and liat son (10). It
was designed to operate at clock speeds up to 40MHzat
either end, although it later transpired t::...haLthe decision
elements in the 74S112 flip-flops used were unable to
support clock rates greater than 30M1!z (th.e design

Manchester dataflow project 277

incorrectly assumed that the JK-type 74S112 used the same
decision circuit as the D-type 74S74). This speed loss was
discovered after construction of the Token Queue module, and
subsequent designs were adjusted to use slower module clocks
without significantly affecting the performance of the
system.

16.2.4 CAD Tools

The chosen physical construction constituted a change
in practice from previous projects. Consequently there were
no design automation tools available to help layout the
first boards. The most complex of these was the Matching
Unit store board which contained over 200 integrated
circuits. This board, and the equally complex function unit
board for the Processing Unit, took three months elapsed
time each to track by hand. This delay was considered
inordinate, and forced us to develop some layout tools for
design of PCBs for later enhancement of the system.

The first tools have not circumvented the need for hand
layout of the boards, but they allow rapid transfer of the
layout to film via automatic digitising and graphical
editing. Some two thirds of the board design time has been
saved by these aids alone. Work is now in progress to
produce automated placement and tracking systems which are
capable of producing a board directly from its logic
diagram. Of course, such aids have long been a part of the
industrial designer's toolkit, but they are expensive, and
the Universities are mostly devoid of such assistance. In
all, we estimate that we spent nearly a quarter of the
engineering effort during the project on developing computer
aided design tools for PCB production.

16.2.5 The Matching Unit

The Matching Unit is the critical module in any
dataflow processor. Everything else can be pipelined or
made parallel according to the data rates expected from the
matching process. The act of matching together tokens
'drives' the rest of the system into action.

Matching is essentially an associative process. For
the simplest dyadic matching function, tokens arrive at the
Matching Unit looking for their partners which are held
nearby in a 'pool' of unmatched tokens. Each token searches
the pool associatively for its partner. If the partner is
present in the pool it is extracted and attached to the
incoming token to form an operand pair which can find and
execute its destination instruction. Otherwise the incoming
token must be the first to arrive, and it is merely placed
in the pool to await its partner.

Unfortunately, associative storage is prohibitively
expensive and so the unmatched token pool has to be
simulated using conventional random-access memory. The
structure of this 'pseudo-associative' memory is described
by da Silva and Watson (11). It is based on a parallel
hashing scheme whose performance depends critically on the

278 Manchester dataflow project

efficiency of the hash function. Whenunevendistribution
of tokens occurs, because of an inappropriate hash function,
the pseudo-associative store overflows causing tokens to be
sent to a parallel Overflow Unit. This simulates the
associative token pool by semi-sequential search through a
random-access store. This is a slow process which must be
kept to a minimum. However, selection of a sui table hash
function has proved to be another unexpectedly difficult
task which has not yet been completed satisfactorily.

The picture is further complicated whenwe consider the
more complex matching functions. These may cause data to
reside in the unmatched token pool even after matching has
occurred. They may also cause generation of defer tokens
which circulate around the processor ring without performing
useful work. The problems of clearing up garbage from the
unmatched token pool and of minimising the number of defer
tokens are substantial. They are still receiving concerted
attention.

16.2.6 The Structure Store

Recent studies of large benchmark programs have
indicated that the Matching Unit store can. become
dangerously overloaded with long-residence tokens which are
accessed in the manner of tables or databases. This
suggests that data storage should be separated into two
parts, for short-term and long-term storage, respectively.
The Matching Unit is well-suited to short-term data, but the
natural counterpart for long-term data is not obvious.

We are currently investigating a Structure Store unit
for long-term data storage. The scheme was first
recommendedat Manchester by Bowen(12), based on work at
MITby Misunas (13) and Arvind and Thomas(14). The scheme
is based on the assumption that long-term data is usually
structured in such a way that large amounts of data are
logically grouped together and can be referenced by a single
'pointer' or 'descriptor' token, whilst being stored in a
remote storage area. The advantage of such a scheme is that
the elements of each structure can be stored without the tag
fields which accompanyunstructured tokens around the ring.
This leads to a sUbstantial saving in storage space, and
also reduces instruction execution time when structures are
passed across tag-changing boundaries (eg at the entrance or
exit of loops or functions).

The Structure Store will be connected to the prototype
ring by a second 2x2 switch module inserteB between the
Processing Unit and the I/O Switch. The ne~ unit can be
viewed as a second ring which has a specialised
instruction-set suitable for handling stored structures.

16.2.7 Multi-Ring Systems

For the future there is considera ole interest in
dataflow m:ultiprocessors in which the basi-c single-ring
processor 1.S replicated and an interconnectic:on network is
introduced to link manyof them together. ThE:re 'Wouldalso

Manchester dataflow project 279

be the possibility of replicating Structure Store rings.
Such systems would be capable of very high rates of
computing, with the chance of incrementally increasing the
rate by adding extra rings to the system.

The problem to be faced in realising such a system is
that of distributing the available work evenly across a
potentially huge processing space. This is a challenge to
any kind of multiprocessor and one which has barely been
addressed in any current design. We have commenced
simulation studies in hardware and software by which we hope
to demonstrate the feasibility of large-scale dataflow
multiprocessors in the near future.

16.3 LANGUAGE SYSTEMS

The strategy for designing language systems for the
dataflow machine has been one of trial and error. We have
tried a number of experiments with different styles of high­
level language and come to some preliminary conclusions
about the feasibility of their implementation.

At first there was pressure to implement compilers for
conventional languages such as Fortran and Pascal. This did
not look promising given the inherently sequential semantics
of these languages. Nevertheless, two such compilers have
been implemented.

A more promising approach was discovered in the
'single-assignment' languages, whose semantics are
nonsequential, and which can be easily translated into
directed graph form. This approach has subsequently been
adopted by every dataflow research group as the most likely
route to efficient code generation. There are indications
that these languages are suitable for other forms of
multiprocessor besides dataflow systems.

A third approach is to compile from nonprocedural
(declarative, applicative, functional, logic) languages into
dataflow machine code. Pure functional languages look
particularly attractive for this because dataflow
instruction execution has distinctly functional semantics.
Several experiments have been performed in this area.

A fourth area which has been studied is the
implementation of high-level nondeterministic programming
languages for handling 'real-time' applications such as
operating systems and databases.

Finally, we should mention that compilation from these
languages has not been directly to dataflow object code, but
has invariably used some form of intermediate code. The
similarity between intermediate codes for all the languages
used led us to develop two standard compiler target
languages which have been used for more recent compilers.

16.3.1 PO and Pascal

Conventional languages for the Manchester dataflow
system have been studied by Whitelock (15) and Veen (16).
These studies indicate that it is feasible to translatemost
conventional language constructs into dataflow code.

280 Manchester dataflow project

However, it is difficult to ensure that all the available
parallelism has been extracted, especially for languages
which permit aliasing of variables (which in practice means
all useful conventional languages). The work of Kuck et al
(17) demonstrates that inroads can be made into this problem
by recognising special cases, but it remains hard work and
cannot cope with all possible situations.

16.3.2 Lapse and Mad

Early efforts at Manchester to 'break the von Neumann
mould' of languages centred on two experimental single­
assignment languages, Lapse (designed by Glauert (9)) and
Mad (designed by Bowen (12)). It is no coincidence that
these languages both resemble Id (designed at UC Irvine by
Arvind et al (6)). Restriction of assignment so that
variables may be assigned values at only one point in the
program liberates the single-assignment languages from many
of the side-effects that plague conventional programming
languages. This liberation is useful in more than one
respect. Firstly it dispenses with the need to execute
statements in sequential order, as noted by Chamberlin (18).
Secondly it makes it easier to prove properties of programs,
as demonstrated by Ashcroft and Wadge (19). Thirdly it
makes the languages easier to teach, especially to computer
novices, as noticed by Tesler and Enea (20).

From a dataflow point of view, the chief advantage of
single-assignment languages is that they are easy to compile
into dataflow object code. They can be thought of as direct
high-level textual representations of directed graphs. They
can also be thought of as nonprocedural languages with first
order functional semantics.

At Manchester, the Lapse compiler was used in
conjunction with the original system structure (see section
16.2.1) and was instrumental in causing changes to the
instruction-set which were incorporated into the new system
structure. The Mad compiler evolved around the new
architecture and has been instrumental in demonstrating the
options for implementing data structures in data flow. In
particular, complex matching functions were used to
implement stored stream data structures.

16.3.3 Lucid and SASL

The single-assignment languages have been used by the
dataflow community in an inherently procedural way. Since
they have much in common with nonprocedural :£unctional
languages it is natural to attempt implementation of the
latter. This has been done at Manchester for the languages
Lucid (Ashcroft and Wadge (19), see Bush (21) and Sargeant
(22)) and SASL (Turner (23), see Richmond (24)).

This work revealed two major problems. F""irstly it
transpired that the fully eager dataflow evaluatio~ordering
was not the most efficient way of computing, aLthough it
exhibited substantial amounts of parallelism. SOJ:"1le measure
of demand drive is needed to control the growth 0 ~ activity

Manchester dataflow project 281

in a program execution. This is not difficult to achieve in
principle, but demand driven access to data structures led
to the design of the specialised Structure Store hardware
because of the inefficiency of its implementation based on
the Matching Unit. Secondly implementation of fully general
higher order functions turns out to be contorted. This
language feature may be rather more general than required
for widespread use. In practice it appears that a small set
of predefined higher order functions may suffice, and these
could be implemented straightforwardly in dataflow.

16.3.4 DP, CSP and Id Resource Managers

Implementation of high-level nondeterministic
programming languages was studied by Catto (25). This work
demonstrates how the basic nondeterministic features of the
languages DP (Distributed Processes), CSP (Communicating
Sequential Processes) and Id can be executed via Manchester
dataflow graphs. The work places particular emphasis on the
provision of machine level features, such as matching
functions, which are essential to efficient handling of
nondeterminism. The study was performed in abstract and no
compiler was produced. Informal proof techniques were
developed, and these have been subsequently developed to
form the basis of a theory for reasoning about dataflow
programs.

16.3.5 Assembly-Level Languages

When the first user programs were written they tended
to be small and could be developed in graph form. To help
with translation to machine-code, we developed a
macroassembler (ASSEM) which allowed users to define their
own 'nodes' and interconnect them with directed arcs. At a
later stage, we noticed that a common factor of all the
early language implementation work was the use of
intermediate compiler target languages based on graphs.
However, these languages were dissimilar to the
macroassembler language, relying on the concept of templates
in which generic nodes are connected together by generic
arcs. This observation caused us to develop a Template
Assembler (TASS) which is now used both as a common compiler
target language and as a macroassembler.

16.3.6 SISAL and Intermediate Format

The latest development to affect the project at the
language level has been the design and implementation of the
language SISAL (McGraw et al (26)) and its
machine-independent target language IF (Skedzielewski and
Glauert (27)). SISAL is another single-assignment language,
based on Id and Val (Ackerman and Dennis (28)). It was
designed by a consortium containing large computer users, a
computer manufacturer, and academics with language design
and implementation skills. The intermediate format IF is to
be compiled onto several different types of multiprocessor

282 Manchester dataflow project

so that comparative evaluation of various approaches can be
performed quickly and easily.

The SISAL/IF project is an exciting merger of
wide-ranging interests. It is currently a major driving
force for progress in the Manchester dataflow project. It
is providing stimulus for hardware development in the form
of an Overflow Unit for the Matching Unit, the 16 Megatoken
Structure Store (see 16.2.6) and an Intelligent Token Queue
for instruction scheduling. It is also providing impetus to
the development of system software for program debugging,
generating optimised code and performance tuning. IF is
expected to replace TASSas the preferred assembly level
language for the system.

16.4 TESTSYSTEMS

It will be appreciated that the complete dataflow
system (hardware and software) has become highly complex.
It is consequently difficult to test. In particular, the
inherent parallelism of the system makes it difficult to
isolate the cause of errant behaviour. We found ourselves
developing system debugging tools by trial and error
according to the nature of the faults under examination.

16.4.1 HardwareTest Programs

One of the best decisions in respect of engineering
debugging turned out to be the use of a standard inter­
module interface. As this was also the interface presented
by the whole system to the outside world, it was possible to
use the front-end system to test drive each module
individually. Only when we were satisfied with the
functionality of the componentmodules did we attempt to run
programs on the complete system. Naturally we ran into
problems due to the interaction of modules, but these were
much easier to resolve given our basic confidence in the
behaviour of the separate components.

However, once the system was interconnec ted, the
mechanical task of splitting it back into modulesturned out
to be prohibitively lengthy. Consequently wehave developed
a set of remote test procedures which are capable of
locating faulty modules and giving a certain degree of
diagnostic information. Low-level test programs are
constantly checking for consistent behaviour. The main
pipeline data paths are periodically tested for continuity,
and all load operations (for program code and function unit
microcode) check for successful receipt of data by the
appropriate module. Where modules themselves contain
parallel components (eg in the Processing Unit) it is
possible to isolate single boards for comprehensive testing.
It is now rarely necessary to break the system into
componentparts to repair faults.

Manchester dataflow project 283

16.4.2 Software Fault-Tracing

Development of software during the project has
introduced successively more 'layers' of program into the
process of translation from application to machine. Whilst
the translation programs themselves were being debugged, it
was necessary to determine for each error where the fault
occurred before tracing why. With up to five separate
translation phases, each of which may rename or rearrange
objects, this has been a great source of trouble. Some
rationalisation of the translation process is currently
taking place, and we have also introduced multi-level symbol
table traces to facilitate error-finding.

16.4.3 Symbolic Debugging

Further improvement of the user interface to the system
dictates that we implement symbolic debugging of programs
from any input level. This is not as easy as it might be
because of the parallel execution environment. Breakpoints
have to act across multiple loci of control, and activation
traces have to account for the asynchronous parallel nature
of program execution. It would be preferable for programs
to be proved before execution rather than debugged 'on the
fly' . Consequently we have started theoretical studies
which aim to formalise the semantics of dataflow
programming. Ideas are still in their infancy in these
areas, but we hope for important future breakthroughs from
such work.

16.5 APPLICATIONS PROGRAMS

Although applications programs did play a part in
producing the original architectural design, it was easy to
forget their importance once engineering construction was
underway. .Consequently we found ourselves in the state that
we had operational hardware with no firm idea of what we
were going to use it for, or at least what we would use to
evaluate its performance. This led to another trial and
error phase during which benchmark programs were developed.
It would be nice to report that we subsequently organised
ourselves and arranged a systematic study of various
applications areas in turn, but this is still a dream for
the future. For now we have a random assortment of programs
which have been brought to our attention by various sources
and which we are trying to transfer to the dataflow hardware
as quickly as possible.

16.5.1 Small Programs

The first programs to run on the machine were small
examples of integer-manipulating codes. The best-known of
these is the double-recursive factorial program which
evaluates the factorial function by a parallel divide-and­
conquer technique. For input values greater than 10 the
factorial is greater than can be represented in a single-

284 Manchester dataflow project

length integer and so test runs used addition instead of
multiplication, thus forming the sum rather than product of
the first n integers. Another example was a
nondeterministic version of the travelling salesman program
which demonstrated the use of parallel execution to obtain
the first available solution from a number of concurrent
alternatives.

Other initial test programs used floating-point
arithmetic and included trapezoidal integration, matrix
mUltiplication and Gaussian elimination. A segment of a CAD
code for VLSI geometry which calculates the location of a
plumbline onto a polygon was also tested.

16.5.2 Physics Calculations

Self-contained example programs typical of large
physics and signal processing calculations have been tried.
The simplest programs were to calculate the Fast Fourier
Transform and to solve a simple version of Laplace's
equation using an iterative relaxation method. The largest
code to be attempted so far has been the SIMPLE benchmark
from Lawrence Livermore National Laboratory. Versions
written in both Mad and SISAL have run on the hardware.
Aerodynamic simulations based on solutions to the
Navier-Stokes equations are being prepared and a Monte Carlo
simulation is under development.

16.5.3 Computer-Aided Design

Some benchmarks for CAD programs have been written. A
small combinational logic simulator and a Lee routing
algorithm have been executed on the hardware. Larger
programs concerned with simulation and consistency checking
in VLSI systems are to be tested in the near future.

16.5.4 Standard Parallel Benchmarks

The random way in which we have collected benchmark
programs highlights a general problem of comparing the
performance of different multiprocessors. The re is a strong
case for the development of standard benchmark codes similar
to those developed for conventional systems. However, the
lack of a standard parallel programming language makes this
difficul t. It is hoped that the SISAL/IF projec t will go
some way towards rectifying this problem, but there is still
scope for much work in this area. An ope n question is
whether standard Fortran benchmarks such as -the 'Livermore
Loops' can be parallelised for this purpose.

16.5.5 Program Characteristics

It was anticipated that certain character istics of
programs would influence the utilisation of the parallel
hardware of the prototype dataflow system. Factors which
have been recorded are the overall par -alle lism, the
variation of parallelism over time, the proportion of each

Manchester dataflow project 285

type of instruction executed, the ratio of monadic to dyadic
instructions and the source language used. Other factors,
such as the amount of Matching Unit store required, can be
expected to be influential, but these have not yet been
systematically studied. Parallelism measurements have been
made using the instruction-set emulator program which
estimates the instantaneous parallelism by making
simplifying assumptions about the way in which programs are
executed on the hardware.

16.6 PERFORMANCE EVALUATION AND TUNING

The ultimate objective of an engineering research
project like this is to come to some conclusions about the
potential viability of the proposed system architecture by
demonstrating its performance on a variety of benchmark
programs. However, once the benchmark programs have been
produced, there is more work to be done than merely report
the results of program runs. It is usually possible to
improve the system performance on each benchmark by 'tuning'
the system hardware and software. If this must be done
differently for each program then the architecture is not
very general purpose. Of course, the designers hope that
several such optimisations will be widely applicable and
that they will improve performance continuously until it
surpasses existing system capabilities.

We have only started to investigate the performance of
the Manchester Dataflow system and we are not in a position
to make definitive statements. The following sections
outline the results we have accumulated so far.

16.6.1 Preliminary Performance Evaluation

Results of a preliminary evaluation of the prototype
dataflow hardware are reported by Gurd and Watson (29). The
results are based on hardware runs of a sample of the small
applications programs mentioned in the previous section.
Factors such as source language, overall parallelism and
ratio of monadic to dyadic instructions were varied.
Surprisingly, the results show that the sole influential
parameter in determining the speedup characteristic for a
program is its approximate overall parallelism as measured
by the instruction-set emulator program. For details of
this measurement, and further notes on performance
evaluation, see the original paper by Gurd and Watson (29).
The results are summarised by the curves (Fig.16.4).

16.6.2 Pipeline Tuning

As suggested by the preliminary performance evaluation,
a pipeline buffer has been introduced into the ring between
the Matching Unit and the Node Store. In this position, it
reduces the inefficiency zone for highly parallel programs
to about half the size discovered in the preliminary
evaluation (29). This confirms that some of the reduced
speedup is due to insufficient pipel ine buffering, as was

286 Manchester dataflow project

speculated at the time, but more experimentation is still
required. In particular, the impact of buffer size needs to
be assessed, and the effect of positioning the buffer
between the Node Store and the Processing Unit should be
investigated.

1.6

utilisation
100%

actual MIPS

1.4

parallelism
pi = 100 x
pi 50 0

pi 20 +

•••• Xo
•• 0 0

.··JPxo
••• 0 0....,,00

.'i»0 +#(i+t t
..~.t* ,..····'·;0.

/., ./ .
0.2 ./-: •.....•.••.•....•

O.O~·~·---r----~--~----~----r----T----~----~0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.2 +

1.0 -

0.8

0.6

0.4

potential MIPS

Fig.16.4 System speed versus numberof function units

16.6.4 Future Work

The results reported above apply only to programs whose
data sets are small enough to reside entr.LreLy within the
Matching Unit store without hash table overflows occurring.
This is an unrealistic requirement, and an evaluation of
larger programs will be undertaken when hardware to handle
overflows has been added to the system. Similar reasoning
applies to the evaluation of the Structure St<lre extension
to the architecture.

In addition, the above resul ts are e xpressed in terms
of dataflow MIPs, whose value compared to conv-entional MIPs
is unclear. Experiments are in progress to establish this
relationship. Initial results indicate th2Lt Manchester
dataflow MIPscould be roughly comparable to Vl'>!..X MIPs, given
ideal compilation. In practice, current techa. iques produce
several times as muchcode for the dataflow machine as they
do for machines like the VAX.

Manchester dataflow project 287

16.7 CONCLUSIONS

Constructing a working prototype computer system is an
exercise in faith and hard work. Events rarely work out as
planned. Unforeseen problems occur, and unwanted kludges
are introduced into the hitherto perfect design merely to
get the thing going. The engineers always leave out some
vital part which was difficult to build and whose purpose
they couldn't understand. The troubleshooters need a huge
breadth of knowledge in order to track faults through the
myriad hardware and software layers. In the end the system
takes so long to produce that it gets used for jobs that it
was never intended to tackle.

Nonetheless, as usual with such obstacles, the
satisfaction obtained from achieving the apparently
impossible is immense. We hope we have conveyed the
excitment and entertainment that construction of the
Manchester prototype dataflow system has given us. If this
paper has served to deter one or two trigger-happy computer
architects from leaping into construction of their latest
computer design then it has achieved one of its purposes.
However, we would be disappointed if there were not at least
one enthusiast who, having recognised the potential
difficulties, and with due respect for the prospect of
failure, nevertheless decided to take on the challenge of
turning the ideas into reality.

ACKNOWLEDGEMENTS

None of the real engineering described in this paper
would have been possible without the financial and
organisational backing of the Distributed Computing Systems
Programme of the Science and Engineering Research Council of
Great Britain (under grants GR/A/747l5, GR/B/40196 and
GR/B/74788). Particular thanks for their support and
helpful advice are due to Dave Aspinall, Iann Barron, Fred
Chambers, David Duce, Keith Hanna, Bob Hopgood, Robin
Milner, Roger Needham, Roger Newey, Charlie Portman, Mike
Rogers and Rob Witty.

Research of this nature requires the efforts of a large
and dedicated team. It is a pleasure to acknowledge the
many contributions made to this proj ect by the past and
present members of the Manchester Dataflow Research Group:
Val Aspin, Pedro Barahona. Karim Benkherouf, Wim Bohm, Dave
Bowen, Alan Bradshaw, Ruth Brimley, Vicky Bush, Arthur
Catto, Naranker Dulay, Mick Edwards, Greg Egan. John Foley,
John Glauert, Ian Horrocks, Rob Jarratt, Peter Jinks,
Katsura Kawakami, Geoff Lane, Jose Oliveira, Adrian Parker,
Dave Pearson, Chris Richardson, Geoff Richmond, Carlos
Ruggiero, John Sargeant, Bryan Saunders, Jose da Silva, Phil
Treleaven, Sak Wathanasin, Pete Whitelock and John Zurawski.

288 Manchester dataflow project

REFERENCES

1. Lincoln, N., 1977, 'It's Really Not As Much Fun
Building A Supercomputer As It Is Simply Inventing
One', in: Kuck, D.J., et.al. (eds.), 'High Speed
Computer and Algorithm Organisation', Academic Press,
New York, USA.

2. Gurd, J.R., and Treleaven, P.C., 1976, 'A Highly
Parallel Computer Architecture', Dept. of Camp. Sci.,
Univ. of Manchester, UK.

3. Treleaven, P.C., 1977, 'Exploitation of Parallelism in
Computer Science', Ph.D. Thesis, Dept. of Camp. Sci.,
Univ. of Manchester, UK.

4. Gurd, J.R., Watson, I., and Glauert, J.R.W., 1978 (1st
edition) and 1980 (3rd edition), 'A Multilayered
Dataflow Computer Architecture', Dept. of Compo Sci.,
Univ. of Manchester, UK.

5. Egan, G.K., 1980,
Based on Dataflow',
Conf., USA.

'A Decentralised Computing System
Proc. IEEE Ind. Control and Instr.

6. Arvind, Gostelow, K.P., and Plouffe, W., 1978, 'An
Asynchronous Programming Language and Computing
Machine', Tech. Rep. TRl14a, Dept. of Info. and Compo
Sci., Univ. of California, Irvine, USA.

7. Dennis, J.B., 1974, Lect. Notes in CS, ~, p362.

8. Gurd, J.R., and Watson, I., 1980, Compo Design, 9 6,
p91.

9. Glauert, J.R.W., 1978, 'A Single-Assignment
for Dataflow Computing', M.Sc. Thesis, Dept.
Sci., Univ. of Manchester, UK.

Language
of Compo

10. Gurd, J.R., and Watson, I., 1980, Compo Design, 9 7,
p97.

11. da Silva, J.G.D., and Watson, I., 1983, Proe. lEE, 130E
.!_, p19.

12. Bowen, D.L., 1981, 'Implementation of Data Structures
in a Dataflow Computer', Ph.D. Thesis, Dept. of Camp.
Sci., Univ. of Manchester, UK.

13. Misunas, D.P., 1975, 'Structure Processing in a
Dataflow Computer' , Proe. Conf. on Parallel
Computation, Sagamore, USA.

14. Arvind and Thomas, R.T., 1980, 'I-Structures An
Efficient Data Type for Functional Languages', Tech.
MemoTM178, Lab. for Camp. Sci., MIT, USA.

Manchester dataflow project 289

15. Whitelock, P.J., 1978, 'A Conventional Language for
Dataflow Computation', M.Sc. Thesis, Dept. of Camp.
Sci., Univ. of Manchester, UK.

16. Veen, A.H., 1981, Leet. Notes in CS, Ill, p127.

17. Kuck, D.J., et.al ., 1981, 'Dependence Graphs and
Compiler Optimisations', Proe. 8th ACM Symp. on
Principles of Prog. Languages, USA.

18. Chamberlin, D.D., 1971, Proe. AFIPS, 39, p263.

19. Ashcroft, E.A., and Wadge, W.W., 1977, Comm. of the
ACM, 20 7..., p519.

20. Tesler, L.G., and Enea, H.J., 1968, Proe. AFIPS, 32,
p403.

21. Bush, V.J., 1979, 'A Dataflow Implementation of Lucid',
M.Sc. Thesis, Dept. of Compo Sci., Univ. of Manchester,
UK.

22. Sargeant, J., 1982, 'Implementation of Structured Lucid
on a Dataflow Computer', M.Sc. Thesis, Dept. of Camp.
Sci., Univ. of Manchester, UK.

23. Turner, D.A., 1976, 'SASL Language Manual', Dept. of
Camp. Sci., Univ. of St. Andrews, UK.

24. Richmond, G., 1982,
SASL', M.Sc. Thesis,
Manchester, UK.

'A Dataflow Implementation of
Dept. of Camp. Sci., Univ. of

25. Catto, A.J., 1981, 'Nondeterministic Programming in a
Data Driven Environment', Ph.D. Thesis, Dept. of Compo
Sci., Univ. of Manchester, UK.

26. McGraw, J., et.al., 1983, 'SISAL Streams and
Iteration in a Single-Assignment Language', Lawrence
Livermore Nat. Lab., Cal., USA.

27. Skedzielewski, S., and Glauert, J.R.W., 1983, 'IFl - An
Intermediate Form for Applicative Languages', Lawrence
Livermore Nat. Lab., Cal., USA.

28. Ackerman, W.B., and Dennis, J.B.,
Value-Oriented Algorithmic Language
Reference Manual', Tech. Rep. TR218,
Sci., MIT, USA.

1979, 'VAL A
Preliminary

Lab. for Camp.

29. Gurd, J.R., and Watson, I., 1983, 'Preliminary
Evaluation of a Prototype Dataflow Computer', Proc. 9th
IFIP World Compo Congress, Tokyo, Japan.

Chapter 17

Shells of functional operating systems
P.Henderson, S. B. Jones

17.1 INTRODUCTION

We consider the shell of an operating system as the
component responsible for structuring the interaction with
the system user. As such we consider it a function from
the sequence of items which we type to the sequence of
items which appear on the screen. This view can be
maintained even for quite elaborate shells which allow
access to a database of files and allow for the
composition of user-defined functional programs.
Consequently we are able to build shells which are
themselves proper functions and while simple enough to
understand they are demonstrably powerful enough to
support useful work. In this paper we develop a sequence
of progressively more elaborate shells.

17.2 SIMPLE INTERACTION

Consider a program which accepts a sequence of
numbers as input and displays a running total.
Interaction with such a program might produce a screen
with the following appearance:

3
"3
4
7"

12
19
-2
17

The user's input is underlined. The screen's
appearance is a function of the sequence of numbers the
user has typed. This function has the following form:

Shells of functional operating systems 291

totalise{total) (kb) ::
if kb = NIL then NIL else
--{let number = head{kb)

--- kb' = tail{kb)
cons (number,

cons {total+number,
totalise{total+number) (kb'») }

We see that

totalise{O){{3 4 12 -2»
= (3 3 4 7 12 19 -2 17)

A demand driven implementation of a functional
programming language, determined to print to the screen
every item of output as soon as it can be computed, will
evaluate this function in interaction with the user in the
appropriate way.

Imagine·such an implementation which can evaluate any
function of type

keyboard + screen

being asked to evaluate totalise{O). Assume for the
moment that the function perceives both keyboard and
screen as a list of integers. ----

The implementation is determined to print a sequence
of integers to the screen. Its determination cannot
however overcome the test kb=NIL? in the definition until
the user has completely entered his first number.
Suppose the user types the number 3, terminated by a
return. The implementation can now determine that the
screen must have the form (3 3.s) where s = totalise(3).
Consequently it can print the first two items, the echoed
input and the running total. Similarly, when the user
types his second number 4, the next two items on the
screen can be determined and printed.

A slightly different interaction would have occurred
had we defined

totalise' (total)(kb) _
cons{total,

if kb=NIL then NIL else
--{let number = head{kb)

--- kb' = tail{kb)
cons{number,totalise'{total+nurnber){kb' »})

Now the initial running total 0 will appear before
any action on the user's part, after which the interaction
would be as before. This formulation shows how a prompt
might be incorporated in an interactive functional program.

292 Shells of functional operating systems

17.3 SEQUENCES OF INTERACTION
I

It is not enough to be able to run our totalise(O)
function once. To run it repeatedly we introduce our
first and simplest shell.

Here we will make use of two operations upon lists:

untilend(x) yields the prefix of x up to but
not including the first occurrence of
the word "end".

afterend(x) yields the suffix of x after the
first occurrence of the word "end".

They are defined as follows.

untilend(x) :::
if x = NIL then NIL else
if head(x) = "end" then NIL else
cons(head(x),untilend{tail(x~

afterend (x) :::
if x = NIL then NIL else
if head(x) = "end" then tail(x) else
afterend(tail(x))

Assume f is a function of type keyboard + screen. Then
repeat(f) is also a function of type keyboard + screen
defined as follows.

repeat(f) (kb) :::
if kb=NIL then NIL else
--append(f{untilend{kb)),repeat(f) (afterend(kb)))

It is easy to see that repeat(f) (kb) applies f to
each subsequence of kb delimited by "end"s. For example
repeat(totalise(O)) ((3 4 end 7 -2 19 end 6 -10))

=(3 3 4 7
7 7 -2 5 19 24
6 6 -10 -4)

where the three separate interactions with totalise(O)
each commence with the running total at O.

Not all interactive programs are conveniently
terminated by "end" however. Since it proves
inconvenient to impose upon the user the discipline of
segmenting the input using "end"s we introduce an
alternative device for describing the repeated evaluation
of a user-defined function. Instead of considering an
interactive program to be a function of type
keyboard + screen we require it to be of type

keyboard + screen x keyboard

Shells of functional operating systems 293

This extra result is expected to be the unconsumed
suffix of the keyboard handed to it as an argument. A
very simple function of this type is

double (kb) ==
if kb = NIL then (ERROR), NIL
--else {list(number,2*number),kb'

where number head(kb)
kb' tail(kb)}

This function is intended to double the one and only
number presented to it as an argument.

Consider how we might evaluate double.

Define

interact
reminteract

keyboard ->-screen
keyboard ..•.screen x keyboard

to denote the two different types of interactive function
we have defined. The shell repeat is of type
interact->-interact. Let us define remrepeat of type
reminteract ..•.interact as follows

remrepeat(f) (kb) _
let scr',kb' = f(kb)
append(scr', if kb' = NIL then NIL

else remrepeatTIT(kb'»

The only unusual property of this shell is the way
that termination is handled.

If we evaluate remrepeat(double) «2 7 -1» then the
result will be (2 4 7 14 -1 -2). To see this, let us
construct a reduction sequence which will demonstrate how
termination is dealt with properly.

remrepeat(double«2 7 -1») =
append«2 4),remrepeat(f)«7 -1»)
append«2 4),append«7 14),remrepeat(f)«-1»»
append«2 4),append«7 14),append«-1 -2),NIL») =
(2 4 7 14 -1 -2)

Now it is possible of course to use remrepeat to
execute totalise(O). First we define a function which
makes an interact into a reminteract as follows. Assume
f is of type interact, then endwrap(f) is of type
reminteract.

endwrap(f) (kb) == f Iunt i LendLkb)) ,afterend(kb)
Now, it is the case that

remrepeat(endwrap(totalise(O»)

has the same interactive behaviour as

repeat(totalise(O»

294 Shells of functional operating systems

17.4 INTERACTION WITH DATABASES

Consider a simple (flat) file system which consists
of an array of files indexed by file names. We shall
denote such a file system by a finite function
(association list, array) whose domain is file names and
whose range is file contents. We will use the following
notation. If db is a file system and fn is a file name
in the domain of db then we denote the corresponding file
contents by db[fn]. If fnl,fn2, •.. are distinct file
names, and fcl,fc2, •.• are the corresponding file contents
then we denote the file system which contains exactly
these associations by {fnl-+fcl, fn2-+fc2, •••}.

If db and db' are file systems then db@db' is a file
system which contains all of the associations of db and of
db' except where a file name is in the domain of both db
and db'. Then only the association from db' is
recorded. Hence

(dbG3db') [fn] if fn in dom(db') then db' [fn]
else db[fn]

We want to build a shell which will allow interaction
with programs which can also access the file system. Let
us define a new form of interaction which is like
reminteract except that it includes access to the file
system

dbinteract keyboard x database ~
screen x keyboard x database

A simple example of such an interactive function is
the following:

copy(fnl,fn2) (kb,db) _
NIL,kb, if fnl in dom(db) then db(j){fn2~db[fnlJ}

else db-

This particular version of copy requires no input
from the keyboard and produces no output on the screen.
If there is a file called fnl then its contents are copied
to fn2. This may cause fn2 to be overwr i tten •

Another example lists a file contents to the screen

from(fn) (kb,db) _
(if fn in dom(db) then list(db[fnl) else NIL),kb,db

On this occasion no input is required and the
database is left unchanged. Similarly we can define a
function which directs a prefix of the keyboard into a
file.

to(fn) (kb,db) -
untilend(kb),afterend(kb),db@{fn -+untilend>(kb)}

Shells of functional operating systems 295

We have reflected the keyboard on the screen, placed
everything until "end" in the file fn and returned the
unconsumed portion of the keyboard.

Consider how we might compose such functions in order
to benefit from the accumulated evaluation of two or more
of them. Let us define compose(f,g) to be of type
dbinteract whenever f and g are both of that type.

compose(£,g) (kb,db) _
append (scr',scr"),kb",db"
where scr',kb',db' f(kb,db)
--- scr",kb",db" = g(kb',db')

Now we can see that compose(from(fnl),from(fn2))
lists both fnl and fn2 in that order, that
compose(copy(fnl,fn2),from(fn2)) copies one file to
another and then lists the new file and that
compose(to(fnl),from(fnl)) creates (or overwrites) a file
and lists its contents. Longer compositions are
possible. For example,

compose(copy(fnl,fn2),compose(to(fnl),
compose(from(fnl),from(fn2))))

first saves fnl, then overwrites it from the keyboard and
finally lists both files to check their contents.

For completeness, let us build a repeating shell
similar to those we have already built. This time
dbrepeat expects an argument f of type dbinteract. Note
that dbrepeat(f,db) is of type interact
(i.e. keyboard +screen) where db is some initial database.

dbrepeat(f,db) (kb) _
let scr',kb',db' = f(kb,db)
append(scr', if kb' = NIL then NIL

else dbrepeat(f,db')(kb'))

Termination is handled in the same way as for
remrepeat. We see that evaluation of

dbrepeat(compose(to(fn),from(fn)),NIL)

will, if presented with a suitable argument, repeatedly
refill the file fn and list it. A fairly pointless
activity. But we will use dbrepeat later to build a more
useful shell.

Given a function g of type reminteract we can elevate
it to a function of type dbinteract trivially using

dbwrap(g) (kb,db) _
let scr',kb'
scr',kb',db

g(kb)

So for example dbrepeat(dbwrap(double) ,db) has the
same meaning as remrepeat(double) regardless of the value
of db.

296 Shells of functional operating systems

17.5 INTERACTING WITH A DATABASE OF PROGRAMS

Finally we come to the purpose of this whole
exercise. We now have the basic machinery required to
build a realistic shell which allows the user to create,
manipulate and evaluate programs of his own design. We
shall build only the simplest such shell. We require to
store programs of type dbinteract in the database, to load
them and to evaluate them.

We assume that the user will type commands of the
form (f args) where f is the name of a file in the
database which holds a "loadable" program. The file
contents, which are text created by an editor or a
compiler, when loaded become a function of type
args +dbinteract. Hence we assume the existence of a
function

load:text +(args +dbinteract)

Consider now the form in which a program must be
prepared to be acceptable to load. For example copy can
be redefined as

COPY(args) (kb,db) _
copy(argl(args),arg2(args)) (kb,db)

where argl and arg2 select the first and second arguments
from the command-line handed to COpy by the shell. We
assume the file called COPY.COM contains the text of this
function. The shell will then construct load (COPY.COM)
which we assume to be the function COpy. If the command
line (COPY.COM(FRED JOE)) has been supplied, the shell
will copy file FRED to file JOE.

Consider first a function which executes a single
command. For simplicity we pay no attention to error
cases.

execute(command) (kb,db) _
let program = first(command)
--- args = second(command)
load(db[programj)(args)(kb,db)

Here we assume the command has the form
(program args). We seek the text of the program from the
database and "load" it. We apply the "loaded" program to
its arguments to yield a function of type dbinteract.
This function can be applied to kb and db to produce the
required triple of results.

This demonstrates that execute(command) is of type
dbinteract.

Now, if we define

shellstep(kb,db) =
if kb = NIL then NIL,NIL,db
else execute(head(kb)) (tail(kb) ,db)

Shells of functional operating systems 297

we see that shellstep is also
executes exactly one command.

So finally we can define
shell is of type interact.

of type dbinteract. It

our shell. The function

shell = dbrepeat(shellstep,NIL)

If we have recorded the functions

TO(args)
FROM(args)
COPY(args)

_ to(argl(args))
_ from(argl(args))
_ copy(argl(args),arg2(args))

in the files TO.COM, FROM.COM and COPY.COM respectively
the shell should be able to participate in the following
interaction.

(TO.COM (FRED))
VARIOUS LINES
OF
DATA
end
(FROM.COM (FRED))
VARIOUS LINES
OF
DATA
(COPY.COM (FRED JOE))
(FROM.COM (JOE))
VARIOUS LINES
OF
DATA

17.6 CONCLUSIONS

We have attempted to illustrate how an interactive
shell for an operating system can be built as a
composition of purely functional programs. We have
evaluated these ideas by implementing a series of shells
similar to the simple examples described here. Problems
which remain to be adequately solved are many. We have
not discussed the problems which arise with
non-determinacy which are manifest in w.any of the
operations of a system shell. We have not dealt with the
important issue of error handling. But we do believe we
have made some impression upon the problem of dealing with
interaction in a purely functional style. The advantages
of doing so, which are the potential for parallel
evaluation and the possibility of demonstrating
correctness by mathematical argument, are yet to be
realised.

298 Shells of functional operating systems

REFERENCES

1. Henderson, P, 1982, Functional Programming -
Application and Implementation, Prentice Hall
International, ISBN 13-879999-7.

2. Henderson, P, 1982, 'Purely Functional Operating
Systems', in Functional Programming and its
Applications, eds. Darlington, Henderson, Turner,
Cambridge University Press.

3. Jones, S B, 1983,
Purely Functional
Monograph PRG-34,
University.

'Abstract Machine support for
Operating Systems'. Technical
Programming Research Group, Oxford

4. Jones, S B, (forthcoming), 'A range of operating
systems written in a purely functional style'. (To
appear as a technical report).

5. Clark, K L, and Gregory, S, 1981, 'A Relational
Language for Parallel Programming', Imperial College.

6. Clark, K L, and Gregory, S, 1983, 'PARLOG: A
Parallel Logic Programming Language', Research Report
DOC 83/5, Imperial College.

7. Shultis, J, 1983, 'A Functional Shell', ACM SigPlan
Notices, Vol.18, No.6, 202-211.

Index

Abstract data types 64, 224
Abstraction
- Data 62
- Process 154-

Active memory array 187-
Ada 40, 47-, 68, 88, 91, 121, 263
- task entries 43
- task procedure 43

Adaptive control algorithms 103
Address staggering 212
Adequacy 116
Afterend 292
Algorithm
- Analysis 169-
- Design 169-

ALICE 8, 221, 238
Alto 203
Alvey Programme 4, 9
Amsterdam Compiler kit 104
Analysis of concurrent systems

108-
Animation 199-
Annotations 256
Annual Report 5
Applicative languages
- see Languages

Array manipulation 194
Array Processor 207-
Arrays of microprocessors 53
Assembly languages
- see Languages

Associative store 277
Atomicity 104
Axiomatic semantics
- see Semantics

Backtracking 224
Barrel shifter 215
Baseband networks

- see Local area networks
Basic 58
Basic block protocol
- see Protocols

Basic COSY system
- see COSY

Basix 58
BCPL 40, 53, 55
Behaviours 108, 264
Benchmarking 284
Beta reduction
- see Reduction

Birth and death processes
- 1-Dimensional 142
- 2-Dimensional 143

Bit-stuffing 35
Block triangular method 172
Breadth-first 253, 266
Broadband Data Networks
- see Local area networks

Buffered message passing
- see Message passing

C 41, 55
CAD tools 277, 284
Cambridge Ring
- see Local area networks

Capabilities 192-
Carrier sense multiple access
- see CSMA

Catalog approach 227
CATV 12, 14
Causal nets
- see Nets

CCS 121, 263
Centrenet
- see Local area networks

Channel 43
Church-Rosser theorem 228, 251

300 Index

Clarity 3
Class 68
Closely-coupled systems 7
Closures 253
Coaxial cable network 12
Combinators
- see Reduction

Communication 264
- Synchronised 52
- Unbuffered 52

Communication mechanism 41
Communication primitives 90
Community Antenna Television
- see CATV

Complexity 176-
Composition 134
Computer aided teaching 73
Computer Science committee
Concurrency 8, 39, 107-
Concurrent Pascal
- see Pascal

Concurrent reachability
- see Reachability

Concurrent systems 107
Condition/event nets
- see Nets

Conferences 5
Configuration
- Database 98
- Language - see Languages
- Manager 97-
- Management 96-

Conic 40, 50-, 58, 86-
- Fault tolerant Conic 104

Cons 291
Content-addressable memory 210
Coordinate transformations 217
Coordinated programme 3
Coordination 3-
Coral 41, 57
Coroutines 57, 165
Correctness 226-
- Partial 227
- Total 227

Cost 3
COSY 107-
- Applications 119
- Basic COSY System 118
- Dossiers 118
- High level notation 118
- Macro notation 118
- Path programs 111
- Semantics 118, 120
- System notation 118

- VLSI implementation 119
CRAY 169
CSMA 20
CSP 53, 88, 121, 263, 281
Cube-connected cycles 256

DAP 169, 188-, 207
Data abstraction
- see Abstraction

Data bases 63, 294-
- Distributed 141, 148-

Data structure store
- see Structure store

Data transmission system 12
Dataflow 10
Datagram 37
DDA algorithm 204, 217
Deadlock-free 107, 116
Debugging 101, 225, 282-
Declarative languages
- see Languages

Declarative systems 9
Demand drive 280, 291
Demand forking 256
Denotational semantics
- see Semantics

Depth-first 253
Design methodologies 8, 108-,

154-
Development of concurrent systems

108
Directed programme 3
Directors 262-
DisArray 199-
DisArray2 215-
Display list 199, 201-
Distributed Computing Systems

Programme (DCS) 2-
Distributed data bases
- see Data bases

Distributed data store
- see Structure store

Distributed filestores
- see Filing system

Distributed operating systems
- see Operating systems

Distribution 3
Distribution of clocks 276
Divide and conquer algori thins

250, 255-, 283
DP 281
DTL 58, 154-
Duobinary AM-PSK 21
DyNe 256, 265-

Edison 58, 121
Eigenvalue problem 170
- see also Tridiagonal eigen­

value problem
Equipment pool 5
Ethernet
- see Local area networks

Evaluation order 228-
Explicit numerical methods 181
Extended semaphore primitive 122

Fair merge
- see Merge

Fairness 230
Fast Fourier transform 284
Fault tolerant Conic
- see Conic

Fibernet
- see Local area networks

Fibre-optics 27-, 34-
Filing system 56, 62, 101, 294-
- Distributed 9
- Specification 126-

Finite state automata 109
Firing sequences 112-
- see also Vector firing

sequences
Fixed Frequency Modem
- see Modem

Fixed-point equations 141, 147
Flexibili ty
- Functional 86
- Implementation 86
- Time domain 87
- Topological 87

Flexible Manufacturing Systems 56
Folding 226
Fork 40
Fork-join 40, 47
FORTRAN 279
FP 227
Frequency agile modem
- see Modem

Frequency modulation 35
Frequency synthesizer 17, 19
Frequency-division-multiplexing

14
Functional flexibility
- see Flexibility

Functional languages
- see Languages

Functional operating systems
- see Operating systems

Functional programming

Index 301

- see Programming
Functions 290

G-machine 237
Garbage collection 238-, 278
Gaussian elimination 284
General net theory
- see Nets

Generalised periods 113
Generative set approach 227
Global clock 43
Global synchroniser 45
Graph reduction
- see Reduction

Graph reduction machines
- see Reduction

Graph rewriting 261
Group modules 94
Guarded commands 43, 53, 55, 57,

91
Guardians (Argus) 96
Guards
- see Guarded commands

Hardware description languages
161-

Hardware failure 46
HDLC 34
Heat-conduction problem 181
Hiatons 231
Hierarchical decomposition 155
High Bit Rate Modem
- see Modem

High integrity design 190-
High level COSY notation
- see COSY

High level transformations 227
Higher order functions 225, 236
History 108
Hope 221-, 252

Id 280-
Idempotent messages 50
IEEE-488 36
IF 281-
Imperative languages
- see Languages

Implementation flexibility
- see Flexibility

Implicit numerical methods 181
Independence relations 114
Infinite data structures 229
Infrastructure 4-
Innermost spine reduction

302 Index

- see Reduction
Instantaneous transition rates

140
Interaction 292-
Interactive functional program­

ming 291-
Interconnection topology 260-
ISWIM 252

Jackson networks 144
Jackson program design method 159
Join 40

Kleinrock's conservation law 144
KRC 8, 221-

Labelled Petri nets
- see Nets

Labelled-token dataflow 270-
LAMBDA 232
Lambda calculus 232, 252, 256,

261
Languages
- Applicative 8, 220-, 279
- Assembly 281
- Configuration 54, 88-, 92-
- Declarative 220-
- Functional 154, 220-, 250,

260, 279, 290-
- Imperative 279

Logic 8, 252, 279
- Non-deterministic 279
- Non-procedural 279
- Single assignment 279
- Specification 107-, 127-, 228

Laplace's equation 284
Lapse 275, 280
Lazy evaluation 220, 225, 229
LCF 221
Lee routing algorithm 284
Line drawing 204, 217
Lisp 58
Lispkit 221, 252
Little result 141
Livelock 45
LNET 256, 264-
Loaders 101
Local area networks 12-, 25-, 94
- Baseband 13, 14
- Broadband 14-
- Cambridge Ring 6, 10, 26, 58,

94, 103, 149
- Centrenet 25-
- Ethernet 13, 26, 94, 150

- Fibernet 27
- Modelling 141, 149-
- Sussex network 12-
- Token ring 13, 151-

Local link 35-
Logic languages
- see Languages

Logic networks 161
Logic programming
- see Programming

Loosely-coupled systems 7
Lucid 280

M/M/N system 142
Macro notation (COSY)
- see COSY

Mad 271, 280
Mailboxes 43, 55
Mailshot 5
Management of DCS 3
Manchester dataflow machine 8,

267, 270-
Manchester encoding 21
Markov processes 139-
- N-dimensional 144

Markov property 139-
Martlet 40, 45, 47-
Matching functions 278, 281
Matching unit 275, 277-
Mathematical modelling 139-
Matrix factorisation 185
Matrix multiplication 284
Maximal concurrency 115
Maximal concurrent evolution 115
Maximally concurrent reachability
- see Reachability

Mean Value analysis 148
Mediums 50, 58
Meetings programme 5
Merge
- Fair 230
- Non-deterministic 229

Merge algorithm
- Parallel 176

Message passing 88-
- Buffered 41-
- Synchronised 41-
- Unbuffered 41-

Meta language 227
MINAS operating system 43
Miranda 8, 221
ML 221-, 252
- Standard 221-

Modem

- Fixed frequency 17-
- Frequency agile 17-
- High bit rate 20-

Modula 91
Modula-2 40
Modularity 88, 134
Module 50, 105, 224
Monitors 41, 46, 56, 88, 122
Monte Carlo simulation 284
MU5 26
MU6 26
Multi-ring dataflow system 271,

278-
Multi-window screen interface 56
Mutual exclusion 71

N-dimensional Markov processes
- see Markov processes

Navier-Stokes equation 284
Neighbour sort algorithm
- see Sorting

Nets
- Causal 109
- Condition/event 109
- General net theory 109
- Labelled Petri 120
- Occurrence 109
- Petri theory 109

Network Architectures 26-
Network for University Campus 12,

26
Network Intelligence Module 29
Network models 144
Network protocols
- see Protocols

Network reconfiguration 52
Node store 275
Non von-Neumann architectures 7
Non-determinism 43, 107, 229, 297
Non-deterministic languages
- see Languages

Non-deterministic merge
- see Merge

Non-procedural languages
- see Languages

Normal order reduction
- see Reduction

Notify ports 51, 88
NPL 223
NRZI-S coding 35

OBJ 63
occam 40, 53-, 263
Occurrence nets

Index 303

- see Nets
Omninet 103
Open systems 126
Operating systems
- Distributed 9, 99-, 126-
- Functional 9, 290

Optical fibre transmission
- see Fibre-optics

Optimal reduction orders
- see Reduction

Oracles 231
OS6 134
OSI model 37
Overflow unit 278

P-machine 63
Painter's algorithm 201
par 235
Parallel
- Arithmetic 191
- Bisection 171, 174
- Conditionals 231-
- Graph reduction - see Reduc-

tion
- Hashing scheme 277
- Merge algorithm - see Merge

algorithm
- Multisection 174

Partial correctness
- see Correctness

Partial functions 127
Partitioning 169
Pascal 40, 46, 63, 64, 279
- Concurrent 68,156
- Pascal PIus 40, 46, 56-, 68
- Pascal-m 9, 40, 55-
- Path Pascal 41, 46, 56-
- UCSD 63

Path expressions 57
Pattern matching 222-
PCF 232
Performance 3, 8, 10, 102, 169,

179-, 196-, 214-, 285
- Modelling 139-

Perq 63, 203
Persistent data structures 82
Petri net theory
- see Nets

Phase encoding 35-
Plant monitoring 63
PO 279
Pointer-number machine 189-
Poisson distribution 144-
Polygon filling 217

304 Index

Polymorphic typing 220, 222-
Ponder 222
Pop-up menues 199
Port-card 30-
Ports 43, 51, 88-
Powerdomains 231
Process 40, 54, 253
Process abstraction
- see Abstraction

Process control 50-
Process tree 252
Processing unit 275
Program development environment

72-
Program proving 226 .
Program structuring 40
Program transformation 225-
Programming
- Functional 224-, 290-
- Interactive functional 291-
- Logic 224-

Prolog 224
Protocols 45
- Basic block 150-
- Specification 119
- Verification 119

Pulse project 47-, 50, 58

QMC Text terminal 203
Quadrant addressing 213
Quadrant interlocking factorisa-

tion 185
Quadrature 170-
Queueing network 151
Queueing theory 139-
Quicksort 234

r-n-cube 254, 256
RasterOp 200-
Reachability 114
- Concurrent 115
- Maximally concurrent 115
- Sequential 115

Recursion 53
Recursive data structures 64
Recursive doubling 171
Redex 228
Reduction 251-
- Beta 261
- Combinator 8, 233, 238, 255,

262-
- Graph 10, 232-, 265
- Innermost spine 233
- Machines 237-

- Normal order 228-
- Optimal order 233
- Parallel graph 263-
- Safe order 267

Referential transparency 226
Refresh controller 211
Regular expressions 111
Regular grammars 109
Reliability 3
Remote links 33
Remote procedure call 41-, 46,

47, 58
Rendezvous mechanism 49
Request-reply ports 52, 88
Rewrite rules 251
Rewrite systems 260-
RISC 190, 195
Routing matrix 144

Safe reduction orders
- see Reduction

SASL 8, 221-, 252, 261, 280
Schema (Z) 129
SECD machine 238
Semantics
- Axiomatic 266
- COSY - see COSY
- Denotational 266
- Operational 121

Sequences 290-
Sequential bisection 174
Sequential reachability
- see Reachability

Sequential translations 159-
SERC 1
Servers 57
Set notation 223
Shared-memory 41, 46, 48, 51, 56,

169
Shells 290-
SIMPLE benchmark 284
Single-assignment languages
- see Languages

Single-user system 13, 199
SISAL 281-
Sorting 157, 176
- Neighbour algorit1:1m 176

Space complexity 234
Specification 8, 9, 105, 108-,

126-, 154, 225, 228
- Languages - see Languages
- see also Protocol:9

SR 91
Stability properties of algo-

rithms 174
Standard ML
- see ML

Star-type network 27
Starpoint 29-
Starvation 108
Steady-state balance equations

141
Steady-state distribution 140
Stepwise refinement 79, 154-
Stochastic processes 139
Store-and-forward gateways 94
Strictness 235
Structural operational semantics
- see Semantics

Structure editor 72-
Structure store 63-, 274, 278,

281
Structured data store
- see Structure store

Structured programming 154-
Sturm sequence 171
Supercombinators 237
Supercomputer 270
Superport 32
Surface shifting 215-
Sussex network
- see Local area networks

Switch 275-
sync 235
Synchronisation 107-
Synchronised message passing
- see Message passing

System notation (COSY)
- see COSY

Tag cod ing 192
Tagged memory 190-
Tagged-token dataflow 272
Tasks 47, 50, 88-
TASS 281
Technology transfer 10
Template assembler 271, 281
Templates 264
Terminal Switching Exchanges 13
Termination 293-
Textual substitution 238
Theory 9
Tightly-coupled systems 9
Time domain flexibility
- see Flexibility

Time-out 45, 48, 152
Timestamps 231
Timing problems 44-

Index 305

Token matching unit 274
Token queue 275
Token ring
- see local area networks

Tokens 272-
Topological flexibility
- see Flexibility

Total correctness
- see Correctness

Trace 108
Train journeys 119
Transformation systems 227-
Transformational development of

specifications 117
Transitive closure 217
Trapezoidal integration 284
Travelling salesman 284
Tridiagonal eigenvalue problem

171-
- see also Eigenvalue problem

Tripos 40
Type editor 72-
Type-checking 49, 57

UCSD Pascal
- see Pascal

Unfolding 226
Unification 224-
Unix 6, 9, 58
Unix United 9
Untilend 292
User interfaces 72, 199

Val 281
Value editor 79-
Vector
- Events 113-
- Firing sequences 113-, 116-
- Maximal firing sequences 115
- see also Firing sequences

Vectorization 169
Verification 105, 108-
Video data 37
Virtual memory 62-
Voice transmission 37
Wafer scale integration 260
Wide area network 25
Windows 199-

Z specification notation 127-
ZAPP 250-
Zermelo-Frankel set theory 222-

